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Neutrinos are densely populated deep inside the core of massive stars after their gravitational collapse to
produce supernova explosions and form compact stars such as neutron stars and black holes. It has been
considered that they may change their flavor identities through so-called fast-pairwise conversions induced
by mutual forward scatterings. If that is really the case, the dynamics of supernova explosion will be
influenced, since the conversion may occur near the neutrino sphere, from which neutrinos are effectively
emitted. In this paper, we conduct a pilot study of such possibilities based on the results of fully self-
consistent, realistic simulations of a core-collapse supernova explosion in two spatial dimensions under
axisymmetry. As we solved the Boltzmann equations for neutrino transfer in the simulation not as a
postprocess but in real time, the angular distributions of neutrinos in momentum space for all points in the
core at all times are available, a distinct feature of our simulations. We employ some of these distributions
extracted at a few selected points and times from the numerical data and apply linear analysis to assess the
possibility of the conversion. We focus on the vicinity of the neutrino sphere, where different species of
neutrinos move in different directions and have different angular distributions as a result. This is a pilot
study for a more thorough survey that will follow soon. We find no positive sign of conversion
unfortunately at least for the spatial points and times we studied in this particular model. We hence
investigate rather in detail the condition for the conversion by modifying the neutrino distributions rather

arbitrarily by hand.
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I. INTRODUCTION

Neutrinos are massive particles although their masses are
much smaller than those of the charged lepton counterparts
[1]. Moreover, the masses are not diagonal with respect to the
flavors and, as a consequence, the flavor conversion, or the
neutrino oscillation, occurs as they propagate in vacuum [2].
In the presence of matter, weak interactions with surrounding
matter modify this dispersion relation in vacuum and induce
resonant conversions of flavors, which are refered to as the
MSW (Mikheyev-Smirnov-Wolfenstein) effect and believed
to be the solution to the solar neutrino problem [3,4]. The
neutrino self-energy induced by weak interactions, which is
the origin of the MSW effect, is also generated by the
interactions with other neutrinos and if they are densely
populated, it will contribute to the flavor conversion and is
called the collective neutrino oscillation [5-8]. This is
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qualitatively different from the former two, since the equa-
tions that describe the propagation of neutrinos become
nonlinear and, as a result, interesting new phenomena such as
spectral splittings may occur [9—11].

By definition the collective neutrino oscillation occurs
only where neutrinos are abundant. Core-collapse super-
novae (CCSN) are one of such sites in the Universe as
vindicated by the detection of about 20 electron-type
antineutrinos from the supernova SN1987A in the Large
Magellanic Cloud [12]. CCSN are the explosive death of
massive stars with zero-age-main-sequance masses of
28 My and are at the same time the birth of a compact
object such as a neutron star (NS) or a black hole (BH).
They are also an important agent for the chemical evolution
of the Universe, producing heavy elements. The exact
mechanism of CCSN is not fully understood, however [13].
The initial implosion of a massive star core should be
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reversed somehow to produce an explosion. It is well
established that the core bounce induced by hardening of
matter at the nuclear density does not generate a shock
wave powerful enough to expel the outer part of the
imploding core, not to mention the stellar outer envelopes.
Supernova researchers hence have been seeking for a way
to reinvigorate the shock wave stalled inside the core.

Neutrinos (v’s) are believed to play a key role in the
shock revival. As a matter of fact, almost all of the binding
energy of NS liberated in the gravitational collapse is
emitted in the form of neutrinos and the kinetic energy of
matter in the supernova explosion is just ~1% of this
energy. In the currently most popular scenario, which is
called the neutrino heating mechanism, a fraction of the
electron-type neutrinos and antineutrinos are reabsorbed by
the matter between the shock front and the so-called gain
radius and deposit their energy to push the stagnated shock
again. It is obvious then that the success of the scenario
depends on how efficiently neutrinos are absorbed by
matter. It is also known that v,, v, and their antiparticles
have higher energies than v, and 7, in general, since they
lack the interactions with matter via charged currents in the
supernova core. It is equally obvious then that if the former
is converted to the latter and absorbed by matter, more
energy will be transferred to matter and may induce
successful explosions. This is one of the reasons why
the collective neutrino oscillation is attracting the interest of
supernova researchers and particle physicists alike. In fact
the interest is revived when it is realized that the so-called
fast-pairwise conversion may occur near the neutrino
sphere, which has a radius that roughly corresponds to
the optical depth of 1 and is the surface, from which
neutrinos are effectively emitted [14,15].

The investigation of the collective neutrino oscillations is
much more difficult than those of the vacuum or MSW
oscillations, since the former is nonlinear phenomena as
already mentioned. As a result, the previous studies of the
fully nonlinear oscillations were limited to some simplified
and/or idealized situations [8,16-21]. The investigations of
more realistic settings such as those in the supernova core
are even more difficult, since kinetic equations that describe
the neutrino transfer in nonuniform matter should be solved
somehow. This is not an easy task even in spherical
symmetry [22-24].

Recently, a different approach based on linear analysis
has been employed [25-28]. The idea is based on the fact
that neutrinos are almost in the flavor eigenstates at the
beginning of the conversion; then the linearized equations
can be used to study where and when the flavor conversion
is triggered. In this approach the flavor conversion is
regarded as the instability of the flavor eigenstate. It is a
common practice to assume also the local approximation,
in which the distributions of the background matter and
neutrinos are uniform in space. This is of course justified
only when the oscillation length is much shorter than the

local scale heights in the matter and neutrino distributions.
The linearization of the original nonlinear equations makes
the analysis drastically easier although we need to carefully
handle spurious modes that plague numerical solutions of
the linearized equations more often than not [29]. More
recently, it is demonstrated that the so-called dispersion-
relation approach is more convenient [30]. In this paper we
base our analysis on this method.

Quantitative studies of the fast-pairwise conversions in
the realistic settings have been mostly limited to spherically
symmetric 1D models so far [14,15,31-33]. Unfortunately
they found no positive result [32,34] except for the lowest-
mass end of massive stars, which are supposed to produce
the so-called electron-capture core-collapse supernovae
[35]. Very recently, Abbar et al. [36] extended such studies
to 2D and 3D models. They extracted three snapshots from
numerical data and looked for the crossing in the angular
distributions of v, and 7,. They found a positive sign in
extended regions with the radius of 250-70 km. They also
conducted a linear analysis, assuming that the angular
distributions are axisymmetric with respect to the local
radial direction and estimated the growth rate in the same
direction. Note, however, that these neutrino distributions
were obtained by the neutrino transport calculation done as a
postprocess, dropping the time dependence of both hydro-
dynamical and neutrino quantities and ignoring matter
motion entirely. Hence they are not fully self-consistent.

