
 

Direct Higgs-gravity interaction and stability of our universe

Vincenzo Branchina,1,2,* Eloisa Bentivegna,3,† Filippo Contino,1,2,4,‡ and Dario Zappalà2,§
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The Higgs effective potential becomes unstable at approximately 1011 GeV, and if only standard model
interactions are considered, the lifetime τ of the electroweak vacuum turns out to be much larger than the
age of the Universe TU. It is well known, however, that τ is extremely sensitive to the presence of unknown
new physics: the latter can enormously lower τ. This poses a serious problem for the stability of our
Universe, demanding for a physical mechanism that protects it from a disastrous decay. We have found that
there exists a universal stabilizing mechanism that naturally originates from the nonminimal coupling
between gravity and the Higgs boson. As this Higgs-gravity interaction necessarily arises from the quantum
dynamics of the Higgs field in a gravitational background, this stabilizing mechanism is certainly present. It
is not related to any specific model, being rather natural and universal as it comes from fundamental pillars
of our physical world: gravity, the Higgs field, and the quantum nature of physical laws.
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The discovery of the Higgs boson boosted new interest on
the stability analysis of the electroweak (EW) vacuum [1–9],
being of crucial importance for our understanding of
standard model (SM) and beyond standard model physics
and for its impact on cosmological studies, as is the case for
Higgs inflation models [10]. This renewed interest also
prompted a more careful treatment of questions as the gauge
invariance of the vacuum decay rate, and the contribution of
zeromodes to the quantum fluctuation determinant [11–16].
It is well known that due to the top loop corrections,

the Higgs potential VðϕÞ turns over for values of ϕ > v,
where v ∼ 246 GeV is the location of the EW minimum,

and develops a second minimum at ϕð2Þ
min ≫ v. The location

and depth of the latter mainly depend on the Higgs boson
and top quark masses, MH and Mt, and for the known
values, MH ∼ 125.09 GeV and Mt ∼ 173.34 GeV [17,18],
it turns out to be much deeper than the EWone, thus being a
false vacuum (a metastable state) [19,20].1

To calculate the EW vacuum lifetime τ, that is the
tunneling time from the EW (false) vacuum to the true one,
we need to know the Higgs field dynamics, normally
described by the (Euclidean) action (G is the Newton
constant, gμν the spacetime metric, R the Ricci scalar),

S½ϕ; gμν� ¼
Z

d4x
ffiffiffi
g

p �
−

R
16πG

þ 1

2
gμν∇μϕ∇νϕþ VðϕÞ

�
;

ð1Þ

where VðϕÞ is the potential to which the Higgs boson is
subject. Then we have to seek the so-called bounce
solutions to the corresponding (Euclidean) equations of
motion [24–26]. These are Oð4Þ-symmetric solutions that
depend only on the radial coordinate r, and obey boundary
conditions to be specified below. Implementing the Oð4Þ
symmetry, the (Euclidean) metric becomes

ds2 ¼ dr2 þ ρ2ðrÞdΩ2
3; ð2Þ

where dΩ2
3 is the unit 3-sphere line element, and ρðrÞ is the

volume radius of the 3-sphere at fixed r coordinate.
The equations of motion take the form (κ ¼ 8πG) [26],

ϕ̈þ 3
_ρ

ρ
_ϕ ¼ dV

dϕ
_ρ2 ¼ 1þ κρ2

3

�
1

2
_ϕ2 − VðϕÞ

�
; ð3Þ

where the first equation is for the Higgs field, while the
second one is the only Einstein equation left by Oð4Þ
symmetry. The dot indicates derivative with respect to r.
The boundary conditions for the bounce (ϕbðrÞ, ρbðrÞ) are
ϕbð∞Þ ¼ 0; _ϕbð0Þ ¼ 0; ρbð0Þ ¼ 0.
The decay rate Γð¼ 1=τÞ from the false to the true

vacuum is given by [24–26]
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Γ ¼ De−½Sb−Sfv�; ð4Þ

where Sb ≡ S½ϕb; ρb�, Sfv is the action calculated at the
trivial false vacuum solution (ϕfv, ρfv), and D is the
quantum fluctuation determinant.
For Oð4Þ symmetric configurations (and in particular for

