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Random projection (RP) is a powerful dimension reduction technique widely used in analysis of high
dimensional data. We demonstrate how this technique can be used to improve the computational efficiency
of gravitational wave searches from compact binaries of neutron stars or black holes. Improvements in low-
frequency response and bandwidth due to detector hardware upgrades pose a data analysis challenge in the
advanced LIGO era as they result in increased redundancy in template databases and longer templates due
to a higher number of signal cycles in band. The RP-based methods presented here address both these
issues within the same broad framework. We first use RP for an efficient, singular value decomposition-
inspired template matrix factorization and develop a geometric intuition for why this approach works.
We then use RP to calculate approximate time-domain correlations in a lower dimensional vector space.
For searches over parameters corresponding to nonspinning binaries with a neutron star and a black hole, a
combination of the two methods can reduce the total on-line computational cost by an order of magnitude
over a nominal baseline. This can, in turn, help free up computational resources needed to go beyond
current spin-aligned searches to more complex ones involving generically spinning waveforms.
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I. INTRODUCTION

The direct detections of gravitational waves (GWs) from
the mergers of black holes and neutron stars [1–6] by
Advanced LIGO (aLIGO) [7] and Advanced Virgo (AdV)
[8] detectors in the first and second observing runs (O1 and
O2, respectively) have launched the era of GW astronomy
[9,10]. In the coming years, the global network of ground-
based detectors, comprising aLIGO, AdV, KAGRA [11],
and LIGO-India [12]will not only increase the detection rate
and facilitate the search for their possible electromagnetic
counterparts [13–15] but also produce an unprecedentedly
large amount of data, which can pose an interesting
computational challenge for GW data analysis.
At present, theoretically modeled compact binary coa-

lescence (CBC) waveforms are used as templates to
matched-filter [16] the detector data in these searches
[17,18]. A brute force computation of this cross correlation
with a suitable grid of templates spanning astrophysical
ranges of search parameters can be expensive (but see
[19–21]). As these detectors are paced through planned
upgrades, one expects better sensitivity at low frequencies

and an increase in the detector bandwidth. The combined
effects of these changes will not only increase the volume of
the search parameter space but also result in denser template
banks, thereby increasing their redundancy. More cycles
of the signal will fall in band and increase their duration.
These highlight the need for designing efficient and scalable
methods for matched-filtering-based templated CBC
searches [22–27].
In a seminal work, Cannon et al. [28–30] showed how

singular value decomposition (SVD) can mitigate the
redundancies in CBC template banks by effectively reduc-
ing the number of filters or templates, owing to their strong
correlation for similar parameter values, with negligible
effect on search performance. We show, however, that the
computational cost of SVD factorization does not scale
favorably with an increase in bank size. Further, it may not
be possible to factorize very large banks in toto as it
requires prohibitively large random access memory.
Random projection (RP), conceived by the pioneering

work of Johnson and Lindenstrauss [31], is a computa-
tionally efficient technique for dimension reduction and
finds applications in many areas of data science [32]. In this
Rapid Communication, we apply this technique to address
two key challenges in future CBC searches: handling
redundancies in large template databases and efficiently
correlating noisy data against long templates.
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The primary impact of this work is multifold:
(1) Efficient template matrix factorization can be used to
address the redundancy problem. This is similar in spirit to
the SVD factorization that is at the heart of the “GstLAL”-
based inspiral pipeline [27,30,33], but our RP method
scales well for very large number of templates embedded in
high-dimensional Euclidean space. Such factorizations can
be done off-line, in advance of a CBC search. Nonetheless
there can be situations when the factors need to be updated
on-line, e.g., owing to the nonstationarity of data. Our
adaptations will benefit both scenarios. (2) We show the
explicit connection between the new factorization scheme
and the extant SVDmethod. This bridges the two approaches
and makes it readily usable. (3) The computational chal-
lenges arising from correlating noisy data against long
templates (also known as the curse of dimensionality) is
addressed by casting the matched-filtering operation in a
lower-dimensional space. For certain types of template banks
(e.g., for CBCs with precessing spins), the template matrix
may be less amenable to a SVD-like factorization. There the
total computational cost can be significantly reduced by
using the RP-based correlation alone. (4) Finally, we show
that RP-based template matrix factorization and matched-
filtering computation in reduced dimension can be combined
effectively for efficient CBC searches.
Currently the GstLAL-based inspiral pipeline utilizes

