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Quarkonium in-medium transport equation derived from first principles

Xiaojun Yao and Thomas Mehen'
Department of Physics, Duke University, Durham, North Carolina 27708, USA

® (Received 26 November 2018; published 31 May 2019)

We use the open quantum system formalism to study the dynamical in-medium evolution of
quarkonium. The system of quarkonium is described by potential nonrelativistic QCD while the
environment is a weakly coupled quark-gluon plasma in local thermal equilibrium below the melting
temperature of the quarkonium. Under the Markovian approximation, it is shown that the Lindblad
equation leads to a Boltzmann transport equation if a Wigner transform is applied to the system density
matrix. Our derivation illuminates how the microscopic time reversibility of QCD is consistent with the
time-irreversible in-medium evolution of quarkonium states. Static screening, dissociation, and recombi-
nation of quarkonium are treated in the same theoretical framework. In addition, quarkonium annihilation is
included in a similar way, although the effect is negligible for the phenomenology of the current heavy ion
collision experiments. The methods used here can be extended to study quarkonium dynamical evolution
inside a strongly coupled QGP, a hot medium out of equilibrium, or cold nuclear matter, which is important
to studying quarkonium production in heavy ion, proton-ion, and electron-ion collisions.
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I. INTRODUCTION

Heavy quarkonium production at hadron colliders has
been studied extensively in both theory and experiment. In
proton-proton collisions, the production process factorizes
into a short-distance process of producing a heavy quark-
antiquark pair and a long-distance coalescence into a bound
state [1]. In heavy ion collisions, the production process is
complicated by the existence of a hot nuclear environment,
the quark-gluon plasma (QGP). By comparing the quarko-
nium production in proton-proton and heavy ion collisions,
one can study the properties of the hot medium produced
during the collision (with the modification of the initial
hard production due to heavy nuclei properly included).
Static screening has been studied since the pioneering work
of Ref. [2], which provides a partial understanding of the
suppression of quarkonia in heavy ion collisions. For a
more complete understanding, a theoretical description of
quarkonium dynamics that also accounts for the dynamical
screening and recombination inside the hot nuclear medium
is needed.

There have been several approaches to address the
question. First, statistical hadronization models have been
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used to describe charmonium production [3,4]. In these
models it is assumed that the charm quark evolves unbound
inside the hot medium due to the Debye screening. During
the evolution, the charm quark equilibrates kinematically but
not chemically, because the total number of charm quarks is
fixed by the initial hard scattering. The annihilation of charm
quarks is negligible during the lifetime of the QGP. Thermal
production is also negligible because of the large quark
mass, compared with the medium temperature. Charmonium
is produced from the coalescence of charm quarks and
antiquarks with thermal momenta at the transition hyper-
surface of QGP to a hadron gas. Although the model has
some phenomenological success, it is limited to the study of
charmonium with low transverse momentum. The kinematic
thermalization assumption is never justified for charmonium
at large transverse momentum or for bottomonium.
Another approach is to use a transport equation [5—18].
In this approach, a rate equation is used to describe the
dissociation and recombination of quarkonium inside the
medium. Debye screening of the potential is also accounted
for when solving the bound-state wave function. In many
studies, the dissociation rate is calculated from perturbative
QCD, while the recombination is modeled from detailed
balance, with an extra suppression factor accounting for the
incomplete thermalization of heavy quarks. The recombi-
nation process has also been analyzed in the framework
of perturbative QCD with parametrized nonthermal heavy
quark momentum distributions [19]. Many studies have
used potential nonrelativistic QCD (pNRQCD) to study
quarkonium dissociation rates inside the QGP [20-22].
Recombination in a pNRQCD-based Boltzmann equation
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has been studied in Ref. [23]. New studies construct
coupled Boltzmann transport equations of both heavy
quarks and quarkonia, in which the heavy quark momen-
tum distribution is not from an assumed parametrization but
rather calculated from real-time dynamics, and quarkonium
dissociation and recombination are calculated in the same
theoretical framework [23-25]. By using the coupled
Boltzmann transport equations, the detailed balance and
thermalization of heavy quark and quarkonium can be
demonstrated from the real-time dynamics of heavy quark
energy loss and the interplay between quarkonium disso-
ciation and recombination.

More recently, an approach based on open quantum
systems has been studied widely [26-35]. In this approach,
the system of the heavy quark and quarkonium and the
medium evolve unitarily together. When the environment
degrees of freedom (d.o.f.) are traced out, the system evolves
nonunitarily, and stochastic interactions can appear. This
approach is a quantum description rather than a semiclassical
equation. It has the advantage that nonunitarity appears
automatically after tracing out the environment, while at
the same time, preserving the total number of heavy quarks
(by preserving the trace of the system density matrix).
Quarkonium dissociation occurs during the nonunitary
evolution, but the unbound heavy quark pairs from disso-
ciation never disappear from the system, and they may
recombine. This feature is never easily realized in transport
models based on complex potentials. Another advantage is
that the recombination effect is included systematically in
this procedure. Meanwhile, the nonunitary time evolution
is generally irreversible. For a general discussion of the
occurrence of time-irreversible processes from time-
reversible underlying theory, we refer to Ref. [36]. The
combination of the open quantum system and effective field
theory (EFT) has also been recently used to study different
physical systems: dissipative fluids [37], deep inelastic
reactions [38], and bottomonium suppression in Au-Au
collisions [34].

In this paper, we demonstrate a deep connection between
the approaches of open quantum systems and transport
equations. More specifically, we use the open quantum
system formalism, EFT of QCD, and the Wigner transform
to derive the Boltzmann transport equation. Our derivation
clarifies the conditions for the validity of quarkonium
transport (rate) equations that are based on Boltzmann
transport equations. We will justify the Markovian approxi-
mation in the open quantum system approach and the
molecular chaos approximation in the Boltzmann equation.
The work of Ref. [34] focuses on quantum evolution of the
density matrix and neglects center-of-mass (c.m.) motions

|

of heavy quark-antiquark pairs; thus, it is unable to study
observables as functions of transverse momentum and the
rapidity of the quarkonium. In this work, we explicitly keep
track of the c.m. motion and focus on deriving the semi-
classical Boltzmann transport equation from the quantum
evolution of the system density matrix.

This paper is organized as follows: First, the open
quantum system and the quantum master equation, the
Lindblad equation, are briefly reviewed in Sec. II. The
Boltzmann transport equation is derived in Sec. III. Then,
quarkonium annihilation is studied similarly in Sec. IV.
Finally, conclusions are drawn in Sec. V.

