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The recent discovery of non-Schwarzschild black hole spacetimes has opened new directions of research
in higher-derivative gravitational theories. However, despite intense analytical and numerical efforts, the
link with the linearized theory is still poorly understood. In this work we address this point for the Einstein-
Weyl Lagrangian, whose weak field limit is characterized by the standard massless graviton and a spin-2
ghost. We show that the strength of the Yukawa term at infinity determines the thermal properties of the
black hole and the structure of the singularity near r ¼ 0. Moreover, inspired by recent results in the
asymptotic safety scenario we investigate the consequences of an imaginary ghost mass. In this case we
find a countable set of solutions all characterized by spatial oscillations of typical wavelength determined
by the mass of the spin-2 field.
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I. INTRODUCTION

Since the seminal work by Stelle [1] it has long been
known that extensions of Einstein’s gravitational theory
containing R2 and CμνστCμνστ operators in the Lagrangian
are renormalizable in d ¼ 4 dimensions, but at the price of
a loss of unitarity owing to a spin-2 ghost. In recent times
the possibility of defining the continuum limit around a
non-Gaussian fixed point [2] has fueled new interest in this
problem. Several authors have in fact proposed possible
solutions for the unitarity problem [3–5], although the
physical content of the theory is still not completely
understood.
At the classical level, the Einstein-Weyl theory has

recently attracted considerable interest. It is defined by
the following action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðγR − αCμνστCμνστÞ ð1Þ

where Cμνστ is the Weyl tensor. According to a generalized
Israel theorem [6], any static black-hole solution of a
generic quadratic gravity theory must have vanishing
Ricci scalar R in the exterior region (provided ∂rR goes
to zero sufficiently rapidly at spatial infinity) and then be a
solution of (1). This property has greatly simplified the
search for black hole solution in quadratic gravity. In fact
solutions with vanishing Ricci scalar and nonvanishing
Ricci tensor Rμν have been first discovered by [6] and
further investigated in [7–9].
However, due to its strongly nonlinear nature, the general

problem of connecting the weak-field regime with the
strong one, is still not completely clarified. This is a central

issue to discuss possible phenomenological and astrophysi-
cal implications of quadratic gravity. For instance if in the
linearized theory the spin-2 mode is tachyonic as it emerges
in the context of the asymptotic safety scenario [10,11],
the Yukawa-like behavior ð1=rÞe�mr of the fields at
large distances is turned into a periodic hair of the type
∼ð1=rÞ cosðjmjrÞ and the spacetime is no longer asymp-
totically flat. One would then like to know how the
properties of the horizon (i.e., its location, surface gravity)
and the further interior evolution, are determined by the
asymptotic fields.
In this work, in order to tackle this problem, we employ a

multiple shooting approach which allows a complete
characterization of the solutions from r ¼ ∞ down to
r ¼ 0. Depending of the black hole “mass” M defined at
large distances we shall see that the thermal properties of
the black holes and the behavior of the metric coefficient
near r ¼ 0 are determined by the Yukawa coupling at
infinity. On the contrary, for m2 < 0 we discover a
countable number of families of solutions, representing a
new type of black hole. In particular the metric coefficient
show characteristic ripples of wavelength ∼1=jmj which
resembles a gravitational analogous of the Friedel oscil-
lations in plasma [12,13].

II. LINEARIZED SOLUTIONS
AND NUMERICS

Let us consider the field equations for (1)

Hμν ¼ Rμν −
1

2
Rgμν −

2

m2

�
∇ρ∇σ þ 1

2
Rρσ

�
Cμρνσ ð2Þ
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where m2 ¼ γ=2α, and assume a static spherically sym-
metric spacetime of the form

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2dΩ2: ð3Þ

Let us then write

hðrÞ ¼ 1þ VðrÞ; fðrÞ ¼ 1þWðrÞ ð4Þ

with V ≪ 1 and W ≪ 1. The linearized field equations,
describing the metric at large distances, can easily be
obtained from the equations Hμ