In this paper we conduct a linear stability analysis for
some selected neutrino distributions obtained in fully
self-consistent simulations of CCSN in two spatial dimen-
sions under axisymmetry with our Boltzmann-radiation-
hydrodynamics code [37]. Computing neutrino transport
in situ together with hydrodynamics, they are five dimen-
sional in fact (2 for space and 3 for momentum space) and
are hence fully consistent with matter dynamics. This paper
is actually meant to be a pilot study for more thorough
investigations of the possibility of fast-pairwise conversion
in our realistic models [38].

We pay particular attention to the vicinity of the neutrino
sphere (r <50 km) in this work. This is mainly because
nonspherical features are most manifest there: neutrino
distributions are not axisymmetric with respect to the radial
direction unlike in 1D; the neutrino fluxes are nonradial and
not aligned with each other among different species. Note
that these asymmetries are mainly produced by convective
matter motions near the neutrino sphere; the neglect of
matter motion may hence understimate them. Another
reason is, of course, that if the flavor conversion occurs
near the neutrino sphere, it will have the largest impact on
the supernova dynamics as originally emphasized by
Sawyer [14]. Note that in this paper we will not just look
for the crossing in the angular distributions of v, and 7,,
since it remains to be demonstrated that the crossing is
really the condition for the fast-pairwise conversion par-
ticularly in multi-D settings (see [30,32,34,40]). We hence
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conduct linear analysis for highly nonradial angular dis-
tributions irrespective of the existence of crossing. As a
matter of fact, when the original distributions fail to give
conversion, we modify them until we find conversion and
study the condition for successful conversion.

This article is organized as follows. In Sec. II, we briefly
review the EOM for neutrino flavors and formulate the
linear stability analysis based on the dispersion relation. In
Sec. 111, we introduce the numerical data extracted from our
realistic simulation of CCSN and employed for the linear
analysis as the background models in this study. In Sec. IV,
we present the results from the pilot study on the possibility
of the fast-pairwise conversion and discuss in detail the
condition for the instability. Finally in Sec. V, we summa-
rize our results and conclude the paper.

II. FORMULATION OF LINEAR
STABILITY ANALYSIS

A. Equations of motion (EOM)

Following the previous works [29,30], we write down the
EOM for the np x np density matrix p, which describes
flavor evolutions of the neutrinos that have energy E and
propagate in a particular direction. Here ny is the number of
neutrino flavors. The diagonal components of the density
matrix are the distribution functions of those neutrinos in the
individual flavor eigenstates. The off-diagonal elements, on
the other hand, express the phase information in the
oscillation from one flavor to another. If ordinary collisional
processes are neglected, the EOM can be written as

(0 +v-V,)p = ilp. H]. (1)

in which the Hamiltonian is expressed as

H= ];[ +oHA, +\/_Gp/dl"’v”vﬂp, (2)
where M? is the mass-squared matrix, which causes the
flavor oscillations in vacuum, o5 is one of the Pauli matrices
and v = (1,v) denotes the neutrino four velocity; the
matter potential, which induces the MSW oscillation, is
given as a four vector A* =/2Gg(n, —n, )u*, since
matter is moving at the four velocity of u*; note that we
will work in the laboratory frame in the following; the last
term is responsible for the collective oscillation and p’ is
the density matrix for the neutrinos having energy E' and
moving at the four velocity of v = (1,V') and the inte-
gration is done over the whole momentum space
dl’ = dv' /4.

In the rest of the paper, we work in the two-flavor (v, and
v,) approximation as a common practice for simplicity
[36], where v, stands for v, and v, collectively. Then we
express the density matrix as

_fye_‘_fy), fyc_fyx S N
p=—"%t75 (S* _s>, (3)

where f, and f, are the neutrino distribution functions for
v, and v,, respectively. Note that s and S are +1 and 0,
respectively, when the neutrino is in one of the flavor
eigenstates. This simple fact suggests that we employ linear
analysis. In fact, since neutrinos are produced in one of the
flavor eigenstates, the off-diagonal components should be
much smaller than the diagonal ones until the flavor
conversion is triggered and the former components grow
exponentially. Then the use of the linearized EOM for the
small off-diagonal components will be justified in the study
on the trigger of the flavor conversion.

B. Linear stability analysis based
on dispersion relation

Note first that the flavor eigenstates corresponding to
s = £1 and § = 0 are fixed points of EOM if we ignore the
off-diagonal elements in the mass matrix M in vacuum,
which we will assume in the following indeed. Then by
linearizing Eq. (1) at one of these fixed points, we obtain
the following EOM for the small off-diagonal component
Sy(E):

(0, +v-V.)S, =v"(A, +D,) /—v"v GySy, (4)

where we add the subscript v to S to indicate explicitly that
it depends on v; G, is the electron-lepton number (ELN)
angular distribution defined as

© dEE?

G, = ﬁGF[) o EN) — fo (EV). (5)

The corresponding ELN current ®# can be defined as

dv

o= | — i
yp Gy (6)

By assuming the solution of Eq. (4) in the form of
Sy = Qye (%K) " the equation for the amplitude Q, is
written as

av’
0y == [ G0l Gy0y. )
where k* = K¥ — A —®*  with k* = (w,k) and

K* = (Q,K). Since the right-hand side of Eq. (7) can
be expressed as v*a, with

aﬂ——/—vGQv, (8)

we can write Qy = v*a,/v"k,. If we put this expression
back into Eq. (7), we obtain the equation
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*(w,k)a, =0, 9)

where 1" is given as

dv v’ v°
[1ve = yre —G,——. 10
T m e vk (10)
Equation (9) has nontrivial solutions if and only if
D(w,k) = detII = 0. (11)

This gives implicitly a relation between @ and k that is
referred to as the dispersion relation. Note that it depends
on the direction of Kk in general although k is often assumed
to be radial in the literature. Our numerical code can treat
an arbitrary direction of k and we show later that not
the radial direction but the so-called crossing direction is
more important indeed when the fluxes of v, and 7, are
misaligned with the radial direction.

