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The recent observation that black holes in certain Einstein-Maxwell-dilaton (EMD) theories can violate
the entropy super-additivity led to the suggestion that these black holes might repel each other. In this
paper, we consider EMD theories with twoMaxwell fields Ai, with general exponential couplings expðaiϕÞ
in their kinetic terms. We calculate the gravielectrostatic force between charged black holes ðm1; e1Þ and
ðM2; Q2Þ; the former is sufficiently small and can be treated as a pointlike object. We find there is a
potential barrier caused by the dilaton coupling at r0 outside the black hole horizon rþ, provided that
−a1a2 > 2ðD − 3Þ=ðD − 2Þ. As the black hole approaches extremality, both rþ and r0 vanish, the barrier
becomes infinitesimally thin but infinitely high, and the two black holes repel each other in the whole
space. There is no electrostatic force between them; the dilaton is the antigravity agent. Furthermore
we find that the exact constraint on a1a2 can be derived from the requirements that two-charged extremal
black holes have a fission bomb like mass formula and the violation of entropy super-additivity can occur.
The two very different approaches give a consistent picture of the black hole repulsion.
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I. INTRODUCTION

Newton’s law of universal gravitation states that any two
massive objects attract by gravity. This remains largely true
in Einstein’s theory of general relativity (GR) but with
some subtleties. The centrifugal force is viewed as fictitious
in Newton’s theory, it is an intrinsic effect of spacetime
structure in GR. It is thus advantageous to simplify the
discussion on the effective force between two objects by
restricting the motion with no relative angular momentum.
Furthermore, in de Sitter spacetimes or any universe with
accelerating expansion, two black holes in sufficient
separation will move away from each other by the negative
pressure. In order to avoid this effect, we shall focus only
on the black holes that are asymptotic to the Minkowski
spacetime.
In Newtonian gravity, the attractive force can be per-

fectly balanced by the Coulomb’s electrostatic force, the
other long-range force in nature. In particular, a set of
charged particles of massm and charge e can all be in static
balance when m ¼ e. This property remains in GR even

when the theory becomes highly nonlinear. The m ¼ e
particles become the extremal Reissner-Nordström (RN)
black holes. These black holes continue to experience
no force and statically they can be arbitrarily located in
space. The m > e particles become nonextremal black
holes with Hawking temperature. The m < e particles,
such as an electron, remain particlelike with naked curva-
ture singularity.
There is no doubt that two Schwarzschild black holes

always attract; in fact, they can remain static only with a
naked strut singularity [1,2]. The situation becomes more
complicated for RN black holes. A direct calculation of the
force is formidable. When one of the two black holes is
sufficiently small, it can be treated as a pointlike object. It
was shown that there can be no static equilibrium for a
charged particle withm > e outside the event horizon of an
RN black hole [3]. This is indicative that two RN black
holes always attract. (Hairy magnetic black holes were
constructed to lower the mass so that two such black holes
can be repulsive at large separation, see, e.g. [4–6].) The
attractiveness is also supported by the fact that the RN
black hole entropy is a super-additive function of its mass
and charge. A black hole’s entropy is in general a function
of its conserved quantities Qi, which include the mass,
charge and angular momentum. If we imagine that two
black holes with Qi

1 and Qi
2 join to become a bigger

black hole, entropy super-additivity states SðQi
1 þQi

2Þ ≥
SðQi

1Þ þ SðQi
2Þ [7]. This is related to Hawking’s black hole

area law and it is consistent with the assumption that black
holes are mutually attractive and merging together is a
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physical process that increases the entropy. Indeed RN
black holes, like the Schwarzschild, satisfy the entropy
super-additivity.
However, it turns out that the super-additivity rule can be

violated [7] by the Kaluza-Klein dyonic black holes in four
dimensions [8]. Furthermore, the mass of the extremal dyon
is larger than the sum of the masses of the individual
extremal electric and magnetic ones. The dyon is thus a
bound state of electric and magnetic black holes with
negative binding energy, analogous to a fission bomb
[9,10]. The issue of generating angular momentum by
the separation of the electric and magnetic charges can be
circumvented if we consider two Maxwell fields, with both
carrying electric charges. Further black hole fission bombs
in Einstein-Maxwell-dilaton (EMD) theories that violate
the entropy super-additivity were constructed in [11]. These
results led one to propose that two black holes might not
always attract [12], and the dilaton may play the role of
antigravity [9,13].
In this paper, we consider EMD theories with two