μ ¼ 0 and H0
0 −Hi

i ¼ 0,
which reduce to

∇2ð∇2VðrÞ þ 2YðrÞÞ ¼ 0 ð5aÞ

�
∇2 −

3

2
m2

�
∇2VðrÞ −∇2YðrÞ ¼ 0 ð5bÞ

where YðrÞ ¼ r−2ðrWðrÞÞ0 (see [1] for a general discussion
on the weak field expansion in quadratic gravity). The form
of the linearized solution is

hðrÞ ¼ 1þ Ct −
2M
r

þ 2S2−
e−mr

r
þ 2S2þ

emr

r

fðrÞ ¼ 1 −
2M
r

þ S2−
e−mr

r
ð1þmrÞ

þ S2þ
emr

r
ð1 −mrÞ ð6Þ

where the dependence on the unknown Ct,M, S2þ and S2−
is explicit. Standard time parametrization at r ¼ ∞ implies
Ct ¼ 0 and asymptotically flat solutions have S2þ ¼ 0.
The key question we are interested in is the determination
of the values of M and S2− for which a BH solution with a
nonvanishing Ricci scalar is obtained. The trace of field
equations (2) implies R ¼ 0 which, upon using the spheri-
cally symmetric ansatz Eq. (3), leads to the following
second order equations:

0 ¼ rhðrÞðrf0ðrÞh0ðrÞ þ 2fðrÞðrh00ðrÞ þ 2h0ðrÞÞÞ
þ 4hðrÞ2ðrf0ðrÞ þ fðrÞ − 1Þ − r2fðrÞh0ðrÞ2: ð7Þ

An additional second order equation can be obtained by
considering a suitable combination [14]

Hrr − XðrÞHμ
μ − YðrÞðHμ

μÞ2 − ZðrÞ∂rHμ
μ ¼ 0: ð8Þ

After some manipulations one obtains

0¼−r2fðrÞhðrÞðrf0ðrÞþ3fðrÞÞh0ðrÞ2
þ2r2fðrÞhðrÞ2h0ðrÞð−rf00ðrÞ−f0ðrÞþ2m2rÞ
þhðrÞ3ðrð−3rf0ðrÞ2þ4f0ðrÞ−4m2rÞþ r3fðrÞ2h0ðrÞ3
þ4fðrÞðr2f00ðrÞ− rf0ðrÞþm2r2þ2Þ−8fðrÞ2Þ: ð9Þ

It is not difficult to show that near a horizon rH the
following local expansion holds

fðrÞ ¼ f1ðr − rHÞ þ f2ðf1; rHÞðr − rHÞ2 þ � � � ð10aÞ

hðrÞ ¼ h1ððr − rHÞ þ h2ðf1; rHÞðr − rHÞ2 þ � � �Þ ð10bÞ

where f1 and h1 are two free parameters and fi>1, hi>1 are
completely determined by f1 and rH, so that the
Schwarzschild solution is obtained for f1 ¼ h1 ¼ 1=rH.
In particular the surface gravity is given by

κ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffi
f1h1

p
ð11Þ

and, as always, the Hawking temperature is T ¼ κ=2π.
The space of the possible black hole solutions can be

obtained by means of the following numerical strategy.
Aweak field solution is assumed to be valid starting from

some radius r ≫ 1=m, where the initial conditions (6) are
set, and an inward numerical integration of (7)–(9) towards
a fitting radius rf > rH is performed. In particular, the
rising Yukawa exponentials are switched off and (M, S2−)
are assumed to be arbitrary. Moreover, h1 and f1 in (10)
determine the initial condition for a corresponding outward
integration towards rf from rH. For actual calculations the
Adaptive Stepsize Runge-Kutta integrator DO2PDF imple-
mented by the NAG group (see https://www.nag.com for
details) turned out to be rather efficient. Continuity at the
fitting point of the functions fðrÞ, hðrÞ and their derivatives
as a function of (M, S2−, h1, f1) is obtained by means of a
globally convergent Broyden’s method as described in
http://numerical.recipes. In particular we assumed a toler-
ance of 10−12 during the integration and a tolerance of 10−6

for the root finding algorithm. This method improves both
the precision and the efficiency of finding BH solutions, in
particular we find that the matching between the (M, S2−)
and the (h1, f1) parameters is improved of a factor 104

compared to previous results.
The location of the fitting point can be changed in order

to improve the numerical stability of the system, although
our results do not depend on its precise location. It is
convenient to set m ¼ 1 so that the radial coordinate r, and
the constants M, S2− in Eq. (6) are all measured in units of
1=m. By continuously changing the value of rH it is
therefore possible to systematically explore the dependence
of the asymptotic parameters of the solution on the
parameters h1 and f1 of the local expansion near the
horizon. Moreover, once the convergence is achieved, we
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further shoot inward towards r ¼ 0 in order to characterize
the behavior of the metric coefficients near the singularity.
A single integration from r ≫ 1=m to r ¼ 0 typically
requires less than 10s, however the exploration of the full
parameter space can take hours.
At last, the space of possible solutions is described in

