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We use the open quantum system formalism to study the dynamical in-medium evolution of
quarkonium. The system of quarkonium is described by potential nonrelativistic QCD while the
environment is a weakly coupled quark-gluon plasma in local thermal equilibrium below the melting
temperature of the quarkonium. Under the Markovian approximation, it is shown that the Lindblad
equation leads to a Boltzmann transport equation if a Wigner transform is applied to the system density
matrix. Our derivation illuminates how the microscopic time reversibility of QCD is consistent with the
time-irreversible in-medium evolution of quarkonium states. Static screening, dissociation, and recombi-
nation of quarkonium are treated in the same theoretical framework. In addition, quarkonium annihilation is
included in a similar way, although the effect is negligible for the phenomenology of the current heavy ion
collision experiments. The methods used here can be extended to study quarkonium dynamical evolution
inside a strongly coupled QGP, a hot medium out of equilibrium, or cold nuclear matter, which is important
to studying quarkonium production in heavy ion, proton-ion, and electron-ion collisions.
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I. INTRODUCTION

Heavy quarkonium production at hadron colliders has
been studied extensively in both theory and experiment. In
proton-proton collisions, the production process factorizes
into a short-distance process of producing a heavy quark-
antiquark pair and a long-distance coalescence into a bound
state [1]. In heavy ion collisions, the production process is
complicated by the existence of a hot nuclear environment,
the quark-gluon plasma (QGP). By comparing the quarko-
nium production in proton-proton and heavy ion collisions,
one can study the properties of the hot medium produced
during the collision (with the modification of the initial
hard production due to heavy nuclei properly included).
Static screening has been studied since the pioneering work
of Ref. [2], which provides a partial understanding of the
suppression of quarkonia in heavy ion collisions. For a
more complete understanding, a theoretical description of
quarkonium dynamics that also accounts for the dynamical
screening and recombination inside the hot nuclear medium
is needed.
There have been several approaches to address the

question. First, statistical hadronization models have been

used to describe charmonium production [3,4]. In these
models it is assumed that the charm quark evolves unbound
inside the hot medium due to the Debye screening. During
the evolution, the charm quark equilibrates kinematically but
not chemically, because the total number of charm quarks is
fixed by the initial hard scattering. The annihilation of charm
quarks is negligible during the lifetime of the QGP. Thermal
production is also negligible because of the large quark
mass, compared with the medium temperature. Charmonium
is produced from the coalescence of charm quarks and
antiquarks with thermal momenta at the transition hyper-
surface of QGP to a hadron gas. Although the model has
some phenomenological success, it is limited to the study of
charmonium with low transverse momentum. The kinematic
thermalization assumption is never justified for charmonium
at large transverse momentum or for bottomonium.
Another approach is to use a transport equation [5–18].

In this approach, a rate equation is used to describe the
dissociation and recombination of quarkonium inside the
medium. Debye screening of the potential is also accounted
for when solving the bound-state wave function. In many
studies, the dissociation rate is calculated from perturbative
QCD, while the recombination is modeled from detailed
balance, with an extra suppression factor accounting for the
incomplete thermalization of heavy quarks. The recombi-
nation process has also been analyzed in the framework
of perturbative QCD with parametrized nonthermal heavy
quark momentum distributions [19]. Many studies have
used potential nonrelativistic QCD (pNRQCD) to study
quarkonium dissociation rates inside the QGP [20–22].
Recombination in a pNRQCD-based Boltzmann equation
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has been studied in Ref. [23]. New studies construct
coupled Boltzmann transport equations of both heavy
quarks and quarkonia, in which the heavy quark momen-
tum distribution is not from an assumed parametrization but
rather calculated from real-time dynamics, and quarkonium
dissociation and recombination are calculated in the same
theoretical framework [23–25]. By using the coupled
Boltzmann transport equations, the detailed balance and
thermalization of heavy quark and quarkonium can be
demonstrated from the real-time dynamics of heavy quark
energy loss and the interplay between quarkonium disso-
ciation and recombination.
More recently, an approach based on open quantum