Maxwell fields A1 and A2, both of which couple to the
dilation ϕ nonminimally, with exponential couplings in
their kinetic terms. We calculate the force on a charged
particle coupled to A1 by the black hole carrying only the
A2 charge, and hence there is electrostatic force between
them. We find that there is an unstable equilibrium when
the black hole becomes extremal or sufficiently near
extremum, indicating repulsive force exists between the
black hole and the charged particle. Furthermore, the
particle satisfies the black hole mass-charge bound and
hence two such black holes do repel each other, with
antigravity mediated by the dilaton.
In Sec. II, we present the formalism for calculating

the gravielectrostatic force. In Secs. III and IV, we study
black hole interactions in EMD theories with one and two
Maxwell fields respectively. We conclude the paper
in Sec. V.

II. GRAVIELECTROSTATIC FORCE

We set up here the formalism for calculating the
gravielectrostatic force between a charged black hole
and a point particle outside the horizon. (See e.g. [14].)
We shall consider only the static and spherically symmetric
black holes. The most general ansatz in some appropriate
metric frame takes the form

ds2D¼−hðrÞdt2þ dr2

fðrÞþρðrÞ2dΩ2
sphere; A¼ψðrÞdt;…;

ð2:1Þ

where ψðrÞ is the electrostatic potential, and the ellipses
denote other matter fields that are not relevant for our
purpose. The motion of a particle of mass m couple to A
with charge e is governed by the action

S ¼ −m
Z

dτ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν

dxμ

dτ
dxν

dτ

r
þ e
m
Aμ

dxμ

dτ

!
: ð2:2Þ

We are interested in static equilibria; therefore, we focus on
the radial motion only. The relevant action can be written as

S¼m
Z

dtL; L¼−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðrÞ− _r2

fðrÞ

s
−
e
m
ψðrÞ; ð2:3Þ

where the radial variable r is now a function of the
asymptotic physical time t and a dot is a derivative with
respect to t. To derive the gravielectrostatic force, we
restrict our attention to _r2 ≪ 1, in which case, the effective
Lagrangian is

L¼ _r2

2
ffiffiffiffiffiffiffiffiffi
hðrÞp

fðrÞ−VeffðrÞ; Veff ¼
ffiffiffiffiffiffiffiffiffi
hðrÞ

p
þ e
m
ψðrÞ:

ð2:4Þ

This is a Newtonian system with an r-dependent mass and
potential Veff . When the charge and mass satisfy the ratio at
certain r0, namely

e
m

¼ −
ð ffiffiffi

h
p Þ0
ψ 0

����
r¼r0

; ð2:5Þ

it is a static equilibrium. The existence of such an
equilibrium implies that the particle must experience an
overall repulsive force somewhere in its vicinity. We must
require r0 be outside the horizon, and furthermore, the
particle mass be sufficiently larger than its charge so that it
is a small black hole rather than an electronlike particle. For
the linear radial perturbation rðtÞ ¼ r0 þ ϵðtÞ, the solution
is ϵ ∼ expð�λtÞ, with

λ2 ¼
ffiffiffi
h

p
f

�
ψ 00

ψ 0 ð
ffiffiffi
h

p
Þ0 − ð

ffiffiffi
h

p
Þ00
�����

r¼r0

: ð2:6Þ

The characteristics of the equilibrium is determined by the
sign of λ2.
It is worth pointing out that in string-inspired EMD

theories, there can be multiple Maxwell fields. If the
particle of ðm; eÞ does not couple to A, the second term
in the action (2.2) drops out and there is no electrostatic
force. We then have

h0ðr0Þ ¼ 0; λ2 ¼ −
1

2
fðr0Þh00ðr0Þ: ð2:7Þ

III. EMD THEORY

We first consider the EMD theory in general D
dimensions:
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L¼ ffiffiffiffiffiffi
−g

p �
R−

1

2
ð∂ϕÞ2−1

4
eaϕF2

�
; F¼ dA: ð3:1Þ

Introducing N by a2 ¼ 4
N − 2ðD−3Þ

D−2 , charged black holes can
be written as

ds2¼−H−D−3
D−2Nf̃dt2þH

N
D−2

�
dr2

f̃
þ r2dΩ2

�
;

A¼ψdt; ϕ¼ 1

2
Na logH;

f̃¼ 1−
μ

rD−3 ; ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NqðμþqÞp
rD−3H

; H¼ 1þ q
rD−3 :