Figs. 1 and 2, where the inset on the right of Fig. 1 shows
the region around rH ∼ 0. Black holes with M > 0 only
exist for S2− > −1.5. Moreover, black holes with S2− > 0,
represented with a blue line, are colder than the
Schwarzschild black hole with the same horizon radius,
while black holes with S2− < 0 are instead hotter, as shown
in the inset of Fig. 2. If we compare the temperature of the
non-Schwarzschild BH and the Schwarzschild ones with
respect to the mass M, we find that the non-Schwarzschild
ones are always colder. Black holes with large event horizon
always have M < 0. In the limit of zero temperature as
rH → 0, the mass below rH < 0.4 assumes the constant
value M ¼ M0 ¼ 0.62.

III. THE SINGULARITY AT r= 0

It is interesting to study the structure of the metric
coefficient near r ¼ 0 as we move from the hot branch to
the cold branch in Fig. 1. Therefore for each value of rH we
further integrate toward r ¼ 0 in order to study the running
exponents

t ¼ r∂rln hðrÞ; s ¼ r∂rln fðrÞ; ð12Þ
which can be determined by stopping the numerical
integration at a limiting value of the radius (we used r ¼
10−6 in order to preserve numerical stability). The results
are depicted in Fig. 3 where it can be noticed that as rH runs
from the hot branch to the cold branch, ðs; tÞ run from
ð−1;−1Þ to ð−2; 2Þ (note that in our notation s has the
opposite sign of the one in [15]). The limiting configuration
reached in the rH → 0 limit is the vanishing metric solution
described in [16].

To study this transition in detail let us define x ¼ − ln r
and rewrite Eq. (7) and Eq. (9) as a function of sðxÞ and tðxÞ
in (12). Exploiting the fact that f is large towards r ¼ 0
(x ¼ ∞) it is easy to obtain the following autonomous
dynamical system

ds
dx

¼ −
−2s2tþ s2 − st2 − 8sþ t3 − 3t2 − 8

2ðt − 2Þ ; ð13aÞ

dt
dx

¼ −
1

2
ð−st − 4s − t2 − 2t − 4Þ: ð13bÞ

Stationary solutions at x ¼ ∞ determine the behavior of
the metric near r ¼ 0. There are two fixed points [in
addition to the trivial one (0,0)], A ¼ ð−1;−1Þ which is
an attractive improper node, and B ¼ ð−2; 2Þ which is an
attractive node. Therefore as we move in the ðM; S2−Þ
plane, the asymptotic behavior near r ¼ 0 is completely
described either by A or B in complete agreement with the
Frobenius analysis in [15]. We find that around rH ¼ 0.86 a
transition occurs, as shown in Fig. 3, between a singular
and a vanishing metric in the origin, in correspondence with

FIG. 1. Solutions space of non-Schwarzschild BHs. Red line
indicates non-Schwarzshild black holes which are hotter than
Schwarzshild black holes, blue line indicates colder black holes
which are instead obtained for S2− > 0.

FIG. 2. Near-horizon parameters of the black hole solutions
described in Fig. 1 and Hawking temperature.

FIG. 3. Near-origin behavior of the black hole solutions
described in Fig. 1.
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the transition between the hot and cold branch. Note
however that, due to the improper node character of the
point A, the approach towards ð−1; 1Þ is much slower, as
displayed in Fig. 3.