bounces), the action can be written as

S½ϕ; ρ� ¼ −2π2
Z

∞

0

dr ρ3VðϕÞ: ð5Þ

Moreover, as we take VðϕfvÞ ¼ 0, we have Sfv ¼ 0.
Defining the size R of the bounce as the value of the

radial coordinate r such that ϕbðRÞ ¼ 1
2
ϕbð0Þ, the pre-

factor D in Eq. (4) can be estimated to a good approxi-
mation [27] as D ≃ T3

UR
−4, and τ then becomes

τ ≃
�
R4

T3
U

�
eSb ¼

�
R4

T4
U

�
eSbTU: ð6Þ

In calculating τ, it was usually assumed that VðϕÞ can be
approximated with the SM Higgs potential. In other words,
it was assumed that although high energy (Planckian) NP
terms are expected, they can be neglected [8,9,28,29].
However, it is now well known that the necessarily present
NP terms can have an enormous impact on τ [30–35];
below we show a specific example [see Eqs. (10) and (12)].
Before doing that, however, let us consider the SM
potential alone.
The SM (renormalization group improved) Higgs poten-

tial VeffðϕÞ can be approximated as [4,6,7]

VeffðϕÞ ¼
1

4
λeffðϕÞϕ4; ð7Þ

where λeffðϕÞ is the quartic running coupling λeffðμÞ (μ is
the running scale) with μ ¼ ϕ [2,36–38].
A good approximation for VeffðϕÞ was obtained in [39],

by fitting the two-loop improved Higgs potential with the
three parameter function

λeffðϕÞ ¼ λ� þ α

�
ln

ϕ

MP

�
2

þ β

�
ln

ϕ

MP

�
4

; ð8Þ

where MP ¼ 1=
ffiffiffiffi
G

p
is the Planck mass. The fit gives

λ� ¼ −0.013 α¼ 1.4× 10−5 β ¼ 6.3× 10−8: ð9Þ

Taking for VðϕÞ the SM potential (7) [with (8) and (9)], we
get [35]

τSM ∼ 10661TU; ð10Þ
a value much larger than the age of the Universe TU.
New physics (NP) at high (Planckian) energies can be

parametrized by adding to the SM Higgs potential VeffðϕÞ
higher powers of ϕ as [30–35,40–42]

VNPðϕÞ ¼ α1
ϕ6

M2
P
þ α2

ϕ8

M4
P
: ð11Þ

If we now take VðϕÞ ¼ VeffðϕÞ þ VNPðϕÞ, and consider
for the (dimensionless) couplings α1 and α2 specific values,
as for instance α1 ¼ −0.2 and α2 ¼ 0.125, for the EW
vacuum lifetime in the presence of NP we find

τNP ¼ 10−58TU: ð12Þ

The presence of these NP terms can enormously lower τ
[30–35], to the point that we can get τ ≪ TU. Note that the
huge difference between τSM and τNP is due to a big
difference between the bounces in the two cases consid-
ered, as can be seen from the left column of Fig. 1.
There must be a mechanism that protects our Universe

from a disastrous decay. It has been recently shown that,
embedding the SM in supergravity models with discrete R
symmetries, a very efficient protective mechanism can be
constructed [43]. In this article we show that there exists a
universal stabilizing mechanism that arises from the
combination of three basic pillars of our physical world:
(i) gravity, (ii) the Higgs boson, and (iii) the quantum nature
of physical laws.
In fact, the quantum dynamics of the Higgs field ϕ in a

gravitational background imposes a direct interaction
between ϕ and gravity [44,45],

1

2
ξϕ2R; ð13Þ

where ξ is the coupling that measures the strength of this
interaction. This term is at the origin of the stabilizing
mechanism discussed in this work.
Adding then (13) to (1) [and implementing the Oð4Þ

symmetry], the equations of motion become

ϕ̈þ 3
_ρ

ρ
_ϕ ¼ dV

dϕ
þ ξϕR ð14Þ

_ρ2 ¼ 1 −
κ

3
ρ2

− 1
2
_ϕ2 þ VðϕÞ − 6ξ _ρ

ρ ϕ
_ϕ

1 − κξϕ2
; ð15Þ

with boundary conditions as for Eq. (3). For ξ ¼ 0, Eqs. (14)
and (15) reduce to Eq. (3). Moreover, the action for Oð4Þ-
symmetric configurations takes again the form (5).
As long as the NP terms are neglected, the inclusion of