II. LINDBLAD EQUATION IN WEAKLY
COUPLED SYSTEM

In this section we briefly review standard results in open
quantum systems, which are covered in many textbooks—
see, e.g., Ref. [39]. Assume the Hamiltonian of the system
and environment (thermal bath) is given by

H:H5+HB+H[, (1)

where H g is the system Hamiltonian, H is the environment
Hamiltonian, and H; contains the interactions between system
and environment. The interaction Hamiltonian is assumed to

be factorized as follows: H; = ZHOSZS) ® O((,B>, where «a

denotes all quantum numbers. The operators OQS)

2

are for the
system, while O, ’ are for the environment. We can assume
<0((,B>) = TrB(O((,B>pB) = 0, because we can redefine OE,B>
and Hg by OSIB) - (O((IB)> and Hg + ZGOSIS) <OSIB)> respec-
tively. Here pp is the density matrix of the environment.
Each part of the Hamiltonian is assumed to be Hermitian.
The von Neumann equation for the time evolution of the
density matrix in the interaction picture is given by

dp (int) ( t)

o = —ilH" (0. (). 2)

We will omit the superscript “(int)” in the following. The
symbolic solution is given by

p(t) = U(t)p(0)U (1), (3)
where the evolution operator is
U(t) = Te™ o (4)

and 7 is the time-ordering operator. We assume the
interaction is a weak perturbation and expand the evolution
operator to the second order in H;:

p(t) = p(0) =i / e [H, (1), p(0)] + / “ar, / "ty (H (1)p (0)H (1)

—0(1y — ) H (1) H;(12)p(0) — O(1, — 11)p(0)H, (1) H,(1,)) + O(H3). (5)
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We shall assume the initial condition is given by

p(0) = ps

(0) ® ps. (6)

where the environment density matrix is assumed to be time independent. We define

Cop(ti 1)) =

Trp (08 (1) 0% (12)p5). (7)

Then, by taking the partial trace over the environment, we can obtain the evolution equation of the system:

ps(t) = Trg(p(t)) = ps(0

o[l

ﬂ Tey (O (¢)py)

/ d, / d6,Cop(t1, 1) (05 (12)p5(0)0 (1)) = (1, — 1) O (1) 01 (12)p5(0)
(1/}

—0(t, = 1,)ps(0)05 (1))

05 (1)) + O(H}). (8)

Using <0,(JB)> = 0 and inserting complete sets of the system, we obtain

(1) = ps(0) + dry | d6,Cop(ty, 1) <“|O (f2)|b>< |0 (f1)|d>
Ps Ps a/x/ / p Z p

a,b,c.d

x (|a){blps(0)(le)(dl)" -

Finally, defining the Lindblad operator L, = |a){b| and

Vab cd(

0(t, = 2)(|e)(d])"|a) (blps(0)

= 0(t, = 11)ps(0)(|e){d]) |a) (b)) + O(H}).  (9)

/ an / d6,Cop(tr, 12)(a] O (1) b} (c] O (1)) ) (10)

—i t t )
(1) =23 [ dny | A6yt 1y)sign(t, — 1)(a|OF) (1) 05 (1) |b). (11)
2 w7 Jo 0

we obtain the Lindblad equation up to second order in perturbation theory:

ps(t) = ps(0) + Z Yab.cd(

ab.c.d

r)( wps(O)L]

The relation () = (1 + sign(z))/2 has been used in the
derivation. It will be shown in the next section that for
quarkonium, the commutator term is a loop correction of
the real part of the Hamiltonian. The anticommutator
term describes the dissociation of quarkonium, which can
also be thought of as an imaginary part of the potential.
The second term on the right-hand side of Eq. (12)
represents the recombination contribution. A direct con-
clusion from Eq. (12) is the conservation of probability:
Trps(t) = Trpg(0). This implies that the unbound heavy
quark-antiquark pair from quarkonium dissociation stays
as active d.o.f. of the system and may recombine later in
the evolution.

{Lchab ps(0 ) - ZZGab Lay.ps(0)] + O(H7).  (12)

The form of the Lindblad equation is valid up to all
orders in the perturbative expansion [40]. So the higher-
order terms neglected here can also be written in the form
of the Lindblad equation. The Lindblad equation cannot
be written in the form of a von Neumann equation,
because the evolution is nonunitary. The time irrevers-
ibility can be seen by noting that the relative entropy of
the system with respect to a steady state under the partial
trace is monotonically decreasing [40]. The partial trace
over the environment can be thought of as an average
over different environment configurations. Though the
dynamics involving each configuration is governed by a
time-reversible theory with a unitary evolution, after
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averaging, the dynamics becomes time irreversible and
nonunitary.

III. DERIVATION OF BOLTZMANN
EQUATION

In this section, we will derive the Boltzmann transport
equation by applying the Lindblad equation, Eq. (12), to
the Wigner transform of the density matrix describing
heavy quark-antiquark pairs that can be bound or
unbound. The system in vacuum can be described by
pNRQCD [41,42]. The effective theory can be con-
structed from QCD by a nonrelativistic expansion assum-
ing the separation of scales: M > Mv > Mv?, where M
is the heavy quark mass and » is the velocity of
the heavy quark-antiquark pair inside a quarkonium. The
quarkonium size is roughly given by r~1/(Mwv). The
environment is a weakly coupled QGP in local thermal
equilibrium, pp==LeHs, where Z = Trges. Thus,
the correlations in Eq. (7) can be calculated in real-time
thermal field theory. We review different definitions of
thermal correlations (Green’s functions) in Appendix A.
We will use free thermal Green’s functions of gauge
fields. Our derivation can be extended by using
resummed thermal propagators. Resummed thermal
propagators and pNRQCD have been used to investigate
static heavy quark-antiquark pairs at finite temperature
[43]. The plasma provides two extra scales: the temper-
ature 7 and the Debye mass mp (we use units in which
kg = 1). Here we will focus on the case where quarko-
nium exists as a well-defined bound state in a QGP that
is below the melting temperature of the quarkonium, so
M > Mv > Mv*>> T > mp. We do not consider cases
with Mv > T > Mv? or Mv~T > Muv?, because Mv?* ~
500 MeV for charmonium and bottomonium, and the
temperatures realized in current heavy ion experiments
are smaller than this. For our choice of scaling, both
dissociation and recombination are possible.