time-slicing of templates to improve computational effi-
ciency and also involves spin-aligned templates. Since it is
for the first time that the RP is being introduced in GW
searches, our primary objective here is to elucidate how its
core ideas can help them. This is why we demonstrate
application of RP in the simple case of a single slice of data
and nonspinning inspiral templates. This simplification
notwithstanding, the RP-based methods introduced here
can be readily applied to time-sliced data and spin-aligned
templates. (A detailed study of that application and the
computational advantage so gained will be presented in a
future work.)

II. COMPACT BINARY SEARCHES

Consider a CBC search involving a bank ofNT templates
over a given parameter space. Following the convention in
Ref. [28], let H denote the 2NT × Ns template matrix with
2NT rows of real-valued unit-norm whitened filters, each
sampled over Ns time points. The template matrix may be
viewed as 2NT row vectors embedded in Ns-dimensional
Euclidean spaceRNs . The complex matched-filter output of
the αth template at a specific point in time, against the
whitened data S⃗ is the inner product:

ρα ¼ ðHð2α−1Þ − iHð2αÞÞS⃗T ; ð1Þ

where Hα denotes the αth row of H and S⃗T is the transpose
of S⃗. The signal-to-noise ratio maximized over the initial
phase ϕ0, is given by jραj. In our notation, the Hα’s and

signal S⃗ are assumed to be row vectors. The overlap
between two templates, when maximized over extrinsic
parameters (e.g., the time t0 and phase ϕ0 at arrival or
coalescence of the signal in band), produces the match. The
match between templates with similar intrinsic parameters
(such as the compact object masses and spins), can be very
high—signifying the rank deficiency of the template
matrix. A typical off-line CBC search involves calculating
the cross correlation between S⃗ and every row of H for a
series of relative time shifts, or values of t0, thereby
generating a time series of ρα values, for every α. The
use of a large number of templates (NT), each sampled over
a large number of points (Ns) amplifies the search’s
computational cost.
The rank deficiency of H is exploited in the truncated

SVD approach, where every row is approximated as a
linear combination of only l of the 2NT right singular
vectors with the most dominant singular values. Further,
these “basis” vectors are used as eigen-templates against
which the data are cross correlated. The left singular vectors
ofH and the singular values are combined into a coefficient
matrix that is used to reconstruct the approximate signal-to-
noise ratio (SNR). The truncation of the basis leads to
errors in the approximation of the template waveforms,
which further translates to imperfect reconstructions of the
SNR. The fractional SNR loss can be measured as a
function of the discarded (2NT − l) singular values.
The SVD factorization of the template matrix H has a

time-complexity proportional to OðN2
TNsÞ, assuming

NT ≤ Ns. Thus, such factorizations fast become computa-
tionally unviable with increasing size of a template bank.
Since the entire template matrix can become too large to be
saved in single machine memory, a suitable parallel scheme
is required to apply SVD to larger banks. SVD-based on-
line CBC searches [33,34] work around this problem by
splitting the bank into smaller sub-banks that are more
amenable to such factorization separately. While the
optimal way of partitioning the bank is an open problem,
the act of splitting the bank prevents exploitation of the
linear dependency of templates across the sub-banks. This
is seen in Fig. 1, where we plot β, which is defined as the
ratio of the number of basis vectors summed across all the
sub-banks to the number of basis vectors from the SVD
factorization of the full bank, at a given average fractional
loss in accuracy of the reconstructed SNR. By splitting the
bank, one effectively ends up requiring many more eigen-
templates against which the data are filtered. When
extrapolated to realistic template bank sizes of NT ≈ 106,
β can be as large as ∼102 at hδρρ i ¼ 10−3.
The SVD-inspired RP-based factorization presented