ð3:2Þ

Note that for a ≠ 0, we have ρ → 0 as r → 0; therefore,
r can be qualitatively treated as the black hole radius.
The horizon is at rþ ¼ μ1=ðD−3Þ, with surface gravity

κ ¼ ðD − 3Þ=ð2rþHN=2
þ Þ, where Hþ ¼ HðrþÞ. The black

hole thermodynamical quantities are

T ¼ κ

2π
; S ¼ 1

4
ΩD−2H

1
2
N
þ rD−2þ ; Ψ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nq

qþ rD−3þ

s
;

M ¼ Ω
16π

ððD − 2ÞrD−3þ þ ðD − 3ÞNqÞ;

Q ¼ ðD − 3ÞΩ
16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nqðqþ rD−3þ Þ

q
: ð3:3Þ

They satisfy the first law dM ¼ TdSþ ΨdQ. Here Ω
denotes the volume of the unit SD−2. The solution is
extremal when rþ ¼ 0, corresponding to Mext ¼

ffiffiffiffi
N

p
Q.

In this limit, H can be any harmonic function of the
Euclidean transverse space.
For general nonextremal black holes, we haveM > Mext.

[A particle with ðm; eÞ is a small black hole if m ≥
ffiffiffiffi
N

p
e.]

The entropy depends on the mass and charge, namely

S ¼ 1

4
ΩrD−2þ

�
1 −

D − 2

ðD − 3ÞN þ 16πM
ðD − 3ÞΩNrD−3þ

�
N=2

;

rD−3þ ¼ 8π½ððD − 3ÞN − 2ðD − 2ÞÞM þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 3Þ2N2M2 − 4ðD − 2ÞNððD − 3ÞN −Dþ 2ÞQ2

p
�

ðD − 2ÞððD − 3ÞN −Dþ 2ÞΩ : ð3:4Þ

Although we have not proven analytically the entropy
super-additivity for the general case, we have not seen any
counterexamples in a thorough numerical analysis. Note
that when we split ðM;QÞ ¼ ðM1 þM2; Q1 þQ2Þ, the
mass-charge bound should be held not only for ðM;QÞ
but also for ðM1; Q1Þ and ðM2; Q2Þ.
We now turn to calculate the gravielectrostatic force on a

charged particle outside the black hole. Naively, one might
simply substitute the metric (3.2) into the formalism of
Sec. II. However, there is a subtlety in the EMD theory.
There will be an additional eαϕ type of dilation coupling in
the particle world line action. The value of α can be
determined by noticing that there is a metric frame asso-
ciated with the charged particle itself. In its particle frame,
the corresponding electric charge can be simply expressed as
the usual EM theory Q ¼ R �F without any further ϕ
dependence. Therefore, the particle frame metric ĝμν just
given by the conformal transformation from the Einstein
frame gμν ¼ eaϕĝμν. In its own frame, the charged particle is
minimally coupled to the background gravity as well as the
gauge field as in (2.2). This is analogous to the string action
that should be written in the string frame. (See, e.g. [15].)
In the particle frame, the Lagrangian becomes

L̂ ¼
ffiffiffiffiffiffi
−ĝ

p
e
1
2
12ðD−2Þaϕ

�
R̂ −

1

4
F2

−
1

2

�
1 −

1

2
ðD − 1ÞðD − 2Þa2

�
ð∂ϕÞ2

�
; ð3:5Þ

and the metric functions of the black hole become

ĥ ¼ f̃
H2

; f̂ ¼ H2−Nf̃; ρ̂2 ¼ r2HN−2: ð3:6Þ

A further important property is that the hatted particle action
preserves the symmetry ϕ → ϕþ c and A → e−

1
2
acA of

the original Lagrangian. Following Sec. II, we find the
equilibrium r0 is determined by

e
m

¼ 2qrD−3
0 þ ðrD−3

0 − qÞrD−3þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NqrD−3

0 ðrD−3
0 − rD−3þ ÞðrD−3þ þ qÞ

q : ð3:7Þ

In the extremal rþ¼0 limit, we have the extremal e=m¼
1=

ffiffiffiffi
N

p
, which is independent of r0. This is the manifestation

of no force between two extremal black holes. For general
nonextremal black holes with rþ > 0, we require that
r0 ≥ rþ. The charge/mass ratio is a monotonically decreas-
ing function of r0 ∈ ðrþ;∞Þ. Thus we have

e
m

≥
2qþ rD−3þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nqðqþ rD−3þ Þ

p ≥
1ffiffiffiffi
N

p : ð3:8Þ

In other words, the particle that has a static equilibrium
cannot be a black hole. Two nonextremal black holes
carrying the same type of charges always attract, consistent
with our earlier observation that they satisfy the entropy
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super-additivity. The a ¼ 0 case reproduces the conclusion
for the RN black hole [3]. It is worth seeing that equilibria
of the particles are all unstable with

λ ¼
�
rþ
r0

�
D−2
�
HðrþÞ
Hðr0Þ

�
N=2

κ; ð3:9Þ

satisfying the bound λ < κ, proposed in [14].