systems has been studied widely [26–35]. In this approach,
the system of the heavy quark and quarkonium and the
medium evolve unitarily together. When the environment
degrees of freedom (d.o.f.) are traced out, the system evolves
nonunitarily, and stochastic interactions can appear. This
approach is a quantum description rather than a semiclassical
equation. It has the advantage that nonunitarity appears
automatically after tracing out the environment, while at
the same time, preserving the total number of heavy quarks
(by preserving the trace of the system density matrix).
Quarkonium dissociation occurs during the nonunitary
evolution, but the unbound heavy quark pairs from disso-
ciation never disappear from the system, and they may
recombine. This feature is never easily realized in transport
models based on complex potentials. Another advantage is
that the recombination effect is included systematically in
this procedure. Meanwhile, the nonunitary time evolution
is generally irreversible. For a general discussion of the
occurrence of time-irreversible processes from time-
reversible underlying theory, we refer to Ref. [36]. The
combination of the open quantum system and effective field
theory (EFT) has also been recently used to study different
physical systems: dissipative fluids [37], deep inelastic
reactions [38], and bottomonium suppression in Au-Au
collisions [34].
In this paper, we demonstrate a deep connection between

the approaches of open quantum systems and transport
equations. More specifically, we use the open quantum
system formalism, EFT of QCD, and the Wigner transform
to derive the Boltzmann transport equation. Our derivation
clarifies the conditions for the validity of quarkonium
transport (rate) equations that are based on Boltzmann
transport equations. We will justify the Markovian approxi-
mation in the open quantum system approach and the
molecular chaos approximation in the Boltzmann equation.
The work of Ref. [34] focuses on quantum evolution of the
density matrix and neglects center-of-mass (c.m.) motions

of heavy quark-antiquark pairs; thus, it is unable to study
observables as functions of transverse momentum and the
rapidity of the quarkonium. In this work, we explicitly keep
track of the c.m. motion and focus on deriving the semi-
classical Boltzmann transport equation from the quantum
evolution of the system density matrix.
This paper is organized as follows: First, the open

quantum system and the quantum master equation, the
Lindblad equation, are briefly reviewed in Sec. II. The
Boltzmann transport equation is derived in Sec. III. Then,
quarkonium annihilation is studied similarly in Sec. IV.
Finally, conclusions are drawn in Sec. V.

II. LINDBLAD EQUATION IN WEAKLY
COUPLED SYSTEM

In this section we briefly review standard results in open
quantum systems, which are covered in many textbooks—
see, e.g., Ref. [39]. Assume the Hamiltonian of the system
and environment (thermal bath) is given by

H ¼ HS þHB þHI; ð1Þ
whereHS is the system Hamiltonian,HB is the environment
Hamiltonian,andHI contains the interactionsbetweensystem
and environment. The interaction Hamiltonian is assumed to

be factorized as follows: HI ¼
P

αO
ðSÞ
α ⊗ OðBÞ

α , where α

denotes all quantum numbers. The operatorsOðSÞ
α are for the

system, while OðBÞ
α are for the environment. We can assume

hOðBÞ
α i≡ TrBðOðBÞ

α ρBÞ ¼ 0, because we can redefine OðBÞ
α

and HS by OðBÞ
α − hOðBÞ

α i and HS þ
P

αO
ðSÞ
α hOðBÞ

α i respec-
tively. Here ρB is the density matrix of the environment.
Each part of the Hamiltonian is assumed to be Hermitian.
The von Neumann equation for the time evolution of the

density matrix in the interaction picture is given by

dρðintÞðtÞ
dt

¼ −i½HðintÞ
I ðtÞ; ρðintÞðtÞ�: ð2Þ

We will omit the superscript “(int)” in the following. The
symbolic solution is given by

ρðtÞ ¼ UðtÞρð0ÞU†ðtÞ; ð3Þ
where the evolution operator is

UðtÞ ¼ T e−i
R

t

0
HIðt0Þdt0 ; ð4Þ

and T is the time-ordering operator. We assume the
interaction is a weak perturbation and expand the evolution
operator to the second order in HI:

ρðtÞ ¼ ρð0Þ − i
Z

t

0

dt0½HIðt0Þ; ρð0Þ� þ
Z

t

0

dt1

Z
t

0

dt2ðHIðt1Þρð0ÞHIðt2Þ

− θðt1 − t2ÞHIðt1ÞHIðt2Þρð0Þ − θðt2 − t1Þρð0ÞHIðt1ÞHIðt2ÞÞ þOðH3
I Þ: ð5Þ
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We shall assume the initial condition is given by

ρð0Þ ¼ ρSð0Þ ⊗ ρB; ð6Þ

where the environment density matrix is assumed to be time independent. We define

Cαβðt1; t2Þ≡ TrBðOðBÞ
α ðt1ÞOðBÞ

β ðt2ÞρBÞ: ð7Þ

Then, by taking the partial trace over the environment, we can obtain the evolution equation of the system:

ρSðtÞ ¼ TrBðρðtÞÞ ¼ ρSð0Þ − i
Z

t

0

dt0
X
α

�
OðSÞ

α ðt0Þ; ρSð0Þ
�
TrBðOðBÞ

α ðt0ÞρBÞ

þ
X
α;β

Z
t

0

dt1

Z
t

0

dt2Cαβðt1; t2ÞðOðSÞ
β ðt2ÞρSð0ÞOðSÞ

α ðt1Þ − θðt1 − t2ÞOðSÞ
α ðt1ÞOðSÞ

β ðt2ÞρSð0Þ

− θðt2 − t1ÞρSð0ÞOðSÞ
α ðt1ÞOðSÞ

β ðt2ÞÞ þOðH3
I Þ: ð8Þ

Using hOðBÞ
α i ¼ 0 and inserting complete sets of the system, we obtain

ρSðtÞ ¼ ρSð0Þ þ
X
α;β

Z
t

0

dt1

Z
t

0

dt2Cαβðt1; t2Þ
X
a;b;c;d

hajOðSÞ
β ðt2ÞjbihcjOðSÞ

α ðt1Þjdi�

× ðjaihbjρSð0ÞðjcihdjÞ† − θðt1 − t2ÞðjcihdjÞ†jaihbjρSð0Þ − θðt2 − t1ÞρSð0ÞðjcihdjÞ†jaihbjÞ þOðH3
I Þ: ð9Þ

Finally, defining the Lindblad operator Lab ≡ jaihbj and

γab;cdðtÞ≡
X
α;β

Z
t

0

dt1

Z
t

0

dt2Cαβðt1; t2ÞhajOðSÞ
β ðt2ÞjbihcjOðSÞ

α ðt1Þjdi�; ð10Þ

σabðtÞ≡ −i
2

X
α;β

Z
t

0

dt1

Z
t

0

dt2Cαβðt1; t2Þsignðt1 − t2ÞhajOðSÞ
α ðt1ÞOðSÞ

β ðt2Þjbi; ð11Þ

we obtain the Lindblad equation up to second order in perturbation theory:

ρSðtÞ ¼ ρSð0Þ þ
X
a;b;c;d

γab;cdðtÞ
�
LabρSð0ÞL†

cd −
1

2
fL†

cdLab; ρSð0Þg
�
− i

X
a;b

σabðtÞ½Lab; ρSð0Þ� þOðH3
I Þ: ð12Þ

The relation θðtÞ ¼ ð1þ signðtÞÞ=2 has been used in the
derivation. It will be shown in the next section that for
quarkonium, the commutator term is a loop correction of
the real part of the Hamiltonian. The anticommutator
term describes the dissociation of quarkonium, which can
also be thought of as an imaginary part of the potential.
The second term on the right-hand side of Eq. (12)
represents the recombination contribution. A direct con-
clusion from Eq. (12) is the conservation of probability:
TrρSðtÞ ¼ TrρSð0Þ. This implies that the unbound heavy
quark-antiquark pair from quarkonium dissociation stays
as active d.o.f. of the system and may recombine later in
the evolution.

The form of the Lindblad equation is valid up to all
orders in the perturbative expansion [40]. So the higher-
order terms neglected here can also be written in the form
of the Lindblad equation. The Lindblad equation cannot
be written in the form of a von Neumann equation,
because the evolution is nonunitary. The time irrevers-
ibility can be seen by noting that the relative entropy of
the system with respect to a steady state under the partial
trace is monotonically decreasing [40]. The partial trace
over the environment can be thought of as an average
over different environment configurations. Though the
dynamics involving each configuration is governed by a
time-reversible theory with a unitary evolution, after
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averaging, the dynamics becomes time irreversible and
nonunitary.

III. DERIVATION OF BOLTZMANN
EQUATION

In this section, we will derive the Boltzmann transport
equation by applying the Lindblad equation, Eq. (12), to
the Wigner transform of the density matrix describing
heavy quark-antiquark pairs that can be bound or
unbound. The system in vacuum can be described by
pNRQCD [41,42]. The effective theory can be con-
structed from QCD by a nonrelativistic expansion assum-
ing the separation of scales: M ≫ Mv ≫ Mv2, where M
is the heavy quark mass and v is the velocity of
the heavy quark-antiquark pair inside a quarkonium. The
quarkonium size is roughly given by r ∼ 1=ðMvÞ. The
environment is a weakly coupled QGP in local thermal
equilibrium, ρB¼ 1