We are interested in complex solutions of Eq. (11), since
they are supposed to indicate the instability corresponding
to the initiation of the flavor conversion. Some cautions are
necessary, however. As pointed out by [41] and actually has
been known for decades in plasma physics [42,43], it is not
sufficient to obtain complex solutions with imaginary parts
of appropriate signs in @ or k. In fact, the mathematically
rigorous criterion for instability is the coalescence of two
roots that are originated in the opposite halves of the
complex k-plane in some moving frame, which is not easy
to apply to realistic dispersion relations. It should be also
noted that the coalescence search must be done recursively
if the spatial dimension is larger than 1, which is practically
impossible. Hence, in this paper we will be satisfied with
the following: we regard complex @ solutions with positive
imaginary parts for real k as the sign of the flavor
conversion; in some cases we also study the motions of
some solutions in the complex k-plane as we change the
value of the imaginary part of w. This is certainly an
approximation and should be improved one way or another
in the future [38].

III. APPLICATION TO REALISTIC DATA

A. Numerical models

We use the results of our realistic two-dimensional (2D)
simulations on the K supercomputer systems in Japan [37].
The core-collapse and the subsequent time evolution were
computed fully self-consistently for the nonrotating pro-
genitor model of 11.2 My in [44] with the Boltzmann
equations for neutrino transport being solved by applying
the discrete-ordinate method and taking fully into account
special relativistic effects with a two-energy grid technique
[45]. In addition the Newtonian hydrodynamical equations
and the Poisson equation for self-gravity were solved
simultaneously. All the equations are written on spherical
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FIG. 1. Entropy distributions in the meridian section
of the central part of the core at 7,, =15.0 ms (top),
f,p = 1904 ms (middle) and 7,, =275.9 ms (bottom),
respectively.
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coordinates (r,8) under the assumption of spatial axisym-
metry. The computational domain covers the region of
0 < r <5000 km and 0 < @ < 7 in space, which is divided
into 384(r) x 128(f) mesh cells; momentum space was
also discretized with 20 energy bins over the range from
0 to 300 MeV and with 10(6,) x 6(¢,) angular mesh cells
on the entire solid angle. Three neutrino species, electron-
type neutrino v,, electron-type antineutrino 7, and all the
others v, were considered.

Although we employed two realistic equations of state
(EOS) in the original simulations for comparison, we adopt
in this paper only the results obtained for Furusawa’s
equation of state [46,47], in which greater misalignments
tend to be produced among the angular distributions
of different neutrino species in the early postbounce
phase than in the other equation of state by Lattimer and
Swesty [48].

We then picked up three snapshots at different times:
t,, = 15.0, 190.4 and 275.9 ms postbounce. Figure 1
displays the entropy distributions in the meridian section
of the central part of the core at these times. The strong
prompt convection is clearly seen in the top panel for
t,, = 15.0 ms although the shock front, which is visible
near the corners, is still almost spherical. The shock wave is
stagnated then and the so-called neutrino-driven convection
sets in thereafter in the gain region, in which net neutrino
heating occurs, whereas the convection near the protoneu-
tron star (PNS) is subsided. The middle panel is the
consequence of these evolutions up to 7,, = 190.4 ms.
At the even later time of 7,, = 275.9 ms (bottom panel),
both the convection near the PNS and the shock instability
calm down and the shock front recedes to a smaller radius.
This model is unlikely to produce an explosion.

We shift our attention to the neutrino distributions at
these three epochs now. Note first that they are the results
obtained in the simulation that neglected possible neutrino
oscillations entirely. Since the fast-pairwise conversion is
supposed to feed on the difference in the angular distri-
butions in momentum space between v, and v,,, we show in
Fig. 2 the sine of the angle between the flux vectors for v,
and 7,, which are meant to be a rough measure of
misalignment in the angular distributions, as color contour
plots at the same three postbounce times. The energy-
integrated flux vector of neutrino species i is defined as

F(r) = /E(;”E)fvvfi(r,E,v). (12)

Note that brighter colors indicate that the two flux vectors
are highly misaligned. In the same figure we also give the
iso-density surfaces for p = 10!, 10'? g/cm? as well as the
neutrino spheres for all species.

As mentioned earlier, the convective motion occurs
and the matter distribution is nonspherical in the PNS
(p = 102 g/cm?) and, as a result, neutrinos are flowing
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FIG. 2. Color contours for the sine of the angle that the flux
vectors make: |F, xF; |/|F, ||F;|. Red and green circles
correspond to the densities of 10'> and 10'! g/cm?, respectively.
Violet, light-blue and brown circles indicate, respectively, the
neutrino spheres of v,, U, and v,, or the radii that their mean free
paths calculated from both absorption and scattering rates are
equal to the density scale height p/(dp/dr). Yellow and dark-
blue circles, on the other hand, show the neutrino spheres of v,
and 7,, respectively, calculated from the scattering rate alone.
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nonradially in the laboratory frame. Note that it is important to
treat relativistic aberration properly in the neutrino transfer
calculation in order to get the correct angular distribution in
the laboratory frame in the optically thick region [37]. More
importantly, the flux vectors for v, and 7, are highly
misaligned there as should be clear from the figure. Since
in the linear analysis formulated in the previous section we
ignored all neutrino interactions other than the forward-
scatterings that induce the refractive effect, it is not applicable
in principle to the region deep inside the neutrino sphere,
where such neglected interactions may not be ignored
actually (but see also [49]). We hence pick up by inspecting
the top panel of Fig. 2 a point (r = 44.8 km, 8 = 2.36 rad)
for linear analysis, which is close to the neutrino spheres and
where we expect the highest misalignment of the flux vectors
for v, and 7,.

In order to see the typical time evolution, we employ the
neutrino distributions at the same point for the later times,
ie., tp,, =1904 ms and ¢,, =275.9 ms although the
misalignments are much reduced at this point for these
times. This is confirmed indeed in Fig. 3, in which we
exhibited the flux vectors for all three neutrinos. As
expected, the flux vectors for v, and , are almost
perpendicular to each other at 7,, = 15.0 ms.

In fact they are appreciably nonradial. This is because
there is a convective motion of matter, to which they are
coupled more strongly than v,. On the other hand, all three
flux vectors are almost radial and hence aligned with one
another at the later times as shown in the middle and bottom
panels. It should be also noted that the absolute values of
the fluxes are highly different among three species with the
flux of 7, being the smallest in general as can be understood
from the scaling factors employed in drawing the figure.
This is simply because the Fermi degeneracy of electrons
strongly suppresses the population of 7,. It is also evident
that the asymmetry in abundance among neutrino species is
somewhat relaxed as the time passes. As it will turn out
later, these features have important implications for the
fast-pairwise flavor conversion.

