
 

Constraining twin stars with GW170817

Glòria Montaña,1 Laura Tolós,2,3,4,5 Matthias Hanauske,2,3 and Luciano Rezzolla2
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If a phase transition is allowed to take place in the core of a compact star, a new stable branch of
equilibrium configurations can appear, providing solutions with the same mass as the purely hadronic
branch and hence giving rise to “twin-star” configurations. We perform an extensive analysis of the features
of the phase transition leading to twin-star configurations and, at the same time, fulfilling the constraints
coming from the maximum mass of 2 M⊙ and the information following gravitational-wave event
GW170817. In particular, we use a general equation of state for the neutron-star matter that parametrizes
the hadron-quark phase transition between the model describing the hadronic phase and a constant speed of
sound for the quark phase. We find that the largest number of twin-star solutions has masses in the neutron-
star branch that are in the range 1–2 M⊙ and maximum masses ≳2 M⊙ in the twin-star branch. The
analysis of the masses, radii, and tidal deformabilities also reveals that when twin stars appear, the tidal
deformability shows two distinct branches with the same mass, thus differing considerably from the
behavior expected for normal neutron stars. In addition, we find that the data from GW170817 is
compatible with the existence of hybrid stars and could also be interpreted as being produced by the merger
of a binary system of hybrid stars or of a hybrid star with a neutron star. Indeed, with the use of a well-
established hadronic equation of state, the presence of a hybrid star in the inspiral phase could be revealed
if future gravitational-wave detections measure chirp masses M≲ 1.2 M⊙ and tidal deformabilities of
Λ1.4 ≲ 400 for 1.4 M⊙ stars. Finally, combining all observational information available so far, we set
constraints on the parameters that characterize the phase transition, the maximum masses, and the radii of
1.4 M⊙ stars described by equations of state leading to twin-star configurations.

DOI: 10.1103/PhysRevD.99.103009

I. INTRODUCTION

Compact stars have been the subject of much attention
over the years as natural laboratories for testing the
different phases of matter under extreme conditions.
Depending on the type of matter in their interior, several
possibilities for their nature have been postulated: strange
quark stars, (pure) neutron stars, or hybrid stars. Whereas
strange quark stars are made of deconfined quark matter
[1–6], pure neutron stars are composed of hadrons [7–10].
Hybrid stars are compact stars with a core consisting of
quark matter and outer layers of hadronic matter [11–20].
Present and future observations of neutron-star features,
such as masses, radii, and tidal deformabilities, will help to
constrain the equation of state (EOS) in the high-density
regime in the upcoming years.
High-precision measurements, obtained using post-

Keplerian parameters, have shown that the EOS of neutron
stars must be able to support masses of 2 M⊙ [21–23]. The
radii, on the other hand, are more difficult to be determined

observationally. The uncertainties in the modeling of the
x-ray emission result in different radii determinations,
which still lay in a rather wide range. Several astrophysical
analyses for the extraction of the radii [24–40] are favoring
small values, mostly in the range of 9–13 km. High-
precision x-ray space missions such as the ongoing Neutron
star Interior Composition ExploreR (NICER) [41] or the
future enhanced X-ray Timing and Polarimetry Mission
(eXTP) [42] are expected to offer precise and simultaneous
measurements of masses and radii. Also, promising con-
straints on the mass-radius relation are expected to be
obtained from gravitational waves and multi-messenger
astronomy [43–48].
The recent detection by the Advanced LIGO and Virgo

Collaborations [49,50] of gravitational waves from merg-
ing compact stars, GW170817, has provided important new
insights on the maximum mass and on the radius of neutron
stars by means of the measurement of tidal deformabilities
in a binary system [43,45–48,51–60]. We recall that
the tidal deformability measures the induced quadrupole
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moment of a star in response to the tidal field of its
companion; i.e., it determines how easily a star is deformed
in a binary system [61]. This quantity is therefore strongly
correlated with the properties of the phases of matter in the
compact-star interior and that are described by the EOS.
In fact, a number of works have explored the possibility

of using the detection of GW170817 to probe the occur-
rence of a hadron-quark phase transition (HQPT), finding
that GW170817 is consistent with the coalescence of
neutron stars and hybrid stars [53,56,62–69]. We also
recall that depending on the features of the phase transition
between the inner quark core and outer hadronic parts of
the hybrid star, twin-star solutions might appear as the
mass-radius relation could exhibit two stable branches with
similar masses [70–72]. Indeed, information from gravita-
tional waves can also be exploited to better understand the
twin-star scenario [56,62,64,66,68].
We here present a systematic and detailed study of the

features of the HQPT in order to obtain twin-star configu-
rations and, at the same time, fulfill the 2 M⊙ observations
and the information on multi-messenger observations of the
GW170817 event. Our results show that the GW170817
event is compatible with either the merger of a binary
hybrid-star system or the merger of a hybrid star with a
neutron star. We place constraints on the parametrization of
the HQPT so as to be consistent with the GW170817
information and obtain the resulting allowed ranges for the
maximummassM↑

TOV and radius of a 1.4 M⊙ star. We note
that in a very recent work, Han and Steiner [69] inves-
tigated the sensitivity of the tidal deformability to the
properties of a sharp HQPT, not necessarily producing twin
stars, and reported that a smoothing of the transition has
appreciable effects only for central densities close to the
onset of the quark phase. In our work, we evaluate in more
detail the similarities and differences between a model with
a sharp phase transition and a model allowing for a mixed
phase of hadrons and quarks in the context of twin stars
and we particularly show that with a nonsharp HQPT twin-
star solutions are harder to be found and the parameters
characterizing the transition are better constrained.
The article is organized as follows. In Sec. II we describe

the details of the general two EOS models used through the
work that implement HQPTs using a Maxwell (sharp) or
a Gibbs (smooth) construction, while in Sec. III we present
our constraints for the HQPT parameter space, as well as the
mass, radius, and tidal deformability of binary neutron stars.
Our conclusions and outlook are summarized in Sec. IV.

II. MODELS OF THE EQUATION OF STATE

In this exploratory work we systematically construct two
classes of physically plausible EOSs of the neutron-star
matter. In particular, for the “low-density” region of the
inner core we make use of EOSs that share the same
properties of a hadronic EOS recently discussed in
Refs. [73,74], whereas for the inner and outer crust we

employ the EOS of Ref. [75]. For the “high-density”
region, on the other hand, we consider two distinct models
that provide different parametrizations of the HQPT,
assuming either a “Maxwell construction” or a “Gibbs
construction” (referred to as model-1 and model-2 EOSs
below). Finally, the quark phase is modeled using a
parametrization with a constant speed of sound (CSS).
The two models are described below.

A. Hadronic EOS

For the hadronic phase we use the FSU2H EOS of
Refs. [73,74], which is a recent relativistic-mean field
model based on the nucleonic FSU2 model of [76] that
considers not only nucleons but also hyperons in the inner
core of neutron stars by reproducing the available hyper-
nuclear structure data [77–83]. This scheme reconciles the
2 M⊙ mass observations with the recent analyses of radii
below 13 km for neutron stars [24–40], while fulfilling the
saturation properties of nuclear matter and finite nuclei
[76,84], as well as the constraints extracted from nuclear
collective flow [85] and kaon production [86,87] in heavy-
ion collisions. Moreover, cooling simulations for isolated
neutron stars using the FSU2H model are in very good
agreement with observational data [88].
The particle fractions as functions of the baryonic

density for the FSU2H model are shown in Fig. 1 up to
a density ρtr, where the HQPT is implemented. As already
seen in Refs. [73,74,88], the first hyperon to appear is the
Λ particle, followed by Ξ− and Σ−, as beta-equilibrium and
charge conservation are fulfilled taking into account the
most plausible hyperon potentials extracted from hyper-
nuclear data.