below addresses this issue and is scalable for large template
banks. We also apply RP to calculate the correlations in
a lower-dimensional space Rk where k ≤ Ns. These corre-
lations could be either between a template and the data as
shown in Eq. (1) or between the basis vectors and the data
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within the SVD paradigm. The full potential of the
RP-based methods introduced here can be realized by
combining them together. We demonstrate its feasibility
with an example.

III. RANDOM PROJECTION

The core theoretical idea behind the RP technique is the
Johnson-Lindenstrauss (JL) lemma [31], which states that a
set of 2NT vectors in RNs can be mapped into a randomly
generated subspace Rk of dimension k ∼Oðlogð2NTÞ=ϵ2Þ
or greater, while preserving all pairwise L2 norms to within
a factor of (1� ϵ), where 0 < ϵ < 1, with a very high
probability. Here, ϵ is the mismatch or distortion tolerated
in the pairwise L2 norms between any two filters after
projection. Thus, RP also approximately preserves any
statistic of the dataset that is characterized by such pairwise
distances. The RP ofH ontoRk producesHΩ; the accuracy
of this data-oblivious transformation depends on the target
dimensions and sampling distribution of the Ns × k pro-
jection matrix Ω. While it is enough to sample the entries
independently and identically distributed from a sub-
Gaussian distribution, here we choose them independently
from a Gaussian distribution with mean zero and variance
1=k, i.e., N ð0; 1=kÞ, thus producing a Gaussian quasior-
thonormal random matrix [35,36], such that hΩΩTi ¼ I.
Results obtained from RP-based processing can vary
depending on the actual choice of the distribution (from

which elements of Ω are drawn), and in a statistical sense,
these results arising from different choices of Ω are
expected to be equivalent due to the quasiorthonormality
of the projection. (See Supplemental Material [37] for a
geometric explanation.)

IV. RP-BASED TEMPLATE MATRIX
FACTORIZATION

The key idea behind an l-truncated SVD approximation
ofH is to reconstruct the rows of the template matrix using
the top-l right-singular vectors. This approximation works
well because H has a fast-decaying spectrum, as shown in
Fig. 2. In making the truncation, one effectively reduces H
to its l-rank approximation HðlÞ [38,39].1 Further, for a
bank of normalized templates, it is easy to show that the
average fractional loss in SNR due to the truncation is given
as hδρ=ρi ¼ kH −HðlÞk2F=kHk2F, where hi denotes aver-
age over the bank of templates and k · kF is the Frobenius
norm [38]. However, the existing SVD algorithms do not
scale well with increasing dimensions and redundancies of
the template database.
Randomized SVD (RSVD) [39] is a RP-based

matrix-factorization technique to obtain an l-rank matrix
factorization HðlÞ such that, for some specified η > 0,
kH −HðlÞkF ≤ minfX∶ rankðXÞ≤lgkH −XkFð1þ ηÞ with

FIG. 2. Comparison of singular values σ for a template matrix
H of size ð2NT × NsÞ≡ 9130 × 65536, normalized by the
maximum singular value σmax, as obtained from SVD and RSVD
factorization. RSVD is performed in target dimensions Rl where
l ¼ 200, 4000 or 8000. The spectrum of eigenvalues is seen to
fall steeply. This example template bank was constructed using a
nonspinning signal model for component mass parameters (m1;2)
in the range 2.5 M⊙ ≤ m1,m2 ≤ 17.5 M⊙. As seen here, the top-
l eigenvalues obtained by RSVD agree very well with the
spectrum obtained by traditional SVD factorization.