Figures 4-6 show the angular distributions in momentum
space of v,, U, and v, at the same spatial points for
t,p = 15.0, 190.4 and 275.9 ms, respectively. They are
actually the raw data extracted from the simulation and
are the angular distributions of the neutrinos with specified
energies in the meridian sections of momentum space at
different values of ¢,, which is the azimuthal angle in
momentum space and should not be confused with the
spatial one, ¢b. Each arrow indicates the value of the neutrino
distribution function in these figures in one of the @, bins
adopted in the simulation. Again 6, is the zenith angle in
momentum space measured from the radial direction [37]
and should not be confused with the spatial counterpart 6.
The vertical axis corresponds to the radial direction at this
point. The colors indicate neutrino species: red, blue and
green correspond to v,, U, and v,, respectively.
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FIG. 3. Energy-integrated fluxes of different neutrino

species at the point indicated by the yellow radial lines
(r =44.8 km, 6 = 2.36 rad). Top, middle and bottom panels
correspond to ¢, =15.0ms, 7,, =190.4ms and ¢,;, = 275.9 ms,
respectively.
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FIG. 4. Angular distributions in momentum space of v,, I, and
vy at tp, = 15.0 ms. Panels A, B and C correspond to the
neutrino energy of £ =35 MeV whereas D, E and F have E =
8.5 MeV and G, H and I share £ = 10 MeV. Each column shows
the meridian sections, which correspond to a certain pair of ¢,
values: ¢, [radian] = (0.35, 3.49), (1.57, 4.71) and (2.78, 5.92)
for the left, middle and right columns, respectively.

In each set of nine panels with one of the colors, three
panels in a row have an identical neutrino energy while
those in each column share the same value of ¢,. Hence if
one looks at these panels horizontally, one sees the
azimuthal dependence whereas the energy dependence is
found if they are viewed vertically. More specifically,
the bottom row or panels A, B and C correspond to
E =5 MeV, the middle row or panels D, E and F
correspond to E = 8.5 MeV and the top row or panels
G, H and I share £ = 10 MeV. Note that the peak energy is
E = 8.5 MeV in the number spectrum of v,. These are
actually the energies measured in the fluid rest frame in our
simulation, which employs the two-energy grid technique
[45], and, strictly speaking, we should Lorentz-transform
them to the laboratory frame. Since the matter velocity is
not very large, however, we ignore the slight differences
that would make in the following analysis.

It is immediately apparent from the middle section with
the blue color, i.e., for 7,, that its angular distribution is not
axisymmetric with respect to the local radial direction with
the principal axis being inclined. This is also the case for
other neutrino species although it is not so remarkable.
Although v,’s are most strongly coupled with matter, their
flux is nearly radial accidentally. Anisotropy of the distri-
bution function is more apparent for lower-energy neutrinos,
since they are decoupled from matter deeper inside.

As the time passes, the PNS contracts owing to neutrino
emissions. As a result, the neutrino spheres also retreat to
smaller radii and the neutrino angular distributions become
more forward-peaked with inward-going neutrinos getting
scarce. This is clearly seen in Figs. 5 and 6. As expected
from the bottom panel of Fig. 4, the angular distributions
are almost radially directed for all three neutrino species
although some inclinations to the local radial direction are
still visible for v, and 7, particularly at low energies.

The reader should be reminded that the scales are different
from panel to panel in these figures. In fact, U, has the
smallest populations in general and this is particularly
the case at the earliest time as should be evident from the
comparison of 7, (blue sections) in Figs. 4-6. As mentioned
earlier, this happens because the Fermi degeneracy of
electrons and, as a result, of v, as well is strong at the
position of our current concern. It is found even at the latest
time r = 275.9 ms that the abundance of 7, is still less than
half that of v, around their average energy. This disparity
between v, and 7, is indeed unfavorable for the fast-pairwise
flavor conversion as we will demonstrate later.

IV. RESULTS AND DISCUSSIONS

A. Investigations of the original data

We first look into the dispersion relations (DRs) between
the wave number k and the frequency w, which are obtained
by applying the previous formulations to the realistic data
for all three time steps. It should be emphasized here that
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the DR actually depends on the direction of k. In fact our
code can treat arbitrary directions [29]. In the following,
however, we mainly choose the direction, in which the
energy-integrated angular distributions of v, and 7, are
closest to each other and the crossing would occur if it
could. We refer to it as the crossing direction hereafter. We
will show later that as long as v, is dominant over 7,, other
directions of k normally give smaller growth rates if they
are really unstable. In Fig. 7, we show the DR’s in blue for
that direction of k and the gray region is the so-called zone
of avoidance, i.e., an unphysical region. The red region
indicates the gap between branches of the DR. There are
multiple branches in general. They are stable modes,
however, in which the amplitude does not grow in time.
They are hence not interesting from a point of view of the
flavor conversion. We then try to find complex @ solutions
with positive imaginary parts, varying the value of real £,
but in vain. It is hence highly likely that there is no such
solution indeed for this case.

In order to consolidate the claim, we look for solutions in
another way. As mentioned above, looking at the DRs in
Fig. 7, one recognizes that there is a gap in w, i.e., the
region that none of the branches traverses and is indicated
in red. This implies that for any w in this region there is no
real k that satisfies Eq. (11). We then expect that there are
some complex k solutions instead. This is exactly what we
find in fact. Note again, however, that what we are seeking
is not complex k solutions for real values of @ but complex
w solutions for real values of k. In order to see that these
solutions do not exist, we take the following procedures.

We choose a couple of values of @ from the gap region
and solve Eq. (11) in the complex k-plane. As expected, we
find some complex solutions in general as we will

200

100

w Icm_l |
o

-100

-200 ] i
-200 ~100 0 100 200
k [em™]

FIG. 7. Dispersion relations between real £ and @ for the
original data at 7,;, = 15.0 ms. It is assumed that K is oriented in
the crossing direction, which is different from case to case and is
shown by a black arrow for each case in Figs. 10, 16 and 18. Red
shaded area indicates the gap between branches, which is open in
o in this case.

demonstrate shortly. We then gradually increase the imagi-
nary part of @ from zero and solve Eq. (11) repeatedly to
see how the complex k solutions move in the complex
k-plane. If one of them crosses the real axis at some point,
that is the solution we are seeking. If instead none of the
solutions approaches the real axis, it indicates that there is
no such solution with a real k for a complex w with a
positive imaginary part.

We first choose @ = 10 cm™!, which is inside the gap, and
solve Eq. (I11) in k. We show in Fig. 8 the solutions of
Re[det[IT]] = 0 and Im[det[IT]] = O as blue and orange lines,
respectively, in the complex k-plane. The intersections of
these lines actually give the solutions of Eq. (11). The top left
panel of Fig. 8 shows the solutions for this particular real w.
As expected, there are complex solutions on the imaginary
axis as marked with red circles. Note that one of the orange
lines coincides with the real axis, since we choose the real
value for w. It is also mentioned that we have multiplied
with det[IT] in drawing this figure just for our convenience.
This extra multiplication is the reason why some of the lines
are emanating almost radially from the origin, £k = 0, which
is certainly not a solution. Also shown with thick gray lines
are the zone of avoidance, in which no physical solution can
exist, for the current choice of w.