PNRQCD can be constructed by matching with NRQCD
at the scale Mv. The matching can be done perturbatively
if Mv > Agcp or nonperturbatively. In either case, the
quarkonium interacts with gluons from the QGP via a
dipole interaction at lowest order. As will be seen below,
the dipole interaction scales as 7T ~ MLL < v, which is small
in the assumed separation of scales. We assume a pertur-
bative matching throughout the paper. The dipole inter-
action is not running at one-loop level [44,45], which
means the coupling constant in the dipole term is set at the
scale of M v, no matter the scale of the scattering. To make
calculations easier here, we follow Ref. [42] and use a
slightly different notation for the pNRQCD Lagrangian
density:

LpNRQCD (R’ t) = ‘Ckin,s + ‘Ckin,o + ‘Cint,so + ‘Cint,oo + -,
Lyins = (S(R.1)|(i0p — Hy)|S(R. 1)),
'C'kin,o = <0a(Rv f)|(iao - Ho)|0a(R’ t)>’

['im,so = —((O”(R,t)|r-gE“(R, t)|S(R’ t)>

+H.c.),

Linoo = if“"(0“(R, 1)|gAG (R, 1)|O°(R, 1))
+d®({0%R,1)|gr- E°(R,1)|O°(R, t))
4o (13)

The d.o.f., in the standard pNRQCD Lagrangian, are the
color singlet S(R, r, t) and octet O“(R, r, t), where R and r
are the center of mass (c.m.) and relative positions of the
heavy quark-antiquark pair. Here we define the “bra-ket”
notation via

(r|S(R,1)) = S(R, 1, 1),
(r|O“(R, 1)) = O“(R,r,1),

(SR, 1)|f(r)|O*(R, 1)) E/d3rST(R,r, 1) f(r)O“(R,r,1),
(14)

for any function f of r. We use the “bra-ket” notation so
that we no longer need to write the integral over r explicitly,
which simplifies notations in the derivation. Summations
over color indexes are assumed, and higher-order terms in
the velocity expansion are neglected. Here N. = 3, T = %
We define Cr = % (N%2 —1) for later use. The covariant
derivative on the octet field has been written out explicitly:
DyO = 0y — ig[Ag, O]. The Hamiltonians are expanded in
powers of 2,

(1) (2)
Vi) ve
Vb (19)

P
§,0 4M M

We will work up to the leading order (LO) in v and % ~

V§?3 ~ Mv? by the virial theorem. When the medium is
static in the rest frame of quarkonium, the quarkonium
exchanges gluons with the medium whose momentum and
energy are ~7 and gains a c.m. momentum ~7 . In our
power counting, T,SMvz, and hence the c.m. kinetic

energy, ’ﬁ"}, is O(Mv*) and is therefore neglected. If the

medium moves with respect to the quarkonium at a velocity

Vmed» the gluon energy is boosted to be \/T— The c.m.
l_vl.ned

kinetic energy is still suppressed if v, < V1 —0v. We
assume v,.q = 0 in the following, but generalization to

096028-4



QUARKONIUM IN-MEDIUM TRANSPORT EQUATION ...

PHYS. REV. D 99, 096028 (2019)

Umed 70 can be easily done by boosting the gluon
distribution function. We do keep track of the c.m.
momentum so that momentum is conserved. The singlet
and octet composite fields are given by

d3 cm  —j(Et— D
IS(R. 1)) = / (2;'; e {(ErpenR) <Zanz(pcm)® W)
nl

& pre
+/ (25;)31 bpre] (pcm) ® |Wprel>>’

d?’pcm —i(Et—p....-
0@ = [ Glomenternan

d3prel a
X (2][)3 Cprel(pcm) ® |\Pprel>’ (16)

where E is the eigenenergy of a state in the whole Hilbert
space. The whole Hilbert space factorizes into two parts:
one part for the c.m. motion and the other for the relative
motion. The operators afjf (Pem)s b,(,”I (Pem) and c,‘,lr(j)(pcm)
act on the Fock space to annihilate (create) composite
particles with the c.m. momentum p,,, and the correspond-
ing quantum numbers in the relative motion. These
quantum numbers can be nl/ for a bound singlet state,
Pra for an unbound singlet state, and color @ and p,; for an
unbound octet state. When we compute the square of
matrix elements, we will average over the polarizations of
non-S wave quarkonium states. In our notation, we omit the
quantum number m of the bound singlet state. In the octet
channel, no bound state exists because of the repulsive octet
potential. The corresponding wave functions of the relative
motion are |y,;), |, ), and [¥, ). They can be obtained
by solving the equations of motion of the free composite
fields, which are Schrodinger equations. The eigenenergies
are E = —|E,| and E :‘% for the bound and unbound
states respectively, with higher-order terms in v neglected.
Here E,; is the binding energy of the bound state |y,,;).
The annihilation and creation operators in the Fock space
satisfy the following commutation relations:

[anlll (pcml)’ azzlz (pcmZ)} = (2”)353(pcm1 _pcm2)5n|n251112’
[bpwn (pcml)’ b;ren (pcmZ)} = (Zﬂ)663 (pcml _Pcmz)

X 63(prell _preIZ)’
[Cltllrlen (pcml)’ Cltfzf;z (pcmZ)} = (2”)653 (pcml _Pcmz)

X 53(prell _pre12)5alu2’ (17)
and all other commutators vanish.

The interaction part of the Hamiltonian of the theory is

given in Eq. (13), but only the singlet-octet transition is
relevant for the dissociation and recombination of quarko-

nium. The octet-octet interaction governs the dynamical
evolution of unbound heavy quarks and thus is only present

in the transport equation of open heavy quarks. We will
neglect the octet-octet interaction when deriving the quar-
konium transport equation. The minus sign in the
Hamiltonian is of no importance at the order O(H?).
The weak coupling expansion in H; is valid because the
quarkonium size is small, 77 ~ M% <w, in our power
counting. For current heavy ion experiments, this
assumption should hold for the most compact quarkonia
such as the Y(1S). It could work as well for the Y(2S) if
the temperature is below ~200 MeV. As discussed above,
this is true in both perturbative and nonperturbative con-
structions of the pNRQCD. When rT ~ 1, the static
screening effect of the potential is too strong to support
the quarkonium bound state.

To use the Lindblad equation derived in Sec. I, we write

Hyas 3,05 @ 0, with

05 = (S(R.1)|r;|0%(R.1)) + (O°(R.1)|ri|S(R. 1)),

IT
0P - [ LgEa(R. 1). (18)
Nc¢

The sum over a means

Z; - /dﬁ&ZZ;. (19)

The complete set used to construct the Lindblad operators
are

Kol 1) = a (K)0),
Ipcmvprel’ 1> = b;rel (pcm)‘o>7
Ipcmvprel’ a> = CILJZL (pcm)|0>’ (20)

where 1 denotes the singlet, while a is the color index of an
octet. The unbound singlet state will not be used in our
current calculation, because at the order we are working, an
unbound singlet cannot form a bound singlet by radiating
out one gluon; only an unbound octet can do so.