Ze
−βHB , where Z ¼ TrBe−βHB . Thus,

the correlations in Eq. (7) can be calculated in real-time
thermal field theory. We review different definitions of
thermal correlations (Green’s functions) in Appendix A.
We will use free thermal Green’s functions of gauge
fields. Our derivation can be extended by using
resummed thermal propagators. Resummed thermal
propagators and pNRQCD have been used to investigate
static heavy quark-antiquark pairs at finite temperature
[43]. The plasma provides two extra scales: the temper-
ature T and the Debye mass mD (we use units in which
kB ¼ 1). Here we will focus on the case where quarko-
nium exists as a well-defined bound state in a QGP that
is below the melting temperature of the quarkonium, so
M ≫ Mv ≫ Mv2 ≳ T ≳mD. We do not consider cases
with Mv ≫ T ≫ Mv2 or Mv∼T≫Mv2, because Mv2 ∼
500 MeV for charmonium and bottomonium, and the
temperatures realized in current heavy ion experiments
are smaller than this. For our choice of scaling, both
dissociation and recombination are possible.
PNRQCD can be constructed by matching with NRQCD

at the scale Mv. The matching can be done perturbatively
if Mv ≫ ΛQCD or nonperturbatively. In either case, the
quarkonium interacts with gluons from the QGP via a
dipole interaction at lowest order. As will be seen below,
the dipole interaction scales as rT ∼ T

Mv ≲ v, which is small
in the assumed separation of scales. We assume a pertur-
bative matching throughout the paper. The dipole inter-
action is not running at one-loop level [44,45], which
means the coupling constant in the dipole term is set at the
scale of Mv, no matter the scale of the scattering. To make
calculations easier here, we follow Ref. [42] and use a
slightly different notation for the pNRQCD Lagrangian
density:

LpNRQCDðR; tÞ ¼ Lkin;s þ Lkin;o þ Lint;so þ Lint;oo þ � � � ;
Lkin;s ¼ hSðR; tÞjði∂0 −HsÞjSðR; tÞi;
Lkin;o ¼ hOaðR; tÞjði∂0 −HoÞjOaðR; tÞi;

Lint;so ¼
ffiffiffiffiffiffiffi
TF

NC

s
ðhOaðR; tÞjr · gEaðR; tÞjSðR; tÞi

þ H:c:Þ;
Lint;oo ¼ ifabchOaðR; tÞjgAb

0ðR; tÞjOcðR; tÞi
þ dabchOaðR; tÞjgr · EbðR; tÞjOcðR; tÞi
þ � � � : ð13Þ

The d.o.f., in the standard pNRQCD Lagrangian, are the
color singlet SðR; r; tÞ and octet OaðR; r; tÞ, where R and r
are the center of mass (c.m.) and relative positions of the
heavy quark-antiquark pair. Here we define the “bra-ket”
notation via

hrjSðR; tÞi≡ SðR; r; tÞ;
hrjOaðR; tÞi≡OaðR; r; tÞ;

hSðR; tÞjfðrÞjOaðR; tÞi≡
Z

d3rS†ðR; r; tÞfðrÞOaðR; r; tÞ;

ð14Þ
for any function f of r. We use the “bra-ket” notation so
that we no longer need to write the integral over r explicitly,
which simplifies notations in the derivation. Summations
over color indexes are assumed, and higher-order terms in
the velocity expansion are neglected. Here Nc ¼ 3, TF ¼ 1

2
.

We define CF ≡ TF
Nc
ðN2

c − 1Þ for later use. The covariant
derivative on the octet field has been written out explicitly:
D0O ¼ ∂0 − ig½A0; O�. The Hamiltonians are expanded in
powers of v2,

Hs;o ¼
p2cm
4M

þ p2rel
M

þ Vð0Þ
s;o þ Vð1Þ

s;o

M
þ Vð2Þ

s;o

M2
þ � � � : ð15Þ

We will work up to the leading order (LO) in v2 and p2rel
M ∼

Vð0Þ
s;o ∼Mv2 by the virial theorem. When the medium is

static in the rest frame of quarkonium, the quarkonium
exchanges gluons with the medium whose momentum and
energy are ∼T and gains a c.m. momentum ∼T . In our
power counting, T ≲Mv2, and hence the c.m. kinetic

energy, p2cm
4M, is OðMv4Þ and is therefore neglected. If the

medium moves with respect to the quarkonium at a velocity
vmed, the gluon energy is boosted to be Tffiffiffiffiffiffiffiffiffiffiffi

1−v2med

p . The c.m.