Now we see how these complex solutions will move in
the complex k-plane by changing the imaginary part of w.
Note that we are interested only in @ with positive
imaginary parts. We show in the middle and right panels
on the top row of the same figure the results for Im w = 5
and 10 cm™!, respectively. The real part is unchanged. As
we can see, there is no indication that they approach the real
k axis, which means there is no instability in this case.
Although we present only two cases here, we have actually
tried many other values of the imaginary part and con-
firmed that this statement is true. This is also the case for
other values of the real part of w in the gap.

We also investigate the regions outside the gap to
check the possibility of the instability. We first choose
Rew = 100 cm~! and setIm @ = 0, 50 and 100 cm™". The
second row of Fig. 8 corresponds to these cases from left to
right. As is clear and expected, we do not find any solutions
in the complex k-plane for these values of w except for
those in the zone of avoidance on the real axis and hence
there is no solution of Eq. (11) that reaches the real k axis,
which would give rise to the instability. We then repeat the
same analysis for another real value of @ = —100 cm™!
outside the gap. We employ the same values of 0, 50 and
100 cm™" for Im . As shown in the bottom row of Fig. 8,
where again three panels correspond to these cases from left
to right, respectively, there is no solution in the complex
k-plane for these cases, either, and hence there is no chance
of the instability.

These analyses clearly endorse the claim that there is no
unstable mode for this particular model. We have repeated
the same analyses for the other two postbounce times.
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FIG. 8. Solutions of Eq. (11) in k for the realistic data at ¢,;, = 15.0 ms. On the top row, the real part of @ is Re w = 10 cm™~! whereas
its imaginary part is Im @ = 0, 5 and 10 cm™' from left to right, respectively. The middle and bottom rows correspond to Re @ = 100
and —100 cm™!, respectively, and the imaginary part is Im @ = 0, 50 and 100 cm~"! for the left, middle and right columns, respectively.
In each panel, blue and orange lines are the solutions of Re[det[IT]] = 0 and Im[det[IT]] = 0, respectively, and their intersections marked
in red give an actual solution of Eq. (11). Note that we multiply £ with IT in drawing these pictures and hence the origin is not a solution.
Gray lines indicate the zone of avoidance.

We found no sign of instability either in these cases. Since ~ question instead of studying other places or times, which
the results are not much different from the one shown above ~ will be postponed to the forthcoming paper [39]: what
for 7,, = 15.0 ms, they are presented in the Appendix. would have been necessary then for the successful flavor
Having obtained these negative results, we change the  conversion? We will address this issue in the following.
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w Icm'] 1

FIG. 9. Dispersion relations (first and third rows) and the angular distribution differences (second and fourth rows) between v, and 7,
for modified data at 7, = 15.0 ms. We multiply the original distribution functions of 7, by a factor 25, 31 and 35, respectively, on the
second row from left to right whereas the multiplication factor is 39.5, 45 and 49, respectively, on the fourth row from left to right. In
these pictures, the angular distribution differences are expressed as colored surfaces. Red implies that v, is dominant while blue means
otherwise. The distance from the origin to a point on the surface is equal to the absolute value of the difference for the direction to the
point. The coordinates are the same as those deployed locally in the simulation with the z axis being aligned with the local radial
direction; the x axis corresponds to ¢, = 0. Black arrows indicate the crossing direction, which coincides with the direction of k in these
models. Note that the breaks found in some branches are just artifacts in drawing these pictures.
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B. Analysis of scaled data

The conventional idea is that the fast-pairwise flavor
conversion needs a crossing in the angular distributions
between v, and 7. As understood from Figs. 3 and 4, it was
lacking in the original numerical data owing to rather large
asymmetries in the populations. It should be stressed again,
however, that it has yet to be demonstrated that the crossing
in the angular distributions of v, and 7, is indeed the
condition for the fast-pairwise conversion particularly for
multidimensional settings as considered here. We will
hence study it in the following, modifying the original
data by multiplying the distribution function of 7, with
some factors so that they should have a similar population
to that of v, and repeat the same analysis to see if we could
find the instability.

We first consider the case for 7, = 15.0 ms. As is clear
from the top panel of Fig. 3, the fluxes of v, and v, are
almost perpendicular to each other but their magnitudes are
also highly asymmetric in this case. We hence need to adopt
a rather large factor ~30 to obtain the crossing in the
angular distributions. Figure 9 presents the angular dis-
tribution differences between v, and 7, (second and fourth
rows) as well as the corresponding DRs (first and third
rows) for different multiplication factors. As we can see in
the third panel from the left on the second row, the crossing
occurs at about the multiplication factor of 35. Note that the
crossing direction, which we have defined to be the
direction in which the crossing occurs for the first time,
is almost aligned with the x axis but is slightly inclined. In
fact it makes 72° with the z axis (6 = 72°), which is
actually the local radial direction. As mentioned earlier, this
crossing direction is the direction of k we have chosen so
far for the analysis of the DR at this time (see Fig. 7). Note
also that we choose different angles for other times as we
will mention later. The third panel from the left on the
first row indicates that the DR is qualitatively changed
(cf. Fig. 7). There disappears the gap in @ and instead
appears some peaks in £ as a function of @ near the borders
with the zone of avoidance. This is an indication of the
appearance of complex k solutions in this case.

This time we indeed find complex @ solutions for some
ranges of real k. In Fig. 10, we show the growth rates, or the
imaginary part of , of these modes as a function of k. One
can see that there are four unstable modes actually,
corresponding to the peaks in k in the DR. In order to
see how the behavior of complex solutions changes from
that for the original data, we investigate their movements in
the complex k-plane by taking Re @ = —5.0 cm™!, which
corresponds to the lower left peak in the DR, and varying
the imaginary part. This time there is a solution on the real
axis, which is physical and located outside the zone of
avoidance, as shown in the left panel of Fig. 11. This is a
stable mode we have found in the corresponding DR. This
time, this is the mode whose movement we are interested in
as we change Im w. The three panels of Fig. 11 correspond
to the results for Im @ = 0, 1.0 and 2.0 cm™', respectively.
As one can clearly see from these plots, all the lines rotate
clockwise but the solution of our concern marked with a red
circle moves in the opposite direction initially and then
goes upward and crosses the real k axis somewhere
between the last two panels. This corresponds to the
unstable mode that gives the leftmost branch in the left
panel of Fig. 10. One also finds that the maximum growth
rate is attained near this point close to the lower left peak in
the DR.