We are interested in the bound-state evolution.
Therefore, our basic strategy is to study the time evolution
of (ky,nl;,1|ps(t)|ky, nyl5, 1) by sandwiching Eq. (12)
between (ky,nl;, 1| and |k,, n,l,,1). To obtain the evo-
lution equation of the semiclassical phase-space distribu-
tion function, we will take the Wigner transform of the
density matrix

&K

fnl(ka’t)E (271')3

oy K
e’k"‘<k+§,nl,l

k/
k—z,nl,1>

(21)

ps(t)

We will extract the linear dependence on ¢ of v, ., and o,
terms in Eq. (12) and then take time derivative at t = 0
on both sides of Eq. (12). The double time integrals are
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simplified by assuming the Markovian approximation—
i.e., the upper limit of the time integrals is large and can be
taken to be infinity, r = co. The Markovian approximation
is valid when the environment correlation time is much
smaller than the relaxation time of the system. The former
is roughly given by 1/T, while the latter can be estimated
by the inverse of the dissociation rate. The dissociation rate
is ~(grT)*T < a,v*T in our power counting, and a; is at
the scale Mv. So in the assumed separation of scale, the
Markovian approxiamtion is valid. The ¢t — 0 limit in
the time derivative and the ¢ — co limit in the integral
are not contradictory, because the timescale of measuring
the macroscopic phase-space distribution, given by the
Wigner transform of the density matrix, is much larger than
the timescale of the microscopic dynamics. The Markovian
|

approximation means that there is no memory effect [40].
The absence of memory effect is reflected in the Boltzmann
equation in the assumption of molecular chaos, namely that
the correlation between particles generated from their
previous collisions is completely forgotten in the next
collision [46]. Under the assumption of # — oo, the double
time integrals give two delta functions in energy. When
the two delta functions correspond to the same energy
conservation, one can write them as one delta function
multiplied by the time length ¢. This is how we extract the
linear dependence in ¢. This trick is also used in the
derivation of Fermi’s golden rule. Details of the derivation
can be found in Appendixes B, C, and D.

First, the >, ,0,,L,, term in the Lindblad equation,
Eq. (12), can be shown to give, for the bound singlet part,

S ouLay tz /
a,b

X (Q%(Siliz — 4 CIIZ)<

iy,iy

%—f+%

The part inside the curly brackets gives the loop correction
of the potential, which can be calculated as usual by the
standard quantum field theory perturbative technique:
computing the loop shown in Fig. 1 by using the time-
ordered propagators. Only the real part of the correction
contributes here.

This correction ), ,0,,L,, is diagonal in the bound-
state space and is Hermitian. For our purpose, we may write
> anCapLlap = tHi_0p- Recall that if we go back to the
Schrodinger picture,

ps(t) =ps(0) —it[Hg,ps(0)] —i [ZaabLab,pS(o)} 4,

(23)

where other terms in the Lindblad Eq. (12) have
been omitted temporarily. Now we define an effective
Hamiltonian H.y = Hg + Ho0p. If the correction is

(q0.q)

(Er, k,nl)

>

(Egn Pem, prr/)

FIG. 1. Loop correction (self-energy) of the singlet field.
A single solid line indicates the bound singlet state, while the
double solid lines represent the unbound octet state.

ns (140 (20)5(a3 - q >) Wl

d4 cm d3 re.
m{ iy / / P / 5 (20 k=P = 0 Ex = = )

| Prel > <‘Pprel |

=1y |w 1>}Lk, L1 el 1]+
Do~ E, + ie W) fLian et

(22)

perturbative, we can start with a potential in Hg and
calculate wave functions of relative motions and the
one-loop correction to the real part of the potential to
obtain H ;. In some cases, it may be necessary to resum all
the loop corrections of the real part of the potential into H ¢
and then use H.; to calculate the wave function of the
relative motion. In this case, the real part of the potential in
H . can be modeled by using recent high statistics lattice
studies of the color singlet free energy at finite temperature
[47]. In this work, the explicit forms of the wave function
are not needed.

Now, if we do a Wigner transform of the form
Eq. (21) on
ps(t) = ps(0) = it(Heips(0) — ps(0)Hegr) + - -+, (24)
we obtain
3K i
e,k 1) = fro(x,k,0) - ”/W‘fl ‘x(Ek+"7’ - Ek_g’)

K kK
x (k+—.,nl1|ps(0)|k ——=,nl, 1)+
2 2
(25)
Here, if we restore the c.m. kinetic energy,
(k+ "')2
Eki"% = _|Enl| T aM (26)
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we can write

&Kk
k = k —1i PYVER
fn,(x, 7t) fnl(x7 ’O> lt/ (27[)3 2Mi

:fnl(x7k70) -

where the c.m. velocity of the quarkonium is defined as v = 5

/
V, ek <k+'i nl, 1

v Vefulx,k0)+

pS(O)‘k—%,nl,l>+---
(27)

k

Now we proceed to compute the contributions from the other two terms in the Lindblad Eq. (12) omitted in Eq. (27).

e _Za.b,c.d%yab,cd{LZdLabapS(O)} term gives

d3pcm d3prel d3 q
(27)* (27)° (27)°2¢

2
ngFq g |<Wnl|r| prel>

The dissociation rate Iy, of a quarkonium with momentum k and position x can be defined by g0 (x, k, 1) = =2

15(0)(22)8 (k = ps + )5 ( Iyl + - ”)

2f (k1 = 0) = —iC')

M

(x.k.1 =0). (28)

- (xkt)

Fu(xk)”

The dissociation rate derived here is the same as calculated in Ref. [21] by taking the imaginary part of Fig. 1. The same
dissociation term has been used in the Boltzmann transport equation in Ref. [23].

The Za b.c.dab, chabpS<0)L cq term glVeS

Z/d pcmd prel d3q
3 (27)%2¢q

(1+np(q))(27)"8 (k = pew + 4)5(_|Enz| +q ‘IE>

M

2T
xﬁq G Wulri|®, >/d3r1//”l( )ri¥s (1) fop(X.Pem: T Pretsat = 0) = nl (x k,0), (29)

where f 5 (X, Pem: T\ Prer» .t = 0) is the two-particle dis-
tribution function of a heavy quark-antiquark pair in color
octet a with the c.m. position x and momentum p,, and
relative position r and momentum p.;. Unlike in the
dissociation term, one of the integrals over the wave
functions of the relative motion involves the two-particle
distribution function of QQ.

Now, putting Eqgs. (27), (28), and (29) together, we
finally infer the Boltzmann transport equations

0
Efnl(x7k7 t) +v- fonl(x,k, t)
= (k1) = €5 (. K, 1), (30)

where the dissociation C,(J) (x,k,t) and recombination
C'(x.k.1) terms are defined in Egs. (28) and (29).

Both terms CSE) (x,k, t) consist of three parts: phase-space
integrals, delta functions for energy-momentum conserva-
tions, and scattering amplitudes squared.