kinetic energy is still suppressed if vmed ≲
ffiffiffiffiffiffiffiffiffiffiffi
1 − v

p
. We

assume vmed ¼ 0 in the following, but generalization to
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vmed ≠ 0 can be easily done by boosting the gluon
distribution function. We do keep track of the c.m.
momentum so that momentum is conserved. The singlet
and octet composite fields are given by

jSðR; tÞi ¼
Z

d3pcm

ð2πÞ3 e
−iðEt−pcm·RÞ

�X
nl

anlðpcmÞ ⊗ jψnli

þ
Z

d3prel

ð2πÞ3 bprelðpcmÞ ⊗ jψpreli
�
;

jOaðR; tÞi ¼
Z

d3pcm

ð2πÞ3 e
−iðEt−pcm·RÞ

×
Z

d3prel

ð2πÞ3 c
a
prelðpcmÞ ⊗ jΨpreli; ð16Þ

where E is the eigenenergy of a state in the whole Hilbert
space. The whole Hilbert space factorizes into two parts:
one part for the c.m. motion and the other for the relative

motion. The operators að†Þnl ðpcmÞ, bð†ÞprelðpcmÞ and cað†Þprel ðpcmÞ
act on the Fock space to annihilate (create) composite
particles with the c.m. momentum pcm and the correspond-
ing quantum numbers in the relative motion. These
quantum numbers can be nl for a bound singlet state,
prel for an unbound singlet state, and color a and prel for an
unbound octet state. When we compute the square of
matrix elements, we will average over the polarizations of
non-Swave quarkonium states. In our notation, we omit the
quantum number m of the bound singlet state. In the octet
channel, no bound state exists because of the repulsive octet
potential. The corresponding wave functions of the relative
motion are jψnli, jψpreli, and jΨpreli. They can be obtained
by solving the equations of motion of the free composite
fields, which are Schrödinger equations. The eigenenergies

are E ¼ −jEnlj and E ¼ p2rel
M for the bound and unbound

states respectively, with higher-order terms in v neglected.
Here Enl is the binding energy of the bound state jψnli.
The annihilation and creation operators in the Fock space
satisfy the following commutation relations:

½an1l1ðpcm1Þ; a†n2l2ðpcm2Þ� ¼ ð2πÞ3δ3ðpcm1 − pcm2Þδn1n2δl1l2 ;
½bprel1ðpcm1Þ; b†prel2ðpcm2Þ� ¼ ð2πÞ6δ3ðpcm1 − pcm2Þ

× δ3ðprel1 − prel2Þ;
½ca1prel1ðpcm1Þ; ca2†prel2ðpcm2Þ� ¼ ð2πÞ6δ3ðpcm1 − pcm2Þ

× δ3ðprel1 − prel2Þδa1a2 ; ð17Þ

and all other commutators vanish.
The interaction part of the Hamiltonian of the theory is

given in Eq. (13), but only the singlet-octet transition is
relevant for the dissociation and recombination of quarko-
nium. The octet-octet interaction governs the dynamical
evolution of unbound heavy quarks and thus is only present

in the transport equation of open heavy quarks. We will
neglect the octet-octet interaction when deriving the quar-
konium transport equation. The minus sign in the
Hamiltonian is of no importance at the order OðH2

I Þ.
The weak coupling expansion in HI is valid because the
quarkonium size is small, rT ∼ T

Mv ≲ v, in our power
counting. For current heavy ion experiments, this
assumption should hold for the most compact quarkonia
such as the ϒð1SÞ. It could work as well for the ϒð2SÞ if
the temperature is below ∼200 MeV. As discussed above,
this is true in both perturbative and nonperturbative con-
structions of the pNRQCD. When rT ∼ 1, the static
screening effect of the potential is too strong to support
the quarkonium bound state.
To use the Lindblad equation derived in Sec. II, we write

HI as
P

αO
ðSÞ
α ⊗ OðBÞ

α , with

OðSÞ
α → hSðR; tÞjrijOaðR; tÞi þ hOaðR; tÞjrijSðR; tÞi;

OðBÞ
α →

ffiffiffiffiffiffiffi
TF

NC

s
gEa

i ðR; tÞ: ð18Þ

The sum over α means

X
α

→
Z

d3R
X
i

X
a

: ð19Þ

The complete set used to construct the Lindblad operators
are

jk; nl; 1i ¼ a†nlðkÞj0i;
jpcm; prel; 1i ¼ b†prelðpcmÞj0i;
jpcm; prel; ai ¼ ca†prelðpcmÞj0i; ð20Þ

where 1 denotes the singlet, while a is the color index of an
octet. The unbound singlet state will not be used in our
current calculation, because at the order we are working, an
unbound singlet cannot form a bound singlet by radiating
out one gluon; only an unbound octet can do so.
We are interested in the bound-state evolution.