IV. NON-SCHWARZSCHILD BLACK HOLE
FOR m2 < 0

Motivated by recent results on the asymptotic safety
scenario, we now consider the case α < 0 which implies
that the spin-2 mass is imaginary. In this case the large
distance expansion reads

hðrÞ ¼ 1þ Ct −
2M
r

þ 2A2

cos ðjmjrþ φÞ
r

fðrÞ ¼ 1 −
2M
r

þ A2

cos ðjmjrþ φÞ
r

þ A2jmj sin ðjmjrþ φÞ; ð14Þ

which depends on four unknown constants (two coeffi-
cients M and A2, one phase φ, and the constant Ct which
we set to zero in the following). The spacetime is no longer
asymptotically flat and we must require A2jmj ≪ 1 for our
linearized solution to be valid at large values of the radial
coordinate r.
Although spatial oscillations of this type have been

discussed before in the framework of linearized gravity
[13], in this work a complete solution is presented for the
first time in the framework of Einstein-Weyl theory.
The shooting method used for the m2 > 0 case can be

applied also in this case. However, if in the ghost case we
imposed asymptotic flatness at infinity and found a one-
parameter family of solutions, in this case we leave the
phase φ as free parameter and we find a two-parameter
family. This is a reflection of the ill-defined limit of (14) at
large radii. A typical black hole solution is depicted in
Fig. 4 where one can notice the large r-behavior of the
metric coefficient according to (14).
If we assume the condition A2 ≪ 1 a resulting space of

possible solutions is depicted in Figs. 5 and 6. For the sake of
clarity we show only some solutions with 0 < φ < π; any
solution with φ0 ¼ φþ π has the same mass M, the same
properties at the horizon but A0

2 ¼ −A2. Smaller mass M
corresponds to smaller horizon radius, except for
π=2 < φ < π, where the mass reaches a maximum and then
decreases for increasing radius. Moreover, for any fixed
phase, the solutions have a maximum horizon radius where
the parameters f1 and h1 vanish and diverge, respectively.
The solutions in blue are colder than the Schwarzschild

solution with the same mass M, while the red ones are
hotter; darker shades mean bigger differences between non-
Schwarzschild and Schwarzschild temperatures. If we
compare the temperatures in relation to the horizon radius,
we find that BHs with h1 < f1 are colder than the
Schwarzschild ones, and the ones with h1 > f1 are hotter.
This phenomenon occurs for A2 > 0 and A2 < 0, respec-
tively (for solutions with 0 < φ < π). In Fig. 6 we show the

FIG. 4. A typical black hole solution for m2 < 0. Notice the
nonasymptotically flat behavior for large r in the bottom panel.
For this solution we have A2 ¼ −0.051 and M ¼ 0.746.

FIG. 5. Solutions space of non-Schwarzschild black holes for
m2 < 0, matching the weak-field expansion in Eq. (14) at large r
with 0 < φ < π, the solutions with π < φ < 2π have the sameM
but opposite A2.

FIG. 6. Near-horizon parameters of non-Schwarzschild black
holes for m2 < 0 with 0 < φ < π; solutions with φ0 ¼ φþ π
have the same near-horizon parameters.

A. BONANNO and S. SILVERAVALLE PHYS. REV. D 99, 101501 (2019)

101501-4



near-horizon parameter space, where increasing f1 means
decreasing rH. It is interesting to note that the solutions
populate almost the entire space, leading to a large variety
in the thermodynamical properties of these black holes.
The near-origin behavior of this non-Schwarzschild
black holes is still not clear, given that the increasingly
oscillating nature of the solutions makes the additional
inward integration numerically unstable.

V. CONCLUSIONS

In this work we clarified some issues in the study of
black holes in quadratic gravity. We managed to link the
asymptotic metric at large distances with the series expan-
sion around the horizon. With this characterization it will
be possible to study both the gravitational and thermody-
namical properties of these new black holes and how these
properties affect each other. Moreover, we made a first
attempt to numerically study the interior of these solutions,
finding that the cold, Yukawa-repulsive black holes have a
vanishing metric in the origin while the hot, Yukawa-
attractive ones have a singular metric.

For the first time we analyzed also the case where the
parameter α is negative and then the massive spin-2 field is
tachyonic instead of ghostlike. We found, together with
Schwarzschild BHs, nonasymptotically flat black hole
solution. It is interesting to notice that this behavior
resembles the rippled structure of the vacuum found in
Rþ R2 gravity due to the kinetic condensation of the
conformal factor [17]. A detailed study of the gravother-
modynamical properties of both ghostlike and tachyonic
non-Schwarzschild black holes will be presented in
further works.
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