FIG. 1. Particle fractions as functions of the baryonic density
for the FSU2H model [73,74] up to the point where the HQPT is
implemented, giving rise to a phase of deconfined quark matter
which can be separated from the nuclear (or hadronic) phase by a
mixed phase of hadrons and quarks. We note that the actual
fractions of nucleons/hyperons and quarks u, d, s in the mixed
and quark phases cannot be determined with the parametrizations
used in this work.
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B. High-density EOS

As the density is increased, hadrons might undergo
deconfinement, liberating quarks and enabling the exist-
ence of a quark-matter core. Although the low temperature
and large chemical potential regime occurring in neutron-
stars interiors is still far from being well understood, two
frameworks have been mainly used in the literature to
describe quark matter in compact objects: the MIT bag
model and the Nambu-Jona-Lasinio model. A simpler
description assuming a density-independent speed of sound
mimicking these sophisticated models1 was first investi-
gated in [91–93].
Because of its simplicity, the phenomenological CSS

parametrization is well suited for the systematic investiga-
tion of EOSs with twin stars developed in this paper.
The value c2s ≔ ∂p=∂e ¼ const ¼ 1, where p and e are,
respectively, the pressure and internal energy density [94],
has been previously used in Refs. [62,93,95,96]. We have
checked that the lower value c2s ¼ 1=3 provided by
perturbative QCD calculations [97] does not give rise to
EOSs with twin stars that satisfy the >2 M⊙ maximum-
mass constraint. Yet, simply setting c2s ¼ 1 allows us to
carry out the extended analysis that will be presented in the
following sections.

C. Phase transition

The first-order transition between the hadronic and the
quark phases is attained by either a Gibbs or a Maxwell
construction. In the former case, the transition is modeled
with a polytrope pðρÞ ¼ Kmρ

Γm to account for a mixed soft
phase of hadrons and quarks [98,99], and has been
investigated in view of the recent gravitational-wave
observations [63]. The latter, on the other hand, is equiv-
alent to a Γm ¼ 0 polytrope, generates a sharp transition
between the low- and high-density phases, and has been
widely used in recent works, e.g., Refs. [53,62,64,69,
93,96]. However, if the surface tension of the deconfined

quark phase has moderate values, a mixed phase between
the pure hadronic and pure-quark phases is expected to be
present. The construction of such a continuous HQPT,
where charge is only globally conserved, depends on the
properties of the pure hadronic and quark models and,
additionally, on possible effects of pasta structures within
the mixed phase. As a result, the amount to which the EOS
is softened at the beginning of the mixed phase is quite
uncertain (see, e.g., [100]) and we have used a value of
Γm ¼ 1.03 to mimic this effect. This choice is restricted by
the fact that in our approach it is essential that Γm has a
low value around 1 in order to get a strong enough
softening of the EOS and to be considerably different
from the Maxwell construction. We have checked that
increasing/decreasing Γm by ∼2% can shift the energy-
density jump Δe up to ∼5% higher/lower values at a given
transition pressure ptr of the parameter space of model-2
discussed below. Thus the polytropic approach is a
reasonable first approximation of a HQPT using the
Gibbs construction and the specific choice of the value
Γm ¼ 1.03 does not affect significantly the discussion in
the following sections.

D. Summary of the EOS models

In view of the considerations above, the adoption of the
two types of phase transitions will give rise to the following
two models where the relation between the specific internal
energy and the pressure, eðpÞ, is given by

(i) Model-1: FSU2HþMaxwellþ CSS

e ¼
�
eFSU2HðpÞ p ≤ ptr

eFSU2HðptrÞ þ Δeþ c−2s ðp − ptrÞ p ≥ ptr

ð1Þ

with c2s ¼ 1.
(ii) Model-2: FSU2Hþ Gibbsþ CSS

e ¼
8<
:

eFSU2HðpÞ p ≤ ptr

ð1þ amÞðp=KmÞ1=Γm þ p=ðΓm − 1Þ ptr ≤ p ≤ pCSS

eðpCSSÞ þ c−2s ðp − pCSSÞ p ≥ pCSS

ð2Þ

with c2s ¼ 1 and Γm ¼ 1.03.
The values of the polytropic constant Km and the

coefficient am are obtained by ensuring that p and e are
continuous at the transition points. We note that in the
Gibbs construction an energy-density jump Δe is not

explicitly defined. In this case, we assign to its value the
increase in eðpÞ during the mixed phase (see Fig. 2).
The possible models for the EOSs are schematically

shown in the upper panel of Fig. 2, where one can clearly
see the comparison between model-1� and model-2� EOSs,
in which the speed of sound is set to reach the perturbative
QCD limit c2s ¼ 1=3 for quark matter above a certain
energy density, eðpQCDÞ, and model-1†, in which there is a
softer EOS for the quark matter right after the phase
transition. Following Refs. [53,62], this is modeled with

1Calculations of the speed of sound for these models can be
found in recent works [89,90].
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a polytrope similar to that of the mixed phase [middle piece
of Eq. (2) with Km → Kq and am → aq, guaranteeing the
continuity of p and e after the phase transition], which is
then combined with a CSS parametrization with c2s ¼ 1 in
the high-density quark phase. We note that model-1 and
model-2 constitute a particular case of model-1� and
model-2�, respectively, for which the perturbative QCD
limit is reached at densities higher than those in the interior
of neutron stars. In the lower panel of Fig. 2 we display the
square of the speed of sound (in units of the speed of light),
noting that in all cases it fulfils the causal condition
of c2s ≤ 1.
Before discussing in the next section the similarities and

differences of the various models discussed above, it is
useful to remark that our construction of a HQPT is not
based on the “strange matter hypothesis” [101,102] for
which the strange-quark phase is the true ground state of
elementary matter. Under such an assumption, the under-
lying EOS would separate in two different branches
describing neutron star and pure-quark matter and as a
consequence, a neutron star would transform into a pure-
quark star after exceeding a certain deconfinement barrier

[103–106]. This scenario is normally referred to as the
“two-families” scenario and is different from the twin-star
scenario, where the two branches of compact stars are
described by a single EOS.

III. RESULTS

A. Parameter space

In order to analyze the implications of the EOS models
discussed in the previous section on the masses, radii, and
tidal deformabilities of twin-star solutions, we vary the two
free parameters of the models: the density at which the
phase transition to the mixed phase takes place, ρtr, and the
density discontinuity (model-1) or density extension of
the mixed phase (model-2) up to the pure-quark phase, Δρ.
This is also equivalent to setting the transition pressure, ptr,
and the energy-density jump, Δe. We note that the mass
density ρ in the quark phase is obtained from Eqs. (1) and
(2), together with the thermodynamic relation at zero
temperature [94]

p ¼ ρ
∂e
∂ρ − e; ð3Þ

so as to use the values of ρQCD of the order of those
displayed in Fig. 7 of Ref. [107] when discussing the
density at which the perturbative QCD limit is reached.
To allow for a wide range of EOSs, the parameter space

analyzed is ρtr ∈ ½1.4–6.5�ρ0 and Δρ ∈ ½0.2–3.0�ρ0 with
variations of 0.1ρ0, where ρ0 is the nuclear saturation
density.
We recall that by using the maximum masses in the two

branches, twin-star solutions can be classified in the four
distinct categories shown schematically in Fig. 3:

(i) Category I:MTOV ≥ 2.0 M⊙ andMTOV; T ≥ 2.0 M⊙
(ii) Category II: MTOV ≥ 2.0 M⊙ and MTOV; T <

2.0 M⊙
(iii) Category III: 1.0M⊙≤MTOV<2.0M⊙ and MTOV;T≥

2.0M⊙
(iv) Category IV: MTOV < 1.0 M⊙ and MTOV; T ≥

2.0 M⊙,
where MTOV and MTOV; T are the maximum masses of the
branches with large (normal-neutron-star branch) and small
radii (twin branch), respectively, of a nonrotating neutron
star obtained by solving the Tolman-Oppenheimer-Volkoff
(TOV) equations. Since our aim is to focus on those
configurations that allow for maximum masses larger than
2 M⊙ while having a twin-star solution, we will not
consider those cases where the EOSs lead to twin-star
solutions that violate theM↑

TOV ≔ maxfMTOV;MTOV; Tg ≥
2.0 M⊙ constraint. Similarly, EOSs that do not produce
twin stars will also be rejected from our analysis.
Figure 4 shows the parameter space in the Δe–ptr

plane for EOS models having either a Maxwell construc-
tion (model-1�, upper panels) or a Gibbs construction

FIG. 2. Upper panel: Energy density as a function of the
pressure corresponding to an EOS that implements a HQPT.
Lower panel: The corresponding sound speed squared in units of
the speed of light. The colors are related to the composition of
matter at increasing densities: β-equilibrated nucleonic matter
(light blue), β-equilibrated nucleonic and hyperonic matter—
hadronic matter—(dark blue), mixed phase of hadrons and
deconfined quarks (orange, only Gibbs), and pure-quark matter
(red). Solid and dashed lines are different ways of modeling the
phase transition and the quark phase (see details in the text).