FIG. 1. The factor by which the number of SVD basis vectors
increases due to partitioning of the template bank of size NT into
sub-banks of 500 templates each is shown as β on the vertical
axis. Results from six different template-bank sizes are shown.
For example, the bank with 4209 templates is divided into eight
sub-banks of 500 templates each and a ninth one of 209
templates. There β reaches a high of ∼2 when one tolerates an
average fractional loss in SNR of hδρ=ρi ∼ 0.1. On the other
hand, for any of these template banks, as one approaches
machine-precision accuracy in SNR reconstruction, β → 1 as
expected. A practical operating point would be hδρ=ρi ∼ 10−3.
The trend from the six examples shown here indicates that β can
be quite large for searches in aLIGO data where NT ∼ 105.

1Note that HðlÞ has the same dimensions as H.
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high probability.2 In one implementation, the RSVD algo-
rithm proceeds by first projecting the individual row vectors
in the template matrix H to Rl by using Ω̄Ns×l ∈
N ð0; 1=lÞ, thereby yielding H̄2NT×l ¼ HΩ̄. The latter
can be used to perform an SVD-like factorization
directly in Rl through a series of operations like the
ones described below. In passing, we note that while H̄ is
an object in a lower-dimensional Euclidean space relative
to H, it is not constituted of time-decimated templates.
Figure 2 compares the singular values obtained by the

RP-based factorization against those from a direct SVD
factorization. As seen there, it is typically sufficient to take
l ≪ NT . (Since NT ≤ Ns, as mentioned above, it follows
that l ≪ Ns as well.) In fact, the numerical value of l
chosen in RSVD may be smaller than the theoretical JL
bound prescribed for preserving pairwise L2 distances
between the 2NT rows to a ϵ-distortion factor. Working
with the reduced sized matrix H̄ leads to significant
computational savings, while producing a decomposition
that closely approximates the optimal l-rank factorization
of H. The optimum choice of l depends on the
shape of the eigenvalue spectrum. In the Monte Carlo
simulations presented in the Supplemental Material [37],
we choose l ¼ 200. The corresponding average SNR loss
for a set of 500 CBC signals added to simulated aLIGO
noise is hδρ=ρi ¼ 2 × 10−4 in that study (see Fig. 3 in
Supplemental Material [37]).
RSVD thus proceeds byobtaining a set of orthogonal bases

for the column space of H̄ by using a thin-QR decomposition
[38]: H̄ ¼ QR, where Q is an orthonormal matrix with
dimensions 2NT × l. The approximate rank-l decomposi-
tion is then obtained as HðlÞ ¼ QðQTHÞ ¼ QB, where
Bl×Ns ≡QTH is a matrix that defines the orthonormal
projection of the template waveforms into the compressed
subspace. It is clear that one can use the l rows of B as the
surrogate templates, which in turn can be used to correlate
against the detector data S⃗. These can be further combined
with Q to reconstruct ρ in RNs . We can thus use the QB
decomposition itself to improve the efficiencyofboth the time
and frequency domain searches by constructingH appropri-
ately, with templates from the corresponding domains.
Instead of randomly projecting the column space

of H, the method can be generalized by applying RP on
both the row and column spaces [39]. This bilateral RSVD
method is particularly useful when both Ns and NT are
very large.

V. RECONSTRUCTION OF SNR

The rank-l matrix factorization of H using RSVD is
given by HðlÞ ¼ QB. Thus, the SNR ρ0α, for any given t0,
can be reconstructed in RNs as

ρ0α ¼ ðHðlÞ
ð2α−1Þ − iHðlÞ

ð2αÞÞS⃗T

¼
Xl

ν¼1

ðQð2α−1Þν − iQð2αÞνÞðBνS⃗
TÞ: ð2Þ

Using the Pythagoras theorem, and the fact that
kHk2F ¼ 2NT , it is easy to show that the average fractional
loss of SNR is given by