The integral over d*r in CJ is nontrivial: not only the
wave function but also the distribution function is involved.
We now consider under what conditions the integral can be
further simplified. We note that the support (the region with
a nonzero function value) of the integrand is on the order of
the Bohr radius aj of the bound state. So, if the distribution
function is almost uniform in r for r < ag, one can take the

|
distribution function out of the integral. This is true
when the diffusion length scale /Dt is much larger than
r~ag~ 4, where D is the diffusion constant of open
heavy flavors. The distribution function in r caused solely
by diffusion is a Gaussian with a variance ~Dt. In other
words, the distribution function varies significantly at a
length scale v/Dt, and when one focuses on a region with a
much smaller length scale, one can treat the distribution
function as uniform. A perturbative estimate gives D ~ —-

T
[48]. The time period for the QQ to be close within the
bound-state formation range is roughly t~—l ~ %N

. So VDt > 4~

pr - - gives

2; > LZ (31)
asprelT M-v

Taking T ~ Mv? as previously assumed, we find we must
have p,; < Mv/(v*a?), which is clearly satisfied for
Pret ~ Mv. For p., large enough that this condition is
not satisfied, the contribution to the integral involving
(wulr|¥, ) is negligible for such large p,. This agrees
with the intuition: a heavy quark-antiquark pair with large
relative momentum cannot form a bound state. So we can
take f QQ(x, DPem»TsPrel» 4, 1) out of the wave function
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integral with the awareness that the contribution from
r > ap should vanish.

Furthermore, we make the molecular chaos assumption
and write

1
fQQ(xvpcmvrvprel’a7 t) = §fQ(xl7p1’ t)fQ(Xz,pz, t)’

(32)

where x, 7, p.» Prel are the c.m. and relative positions and
momenta of the heavy quark-antiquark pair with positions
|

8 [d3p,. d3 d3
szz (k1) = 9/ Pem @ Prei q

x@m%%k—mm+q>(|au+

where the sum over color index a has been carried out.
This is the recombination term used in the Boltzmann
equation in Ref. [23]. In order to take the spin multiplicity
into account, one must further insert a factor g, into CE;I ),
where g, =3 for § = 1 quarkonium and g; = § for § =0
quarkomum The in-medium dynamical evolutlon of
open heavy quarks can also be described by Boltzmann
equations [49-51].

IV. ANNIHILATION OF QUARKONIUM

It is known that the NRQCD Lagrangian has four-
fermion interactions, which can describe the annihilation
of quarkonium (into other hadrons or leptons) and are not
included in the pNRQCD Lagrangian Eq. (13). We can add

o fon o

where the evolution term is explicitly trace preserving.

(27)* (27)* (27)°2q

X, X, and momenta p;, p,. The factor % accounts for the
probability of the color state of QQ being in a specific octet
state a. The molecular chaos assumption is valid when the
rate of decorrelation between the heavy quark and anti-
quark is much larger than the relaxation rate of the system.
The former is given by D~! ~ 2T with a; at the scale T or
mp, while the later has been estimated above and is ~as1)2T
with a; at the scale Mv. In NRQCD, v ~ a,(Mv), so the
molecular chaos assumption is valid.
Combining these two assumptions gives

(1+ng(q))foxi,p1,1)fo(x2,p2. 1)

% , (33)

_ Pre 2Tg
L) 22 ey

|
—I'STSpy to describe the annihilation. But this would break
the conservation of probability Tr($ ps) = 0. So one also
needs to include terms of the forms psS'S and SpgST.
A pedagogical discussion of how to construct an open
effective field theory in order to conserve probability can be
found in Ref. [38]. The annihilation is too slow to be of
much interest for phenomenology, but we study it as an
interesting example of how Lindblad-type operators enter
the time evolution equation for the density matrix. In our
case, we first restore the standard pPNRQCD notation of a
singlet field, S(R,r,7) = (r|S(R.1)); i.e., we project the
wave function of the relative motion onto the relative
position space. Then we can add two new terms in the
density matrix evolution equation

{wmrnmmmnmmmhfma&nmm@ﬂmmnﬂ,<M>

As above, we are interested in the bound state and will sandwich the density matrix between two bound quarkonium

states and then do a Wigner transform.

A. {ST(Rrt)S(Rrit)ps(0)} term
We first compute the ST(R,r, 1)S(R, r, t)ps(0) term sandwiched between (k;,n/, 1| and |k,, nl, 1) and insert a complete

set of states |k3, n3ls, 1>:

Ak
/ dr, / 3R / d3r 2N (k.
27r) ~
~ [fan [or /d3 dk3 G
zzfﬁmm<wmmh oL 1),

S'I'(R,r, tl)S(R,r, t1)|k3, n3l3, ><k'§, I’l';l3,

z\Enl\tl —ik|-R

ps(0)lkz, nl, 1)

e—z\E,,3l3|t1+zk3~R <k3, n3[3’ 1 0

s(0)|kz. nl, 1)

(35)
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where we have used the Markovian approximation and
written the delta function in energy as ¢. In the summation
over ny and I3, only n3 = n, [3 = [ contributes due to the
delta function in energy (we assume no degeneracy in the
bound-state eigenenergy beyond that implied by rotational
invariance).

We can define the annihilation rate of a quarkonium
state nl,

I = / &yt ()T (7). (36)

which is nonzero even in vacuum and should be distin-
guished from the dissociation rate inside QGP. For S-wave,
one may set I'(r) = I's$*(r) and then I'y = I'ly5(0)|%; i.e.,
the annihilation rate depends on the wave function of the
relative motion at the origin.

The other term in the anticommutator will give the same
result. Under a Wigner transform, these two terms lead in
the Boltzmann equations to

—Lof (. ke, 7). (37)

Typically T',; ~ 10 keV, so for a QGP with a lifetime
~10 fm ~ 0.05 MeV~!, the effect from quarkonium anni-
hilations is negligible on the in-medium evolution. It is
justified to assume that the total number of heavy quarks is
conserved during the in-medium evolution.

B. S(R.rt)ps(0)S™ (R rt) term

Then, we compute the contribution from the S(R, r, t)x
ps(0)ST(R,r,t) term sandwiched between (k;,nl, 1|
and |k,, nl, 1):

t
/ dtl/d3R/d3rF(r)<k1,nl,1|S(R,r, tl)ps(O)ST(R,r, [1)|k2,l’ll,1>
0

2713

= / dr(r

X <k1, I’ll, 1;k3, I’l3l3, 1
Bhs
=1
[

where we have inserted an identity [ d*k}5°(k;) = 1 and
written &°(k}) as a spatial integral over x’. It should be
noted that the integral over k3’ is already a Wigner trans-
form on the density matrix of the second particle with
momentum k5 and position x’. If we further apply a Wigner
transform on the density matrix of the first particle and
properly reshuffle labels, we obtain the contribution of this
term in the Boltzmann equation

Lo, / 2 )33

3K
Zl"n/,/—/d3 Xf(x,k,nl;x' k', n'l';t).  (39)

/l/

It involves the two-particle distribution function
fe,k,nl;x' k' ,n'l';t) of two quarkonium states n/ and
n'l' with positions x, x’ and momenta k, k’, respectively.
When the second quarkonium with the quantum number
n'l' annihilates, it leads to an increase in the one-particle
distribution function of quarkonium with quantum number
nl. Therefore, this term, together with the term in Eq. (37),
guarantees the conservation of probability in the one-
particle distribution of quarkonium. However, as men-
tioned earlier, the annihilation effect is negligible in current
heavy ion collision experiments.