Now we look into the change in the behavior of the DR
more in detail. In order to demonstrate that this happens
when the angular distributions start to have a crossing,
we show in Fig. 9 the DRs and the angular distribution
differences for other multiplication factors. The top two
rows correspond to the multiplication factors of 25, 31 and
35, respectively, whereas the bottom two rows show the
results for the multiplication factors of 39.5, 45 and 49,
respectively. As can be understood from the first two
pictures, these factors are not large enough to produce
the crossing. This is confirmed more clearly in Fig. 12, in
which we show the angular distribution difference between
v, and U, as a function of cos 8, for a pair of the values of
¢,. The DRs are not different qualitatively from the original
one. The crossing is indicated by a blue small side lobe in

2 0.08 0.05
tu= 15.0ms .= 190 Ams ? 1o 375.0ms
0.07F 0.045F
0.04}
15 0.06
0.035}
\ 0.05} —
3 3
5! £ 004 £ oot
0.03 0.025
0.015}
0.5 ] 0.02}
0.01}
0.01¢ 0.005}
0 0 0
4 12 0 8 6 4 2 0 2 4 6 14 212 -1 08 06 04 02 0 02 04 06 05 04 03 02 01 0 01 02
Rek Rek Rek

FIG. 10. Growth rate or Im w as a function of k for different time steps when the crossing occurs for the first time. Note that k is

oriented in crossing direction for all cases.
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FIG. 11.

Solutions of Eq. (11) in k for the modified data at ¢, = 15.0 ms. The distribution function of 7, is multiplied by a factor 35
(see the rightmost pictures on the first and second rows in Fig. 9). We set Re @ = —5.0 cm™! and Im @ = 0, 1.0 and 2.0 cm™! from left

to right. The red circles mark one of the solutions of det[IT] = 0 we focus on here.
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FIG. 12.  Angular-distribution difference between v, and U, as a function of cos 6, for different multiplication factors at 7,;, = 15.0 ms.
Right and left halves correspond to ¢, = 0.35 and 3.49 rad, or the first and fourth azimuthal-angle bins in the simulation, respectively.
The crossing occurs for the first time between the multiplication factors 31 (orange line) and 35 (blue line).

rightmost picture on the second row. The DR changes
rather abruptly near that point. When the populations of v,
and v, become nearly the same (see the leftmost picture on
the bottom row), the DR is changed qualitatively again.
Finally in the bottom right panel, where 7, is much more
abundant than v,, which will be never realized in reality, the
DR returns to something close to the one in the first two
panels on the second row but reflected with respect to
k = 0, which should be as expected. We confirm that there
are unstable modes in all the cases with crossing and
vice versa.

As mentioned earlier, the DR is actually a function of the
direction of k. We hence study another direction, i.e., the
local radial direction, which is the most common choice in

the literature. We show in Fig. 13 the DRs together with the
angular distribution differences for this choice of the
direction of k. Note that the latter are the same as those
in Fig. 9 except for the arrows that show the direction of k.
It is evident that the DRs do not change much, with a gap
always open in @ and no peak in k, as we increase the
multiplication factor. Interestingly, we still find instability
after crossing. The growth rate is initially much smaller
than that in the crossing direction but increases with the
multiplication factor and becomes comparable at the nearly
equal populations of v, and 7,, which is shown in Fig. 14.
This is the reason why we chose the crossing direction for
the linear analysis of the original numerical data earlier.
Although not presented, we have explored other, randomly
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FIG. 13. Same as Fig. 9 but for k in the radial direction (or the positive z direction).
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FIG. 14. Comparison of the growth rates as a function of k between the crossing and radial directions at 7,, = 15.0 ms. The
multiplication factor is 39.5, which corresponds to the near equal populations of v, and 7,.

chosen directions of k at the equal populations and
observed that the instability occurs widely with similar
growth rates. It is also found from the comparison of
Fig. 14 with Fig. 10 that the maximum growth rate is
greater at the equal populations than at the first crossing. As
the multiplication factor gets even larger and v, becomes
dominant over v,, the maximum growth rates for both the
crossing and radial directions decreases again and drop to
zero suddenly at the other crossing when the population
of U, overwhelms that of v, in all directions. We will
demonstrate these features again later for another post-
bounce time.

One thing should be mentioned here. We have so far
defined the crossing direction to be the direction in which
the crossing occurs for the first time as the multiplication
factor increases. This is fine until the crossing occurs but,
after that, the crossing direction should be the direction in
which the distributions of v, and 7, are actually equal to

each other and will vary with the multiplication factor in
fact. If the growth rate is largest in the true crossing
direction (this remains to be demonstrated), the maximum
growth rates given in the previous paragraph may be
smaller than the actual maximum growth rate. According
to our small survey, however, this seems not a serious
underestimation except in the close vicinity of the end of
crossing. We will hence use the original definition of the
crossing direction in the following even when 7, is
dominant over v,.

The motion of complex k solutions is displayed in
Fig. 15. This time we pick up Re @ = 0.1 cm™! and vary
the imaginary part of @ as Im @ = 0, 0.02 and 0.07 cm™!
from left to right in the figure. As we can see, one of the
solutions marked with red circles does cross the real axis
but with a smaller value of Im @ compared with that for the
crossing direction. Note that all lines rotate counterclock-
wise this time because Re o is positive.
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FIG. 15.
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Same as Fig. 11 but for k in the radial direction. The distribution function of 7, is multiplied by a factor 35 (see the rightmost

pictures on the first and second rows in Fig. 13). We set Re @ = 0.1 cm™! and Im @ = 0, 0.02 and 0.07 cm~! from left to right. The red
circle marks one of the solutions of det[I1] = 0 that we focus on here.
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FIG. 16. Same as Fig. 9 but for modified data at 7, = 190.4 ms. The multiplication factor is 1.5, 1.6 and 1.7 for the top two rows
while it is 1.95, 2.3 and 2.8 for the bottom two rows. Black arrows indicate the crossing direction in this case, to which we set the
direction of k.
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We extend our investigation to 7,;, = 190.4 ms. The first
and second rows of Fig. 16 display the DRs and angular
distribution differences for the multiplication factor of 1.5,
1.6 and 1.7, respectively, among which the last one roughly
corresponds to the occurrence of the crossing for the first
time in this case. Note that this factor is much smaller than
the previous one, 35, for 7,, = 15.0 ms, since the asym-
metry in the population is much smaller between v, and 7,
at this late time. It should be also mentioned that the fluxes
of v, and D, are much more aligned with each other as well
as with the radial direction. In fact the crossing direction is
Oy = 25.71°, which is chosen in drawing the DR in this
case.