1
2
ξϕ2R in the action does not change the stability condition

of the Universe, as τ still remains much larger than TU [46].
However, when these terms are taken into account, but the
1
2
ξϕ2R interaction is not included, τ can be enormously

lowered [see Eq. (12)].
In this article we show that turning on (as we must) the

interaction (13), with the exception of a tiny range of values
of ξ, the EW vacuum lifetime τ is enormously enhanced
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and becomes much larger than TU, even in the presence of
Planckian NP. This is seen in Table I, where for the Higgs
potential we have taken VðϕÞ ¼ VeffðϕÞ þ VNPðϕÞ, with
α1 ¼ −0.2, α2 ¼ 0.125. Table I shows the tunneling time
τNP (and for comparison τSM) for different ξ.
A graphical representation of the results of Table I is

given in Fig. 2, where the decay time τ [more precisely

log10ðτ=TUÞ] as a function of ξ is plotted in the interval
−1.5 ≤ ξ ≤ 1.8. The range of ξ where τ is lower than TU is
very tiny (−0.05≲ ξ≲ 0.5), and centered around its
minimal value ξmin ∼ 0.22. We observe that, for increasing
values of jξj, τNP tends towards τSM: the interaction 1

2
ξϕ2R

is so strong to wash out the destabilizing effect of the NP
potential (11).
The coincidence between τNP and τSM is due to the fact

that with increasing jξj the bounces obtained with the Higgs
potential VðϕÞ ¼ VeffðϕÞ þ VNPðϕÞ tend towards the SM
ones, as can be seen from Fig. 1. In fact, actually ϕSMð0Þ
and ϕNPð0Þ both decrease with increasing ξ, and reach the
value ϕð0Þ ∼ 0.002 for ξ ¼ 10. For further increasing

FIG. 1. Left column. Upper panel: bounce solution ϕNPðrÞ (red dashed line) for the action in (1), with potential
VðϕÞ ¼ VeffðϕÞ þ VNPðϕÞ, where α1 ¼ −0.2 and α2 ¼ 0.125. The bounce ϕSMðrÞ (blue solid line) for the SM potential VeffðϕÞ
alone is also plotted. Lower panel: the same for ρðrÞ − r. Middle and right columns: the same as for the left column for the action with
the additional term 1

2
ξϕ2R with ξ ¼ 1, 10 respectively.

TABLE I. Values of τSM (second column) and τNP (third
column) in TU units for different values of ξ (first column).
For τSM, only the SM potential VeffðϕÞ is considered. For τNP, the
potential VNPðϕÞ of Eq. (11) is added to VeffðϕÞ, with coupling
constants α1 ¼ −0.2 and α2 ¼ 0.125.

ξ τSM τNP

−15 10736 10736

−10 10726 10726

−5 10710 10710

−1 10684 10680

−0.5 10677 10600

−0.3 10672 10358

−0.1 10666 1065

0 10661 10−58

ξ τSM τNP

0.3 10660 10−167

0.5 10668 1023

0.7 10674 10346

0.8 10676 10512

1 10679 10666

5 10709 10709

10 10725 10725

15 10735 10735

FIG. 2. The red dashed line is the log10ðτ=TUÞ as a function of ξ
for the Higgs potential VðϕÞ ¼ VeffðϕÞ þ VNPðϕÞ, where α1 ¼
−0.2 and α2 ¼ 0.125. The blue line is the log10ðτ=TUÞ for the SM
potential VeffðϕÞ alone. The green horizontal line separates the
region τ < TU (lower one) from the region τ > TU (upper one).
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FIG. 3. Left panel. Stability diagram in the (α1, α2) plane for the range −0.25 ≤ α1 ≤ −0.16, 0.08 ≤ α2 ≤ 0.13, when ξ ¼ 0. Right
panel. Stability diagram for ξ ¼ 0.9 in the same region of the (α1, α2) plane.