PS(O) |k2’”l, 1§k4, nyly, 1)

d*k &3k
>/ 3 / : Zw"ﬂz l//n4l4 (2”)4530(3 —k4>5(Ek3 - Ek4)

&K, . ks ks
7 /d3x’e’k3 o <k1,nl,l;k3 —|—7',n313,1|p5(0)|k2,nl,1;k3—?,n3l3,1>, (38)

V. CONCLUSION

In this paper, we used the open quantum system
formalism where the system of heavy quarks and quarko-
nium is described by pNRQCD at O in the nonrelativistic
expansion while the environment is a weakly coupled
thermal QGP. We derived the Boltzmann transport equation
for a quarkonium inside a QGP below its melting temper-
ature from first principles under the assumptions of weak
coupling between the quarkonium and the QGP and
Markovian evolution. Both assumptions are justified by
our assumed separation of scales, M > Mv > Mv*2
T Z mp. This requires rT < 1, where r is the typical size
of the quarkonium, which is probably a realistic assumption
for current heavy ion collisions for the most compact
quarkonium such as the Y(1S). It could work as well for
T(2S) for T <200 MeV. Correlations of environment
operators are calculated in real-time thermal field theory.
After tracing out the environment d.o.f., we obtained the
Lindblad equation, which is nonunitary and time irrevers-
ible. Under a Wigner transform, the Lindblad equation
leads to the Boltzmann transport equation.

The derivation here provides a theoretical justification of
quarkonium transport equations inside a weakly coupled
QGP below the melting temperature of the quarkonium.
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It connects two main approaches of the phenomenology of
quarkonium production in heavy ion collisions. One can
improve the derivation by working to next-leading order
in the coupling constant and expansion parameters in both
the system sector (pNRQCD) and the environment sector
(thermal QCD). In the case of a nonperturbative construc-
tion of pNRQCD, a similar derivation is possible. The
connection between the complex potential calculated on the
lattice [52] and the transport equation is worth exploring in
our framework. The derivation can be extended to the case
of quarkonium evolution inside a strongly coupled QGP, a
hot medium out of equilibrium or cold nuclear matter by
replacing the Green’s functions of thermal QCD with those
in the corresponding media. It would also be interesting to
study the viscous and anisotropic corrections to the Debye
screening, the dissociation rate of quarkonium [53-55], and
the recombination in a nonthermal QGP. The effect of a
turbulent plasma on the heavy quark-antiquark pair or
quarkonium in the early stage of heavy ion collisions can
also be explored [56]. A description of the quarkonium
evolution through cold nuclear matter will be useful to
studies of quarkonium production in both proton-ion and
electron-ion collisions.
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APPENDIX A: GREEN’S FUNCTIONS IN
REAL-TIME THERMAL FIELD THEORY

In real-time thermal field theory, the commonly used
Green’s functions are the “> <”, retarded, advanced,
and time-ordered Green’s functions. They are defined as
follows:

M

D (1,x) = (Afi(1,x)A5(0,0))7,

Dyt (t.x) = (AZ(0.0)A;(£. %)) 7.

Dt (t.x) = (0(1)[A(.x), A7(0.0)]) 7.,

Dyt (tx) = =(0(=1)[Afi(1.x). A7(0.0)])7.

Dy (t.x) = (T (Aji(1.x)A2(0.0)))7- (A1)

The Fourier transform is defined as
DL (qya) = [ direl @ DL (1), (a2

where X could be >, <, R, A, or 7. In momentum space
for a free theory,

D;%(q) = (1 + np(qo) Ze'l* 10pr(q)
D<ab qo Ze ey(sapr
pr(q) = (2m)sign(q0)5(q5 — 4°).
DRab( ) _ iZieﬁ*eﬁéab
w \4d) = ) . 5
q* + isign(qo)e
. Ax A sab
DAab(g) = ZZ €, €6
95— q° — isign(qo)e’
D;L/ab<Q) = D/vaab(Q) + D;bab(Q)

— Zei*eiaab i
—q* +ie

<Z;Atdﬁ Atdfzzcaﬂ(h,tz)@(h - tz)(cllOﬁ;”(tl)O(ﬂ‘q>(t2)|b>Lab>T

ap

/ an / drzzcﬁ(, b, 1)0(ty — 1) (6|03 (1) 08 (1)) a) Ly,

:2‘7 [ an [ a3t -60 = 1) alol (1) 0f) ()b
a,b 0 0 a,p

|b). We can split sign(#; — t,) into 6(¢; — t,) and —6(t, — t;) in
—t,) term. The —6(t, — t,) term is given by the Hermitian conjugate of the

where in the last line we flip a <> 3, t; <> 1,, and |a) <>
> apCapLap and just need to compute the 6(t,

CuallheAsG =) o
APPENDIX B: -ic;[L,,.ps)] TERM
To compute ), ,6,,L,;, We first note that
(B1)

0(1; — 1,) term. Therefore, >, ,64,L,, is Hermitian, and this term can be thought of as a correction to the system
Hamiltonian. To carry out the calculation explicitly, we first write

D; (R, 3Ry, 12)0(1; — 1) =

(DR (Ry, 113 Ry, 12) + D (Ry, 115 Ry, 15))0(t) — 1),

(B2)
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Then we can replace C,4(t;,1,) in the first line of Eq. (B1), due to the 6(t; —t,), with

T
Cop(ti 12) = CRyija, Ryivay (11 12) = £ 2< (Rhfl) ZZ(R2»I2)>T
4 .
- E925a‘az/ g e_qu(Z'_IZ)Hq'(R‘_RZ)(‘1(2)5i i = 4:i,qi,) ;*‘ ng(|q0l)(27)8(q5 — ¢*) | + O(9).
NC (27_[)4 12 110 6]% _ q2 + e

(B3)

The term inside the square brackets is the time-ordered thermal propagator in momentum space.

We are interested in the bound-state part of the density matrix, so we set |a) = |k, n,l,, 1) and |b) = |k,, ny15, 1). Then
we can compute

0(1 — 1,)(al 0 (1)) 05 (1)) = (1) — 1) (k1. my 1y 1SRy 17)[7, ] 0% (R, 1)) (0% (Ro. 15)] 7, |S(Ro, 1)) (Ko 1l 1)

i d3pcm d Prel
=0 2/ (2r)3 / (2z)? 5 Wty |7 [ Wp ) (W,

X elEp( )—ipcm-(Rz—Rl)e—lEkztz""lkz‘RzelEklfl—ikl'Rl (B4)

Vi2|ll/n212>9(f1 — 1)

where E, = ﬁ This can be written as

d* d? i|¥, (¥

S S Pcem Pre rel rel

0ty ~ 12)(a| 0% (1) 07 (12)16) = (i, I, / o) / G o0 E e )
cm p

X §4192 @IPon (=1 ) =iPe (Ry—Ry) g =iExy ty-tiky Ry HiEy, 1y ik Ry (B5)

It should be noted that p2, here does not represent the c.m. energy of the octet. In fact, it is the total energy of the composite
1 Pcm re _p I%e
octet particle, p%, = p w4 L — Lel - O(Mo*).