Therefore, our basic strategy is to study the time evolution
of hk1; n1l1; 1jρSðtÞjk2; n2l2; 1i by sandwiching Eq. (12)
between hk1; n1l1; 1j and jk2; n2l2; 1i. To obtain the evo-
lution equation of the semiclassical phase-space distribu-
tion function, we will take the Wigner transform of the
density matrix

fnlðx;k;tÞ≡
Z

d3k0

ð2πÞ3e
ik0·x

�
kþk0

2
;nl;1

����ρSðtÞ
����k−k0

2
;nl;1

	
:

ð21Þ

We will extract the linear dependence on t of γab;cd and σab
terms in Eq. (12) and then take time derivative at t ¼ 0
on both sides of Eq. (12). The double time integrals are
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simplified by assuming the Markovian approximation—
i.e., the upper limit of the time integrals is large and can be
taken to be infinity, t → ∞. The Markovian approximation
is valid when the environment correlation time is much
smaller than the relaxation time of the system. The former
is roughly given by 1=T, while the latter can be estimated
by the inverse of the dissociation rate. The dissociation rate
is ∼ðgrTÞ2T ≲ αsv2T in our power counting, and αs is at
the scale Mv. So in the assumed separation of scale, the
Markovian approxiamtion is valid. The t → 0 limit in
the time derivative and the t → ∞ limit in the integral
are not contradictory, because the timescale of measuring
the macroscopic phase-space distribution, given by the
Wigner transform of the density matrix, is much larger than
the timescale of the microscopic dynamics. The Markovian

approximation means that there is no memory effect [40].
The absence of memory effect is reflected in the Boltzmann
equation in the assumption of molecular chaos, namely that
the correlation between particles generated from their
previous collisions is completely forgotten in the next
collision [46]. Under the assumption of t → ∞, the double
time integrals give two delta functions in energy. When
the two delta functions correspond to the same energy
conservation, one can write them as one delta function
multiplied by the time length t. This is how we extract the
linear dependence in t. This trick is also used in the
derivation of Fermi’s golden rule. Details of the derivation
can be found in Appendixes B, C, and D.
First, the

P
a;bσabLab term in the Lindblad equation,

Eq. (12), can be shown to give, for the bound singlet part,

X
a;b

σabLab → t
X
n;l

Z
d3k
ð2πÞ3ℜ



−ig2CF

X
i1;i2

Z
d4q
ð2πÞ4

Z
d4pcm

ð2πÞ4
Z

d3prel

ð2πÞ3 ð2πÞ
4δ3ðk − pcm − qÞδðEk − p0

cm − q0Þ

× ðq20δi1i2 − qi1qi2Þ
�

i
q20 − q2 þ iϵ

þ nBðjq0jÞð2πÞδðq20 − q2Þ
�
hψnljri1

ijΨprelihΨprel j
p0
cm − Ep þ iϵ

ri2 jψnli
�
Ljk;nl;1ihk;nl;1j:

ð22Þ

The part inside the curly brackets gives the loop correction
of the potential, which can be calculated as usual by the
standard quantum field theory perturbative technique:
computing the loop shown in Fig. 1 by using the time-
ordered propagators. Only the real part of the correction
contributes here.
This correction

P
a;bσabLab is diagonal in the bound-

state space and is Hermitian. For our purpose, we may writeP
a;bσabLab ≡ tH1−loop. Recall that if we go back to the

Schrödinger picture,

ρSðtÞ ¼ ρSð0Þ− it½HS;ρSð0Þ�− i

�X
a;b

σabLab;ρSð0Þ
�
þ � � � ;

ð23Þ
where other terms in the Lindblad Eq. (12) have
been omitted temporarily. Now we define an effective
Hamiltonian Heff ¼ HS þH1-loop. If the correction is

perturbative, we can start with a potential in HS and
calculate wave functions of relative motions and the
one-loop correction to the real part of the potential to
obtainHeff . In some cases, it may be necessary to resum all
the loop corrections of the real part of the potential intoHeff
and then use Heff to calculate the wave function of the
relative motion. In this case, the real part of the potential in
Heff can be modeled by using recent high statistics lattice
studies of the color singlet free energy at finite temperature
[47]. In this work, the explicit forms of the wave function
are not needed.
Now, if we do a Wigner transform of the form