MONTAÑA, TOLÓS, HANAUSKE, and REZZOLLA PHYS. REV. D 99, 103009 (2019)

103009-4



(model-2�, lower panels) for the phase transition. From the
left to the right, we vary the density ρQCD at which the
asymptotic perturbative c2s ¼ 1=3 limit in the quark-matter
phase is reached.
Only the combinations of parameters within the shaded

regions correspond to EOSs that allow for a twin-star
configuration together withM↑

TOV ≥ 2.0 M⊙, with different

colors referring to categories I–IV. We note that the allowed
parameter space is determined by the intersection of the two
regions satisfying each of these conditions, the boundaries
of which are similar to those shown in Fig. 2 of Ref. [108]
with a Maxwell construction. The solid line in the top panels
of Fig. 4 corresponds to the limiting condition for hybrid stars
appearing in the normal-neutron-star branch, which can be

FIG. 4. Areas containing the various categories of twin stars in theΔe–ptr parameter space for EOS models with Maxwell construction
(upper panels) and models with Gibbs construction (lower panels) for the phase transition, and increasing values of the density ρQCD
corresponding to the onset of the perturbative QCD limit, cs ¼ 1=

ffiffiffi
3

p
, labeled model-1� and model-2� in the text. The model-1 and

model-2 EOSs are depicted in the rightmost upper and lower panels, respectively. The solid line in the upper panels is the Seidov limit of
Eq. (4). Circles, squares, and numbers identify the specific cases studied in the figures in the rest of the paper and are also shown in the
magnified insets.

FIG. 3. Schematic behavior of the mass-radius relation for the twin-star categories I–IV defined in the text. Note the appearance of a
twin branch with a mixed or pure-quark phase; the twin branch has systematically smaller radii than the branch with a nuclear or
hadronic phase. The colors used for these categories will be employed also in the subsequent figures.
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derived solely in the presence of a sharp discontinuity in the
energy density by performing an expansion in powers of
the size of the quark-matter core [93,109–111], written in the
following form:

Δe ¼ 1

2
etr þ

3

2
ptr: ð4Þ

For combinations of parameters above the Seidov line (4),
the sequence of stars will become unstable immediately
after the central pressure reaches the valuepc ¼ ptr, i.e., the
stars in the normal-neutron-star branch will be purely
hadronic, while the combinations below the line correspond
to solutions for which the normal-neutron-star branch can
support hybrid stars (with quark core) before turning
unstable. Note also that the circles and squares in the figure
identify the specific cases studied more in detail below.
When inspecting Fig. 4 it is evident that model-1 and

model-2 are the most effective EOSs in fulfilling both
requirements, as shown by the corresponding largest
coverage of the Δe–ptr parameter space. Moreover, since
it is not yet clear at what value of ρQCD=ρ0 the asymptotic
perturbative QCD limit takes place, our analysis hereafter
will be focused on model-1 and model-2 EOSs only. For
these two cases, categories I (purple areas) and III (blue) are
easily produced. Twin-star solutions of category II (orange)
also appear in both models, although the area filled in the
parameter space is rather small, while the twin stars of
category IV (green) are abundant for the model-1 EOSs, but
become more difficult to be found for model-2, which has
the Gibbs construction.
By analyzing model-1 [model-2] EOSs we observe

that, in order to reach 2 M⊙ in the normal-neutron-
star branch for Categories I-II, we need ptr >
180 MeV fm−3 ½160 MeV fm−3�. Twin-star solutions of
category II are located in the same range of ptr occupied
by those of category I (see Fig. 4), but at slightly higher
values of Δe. We recall that the two classes of solutions
differ in whether the twin branch is above (category I) or
below (category II) the 2 M⊙ value (see Fig. 3). In fact,
using our two EOS models, these two categories are
difficult to be differentiated since the values of the
maximum masses for the two branches lie within a rather
small range, i.e., 1.95 M⊙ ≲MTOV; T ≲ 2.05 M⊙.

2

Twin-star solutions of category IV appear for very low
values of ptr (i.e., ptr ≲ 25 MeV fm−3 ½15 MeV fm−3�), as
required in order for the maximum mass of the normal-
neutron-star branch to be below the 1 M⊙ value. Twin stars
of this category might not exist because the mass in the

normal-neutron-star branch is much lower than the canoni-
cal value of 1.4 M⊙, which should be well described as
normal neutron stars, given our present knowledge of
nuclear matter at the expected central densities.
Also clear from Fig. 4 is that the category that contains the

largest number of twin-star solutions is category III, with
25MeVfm−3≲ptr≲180MeVfm−3 [15 MeV fm−3 ≲ ptr≲
160 MeV fm−3] and the width of the Δe range depending
on the model for the EOS. In addition, category III is
certainly the most interesting category from an astrophysical
point of view, as it accommodates twin stars of masses
around the canonical 1.4 M⊙ value.
Finally, we show in Fig. 5 theΔe–ptr parameter space for

model-1† (upper panels) and model-2† (lower panels), with
a Maxwell and Gibbs phase transition, respectively, that
implement for the quark phase a polytrope pðρÞ ¼ Kqρ

Γq ,
combined with a constant speed of sound parametrization
when c2s ¼ 1. In this case, we find that the parameter space
increases with increasing polytropic index. The higher the
polytropic index, the stiffer the EOS and, hence, the easier
it is to find twin-star solutions with M↑

TOV ≥ 2.0 M⊙. By
comparing the Δe–ptr parameter space of model-1 and
model-2 EOSs in Fig. 4 with the corresponding space in
Fig. 5, we conclude that the EOSs of model-1 and model-2
are still the most effective in providing twin-star configu-
rations and masses ≥2.0 M⊙.

B. Masses and radii

A selection of the possible M–R relations obtained for
model-1 and model-2 EOSs is displayed in the upper two
panels of Fig. 6. Each curve in a given panel shows the
M–R relation for a given twin-star category, with the
corresponding values of Δe and ptr being provided in
the rightmost upper and lower panels of Fig. 4, where the
red circles single out the values plotted in Fig. 6. Note that
by using the same color palette as in Fig. 2, we show with
different colors in the variousM–R curves the composition
of the innermost region of the star: light blue for neutron
stars entirely composed of nucleonic matter, dark blue if the
central pressure is large enough to allow for the appearance
of hyperons, orange if there is an inner core of mixed matter
surrounded by a hadronic- (or nuclear-) matter mantle, and
red for the hybrid star composed of a quark-matter core and
a mantle of hadronic (or nuclear) matter, separated by a
mixed-phase region within model-2. Dashed lines in grey
correspond to unstable configurations.
With these considerations, one can readily appreciate the

multiplicity of possibilities concerning masses, radii,
and internal structures for each of the twin stars obtained
with our two EOS models. We note that for categories I–II,
the allowed ptr ≳ 160 MeV fm−3 region seen in Fig. 4
results in a nearly flat twin mass-radius branch, as noted in
Ref. [96]. Also, for values of ptr similar to those in category
I, higher values of Δe in category II (see Fig. 4) are