As we can see, the DR is changed qualitatively also in
this case. In fact, it is quite similar to the change in the
previous case. Nothing qualitatively different happens until
the crossing occurs as shown in the first two pictures on the
first row. The DR is changed rather abruptly near the
multiplication of 1.7 for the third picture on the same row.
In the left most picture on the third row, v, and v, are
abundant nearly equally but the DR is different from that in
the corresponding case for 7,, = 15.0 ms. (see the leftmost
picture in the third row in Fig. 9). In the second and third
pictures on the third row, 7, dominates over v, in
abundance, which is unlikely to occur in reality, and the
DR returns to the one (but reflected with respect to Re
k = 0) in the top left panel. This is just as expected if one
considers the symmetry between v, and 7,.

At the multiplication factor 1.7, where the crossing
occurs, we find the instability also in this case. The growth
rates are displayed in the middle panel of Fig. 10 as a
function of k. There are again four branches corresponding
to the peaks in k observed in the DR. Shown in Fig. 17 are
the movements of complex k solutions for @ =-0.75cm™!
in the complex k-plane. As the value of the imaginary part

0.5 0.5

of w increases, two complex solutions, one above and the
other below the real axis, move upwards and the latter
reaches the real axis as shown in the middle and right
panels of the same figure.

Finally, we move on to 7,, = 275.9 ms, which is quite
similar to the 7,, = 190.4 ms case as understood from
Figs. 2, 3 and 7. Figure 18 gives the DRs and the angular
distribution differences for the crossing direction, which is
0 = 30°in this case. At the crossing, which occurs slightly
before the top right panel of this figure, the instability
emerges. The growth rates are presented as a function of k
in the right panel of Fig. 10. There are four branches
again, corresponding to the peaks in the DR. Since other
features of the DR are not much different from those
for 7,, = 190.4 ms, here we look at another direction of k,
which we choose to be the positive y direction.

We show the DRs and the angular distribution
differences for this case in Fig. 19. As in the case for
the radial k at 7,, = 15.0 ms, the DR does not change
much with the multiplication factor. As a matter of fact, it
looks essentially unchanged at the first crossing (see the top
right panel). As a result, no unstable solution is found in
this direction at this point. We still find instability, however,
for a bit larger multiplication factor as shown in Fig. 20, in
which the growth rates are shown as a function of k for this
direction at the multiplication factor of 1.5. i.e., when v,
and U, are populated roughly equally (see the bottom left
panel). For comparison we include the results for the
crossing direction for the same multiplication factor. It is
again found that the instability grows faster in the crossing
direction and that the maximum growth rate is greater at the
equal population than at the first crossing. Interestingly the
instability still exists and the growth rates are even higher at
the multiplication factor of 1.7 (the middle panels on the
third and fourth rows), where v, evidently dominates v,

LY £ o0 5
= = =
E E E
-05 -05 -05
-10 -10 “10!
-1.0 . -1.0 i i
Re £k [em™] Re & [em™] Re k [em™]
FIG. 17. Same as Fig. 11 butat #,, = 190.4 ms. The direction of k is set to the crossing direction. The multiplication factor is 1.7 and
Re @ = —0.75 cm™" and Im @ = 0.0, 0.05 and 0.1 cm~! from left to right, respectively. The red circles mark one of the solutions of

det[IT] = 0 that we pay attention to here.
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FIG. 18. Same as Figs. 9 and 16 for modified data at ¢, = 275.9 ms. The multiplication factor is 1.2, 1.3 and 1.4 for the top two rows
whileitis 1.5, 1.7 and 2.0 for the bottom two rows. from left to right. The direction of k is set to the crossing direction, which is indicated
by black arrows.
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FIG. 19. Same as Fig. 18 but for k in the y direction as shown by black arrows. The multiplication factor is 1.2, 1.3 and 1.4 for the top
two rows while it is 1.5, 1.7 and 2.0 for the bottom two rows from left to right.
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FIG. 20. Comparison of the growth rates as a function of k between the crossing and radial directions at 7, = 275.9 ms. The
multiplication factor is 1.5, which corresponds to the near equal populations of v, and 7,.

very much. Then the growth rate drops to zero rather
suddenly when the population of 7, is larger than that of v,
in all directions. These results demonstrate again that a
mere inspection of DR is not sufficient to detect instability
and suggest that the growth rate depends on the direction of
k and the angular distributions of v, and 7, in a subtle way.
We certainly need more systematic investigation, though, to
see how generic this result is.

V. SUMMARY AND DISCUSSIONS

In this paper, we have conducted a pilot study on the
possibilities of the so-called fast-pairwise collective neu-
trino oscillations in the supernova core, applying the linear
stability analysis to a few data selectively extracted from
the fully self-consistent realistic Boltzmann-neutrino-
radiation-hydrodynamical simulation for the nonrotating
progenitor of 11.2 My. We have obtained the neutrino
distributions at the point near the neutrino sphere
(r =44.8 km, 0 = 2.36 rad) from the numerical data at
three different postbounce times: 7,, = 15, 190.4 and
275.9 ms. This is in fact one of the places where we found
the largest misalignment between the fluxes of v, and 7, at
t,, = 15.0 ms. This misalignment is produced mainly
by convective motions and is treated consistently with
hydrodynamics by our Boltzmann-neutrino-radiation-
hydrodynamics code. At the later times, the misalignment
is much reduced as the neutrino sphere retreats to smaller
radii. We suppose that this is effectively similar to going to
larger radii, where the neutrino distributions become
forward-peaked and get more or less aligned with each
other and with the radial direction. We did not go deeper
inside the neutrino sphere, since in the linear analysis of the
neutrino oscillations we ignored all neutrino interactions
other than the forward scatterings that induce the refractive
effect. We have conducted linear analysis then, solving the
equation for the dispersion relation to obtain complex

solutions, which are supposed to indicate the instability
that instigates the flavor conversion.

It turns out that we have found no unstable mode in any
case. The dispersion relations are qualitatively the same in
the three cases we studied: there are a few branches in
general and a gap is open in w, the frequency of the
perturbation. This is an indication of the existence of
complex & (the wave number of the perturbation) solutions
for some real values of @, which we have indeed confirmed.
We are interested, however, in the complex @ solution for
real k rather than the complex k solution for real @. In none
of the three cases we have found such a solution.