Eq. (21) on

ρSðtÞ ¼ ρSð0Þ − itðHeffρSð0Þ − ρSð0ÞHeffÞ þ � � � ; ð24Þ

we obtain

fnlðx; k; tÞ ¼ fnlðx; k; 0Þ − it
Z

d3k0

ð2πÞ3 e
ik0·xðEkþk0

2

− Ek−k0
2

Þ

×

�
kþ k0

2
; nl; 1

����ρSð0Þ
����k − k0

2
; nl; 1

	
þ � � � :

ð25Þ

Here, if we restore the c.m. kinetic energy,

Ek�k0
2

¼ −jEnlj þ
ðk� k0

2
Þ2

4M
; ð26Þ

FIG. 1. Loop correction (self-energy) of the singlet field.
A single solid line indicates the bound singlet state, while the
double solid lines represent the unbound octet state.

XIAOJUN YAO and THOMAS MEHEN PHYS. REV. D 99, 096028 (2019)

096028-6



we can write

fnlðx; k; tÞ ¼ fnlðx; k; 0Þ − it
Z

d3k0

ð2πÞ3
k

2Mi
· ∇xeik

0·x
�
kþ k0

2
; nl; 1

����ρSð0Þ
����k − k0

2
; nl; 1

	
þ � � �

¼ fnlðx; k; 0Þ − tv · ∇xfnlðx; k; 0Þ þ � � � ; ð27Þ

where the c.m. velocity of the quarkonium is defined as v ¼ k
2M.

Now we proceed to compute the contributions from the other two terms in the Lindblad Eq. (12) omitted in Eq. (27).
The −

P
a;b;c;d

1
2
γab;cdfL†

cdLab; ρSð0Þg term gives

− t
Z

d3pcm

ð2πÞ3
d3prel

ð2πÞ3
d3q

ð2πÞ32q nBðqÞð2πÞ
4δ3ðk − pcm þ qÞδ

�
−jEnlj þ q −

p2rel
M

�

×
2

3
CFq2g2jhψnljrjΨprelij2fnlðx; k; t ¼ 0Þ≡ −tCð−Þnl ðx; k; t ¼ 0Þ: ð28Þ

The dissociation rate Γdisso of a quarkonium with momentum k and position x can be defined by Γdissoðx; k; tÞ ¼ Cð−Þnl ðx;k;tÞ
fnlðx;k;tÞ .

The dissociation rate derived here is the same as calculated in Ref. [21] by taking the imaginary part of Fig. 1. The same
dissociation term has been used in the Boltzmann transport equation in Ref. [23].
The

P
a;b;c;dγab;cdLabρSð0ÞL†

cd term gives

t
X
a;i

Z
d3pcm

ð2πÞ3
d3prel

ð2πÞ3
d3q

ð2πÞ32q ð1þ nBðqÞÞð2πÞ4δ3ðk − pcm þ qÞδ
�
−jEnlj þ q −

p2rel
M

�

×
2TF

3NC
q2g2hψnljrijΨpreli

Z
d3rψnlðrÞriΨ�

prelðrÞfQQ̄ðx; pcm; r; prel; a; t ¼ 0Þ≡ tCðþÞ
nl ðx; k; 0Þ; ð29Þ

where fQQ̄ðx; pcm; r; prel; a; t ¼ 0Þ is the two-particle dis-
tribution function of a heavy quark-antiquark pair in color
octet a with the c.m. position x and momentum pcm and
relative position r and momentum prel. Unlike in the
dissociation term, one of the integrals over the wave
functions of the relative motion involves the two-particle
distribution function of QQ̄.
Now, putting Eqs. (27), (28), and (29) together, we

finally infer the Boltzmann transport equations

∂
∂t fnlðx; k; tÞ þ v · ∇xfnlðx; k; tÞ

¼ CðþÞ
nl ðx; k; tÞ − Cð−Þnl ðx; k; tÞ; ð30Þ

where the dissociation Cð−Þnl ðx; k; tÞ and recombination

CðþÞ
nl ðx; k; tÞ terms are defined in Eqs. (28) and (29).