FIG. 4. Stability diagrams in the (α1, α2) plane for the potential VðϕÞ ¼ VeffðϕÞ þ VNPðϕÞ, with α1 and α2 in the same ranges as in
Fig. 3. From left to right, from top to bottom, ξ ¼ −0.4;−0.3, 0.7, 0.8. The first two values of ξ are on the left of ξmin (the value of ξ
where τ reaches its minimal value), the last two ones on the right side.
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values of ξ, not presented in the figure, ϕSMð0Þ and ϕNPð0Þ
still coincide and take lower and lower values. For negative
ξ, the same trend is observed for increasing jξj.
Now we estimate (for these sufficiently large values of

jξj) the relative weight in the equations of motion (14) and
(15) of the two terms ϕ4 and ϕ6 in the potential VðϕÞ ¼
VeffðϕÞ þ VNPðϕÞ by considering the ratio

AðϕÞ ¼ α1ϕ
6

ðλ=4Þϕ4
¼ 4α1

λ
ϕ2: ð16Þ

Being ϕð0Þ ¼ maxϕbðrÞ and ϕð0Þ ≪ 1, we find
AðϕÞ ≪ 1 (Planck units), so that the (potentially destabi-
lizing) ϕ6 term is very much suppressed as compared to the
standard ϕ4 term. It is then not surprising that the bounce
solution for the potential VeffðϕÞ þ VNPðϕÞ converges to
the corresponding bounce for VeffðϕÞ alone.
Finally we see why τNP and τSM coincide. From (5) we

see that Sb at the bounce ðϕNPðrÞ; ρNPðrÞÞ is

SNP ¼ −2π2
Z

∞

0

dr ρ3NP½VeffðϕNPÞ þ VNPðϕNPÞ�: ð17Þ

As for increasing jξj we have ðϕNPðrÞ; ρNPðrÞÞ →
ðϕSMðrÞ; ρSMðrÞÞ, Eq. (17) can be replaced with

SNP ¼ −2π2
Z

∞

0

dr ρ3SM½VeffðϕSMÞ þ VNPðϕSMÞ�: ð18Þ

For the argument given above, the second term in the rhs of
Eq. (18) is negligible as compared to the first one, and
having ϕSMðrÞ and ϕNPðrÞ practically the same size R, it
follows that τNP and τSM coincide.
The enormous stabilizing effect of the Higgs-gravity

interaction can be further illustrated by comparing values of
τ calculated at different values of ξ (e.g., ξ ¼ 0, ξ ¼ 0.9) in
a region of the parameter space (α1, α2) where in the ξ ¼ 0

case τ is always lower than TU. For α1 and α2 we chose the
ranges −0.25 ≤ α1 ≤ −0.16, 0.08 ≤ α2 ≤ 0.13. Figure 3
shows the results. The left panel is the stability diagram for
the ξ ¼ 0 case, the right one for ξ ¼ 0.9. The black lines are
level curves with the same value of τ, and the numbers on
the top of them are log10ðτ=TUÞ. The red color scale of the
left panel, ranging from darker to lighter (left to right),
indicates increasing values of τ; as said above, τ < TU in
the whole region. The right panel is the stability diagram
for ξ ¼ 0.9. The blue color scale again indicates increasing
values τ going from left to right. The values of τ have
enormously increased, and in the same region of the
(α1, α2) plane they turn out to be much larger than TU.
The destabilizing effect of the NP terms is entirely washed
out by the direct coupling between the Higgs field and
gravity. In Fig. 4 we consider other values of ξ
(ξ ¼ −0.4;−0.3, 0.7, 0.8) that confirm these results.
The lesson is clear. If we do not take into account the

direct Higgs-gravity interaction, NP terms can strongly
destabilize the EW vacuum, and without a knowledge of
high energy new physics, in particular without a complete
theory of quantum gravity, we cannot draw any conclusion
on the ultimate fate of our Universe. The Higgs-gravity
interaction term, whose presence is guaranteed by excep-
tionally well-known experimental facts (gravity, the Higgs
boson, and the quantum nature of physical laws), acts as
a universal stabilizing mechanism, that washes out any
potentially destabilizing effect from high energy new
physics (for instance from unknown quantum gravity),
protecting our Universe from a disastrous decay.
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