2When using our hadronic EOS we obtain twin-star solutions in
the twin branch that in category I/category II do not havemaximum
masses much larger/smaller than the observational constraint, i.e.,
MTOV; T ≳ 2 M⊙ for category I andMTOV; T ≲ 2 M⊙ for category
II. On the other hand, the use of a stiffer EOS can make these
differences larger, as shown in Ref. [96].
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responsible for unstable regions separating the two stable
branches that are larger in category II than in category I.
This is due to the fact that a larger Δe produces heavier
quark cores, with the subsequent greater gravitational pull
on the nuclear mantle, so that the twin branch takes longer
to stabilize [93,99].
An interesting quantity to consider across the different

twin-star categories and the EOS models is the radius
difference between the two equal-mass twin stars, ΔR. In
Ref. [96] values of ΔR as large as 4 km were claimed to be
possible. This radius difference would allow for the
distinction of the two stars given that a few percent
accuracy might be expected in future determinations of
the radius, either via electromagnetic emissions [112] or via
gravitational waves [113]. However, we here find that the
largest differences are ΔR ∼ 2.7 km and ΔR ∼ 2.3 km,
which correspond to twin stars of categories IV and II,
respectively, in the model-1 EOSs, and ΔR ∼ 2.2 km for
category II in model-2. This is most certainly due to the
different hadronic EOS here, which is softer than that
employed in [96]. Finally, we note that for category III,
which is possibly the most interesting case as it can
accommodate twin stars with masses around 1.4 M⊙, the

largest difference in radii isΔR ∼ 1.9 km andΔR ∼ 1.4 km
in the case of model-1 and model-2, respectively, thus
making it more difficult to distinguish the two types
of stars.

C. Tidal deformabilities

The tidal deformability is a property of the EOS that is,
in principle, measurable via gravitational-wave observa-
tions of binary neutron-star inspirals, as was done with the
recent GW170817 event [49]. It is therefore interesting to
explore the behavior of the tidal deformability for different
EOSs that allow for the appearance of twin stars. This is
done in the lower panels of Fig. 6, which report the
dimensionless tidal deformability Λ as a function of the
mass of the neutron star for the same selection of EOSs as
in the upper panels. From the figure it is clearly seen that Λ
spans several orders of magnitude for different EOSs.
With regards to the dimensionless tidal deformability for

the reference star with a mass of 1.4 M⊙, i.e., Λ1.4, we
observe a considerable difference between EOSs that
exhibit a phase transition at low densities (such as category
IV) and at high densities (categories I–II) for the two

FIG. 5. Areas containing the various categories of twin stars in the Δe–ptr parameter space for model-1† with a Maxwell (upper
panels) and model-2† with a Gibbs (lower panels) phase transition, that use for the quark phase a polytrope pðρÞ ¼ Kqρ

Γq combined
with a constant speed of sound parametrization when the speed of sound c2s ¼ ∂p=∂e reaches the value of one. The value of the
polytropic index Γq is varied between 3.5 and 5.0, so as to obtain twin-star solutions and massesM ≥ 2.0 M⊙. The solid line in the upper
panels is the Seidov limit of Eq. (4).
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models considered. More specifically, a reference 1.4 M⊙
star with a dense core of quark matter in category IV has
Λ1.4 ranging from a few tens to a few hundreds, while a
1.4 M⊙ pure hadronic neutron star in categories I–II has
Λ1.4 ¼ 760. The differences in the values of Λ1.4 can be
explained by the different compactnesses of the stars. We
recall, in fact, thatΛ ∝ k2C−5, where C ≔ M=R is the stellar
compactness and k2 the second tidal Love number. On the
other hand, k2 ∝ C−1 in the mass range of typical neutron

stars [61,114], so that Λ ∝ C−6. In the presence of a HQPT,
however, this correlation is expected to be weakened [115].
At any rate, for the same total mass of 1.4 M⊙, stars with a
quark-matter core have smaller radii and, hence, larger
compactness or, equivalently, smaller values of Λ1.4.
When considering the case of category III, we obtain twin

starswithmasses around 1.4 M⊙. These configurations have
a core of mixed or pure-quark matter with a radius for the
star between the radius for categories I–II and category IV.

FIG. 6. Upper panels: Selected mass-radius relations classified in the corresponding twin-star category for model-1 and model-2. The
grey dotted lines correspond to the unstable regions. The light-blue shaded area marks the causality limit for compactness R ≥ 2.94 M.
Lower panels: Dimensionless tidal deformability Λ of a single neutron star as a function of its mass using the same EOSs as in the upper
panels. The coloring indicates the composition of the innermost region of the neutron star (nucleons, nucleons and hyperons, mixed
phase, and pure-quark phase) at a central density ρc, as seen in Fig. 2. The symbols in the inset represent the possible configurations of
binaries with masses M1 ≳M2 set by the GW170817 chirp mass M ¼ 1.188 M⊙: circles for neutron stars in the hadronic branch and
squares for hybrid stars in the twin branch, empty symbols for the high-mass component of the binary and filled symbols for the low-
mass one.
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Thus, the value of Λ1.4 lies between the values for Λ1.4 in
categories I–II and category IV. The inset in the left panel
shows in greater detail the behavior of ΛðMÞ around the
phase transition for anEOSof category III that is of particular
interest because it holds stars with masses of 1.365 M⊙ in
both branches and will be further discussed in Sec. III D.
We note that using the detection of GW170817, Ref. [49]

derived an upper bound Λ1.4 ≤ 800 (corrected later to
≤ 900) upon the GW170817 event, which was later on
reanalyzed to be 300þ420

−230 [50]. However, we note that
this constraint is obtained by expanding ΛðMÞ linearly
about M ¼ 1.4 M⊙, and from Fig. 6 we can see that if the
twin branch appears at M ∼ 1.4 M⊙ this approach is no
longer valid and the upper bound on Λ1.4 could be further
decreased, as shown in Refs. [53,56,62]. In fact, Ref. [53]
has shown that the lower limit on Λ1.4 is decreased
from Λ1.4 ≥ 375 to Λ1.4 ≥ 265 at 2σ level (see the
Supplemental Material of Ref. [53]) when allowing for
a phase transition.
In Table I we report the range of values for the maximum

mass, radius (R1.4), and tidal deformability for a 1.4 M⊙
star for model-1 and model-2 EOSs in category III, both in
the normal and in the twin branch. Moreover, for com-
pleteness, we also show the ranges for these quantities
coming from four representative EOS models, which have
been computed using the Maxwell or Gibbs construction
for the phase transition and taking into account the two
different descriptions of the quark-matter phase discussed
in Sec. III A. We observe a larger variance for R1.4 and Λ1.4,
for both model-1 and model-2 EOSs in both branches,
which can be understood in terms of the larger Δe–ptr
space of parameters (cf. Sec. III A). Thus, as mentioned
before, we will restrict our attention to model-1 and
model-2 EOSs when performing the analysis of the tidal
deformabilities of neutron-star binaries.

D. Tidal deformabilities and GW170817

In order to compare directly with the observational
analysis from the GW170817 event [49], we considered
a binary system with a chirp mass M ≔ ðM1M2Þ3=5=
ðM1 þM2Þ1=5 ¼ 1.188 M⊙ and calculated the tidal
deformabilities Λ1 and Λ2 of the high-mass M1 and
low-mass M2 components, respectively, plotting the 50%

and 90% credibility regions3 for the low-spin scenario jχj ≤
0.05 given in Refs. [49,59]. This is shown in Fig. 7 for
selected EOSs with twin stars of category III only within
model-1 and model-2 EOSs. Lines of different colors and
types show different numbers of branches and shapes in the
Λ1–Λ2 plane obtained by varying M1 ∈ ½1.365; 1.8� M⊙
and M2 ∈ ½1.0; 1.365� M⊙ (with fixed M ¼ 1.188 M⊙).
The corresponding values of Δe and ptr of the selected
EOSs are indicated with black empty squares in the
rightmost upper and lower panels of Fig. 4.
The different color lines in Fig. 7 are related to the nature

of each of the components, with the labels having the
following meaning: NS for a purely hadronic neutron star,
HS for a hybrid star with a core of mixed and/or quark
matter in the normal-neutron-star branch, and HST for a
hybrid star with a quark core in the twin branch, with the
first label referring to the massive component of the binary
(M1) and the second to the less massive (M2) separated by a
long dash. Allowing for all these possibilities, there can be
up to eight lines in the Λ1–Λ2 plane (see the legend of
Fig. 7). However, not all of them are produced by each of
the EOS models at a given M.
This is reported in Fig. 8, which shows the minimum

value of the chirp mass for which at least one of the
components of the binary before the merger is in the twin
branch as a function of the values of the transition pressure
and energy-density jump of the EOSs of category III for the
model-1 EOSs (upper panels); left and right panels refer to
mass ratios of q ¼ 1.0 and q ¼ 0.7, respectively. In full
similarity, the same quantities are shown in the lower panels
for the model-2 EOSs.
As expected, the lower the transition pressure, the lower

the minimum chirp mass required for the HQPT to occur in
at least one of the stars in the binary given that it is easier to
populate the twin branch for low transition pressures. Note
that the lowest value for the chirp mass is 0.6 M⊙ and that
for q ¼ 1 higher chirp masses are needed to have one of the
components in the twin branch when compared with the
q ¼ 0.7 case. This is because for unequal-mass binaries, it is
easier for the high-mass component to be on the twin branch.