IV. EMD THEORY WITH TWO MAXWELL
FIELDS

We now generalize Sec. III by introducing another
Maxwell field. The Lagrangian in the Einstein frame is

L ¼ ffiffiffiffiffiffi
−g

p �
R −

1

2
ea1ϕF2

1 −
1

2
ea2ϕF2

2

�
;

Fi ¼ dAi; a2i ¼
4

Ni
−
2ðD − 3Þ
D − 2

: ð4:1Þ

For later purposes, we introduce a parameter ζ, defined by

ζ ¼ −
1

2
a1a2 −

D − 3

D − 2
: ð4:2Þ

Singly charged black holes associated with either A1 or A2

are given in (3.2) with the fields and constants labeled by
subscripts “1” or “2” appropriately. When ζ ¼ 0, exact
solutions can be constructed carrying both charges, and the
no-force condition exists in the extremal limit (see, e.g.
[16]). For ζ ≠ 0, general analytical solutions are hard to
come by. In D ¼ 4 and a2 ¼ −a1, approximate solutions
were constructed in [11]. When a1a2 is negative, an exact
solution always exists for appropriately fixed charges. To
be specific, when

Qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

ϵijaj
a1 − a2

r
Q; ð4:3Þ

the solution becomes the RN black hole with charge Q.
(Here we take a1 and hence −a2 to be positive.) The two-
charge extremal solution is a bound state of two extremal
ðQ1; 0Þ and ð0; Q2Þ black holes, with the binding energy

ΔM¼M1þM2−M¼
ffiffiffiffiffiffi
N1

p
Q1þ

ffiffiffiffiffiffi
N2

p
Q2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðD−2Þ
D−3

r
Q:

ð4:4Þ

We find that ΔMð>;¼; <Þ0 corresponds to ζð<;¼; >Þ0
respectively. In string theories, where ζ ¼ 0, vanishing ΔM
is a consequence of the no-force condition between the
supersymmetric intersecting p-branes. The ΔM < 0 and
ΔM > 0 cases were referred to as fission and fission bombs
in [10]. The ζ > 0 case with negative binding energy
suggests that the extremal black holes are repulsive.

In fact, in D ¼ 4, and a1 ¼ −a2, for which ζ ¼ a21 − 1,
it was demonstrated numerically that entropy super-
additivity can be violated for ζ > 0 [11]. In particular,
for a1 ¼

ffiffiffi
3

p
, corresponding to the Kaluza-Klein theory,

the violation can be established analytically [7].
We now calculate the static force between the black holes

ðM1; Q1Þ and ðM2; Q2Þ, associated with A1 and A2 respec-
tively, and hence there is no electrostatic force between
them. Assuming that ðM1; Q1Þ ¼ ðm1; e1Þ are sufficiently
small to be a point object, we can apply (2.7). In the particle
frame associated with A1, the relevant metric functions of
the black hole ðM2; Q2Þ are

ĥ ¼ HζN2

2 f̃; f̂ ¼ H−ðζþ1ÞN2

2 f̃: ð4:5Þ

From the asymptotic behavior of ĥ, the antigravity becomes
evident for ζ > 0. To be specific, in the rþ ¼ 0 extremal
case, we have no force when ζ ¼ 0, for which h ¼ 1. In
general, we find that there is an equilibrium ĥ0ðr0Þ ¼ 0,
yielding

�
r0
rþ

�
D−3

¼ 1þ q2 þ rD−3þ
ζN2q2 − rD−3þ

: ð4:6Þ

Thus for ζ ≤ 0, the equilibrium is always inside the
horizon, implying that the two objects always attract.
When ζ > 0, on the other hand, the equilibrium can be
outside the horizon for sufficiently small rþ. In particular,
for rþ ∈ ð0; ðζN2q2Þ 1