In order to elucidate what was lacking, we have modified
the distributions of 7,, multiplying the arbitrary factors with
the original distribution functions. We have repeated the
same analysis for these modified data and demonstrated
that the unstable modes start to exist once the crossing
occurs in the angular distributions of v, and 7, for all three
cases. This seems to confirm the conventional expectation
that such crossing is the condition for the fast-pairwise
conversion. Note, however, that this was not demonstrated
so far in nonspherical settings, in which neutrino fluxes are
misaligned with each other. It should be also stressed that
the DR depends on the direction of k, the wave vector of
perturbation. In these analyses we have chosen the crossing
direction, i.e., the direction in which the crossing is most
likely. Our pilot study of other directions indicates indeed
that this is likely to be the direction with the greatest growth
rate of instability.

We have explored in detail the DRs for these various
cases and found that it changes qualitatively and rather
suddenly at the point where crossing happens for k in the
crossing direction. The gap in w is closed and there appear
some peaks in k instead; the unstable modes are associated
with these peaks. It is intriguing, however, that such a
change in the DR has not been observed for other directions
of k such as the radial direction; the gap is still open in @
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and there is no peak in k. We have still found instability in
such cases. Note that the DRs before the crossing never
have instability although they look very similar to that at
the crossing in this case. This implies that a mere inspection
of DR may not be sufficient to judge the existence of the
unstable mode. It is added that the growth rates of the
instabilities for other directions tend to be smaller than
those for the crossing direction particularly near the thresh-
old. For the nearly equal populations of v, and 7,, on the
other hand, the instability seems to occur in a wide
direction with similar growth rates. Although our results
seem to suggest that the crossing is the right criterion for
the fast-pairwise conversion, it should be consolidated by
more systematic investigations, possibly with simplified
models [39]. In fact, we have seen different types of DRs in
this paper but have not understood how they are related
with the angular distributions of neutrinos and the direction
of k.

This paper is meant to be a pilot study for more thorough
and systematic explorations of the possibility of the fast-
pairwise conversion in some region(s) of the core in some
phase(s) of the entire supernova evolution. Although we
have to wait for the detailed survey to get a firm conclusion,
our pilot investigation indicates that it may not be so easy to

obtain a crossing in the angular distributions of v, and 7,.. In
fact, they can have quite different angular distributions near
the neutrino sphere, where they are strongly coupled with
matter in convective motions. Because of the high density,
however, the population of 7, is strongly suppressed as is
clear in our case for 7, = 15.0 ms (but see also [36]). Then
the crossing is impossible even if the fluxes are highly
misaligned, since v, is dominant over 7, for all propagation
directions. As the radius increases and the density
decreases, v, gets more populated but the fluxes for v,
and 7, become more aligned with each other at the same
time. Then the crossing is difficult again as we saw in the
cases for 7,;, = 190.4 and 275.9 ms. In order to demonstrate
these situations, we show the energy-integrated fluxes of
three neutrino species at other points, both inside and outside
the neutrino sphere, for the same three postbounce times in
Figs. 21-23. As explained above, either the large misalign-
ment is accompanied by the great asymmetry in the
population or the alignment occurs inevitably with the
realization of almost equal populations.

What all these examples show is the fact that the crossing
is a highly subtle thing [36]. We are currently undertaking
this project, employing different numerical data obtained in
our Boltzmann simulations for other progenitor models and
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nuclear equations of state. The effects of stellar rotation and
PNS kick are also being investigated. It is stressed again
that our simulations are fully self-consistent in the sense
that neutrino transfer is computed not as a postprocess as in
the preceding work [36] but simultaneously with hydro-
dynamics. Since the neutrino distributions are the single
most important ingredient for the fast-pairwise conversion,
we believe that such consistency to treat neutrino transport
and hydrodynamics is crucial. Although we adopted the
2-flavor approximation in this paper, the extension of the
formulation to 3-flavor is certainly necessary. The pos-
sibility of the fast-pairwise collective neutrino oscillations
in our latest three-dimensional model computed with our
Boltzmann code is also under study and the results will be
reported soon [50]. Last but not least, the criterion for the
instability we employed in this paper may be imperfect and
mathematically more rigorous treatment is in order [40].
We have made interesting progress also in this respect and
will present it soon [39].
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APPENDIX

We summarize the results for our analysis of the original
data for 7,, = 190.4 and 275.9 ms. The top panel of Fig. 24
shows the DR for 7,, = 190.4 ms, which is quite similar to
the one for 7,, = 15.0 ms given in Fig. 7 except for the
scale. We again pick up three different points, one inside
the gap of the DR and the other two outside. We first choose
a real value of @ = 0.5 cm™', which is inside the DR gap
(red region). The solutions of Re[det[IT]] =0 and
Im[det[IT]] = 0 in the complex k-plane are shown as blue
and orange lines, respectively, in the top left panel of
Fig. 25. Except for the scale, they are quite similar to Fig. 8

w Icm—||

k [em™]

FIG. 24. Same as Fig. 7 but for different postbounce times. Top
panel corresponds to the 7,, = 190.4 whereas the bottom panel
corresponds to 7, = 275.9 ms. Note that the scales are different
from panel to panel.
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®=0.5cm™ and Im w = 0, 0.05 and 0.15 cm~! from left to right whereas in the latter we set Re @ = 0.2 cm~! and Im @ = 0, 0.1 and
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for z,, = 15.0 ms just as expected. There are two complex
solutions in k near the imaginary axis. Also shown in the
middle and right panels on the top row of Fig. 25 are the
same results but for Im @ = 0.05 and 0.15 cm™', respec-
tively. As we can see again, there is no complex k root that
approaches the real k axis at this time step, either. Other two
points outside the DR gap, @ = —4 and 2 cm™, are also
investigated. Just as in the case for 7, = 15.0 ms we do not
obtain even a solution, not to mention a crossing, which is
not shown here to avoid an unnecessary repetition.
Although the results are anticipated, we also apply the
same analysis to the last time step, 7,, = 275.9 ms, and

check the possibilities of the instability. The bottom panel
of Fig. 24 is the corresponding DR, which is similar to the
previous ones. We pick up three different points, one inside
the gap of the DR and the other two outside it. We choose
@ = 0.2 cm™! this time inside the DR gap. The left panel
on the second row of Fig. 25 shows the solutions in the
complex k-plane for this real . We exhibit also the results
for Im @ = 0.1 and 0.2 cm™" with the same Re w in the
middle and right panels on the same row. We find no
crossings of the real k axis at this time step, either. The
other two points outside the DR gap, Re w = -2 and
1 cm™!, do not have even a solution.
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