TABLE I. Physical properties of the stars of category III obtained within the most representative models described in the text.

Model

Normal-Neutron-Star Branch Twin Branch

MTOV½M⊙� R1.4½km� Λ1.4 MTOV;T½M⊙� R1.4½km� Λ1.4

Maxwell Model-1 [1.06, 2.00) 13.1 760 [2.00, 2.44] [10.1, 12.9] [69, 609]
ρQCD ¼ 5ρ0 [1.06, 1.76] 13.1 760 [2.00, 2.38] [11.1, 12.9] [149, 609]
Γq ¼ 4.0 [1.06, 2.00) 13.1 760 [2.00, 2.05] [11.0, 12.9] [145, 599]

Gibbs Model-2 [1.02, 2.00) [12.9, 13.1] [679, 760] [2.00, 2.08] [10.4, 11.9] [114, 295]
ρQCD ¼ 6ρ0 [1.72, 1.99] 13.1 760 [2.00, 2.02] � � � � � �
Γq ¼ 4.0 [1.84, 2.00) 13.1 760 [2.00, 2.03] � � � …

3The confidence levels were obtained from the LIGO data
analysis with EOSs that do not account for twin stars; hence, they
serve as a reference with this caveat in mind.
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For the EOSs that allow for twin stars of categories I-II
(not shown in Fig. 7), for which the mass of the twins is
significantly larger than that of the components in
GW170817, only the hadronic part of the EOS is reported
for Λi ∈ ½0; 3000� and only the NS–NS (purple) line is
shown. The opposite limiting case corresponds to EOSs
that allow for twin stars of category IV (not shown in Fig. 7)
and hence with very low masses. For this case, both
components of the binary system are located in the twin
branch, producing only lines of the type HST–HST (light
blue) in the Λ1–Λ2 plot, with Λ1 < 200 for both models.
On the other hand, in the case of EOSs with twins stars of
category III, the range of possibilities is larger, mostly
due to the existence of twin stars with masses similar to
those of the GW170817 binary (M1 ¼ M2 ¼ 1.365 M⊙ in
the equal-mass limit). Indeed, as shown in Fig. 7, model-1
and model-2 EOSs show clear differences with regards to
the number of possible scenarios.
The general considerations made above can be made

more specific starting, in particular, from the EOSs of
model-1 (left panel of Fig. 7).
In this case, for an EOS with a HQPT at high transition

pressure (i.e., with ptr ≳ 80 MeV fm−3 in Fig. 4, which
corresponds to ρtr ≳ 3ρ0), only the NS–NS sequence
(purple line) is found. If the phase transition takes place
at lower densities (2.2ρ0 ≲ ρtr ≲ 3.0ρ0, i.e., 40 MeV fm−3≲
ptr ≲ 80 MeV fm−3), the twin branch contains hybrid stars

with a mass that is low enough to hold the high-mass
component of the binary. In this case, when M1 ≈M2 both
stars are in the normal-neutron-star branch, but as M1 is
increased (andM2 decreased to keepM constant) it jumps
to the twin branch and the NS–NS sequence (purple line)
connects with a HST–NS (pink lines) line. On the other
hand, the normal-neutron-star branch of EOSs with low
transition pressure (ptr ≲ 25 MeV fm−3 in Fig. 4, i.e.,
ρtr ≲ 1.9ρ0) cannot support any of the components of the
binary and the only allowed configuration is HST–HST

(light blue lines). Larger values of ptr (30 MeV fm−3≲
ptr ≲ 40 MeV fm−3, i.e., 2.0ρ0 ≲ ρtr ≲ 2.2ρ0) allow the
low-mass component to be a neutron star. This situation
corresponds to having the two components in the twin
branch when their masses are equal and the low-mass star
jumps to the normal-neutron-star branch as M2 is
decreased, giving a HST–NS (pink lines) line connecting
with the HST–HST sequence (light blue lines).
There is, in addition, a particular case in which the value

M1 ¼ M2 ¼ 1.365 M⊙ is contained within the range of the
masses of the twin stars produced. This is indeed what
happens for some EOSs in model-1, as it can be appreciated
in the inset of the third panel in Fig. 6. In this case, we can
have both components of the binary in the normal-neutron-
star branch (marked as circle and filled circle in Fig. 6),
both in the twin branch (square and filled square in Fig. 6);
alternatively, we can have the high-mass star in the twin

FIG. 7. Relation between the tidal deformabilities of the high-mass and the low-mass components, Λ1 and Λ2, of a binary neutron star
with a chirp massM ¼ 1.188 M⊙ for model-1 and model-2 EOSs of category III only. The colors are related to the nature of each of the
components of theM1–M2 binary system: NS for a hadronic or pure neutron star, HS for a hybrid star in the normal-neutron-star branch,
and HST for a hybrid star in the twin branch, with the first label referring to the massive component of the binary (M1) and the second to
the less massive (M2) separated by a long dash. The lines displayed correspond to the EOSs indicated with empty squares in Fig. 4, each
EOS giving a unique “connection” among NS, HS and HST in theΛ1–Λ2 plane: 0. (NS–NS), 1. (NS–NS, HS–NS, HST–NS), 2. (NS–NS,
HST–NS), 3. (NS–NS, HST–NS, HST–HST, NS–HST), 4. (HS–HS, HS–NS, HST–NS), 5. (HS–HS, HST–HS, HST–NS), 6. (HST–HST,
HST–NS), 7. (HST–HST, HST–HS, HST − NS), 8. (HST–HST, HST–HS), 9. (HST–HST). The shaded areas correspond to the 50% and
90% credibility regions set by GW170817 for a low-spin scenario jχj ≤ 0.05 [49]. The inset also reports for comparison the tidal
deformabilities of representative nucleonic EOSs (grey lines).
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branch and the low-mass star in the normal-neutron-star
branch (square and filled circle in Fig. 6) and also the high-
mass star in the normal-neutron-star branch and the low-
mass star in the twin branch (circle and filled square in
Fig. 6). These configurations are marked in the left panel of
Fig. 7, respectively, as NS–NS (purple lines), HST–HST