To simplify the express1on, we make the Markovian approximation # — oo. Then, integrating over #; and ¢, will give two
delta functions in energy. Plugging Eqs. (B3) and (B5) into ), ,6,,L,, and integrating over #,, t,, Ry, and R,, we find

dzkl d3k2 d4 d4pcm d3prel TF 2 2/ 2
Souta =3 {5 [ 805 [ 55 [ | ot | e = e, g

nyly ny,ly iyis

: 19,)(%,

2 Prel Prel 2 363 k —_ —_ 2 3
(e ) @05 =) )y g ) 255 = e = ) 2)
X 53(k2 —Pem — q) (2ﬂ)5(Ek1 - p(c)m - qo)(zﬂ-)&(Ekg - pgm - qO)L\khnlll,l)(kz,nzlz,l| + HC} (B6)

The two time integrals give a product of two delta functions in energy §(w, )5(w, ), where ;= E; —p9,—q° fori = 1,2 and
®; = w, = w. We interpret one factor of 2z8(w) to be the time interval, so the double time integral is interpreted as follows:

t t ) . 4sin?(wt/2) 1>
/ dr, / dtyeiii gmion =~ (Z’/ ) 2% pas(w). (B7)
0 0

)]

See Ref. [57] for details. This argument also applies in Appendixes C and D. The delta functions in energy and momentum
give ky =k, =k, ny =n, =n, and [y = [, = [ (we assume no degeneracy in the bound-state eigenenergy beyond that
implied by rotational invariance). So, we have

. & pem [ & pre
zaabLab {—lgchZ/ / / 2 ';1 ((](2)51',,'2 - C]i,%’z)
a,b ( ﬂ)

X (m + np(|q0]) (27)8(45 _q2)>

i|¥p,, ) (¥,
X <Wnl|ri1 po P P ri Wnl>(27r)353 (k —DPcm — q)(2ﬂ>5(Ek - pgm - qo)}Lk,nl.l)(k,nl,l’ (B8)
c

7
m— E, +ie

where the terms for the unbound singlet and octet are not shown here but can be written out similarly.
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APPENDIX C: -1y, .{L,Lyps(0)} TERM

We will show that this term gives the dissociation term in the Boltzmann equation. We first compute the term
—%yab‘chZ +Lapps(0). As explained previously, we are interested in the bound-state part of the density matrix and take
(ky,nily, 1ps(1)|ks, nsls, 1), sowe set |d) = |k, nyl;, 1). Since at lowest order of the expansion, the transition between the
bound state and unbound pair only occurs via singlet-octet transition, we have |a) = |¢) = [Pem,Prer> @1), and double
summations over |a) and |c¢) become just one summation. Similarly, we have |b) = |k3, n3l3, 1). We need to compute

Vab,cd:/d3R1/d3R2 / df1/ dt,CRyiby Raishs (15 12)
by.by

i1.a,

X (ky,nyly 1[(S(Ry, 1) |7, |01 (R, 1)) |Pems Prer» @1)
X (Pem: Prel> a1]{0% (R, 0)|ri,|S(Ry. 12)) k3, 315, 1). (C1)

We can start with

(kom0 (SR 11)]73, 0P (R 1)) Pems Prets 1) = (W1, |73, [P, ) 5471 e Epti PR i a1~ R1)
Pem-Pret» a1 |(07 (Ry. 1) |11, |S(Ry. 1)) [k, 35, 1) = (¥, |7, |l//n313>5a'b2fi(E’”lz_kyRZ)€i<E"'2_”°'“‘R2), (C2)

2
where E, :% and Ey, = —|E, | up to v? corrections. The correlation needed is

T
CRlilbleQizbz(th t2) = NF 2< (R17 tl) (R27 t2)>

T d*q . , .
:N—’;gzéb‘bz / We’%(""”"q'(”“"”( 45%i,i, = 4i,9i,)18(q0) (27)sign(q0)5(q5 — 4°) + O(7),

(C3)

where we have used the expression of D<“” (g) in Appendix A. It should be pointed out that one can also use the expression
of D;;%%(g) and will obtain the same result due to the relation 1 + ng(gg) + ng(—qo) = 0. Now, we can write the term
(v, ny Ly, 1y apcaLt L apps(0)ky, nyly, 1) out explicitly as

& pen & p, d3k d“
/(2”) (2n)° o 3 /d3R1/ng2/ dl‘l/ dr,

T . _
X Z pr(Q%éi,iz -9 f]iz)”B(ro)5b'h2(277)51gn(510)5(f13 — g?)einh=n)ig (Ri=Fs)

ny,l3,a1.b1.by,iy iy ¢
a,by ,—i(Eyt,—pem-Ry) ,i(Ex 11—k -Ry)
P By 0 B p ) b

Prel r
X (k3. n315, 1|ps(0) |ky, nyl5, 1). (C4)

i Wy, ) 80102 671 B ok Re) (Bt —penRo)
2 343

Integrating over R, and R, gives two delta functions in momenta, §*(k; — pey + q)5° (k3 — pem + ). Under the Markovian

approximation, ¢ — oo, integrating over #, and ¢, will give another two delta functions, 6(Ey, — E,, + qo)3(Ey, — E, + qq)-

Since Ey, < 0and E,, > 0, some energy has to be transferred to the bound state to break it up to an unbound state, and thus

qo has to be positive. [If we use D;,%%(g), here we would have §(E;, — E, — qo)8(Er, — E, — qp), and g is negative.]
Integrating over R, R,, t, t,, and k5 gives

3 3
> e <zd>72 1a(4) 2m)°6(Ex, = £y + )3(Ex, = £, + )8 (ki =pom +4)

ns,lz,ay,i;

2Te 5,

X 3N, @G W, |7, P ) o |70, [Winsiy) ey 315, 1pg(0) ko, oy, 1), (Cs)

where we have used for any smooth function f(g)
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’ 3
[ s - a0 3o [ s
(C6)

Due to the energy delta functions, the sum over n3 and /3
gives n3 = n;, I3 = I} (we assume no degeneracy in the
bound-state eigenenergy beyond that implied by rotational
invariance). Then, one of the energy delta functions
multiplied by 2z can be interpreted as the time interval ¢.
So we have

Ependp dq
cm re o) 4
/ (27)? (27)} 2n)2q " n5(q)(27)
X 63(kl —DPcm +q)6(Ek] _Ep +q)
2T,

3NC(N2C D@3 (wa, 1, IF¥p, )
x (ky,nyly, 1pg(0)|ky, nyly, 1).