D−3Þ, we have r0 ∈ ð0;∞Þ. In terms of
the black hole mass-charge relation, we have

ffiffiffiffiffiffi
N2

p
≤
M2

Q2

≤
ffiffiffiffiffiffi
N2

p ððD − 3Þ þ ðD − 2ÞζÞ
ðD − 3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ N2ζ
p : ð4:7Þ

Note that as the black hole ðM2; Q2Þ approaches extrem-
ality rþ → 0, the equilibrium r0 also approaches zero with
r0=rþ ∼ 1þ 1=ðζN2Þ. All the equilibria are unstable, with

λ2 ¼ ðD − 3Þ2r2ðD−3Þ
þ ðζN2q2r3−Dþ − 1Þ2ðD−2Þ

D−3

2NN2þ1
2 q

2ðD−2Þ
D−3
2 ζN2þ1ðζN2 þ 1ÞD−1

D−3−N2ðq2r3−Dþ þ 1ÞN2

:

ð4:8Þ

(Unlike the previous case, the λ < κ bound can now be
violated.) Thus for a charged particle ðm1; e1Þ outside
the black hole ðM2; Q2Þ, satisfying (4.7), there is a potential
barrier of the gravielectrostatic force at certain r0 > rþ.
As the black hole becomes extremal, both rþ and r0
approach zero, and the barrier becomes infinitesimally
thin but infinitely high. The two objects are then repulsive
in the whole space. This result is independent of the
mass and charge ratio of ðm1; e1Þ, indicating that the
repulsion can exist between two such black holes, mediated
by the dilaton.
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V. CONCLUSIONS

We considered a class of EMD theories with two
Maxwell fields. We calculated the static force between
one black hole of mass and charge ðM2; Q2Þ and the other
of ðm1; e1Þ that was sufficiently small and could be treated
as pointlike. It is clear that for large enough mass/charge
ratio, black holes will always attract. However, in the
extremal or near extremal cases, the sign of the force
depends on the ζ parameter (4.2) associated with the dilaton
coupling constants ða1; a2Þ. For ζ < 0, the black holes
always attract. This includes the case when two black holes
carrying the same type of charges ða1 ¼ a2Þ, as demon-
strated in Sec. III. For ζ ¼ 0, two black holes in general
attract, except when both are extremal, in which case, there
is no force between them. This includes black holes that
are supersymmetric intersections of p-branes. Repulsion
occurs when ζ > 0 and the black holes are extremal or
sufficiently nearly extremal. This reproduces precisely the
same result from examining the black hole mass and
entropy formulas: the two-charge extremal or near-extremal
black holes with ζ > 0 are like bound states with negative
binding energy and furthermore they can violate the
entropy super-additivity. The two totally different appro-
aches point to the same picture that these black holes will
naturally split, like fission bombs. When a2 ¼ −a1, the two
electrically charged black holes can be viewed as dyonic
black holes associated with a single field strength. We thus
demonstrated concretely that repulsion exists between the
dyonic black holes in the Kaluza-Klein theory, which can
be embedded in supergavities. The Kaluza-Klein dyon is
the only known exact solution that violates the entropy
super-additivity. The lacking of such exact solutions makes
it difficult to study systematically the relation between the
violation of the super-additivity and the existence of the

black hole repulsion; it is nevertheless an interesting subject
to investigate.
It should be emphasized that the two black holes of

ðM1; Q1Þ and ðM2; Q2Þ do not have electrostatic force
between them, since they are charged under different
Maxwell fields. The repulsion is mediated by the dilaton,
and our result is indeed sensitive to the parameter ζ. Our
conclusion opens up a variety of related questions in black
hole physics, such as black hole horizon area and the
information paradox when a black hole may break up like a
bomb. Since EMD theories are inspired by the strings
where the black holes are lower-dimensional artifacts of
branes, the issue of black hole repulsion and related topics
can also be addressed by the brane dynamics in strings
and/or M-theory. In fact, it is known that there are always
dilaton forces between the D-branes in a Dp=Dq system
when p ≠ q. (There is no electrostatic interaction between
Dp and Dq branes when p ≠ q.) ForD0=D4, the repulsive
dilaton force cancels the gravity force and makes the
corresponding bound state to be marginal. For D0=D6
the repulsive dilaton force is larger than the gravity force
and thus theD0=D6 bound state is unstable, which is in fact
a string origin of the Kaluza-Klein dyon repulsion men-
tioned earlier. More systematic analysis of dilaton mediated
force in the brane dynamics will be presented in our
incoming work [17].
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