(dashed light-blue lines), HST–NS (dashed pink lines), and
NS–HST (dashed dark-blue lines).
Also noticeable is that these last extra NS–HST sequen-

ces (dashed dark-blue lines) appear in the otherwise empty
Λ1 > Λ2 region. For EOSs not producing twin stars and
given thatM1 > M2, one has C1 > C2 and, hence,Λ1 < Λ2,
so it is usually not possible to have solutions in theΛ1 > Λ2

area. However, this does not hold for EOSs giving rise to
twin stars, since in this case the high-mass star can be less
compact than the low-mass one, as seen in the inset of
Fig. 6 for the circle and filled square cases. This type of
pair, where the heavier star is also less compact, has been
named the “rising-twins” pair in Ref. [116]; by definition,
therefore, rising twins can only appear with EOSs that
allow for twin stars and their existence is not allowed by
any other kind of EOS of compact stars. In summary, if the
EOS allows for rising twins of masses M1 and M2 < M1,
tied together by a given value of the chirp mass M, there
must be a line in the Λ1 > Λ2 side of the plot. Indeed,

in Ref. [68] it was suggested that this is the case so long
as 0 < ðM1 −M2Þ=ðR1 − R2Þ < M1=R1.
As a consequence, since only EOSs producing twin stars

can access the region with Λ1 > Λ2 for M1 > M2, any
experimental indication that the binary occupies this region
of the Λ1–Λ2 space would be strong evidence for the
existence of twin stars. Other EOSs with a HQPT but not
generating twin stars would show similar lines in the Λ1 <
Λ2 region as those displayed in the left panel of Fig. 7. In
this case, one might expect all the lines of stable configu-
rations connected to one another, but theΛ1 > Λ2 would be
unattainable. This situation was analyzed in Ref. [66] for
polytropic EOSs with a CSS parametrization of the quark
phase and different values of the energy-density jump.
However, to find such a signature in the Λ1–Λ2 plot is very
challenging as it requires a modeling of the LIGO/Virgo
data that includes a phase transition and more accurate
measurements of the component masses, since in our
models the twin stars have similar masses in this region.
A similar discussion can be made for the model-2 EOSs

and is shown in the right panel of Fig. 7. The variety of lines
(colors) increases because the probability of having a HS in
the normal-neutron-star branch is higher than for model-1.
In the Maxwell construction, for combinations of phase
transition parameters below the Seidov line [see Eq. (4)],
the normal-neutron-star branch is composed of a hybrid
segment connected to the purely hadronic segment whose
length is typically quite small and hence hard to capture in
the right panel of Fig. 7. On the other hand, in the Gibbs
construction, hybrid stars with a core of hadron-quark
mixed phase can be found in a relevant portion of the
normal-neutron-branch, as shown in Fig. 6. Several pre-
vious works have also studied the possibility of interpreting
the GW170817 event as the coalescence of pure neutron
stars and hybrid stars [56,62–69], although only some of
them considered the possibility of twin stars [56,62,64,
66,68]. In Ref. [62], in particular, NS–NS and HST–NS
merger combinations were considered. It was then shown
that a HQPT can soften the EOS making it compatible, even
for a stiff hadronic EOS, with the GW170817 observations.
In particular, the authors found that GW170817 is consistent
with the coalescence of a HST–NS binary.
Similarly, in Ref. [64], the GW170817 event was

interpreted as the merger of either a HST–NS or a
HST–HST binary and actually disfavored a NS–NS sce-
nario. This was mostly due to the stiffness of the hadronic
EOS employed, which made a neutron-star merger incom-
patible with the compactness expected from GW170817.
More recently, Ref. [68] has interpreted the GW170817
event as the merger scenario of either a NS–NS, a NS–HST,
or HST–HST binary, where all three merger scenarios can be
potentially plausible within a single EOS. This finding is in
agreement with the conclusions presented here, although in
our study we have performed a more detailed analysis of
the merger scenarios in which we have also varied the

FIG. 8. Upper panels: Minimum value of the chirp mass for
which at least one of the components of the binary is in the twin
branch, shown as a function of the values of the transition
pressure and energy-density jump of the EOSs of category III for
the model-1 EOSs for q ¼ 1 (left panel) and q ¼ 0.7 (right
panel). Lower panels: Same as upper panels but for the model-2
EOSs.
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parameters characterizing the phase transition (i.e., Δe
and ptr), while considering both Maxwell and Gibbs
constructions for the phase transition, i.e., having a sig-
nificant number of HS configurations in addition to the NS
and HST configurations.
Finally, Ref. [69] has very recently explored the sensi-

tivity of the tidal deformability to the properties of a sharp
HQPT, not necessarily producing twin stars, finding that
a smoothing of the transition will not have distinguishable
effects. In our case, when twin-star solutions and masses
above 2 M⊙ are produced, we find, however, clear
differences in masses, radii, and tidal deformabilities when
comparing our model-1 and model-2 EOSs in Figs. 4, 6,
and 7. This is due to the “smoothing” of the mixed phase
between the Maxwell and Gibbs constructions, which is
different from that of the rapid crossover transition in
Ref. [69], and that leads to the rather different behavior of
the speed of sound in the two cases.
In order to distinguish the different kinds of compact-star

merger scenarios that are compatible with future gravita-
tional-wave events, a more promising tool would be to
analyze the chirp mass, M, as a function of the weighted
dimensionless tidal deformability Λ̃ of a neutron-star binary
[49,117,118]

Λ̃ ≔
8

13
½ð1þ 7η − 31η2ÞðΛ1 þ Λ2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
ð1þ 9η − 11η2ÞðΛ1 − Λ2Þ

¼ 16

13M5
½ðM1 þ 12M2ÞM4

1Λ1 þ ðM2 þ 12M1ÞM4
2Λ2�;

ð5Þ

where η ≔ M1M2=M2 is the symmetric mass ratio, M ≔
M1 þM2 is the total mass of the binary, and where, in the
equal-mass case, Λ̃ ¼ Λ.
Figure 9 displays the relation M–Λ̃ for different values

of the mass ratio, q, for the selected model-1 (upper panels)
and model-2 (lower panels) EOSs with twin stars of
category III shown in the Λ1–Λ2 plot of Fig. 7 and using
the same color palette to refer to the various merger
scenarios. We can see that the merger of rising twins
happens for mass ratios q≲ 1. However, rising twins
cannot be identified in Fig. 9 because, due to the symmetry
of Λ̃ with respect to the two components of the binary [see
Eq. (5)], for q ¼ 1 the HST–NS sequence (dashed pink line)
overlaps exactly with the NS–HST rising twins (dashed
dark-blue line) in the leftmost upper panel, and the HST–HS
sequence (dashed light-green line) lies on top of the
HS–HST rising twins (dashed medium-blue line) in the
leftmost lower panel. With a small asymmetry (q ¼ 0.99)
these lines do not exactly overlap each other but still lie in
the same region of the M–Λ̃ plot. We also note that the
rising twins extend over a larger range of M and q in
model-1 than in model-2 because the larger unstable
branches in the M–R relation obtained with the Maxwell
construction of the HQPT allow for broader ranges of twin
stars (see Fig. 6) than the Gibbs construction. Also from
Fig. 9 it is clear that within our description, the possibility
of having a merger of two hybrid stars in the twin branch
(i.e., HST–HST) diminishes with decreasing values of q in
favor of either the HST–NS scenario in the case of model-1
or the HST–NS and HST–HS scenarios in the case of
model-2. Indeed at large asymmetries (e.g., q ¼ 0.7) the
merger of two hybrid stars with a chirp massM≲ 1 M⊙ is

FIG. 9. Relation between the chirp mass,M, and the dimensionless tidal deformability, Λ̃, of binary systems with mass ratios q ¼ 1,
0.99, 0.9, 0.7 for the same model-1 (upper panels) and model-2 (lower panels) EOSs of category III shown in Ref. 7.
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ruled out in our models because the twin branch cannot
hold the low-mass star. Therefore, the analysis above
reveals that within our models the merger scenario can
be readily determined given a measure of the chirp mass
and the weighted dimensionless tidal deformability.