Under a Wigner transform of the form Eq. (21) (where we
setk1 fk+2,k2—k—— ny =ny, =n, and ll :lzzl
|

(C7)

t t
J’ah,cd:/d3R1/d3R2 Z Adtl/) dt,Cryiypy yisb, (T2 1) (kg 11 1
i1iz.by.bs

and then do a shift in c.m. momentum p., = pem —I—% ,
Eq. (C7) finally leads to

& Pcem d3prel d3q y
| G s g )

X 53(k —Pem + q)é(Ek - Ep + q)

X 3CFq g |<Wnl|r‘ Pre1> zfnl(x’k’t = O) (Cg)

The other term in the anticommutator gives the same result.
So applying the Wigner transform to the — %yab,cd<k1 ,nly,
1 |{LidLab, ps(0)}ks, nyls, 1) term in the Lindblad equa-
tion yields the negative of Eq. (C8).

APPENDIX D: 7, .sLusps(0)L]; TERM

For this term we set |a) = |k, n1;,1), |c) = |k, nol,, 1),

|b> = Iplcm7plrel7al> and |d> = Ip2cm’p2rel7a2>s where a
and a, are color indexes. We need to evaluate

(S(Ry. t1)|r, |OP (R 1)) |P1 e Piret 01)

X (Prems Parets 2| (O” (R, 1) |7, [S(Ry, 1)) [Kp ol 1), (D1)
We first compute the singlet-octet transition term,
(v, my 1y, TSRy, 11) |74, 10" (R, 6,)) P e Prvets 1) = (‘//nlll|”il|‘Pp1,el>5a‘b‘e_i(E”‘tl_p”'"'R‘)ei(E"‘t'_k"R')
<p20m’p2relv aZ|<0b2 (R2’ t2)|r12 |S(R25 t2)> |k2’ n212’ > < Porel |r12 |l//nzlo>5a2b7e (Ekztz_kTRZ)ei(Epztz_pzcm.RZ)' (DZ)
The correlation in real-time thermal field theory is
TF by
CRr,ib, R,i b l(lz’ 1) 92 R27 n)E i (Ry.11))r
_ TF 925b]b2 d4q iqo(t;—t)—iq-(R,—R;) 25 1 2 : 5(g? 2
= N_c We 2(qp0i,i, — 4:,91,) (1 + ng(q0))(27)sign(qo)d(q5 — q°)
+0(g). (D3)
where we have used the expression of D;;**(¢) in Appendix A.
Now we can combine everything and write the (ky,nl;, 1|J/ab.chabpS(0)de|k2ﬂ nyl,, 1) term out explicitly:
dtq & d? d? d
/ q Prem @ Pirel 4" P2em p2rel / d3R1 /d R2/ dtl / dtz
(2n)* (2n)* (27)° (2x)°
x> —ngé""”(%éi,iz ~4,9:,)(1 + np(qo)) (27)sign(qo)3(qg — g7) e =) e ki=k)
ay.az,by.by,iysiy €
X <l//nl |ri |‘Pp > 511 =i (Ep 1=PremRy) i (B 11=k1-Ry)
141 1 Irel
X <‘Pp2,el 12|l//nzlz>5a2bze Ekztz_kz Rz>€i<Ep2t2_p2cm4R2)<plcm’p1rel’ Cll|pS(0) |p20m7p2rela a2>- (D4)
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Integrating over R, and R, gives two delta functions in momenta, 5°(k; —p;cm + )8 (ks —prem + ). Under the
Markovian approximation, ¢ — oo, integrating over ¢, and f, gives another two delta functions,
8(Ey, — E, 4 q9)0(Ey, — E,, + qo)- Then g, has to be positive because E;, < 0 and E,, > 0. [Using the representation

D (q) will give go <0 but lead to the same result due to 1+ ng(qq)+ ng(—qo) =0]. Again, we set
436:.i, — 4:,9i, = 59°5;,1,» since the gluon is on shell, go = |g| = g. Now we have

/d3plcmd3p1rel d3p2cm d3p2rel d3q
(27)* (22)* (2z)° (27) (27)*2¢

X 5(Ek] - Epl + Q)é(Ekz - Epz + q)

(1 + nB(Q))Z(2”)853(k1 —Piem T+ q)53(k2 —P2em +q)

a,i

2T
quzg <Wnlll‘rz‘ Plre1>< pzm |l//nala><plcm7p1rel’ |pS( )Ip20m7p2rel7a>' (DS)
Before integrating the delta functions, we first apply the Wigner transform on Eq. (D5) (by setting ky = k + ’% ky=Fk- 5/
ng=n,=nandl; =1, =1I):
/ d3k/ eik’~x d3p1cm d?’plrel d3p2cm d3p2rel d3q (1 +n (q))
(2x)3 2z)* (27)* (27)® (2z)® (27)%2q 5
K kK
X Z (27) 853( +5 = Piem +q>53 <k———pzcm +q>5( w—Ep +4)8(Ey, —E,, +q)
2TF
X Eq <ll/nl|”z| pl,el><lyp2,el FilYn) P1emsPiret @lps(0)P2ems Porel» @). (D6)

[
At order Mv?, the c.m. momentum does not enter the  energy delta functions, we have p . = pores. To simplify

energy: Ey, = —|E,| and E, = Pos [ we shift the further, we assume the octet scattering wave function can
! ! be factorized,
momentum
R (rl¥%,,) = €27 (r. pra). (DS)
plcm :plcm +§?
Y which is true for the plane wave solution. If we further let
p2Cm:p/2(;m_53 (D7)
Pirel = Prels
then the two momentum delta functions become Porel = Prel + Pl (D9)

(k= pl oy +q)5° (k —ph o +4)- So, we can integrate
over p) .. and set p, . =p' ., =Pem Due to the two  (remember that we have shown pj. = py.,) We obtain
|

/ d3pcm d3prel d3q

(271.)3 (2”)3 (271')326] (1 + nB(q))Z(Zﬂ)463(k —Dem T q) ( |Enl| +q prel)

a,i

2T
x Ff%whh@/@wMVﬁA)
3N,

@y K K
X/(zn;ele " r/(zn)3 e (Pen 7 Praa

The last line is just the phase-space distribution function of a heavy quark-antiquark pair whose c.m. position is located at x
and whose relative position is r:

k/
ps(0) ‘pcm ) Prel T Prets a>. (D10)

k/

A3 - d3 prl -
fQQ<x?pcm’rvprelya’ = O) - / (271')3 el x/ (2”)6 Prer <pcm += ) »Prel> @

k/

2

pS<O) Pem —

> Prel +p;e1’a>' (Dll)
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So, the (ky,n,l, 1|yab,chabpS(0)Li 4lk2. nyl5, 1) term in the Lindblad equation under a Wigner transform leads to

/d3pcm d3prel d3q
(27)* (27)* (27)°2¢

X
7 3Nc

(1+np(q))(27)*8 (k = pery + 4)5(_|Enz| +q ‘Ié)

2T
2T 2P I, ) / By () (1) f 0o (- Pem: FoPrate o1 = 0).

M
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