�
δρ

ρ

�
≤
kHk2F − kHðlÞk2F

kHk2F
¼ 1 −

P
l
μ¼1 σ

2
μ

2NT
; ð3Þ

where σμ are the eigenvalues of HðlÞ. For the example
discussed in Fig. 2,

P
l
μ¼1 σ

2
μ=ð2NTÞ < 1 but approaches

unity monotonically with increasing l. The right-hand
side of Eq. (2) can be calculated efficiently by evaluating
the Frobenius norm of B directly (i.e., without explicitly
finding the eigenvalues of HðlÞ first). Thus, the QB
decomposition can indeed serve as a stand-in replacement
for the SVD factorization. (For an efficient method of
explicitly calculating the SVD factors from the RP-based
factorization see Supplemental Material [37].)
Ideally one would like to use hδρ=ρi as the control

parameter and solve Eq. (3) for the optimum value of l.
However, this is a hard problem and in practice the value is
set by a process of trial and error, which thankfully can be
done off-line even when the computation in Eq. (2) is
conducted on-line.
A naive implementation of matched-filter in time-domain

can be very expensive, with a complexity of OðN2
sÞ per

template for Ns time-shifts. Of course, the Fast Fourier
transform (FFT) can reduce this to OðNs logNsÞ. It is
however more efficient instead to first project the two
aforementioned whitened time-series vectors in RNs to a
random k-dimensional (k ≪ Ns) subspace and then calcu-
late the match (circular cross correlations), as seen in Fig. 2
of the Supplemental Material [37]. In fact, for the template
part, one can directly project the rows of theBmatrix (which
serve as surrogate templates) toRk (k ≤ Ns). In this context,
RP reduces the complexity of calculating the matches by a
factor Ns=k. (See Supplemental Material [37] for how FFT-
like algorithms enable its fast computation [38].)

VI. COMPUTATIONAL COMPLEXITY ANALYSIS

The straightforward SVD factorization of H requires
OðN2

TNsÞ floating-point operations, assuming NT ≤ Ns. In
comparison, the cost of the RP matrix factorization is
OðlNTNs þ ðl2NT − 2

3
l3Þ þ lNTNs þ lNsÞ. In this last

expression, we have included partial contributions from
first projecting the template matrix to Rl, then taking the
thin-QR decomposition of H̄ using Householder’s method
[40], followed by the cost of constructingB and calculating
its Frobenius norm, respectively. For practical cases, one2Note that the values of η and ϵ can be different.
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expects l ≪ Ns, due to which the cost of factorizingH can
be orders of magnitude less than a full SVD factorization.
This advantage is not just realized off-line, but can also
directly impact the total on-line cost of the searches owing
to a lower value of l alone: Figure 1 shows that for
moderate sized banks one effectively ends up using ∼3–4
times fewer surrogate templates in the on-line portion of the
search from the new RP-based factorization. This improve-
ment is expected to be higher for larger banks.
For on-line searches, the number of floating point

operations per second (flops) in our method is Nflops ¼
ð2lkfs þ 2lNTfs þ kfsÞ. The first term is the number of
floating-point operations required for computing the cross
correlation between the surrogate templates (rows of B)
and the data vector; the second term is the cost of
reconstruction of the SNR for every template; and the
third term is the cost of projecting the data vector into
the lower-dimensional space. In the SVD-only method, the
expression for Nflops is analogous, except that instead of the
last term above, it has a down-sampling cost that is
similarly insignificant as our projection cost. The primary
difference between the two methods is that owing to our use
of RSVD and RP, l and k are less than the number of basis
templates and the number of time samples of data used,

respectively, in the SVD-only method. For the crucial last
couple of seconds of the cross-correlation analysis for CBC
signals we have evaluated that our method is an order of
magnitude faster than the SVD-only method.

VII. CONCLUSION

In summary, here we introduced random projection-
based techniques that hold promise for factorization of
large template matrices and cross correlation of templates
with data in a scalable and computationally efficient way,
which can aid more complex searches, such as of CBCs
with generic spins, and, hence, improve the chances for
new discoveries.
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