E. Constraining twin stars with GW170817

The properties of the phase transition, which are con-
tained in the two free parameters Δe and ptr, can be
constrained using the observational information on tidal
deformabilities of the GW170817 event. Moreover, given
an allowed space of parameters for Δe and ptr, the
predictions for the maximum mass and the reference radius
R1.4 can be further restricted by taking into account the
limits set on the maximum mass and reference radius after
the detection of GW170817.
In what follows we discuss how to constrain twin-star

models with GW170817 and we start by studying the
values of Δe and ptr as a function of Λ̃.
Figure 10 reports the ranges in Δe and ptr for the model-

1 (left plot) and model-2 (right plot) EOSs yielding twin
stars of category III, as a function of Λ̃ for a chirp mass
M ¼ 1.188 M⊙ (left panels of each plot). In addition, we
also show results for a higher chirp mass of M ¼ 1.5 M⊙
(right panels of each plot), so as to have access to largerM1

and M2 masses closer to the 2 M⊙ limit.
For the model-1 EOSs, in particular, we use two different

values of the mass ratio q ≔ M2=M1 ¼ 0.7 (i.e.,
M1 ¼ 1.64 M⊙, M2 ¼ 1.14 M⊙ for M ¼ 1.188 M⊙,

and M1 ¼ 2.07 M⊙, M2 ¼ 1.45 M⊙ for M ¼ 1.5 M⊙)
and q ¼ 1 (i.e., M1 ¼ M2 ¼ 1.36 M⊙ for M ¼
1.188 M⊙ and M1 ¼ M2 ¼ 1.72 M⊙ for M ¼ 1.5 M⊙),
which correspond to the constraints set by the analysis of
the LIGO/Virgo data in Refs. [49,57]. For the model-2
EOSs, instead, we use q ¼ 0.7, 1 for M ¼ 1.188 M⊙,
whereas we take q ¼ 0.8, 1 for M ¼ 1.5 M⊙ (note that a
maximum mass of 2 M⊙ is reached easier for a model-1
EOS than for a model-2 EOS, as seen in Fig. 4). This is due
to the presence of the Gibbs mixed phase that softens the
EOS for the transition region (by contrast, the Maxwell
construction leads to the stiffest EOS parametrization in the
quark phase). By increasing q to 0.8, we have access to a
value of M1 ¼ 1.93 M⊙, slightly below 2 M⊙ and thus
easier to be found within model-2. In the case of
M ¼ 1.188 M⊙, we also show with vertical lines the
LIGO/Virgo upper limit of Λ̃ ¼ 800 [49], as well as the
improved analysis of Ref. [50], which gives 70 < Λ̃ < 720.
We also show the lowest value ofΛ1.4 for a star with a phase
transition, i.e., Λ1.4 > 35.5 (at 2σ level) of Ref. [53]. We
note that our results are overall consistent with the previous
results of Refs. [57,69,114].
In summary, Fig. 10 shows that, in agreement with the

results reported in Refs. [62,64,68], a HQPT softens the
EOS and expands the parameter space of EOSs that are
compatible with the GW170817 event, allowing for
HST–HST configurations, while HST–NS solutions for
q ¼ 0.7 are also permitted. Such constraints also allow
for HST–HS configurations at q ¼ 0.7 for a model-2 EOS.

FIG. 10. Left plot: Transition pressure ptr (upper panels) and energy-density jumpΔe (lower panels) as a function of the Λ̃ for model-1
EOSs and the twins of category III. The left (right) panels correspond to a chirp massM ¼ 1.188 M⊙ (M ¼ 1.5 M⊙). Shaded (striped)
regions with solid (dashed) contours show the case for q ¼ M2=M1 ¼ 1 (q ¼ 0.7). The vertical lines stand for the LIGO-Advanced
Virgo upper limit of Λ̃ ¼ 800 [49], the improved LIGO-Advanced Virgo analysis of 70 < Λ̃ < 720 [50], and Most et al.’s [53] lower
estimate for EOSs with the phase transition Λ1.4 > 35.5. Right plot: Same as the left plot but for model-2 EOSs. Note that for
M ¼ 1.5 M⊙ we consider shaded (dotted) regions with solid (dashed-dotted) contours for q ¼ M2=M1 ¼ 1 (q ¼ 0.8).
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The global parameters of the HQPT (ptr and Δe) are thus
constrained by GW170817 to be in the range

(i) Model-1

ptr ∈ ½25; 65� MeV fm−3;
Δe ∈ ½175; 395� MeV fm−3;

(ii) Model-2

ptr ∈ ½15; 45� MeV fm−3;
Δe ∈ ½380; 435� MeV fm−3;

Note that for a larger M ¼ 1.5 M⊙, a larger range of Δe
and ptr parameters is found for both models, with lower
values of Λ̃ up to ∼220; since these specific values
correspond to the NS–NS configuration, they obviously
depend on the specific hadronic EOS considered.
In a similar manner, the plots of Fig. 11 display the

maximum mass (upper panels) and minimum radius for a
1.4 M⊙ star (lower panels) for the model-1 (left plot) and
model-2 (right plot) EOSs as a function of Λ̃ for the same
NS and HS=HST configurations and at the same mass ratios
in the plots of Fig. 10. Note that as in Fig. 10, the left panels
for each plot in Fig. 11 refer to M ¼ 1.188 M⊙, while the
right ones to M ¼ 1.5 M⊙.
Together with the previous constraints on the tidal

deformability shown in Fig. 10, we display in Fig. 11
the excluded range of masses up to the 2 M⊙ limit coming
from 2 M⊙ observations [21–23], as well as recent

constraints on the maximum mass of ∼2.16–2.17 M⊙ from
multi-messenger observations of GW170817 [43,46]. We
note that for the model-2 EOSs, and q ¼ 0.7 and
M ¼ 1.188 M⊙, the HST–HST, HST–HS, and HST–NS
configurations satisfy the maximum-mass constraints for

FIG. 11. Left plot: Maximum mass (upper panels) and radius of a 1.4 M⊙ star (lower panels) as a function of the weighted Λ̃ for the
same cases as in the left plot of Fig. 10. Right plot: Maximum mass (upper panels) and radius of a 1.4 M⊙ star (lower panels) as a
function of the weighted Λ̃ for the same cases as in the right plot of Fig. 10. In these plots, together with the constraints on tidal
deformability, we display a lower horizontal band coming from the lower limit of 2 M⊙ observations [21,22] as well as recent
constraints on the maximum mass of ∼2.16–2.17 M⊙ from multi-messenger observations of GW170817 [43,46].

TABLE II. Constraints on the radius of neutron stars from
GW170817 for models without a phase transition (top), works
considering the possibility of a transition to quark matter
(middle), and EOSs of category III in the present work (bottom).

Reference Ri½km�
Without a phase transition
Bauswein et al. [44] 10.68þ0.15

−0.03 ≤ R1.6

Most et al. [53] 12.00 ≤ R1.4 ≤ 13.45
Burgio et al. [56] 11.8 ≤ R1.5 ≤ 13.1
Tews et al. [57] 11.3 ≤ R1.4 ≤ 13.6
De et al. [58] 8.9 ≤ R1.4 ≤ 13.2
LIGO/Virgo [59] 10.5 ≤ R1.4 ≤ 13.3
Koeppel et al. [119] 10.9 ≤ R1.4

With a phase transition
Annala et al. [48] R1.4 ≤ 13.6
Most et al. [53] 8.53 ≤ R1.4 ≤ 13.74
Burgio et al. [56] R1.5 ¼ 10.7
Tews et al. [57] 9.0 ≤ R1.4 ≤ 13.6

This work
NS R1.4 ¼ 13.11
HS model-2 12.9 ≤ R1.4 ≤ 13.11
HST model-1 10.1 ≤ R1.4 ≤ 12.9
HST model-2 10.4 ≤ R1.4 ≤ 11.9
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the whole range of values of Δe and ptr. On the other
hand, for the model-1 EOSs (again with q ¼ 0.7 and
M ¼ 1.188 M⊙), the HST–HST and HST–NS solutions
satisfy the constraint for less than 50% of the parameter
space, further requiring the energy-density jump to be
Δe ∈ ½245; 395� MeV fm−3. This is due to the fact that the
maximum mass increases as Δe decreases, as long as ptr is
not too high (see also Fig. 2 of [108]). As a result, imposing
a M↑

TOV < 2.16–2.17 rules out small Δe values. A similar
behavior for a M ¼ 1.5 M⊙ is seen, although in this case
we cannot impose any constraint on Λ̃.
As for the limits on the radius of 1.4 M⊙, several works

have reported values for stars of a given mass [48,51–60]
and we have collected them in Table II. Also, we recall that
in Ref. [66] it was found that the minimal radius that can be
produced on a twin branch lies between 9.5 and 10.5 km.
This result was obtained using a set of relativistic poly-
tropes and a quark bag model for the phase transition with a
Maxwell construction.
When concentrating on the predictions of this work, and

obviously for the hadronic EOS considered here, we note
that for the allowed configurations of types HST–HST and
HST–NS with mass ratio q ¼ 0.7 and for the model-1 and
model-2 EOSs, we find that 10 < R1.4=km≲ 13 and that
10 < R1.4=km≲ 12.5 when considering only HST–HST

solutions. Similarly good agreements with previous inves-
tigations can be found when considering HST–HS binaries
with q ¼ 0.7 and the model-2 EOSs. On the other hand,

larger radii closer to 13 km are reached whenM ¼ 1.5 M⊙
for HST–HST configurations for both model-1 and
model-2 EOSs.
A summary plot of our results is given in Fig. 12, where

we show the maximum mass, M↑
TOV, the minimum radius

of a 1.4 M⊙ star, R↓
1.4, and the minimum tidal deformability

for the same star, Λ↓
1.4, as a function of the values of the

transition pressure and energy density of the twin stars of
category III for the model-1 (upper panels) and model-2
EOSs (lower panels). With shaded areas we indicate the
parameter space allowed by the GW170817 as analyzed in
Fig. 10; once again, the value of R1.4 relative to NSs
depends on the hadronic EOS considered here.
Overall, we find that M↑

TOV ≃ 2–2.1 M⊙ are commonly
generated for both models, whereas R↓

1.4 ≃ 13 km and

Λ↓
1.4 ≃ 700 are also produced for almost the entire range

in the ðptr;ΔeÞ space. The lowest values of R↓
1.4 ≃ 10 km

and Λ↓
1.4 ≃ 100 are produced for transition pressures well

below ptr ¼ 50 MeV fm−3, i.e., ρtr ¼ 2.4ρ0. If such small
radii and tidal deformabilities given by our hadronic EOS
are confirmed by future measurements, the HQPT with a
Maxwell construction would imply that hyperons exist in a
very narrow region of the interiors of neutron stars. In the
case of the FSU2H model [73,74], only the Λ particle
would be present, since it appears at ρ ¼ 2.2ρ0 (see Fig. 2).
In the case of a Gibbs construction of the HQPT, hyperons
would still exist in the mixed phase before entering the pure

FIG. 12. Maximum mass (left panels), minimum radius of a 1.4 M⊙ star (middle panels), and minimum tidal deformability of a
1.4 M⊙ star (right panels) as a function of the values of the transition pressure and energy-density jump of twin stars of category III for
the model-1 (upper panels) and model-2 (lower panels) EOSs. The shaded areas correspond to the parameter space allowed by the
GW170817 constraints on Λ↓

1.4 and M↑
TOV (see details in the text).
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deconfined quark phase and the fractions of these particles
would depend on both the hadronic and quark models at
these densities. Hence, if future detections of gravitational
waves from LIGO/Virgo determine values of Λ1.4 ≲ 400
and, at the same time, chirp masses M≲ 1.2 M⊙, our
modeling reveals that these can be interpreted in terms of a
HQPTwith a low transition pressure taking place during the
inspiral. Otherwise, it will be difficult to distinguish during
the inspiral whether one of the components of the binary is
a HS, as a HQPT with transition pressures above
50 MeV fm−3 might be indistinguishable from no phase
transition.

IV. CONCLUSIONS AND OUTLOOK

We have performed an extensive and detailed analysis of
the features of the hadron-quark phase transition that is
needed in order to obtain twin-star configurations and
enforcing, at the same time, the constraint on the minimum
value of the maximum mass, i.e., MTOV ≳ 2 M⊙ and the
information on multi-messenger observation of the
GW170817 event. In our analysis we have employed
two general EOS models for the neutron-star matter, i.e.,
model-1 and model-2 EOSs, that share the same description
for the hadronic EOS, but take into account a parametriza-
tion of the hadron-quark phase transition assuming either a
Maxwell or a Gibbs construction, combined with a CSS
parametrization for the quark phase.
The parameter space of the phase transition, which is set

by the energy-density jump and transition pressure, Δe and
ptr, has been explored systematically and the twin-star
solutions found have been classified according to catego-
ries I–IV [96]. We find that the largest number of twin-star
solutions that satisfy the 2 M⊙ constraint is category III,
with masses in the normal-neutron-star branch of 1–2 M⊙
and maximum masses of the twin-star branch MTOV;T≳
2 M⊙. This category is potentially the most interesting one,
as it accommodates twin stars with masses around the
canonical value of 1.4 M⊙. The masses, radii, and tidal
deformabilities have been thoroughly studied for the differ-
ent categories and parameter sets, showing that, when twin-
star solutions appear, the tidal deformability also displays
two distinct branches having the same mass. This behavior,
which is in agreement with what is found in Refs. [56,
66,68], is radically different from what is shown for pure
neutron stars and could be used as a signature for the
existence of twin stars.
Making use of the large space of solutions found, we

have considered the evidence for the existence of EOSs
with a HQPT and thus originating twin-star solutions. In
particular, we have exploited the weighted tidal deform-
ability and chirp mass, as deduced from the recent binary
neutron-star merger event GW170817. In this way, we have
found that the presence of a phase transition is not excluded
by the observational data and that, in addition to standard
NS–NS binaries, also binaries of the type HST–HST and

HST–NS (for model-1 and model-2 EOSs) and HST–HS
(for model-2 EOSs) are allowed, in principle. In addition,
we have used the multi-messenger astronomical observa-
tions associated with GW170817, namely, the new pre-
dictions on the maximum mass, to set constraints on the
values of Δe and ptr, as well as on the radius of a reference
model with a mass of 1.4 M⊙.
Interestingly, the time of occurrence of the HQPT in a

binary system of compact stars will depend on the total
mass of the binary and on the global properties of the
HQPT (i.e., Δe and ptr). For example, in the case of
a binary with chirp mass M ¼ 1.188 M⊙ (as for
GW170817), and assuming that the hadronic part of the
EOS is given by the FSU2H model [73,74], the phase
transition takes place (at least for one of the two stars)
already in the inspiral phase. In particular, the lower the
transition pressure, the lower the minimum chirp mass for
the HQPT to occur in premerger NSs. The lowest chirp
mass leading to the appearance of a phase transition is
0.6 M⊙ and, quite generically, higher chirp masses are
needed in the equal-mass case to obtain a phase transition.
Indeed, our results show that future gravitational-wave
detections with chirp massesM≲ 1.2 M⊙ and, at the same
time, tidal deformabilities of Λ1.4 ≲ 400, can be interpreted
as due to a HQPT with a low transition pressure taking
place in the inspiral phase. Because these precise values
depend on the chosen hadronic EOS, we have also
considered the hadronic FSU2 model, which represents
the baseline of the FSU2H model employed in this work
and is stiffer around saturation density, giving rise to higher
values of R1.4 and Λ1.4 for the hadronic phase. At the same
time, because of the similar stiffness at high densities, the
values of the Λ1.4 and chirp mass where the phase transition
takes place are similar to both models as well as the twin-
star parameter space. The dependence of our results on the
chosen hadronic EOS will be the subject of our future work.
On the other hand, if the central pressure of either of the

two stars is below ptr during the inspiral, then a measure-
ment of the tidal deformabilities cannot contain information
on the properties of the structure of the HQPT. For such
cases, the HQPT will take place during the postmerger
evolution of the merger remnant, giving rise to a variety of
interesting phenomena. For instance, the rearrangement of
the angular momentum in the remnant as a result of the
formation of a quark core could be accompanied by a
prompt burst of neutrinos followed by a gamma-ray burst
[2,3,16]. Furthermore, the f2-frequency peak of the gravi-
tational-wave signal [120–122] would change rapidly due
to the sudden speed up of the differentially rotating remnant
[123,124].
Preliminary investigations in this direction have already

been made and the consequences of the appearance of the
HQPT after the merger and its impact on the spectral
properties of the emitted gravitational waves have been
recently discussed in Refs. [125,126]. Although the two
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studies have employed different temperature-dependent
EOSs which include a strong HQPT but do not allow
for twin-star solutions, both reach the conclusion that the
impact of the phase transition might be measurable with
future gravitational-wave detections [125,126]. Such meas-
urement, together with those performed by x- and gamma-
ray space missions such as NICER [41], eXTP [42], and
THESEUS [127], have the potential of providing essential
information to clarify whether a HQPT should indeed be
accounted for a binary neutron-star merger.
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