Both terms Cð�Þ
nl ðx; k; tÞ consist of three parts: phase-space

integrals, delta functions for energy-momentum conserva-
tions, and scattering amplitudes squared.
The integral over d3r in CðþÞ

nl is nontrivial: not only the
wave function but also the distribution function is involved.
We now consider under what conditions the integral can be
further simplified. We note that the support (the region with
a nonzero function value) of the integrand is on the order of
the Bohr radius aB of the bound state. So, if the distribution
function is almost uniform in r for r≲ aB, one can take the

distribution function out of the integral. This is true
when the diffusion length scale

ffiffiffiffiffiffi
Dt

p
is much larger than

r ∼ aB ∼ 1
Mv, where D is the diffusion constant of open

heavy flavors. The distribution function in r caused solely
by diffusion is a Gaussian with a variance ∼Dt. In other
words, the distribution function varies significantly at a
length scale

ffiffiffiffiffiffi
Dt

p
, and when one focuses on a region with a

much smaller length scale, one can treat the distribution
function as uniform. A perturbative estimate gives D ∼ 1

α2sT

[48]. The time period for the QQ̄ to be close within the
bound-state formation range is roughly t ∼ aB

vrel
∼ 1=Mv

prel=M
∼

1
prelv

. So
ffiffiffiffiffiffi
Dt

p
≫ 1

Mv gives

1

α2sprelT
≫

1

M2v
: ð31Þ

Taking T ∼Mv2 as previously assumed, we find we must
have prel ≪ Mv=ðv2α2sÞ, which is clearly satisfied for
prel ∼Mv. For prel large enough that this condition is
not satisfied, the contribution to the integral involving
hψnljrjΨpreli is negligible for such large prel. This agrees
with the intuition: a heavy quark-antiquark pair with large
relative momentum cannot form a bound state. So we can
take fQQ̄ðx; pcm; r; prel; a; tÞ out of the wave function
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integral with the awareness that the contribution from
r ≫ aB should vanish.
Furthermore, we make the molecular chaos assumption

and write

fQQ̄ðx; pcm; r; prel; a; tÞ ¼
1

9
fQðx1; p1; tÞfQ̄ðx2; p2; tÞ;

ð32Þ
where x, r, pcm, prel are the c.m. and relative positions and
momenta of the heavy quark-antiquark pair with positions

x1, x2 and momenta p1, p2. The factor 1
9
accounts for the

probability of the color state ofQQ̄ being in a specific octet
state a. The molecular chaos assumption is valid when the
rate of decorrelation between the heavy quark and anti-
quark is much larger than the relaxation rate of the system.
The former is given by D−1 ∼ α2sT with αs at the scale T or
mD, while the later has been estimated above and is∼αsv2T
with αs at the scale Mv. In NRQCD, v ∼ αsðMvÞ, so the
molecular chaos assumption is valid.
Combining these two assumptions gives

CðþÞ
nl ðx; k; tÞ ¼ 8

9

Z
d3pcm

ð2πÞ3
d3prel

ð2πÞ3
d3q

ð2πÞ32q ð1þ nBðqÞÞfQðx1; p1; tÞfQ̄ðx2; p2; tÞ

× ð2πÞ4δ3ðk − pcm þ qÞδ
�
−jEnlj þ q −

p2rel
M

�
2

3

TF

Nc
q2g2jhψnljrjΨprelij2; ð33Þ

where the sum over color index a has been carried out.
This is the recombination term used in the Boltzmann
equation in Ref. [23]. In order to take the spin multiplicity

into account, one must further insert a factor gs into CðþÞ
nl ,

where gs ¼ 3
4
for S ¼ 1 quarkonium and gs ¼ 1

4
for S ¼ 0

quarkonium. The in-medium dynamical evolution of
open heavy quarks can also be described by Boltzmann
equations [49–51].

IV. ANNIHILATION OF QUARKONIUM

It is known that the NRQCD Lagrangian has four-
fermion interactions, which can describe the annihilation
of quarkonium (into other hadrons or leptons) and are not
included in the pNRQCD Lagrangian Eq. (13). We can add

−ΓS†SρS to describe the annihilation. But this would break
the conservation of probability Trð ddt ρSÞ ¼ 0. So one also
needs to include terms of the forms ρSS†S and SρSS†.
A pedagogical discussion of how to construct an open
effective field theory in order to conserve probability can be
found in Ref. [38]. The annihilation is too slow to be of
much interest for phenomenology, but we study it as an
interesting example of how Lindblad-type operators enter
the time evolution equation for the density matrix. In our
case, we first restore the standard pNRQCD notation of a
singlet field, SðR; r; tÞ≡ hrjSðR; tÞi; i.e., we project the
wave function of the relative motion onto the relative
position space. Then we can add two new terms in the
density matrix evolution equation

ρSðtÞ ¼ � � � þ
Z

t

0

dt1

Z
d3R

Z
d3r

�
−
ΓðrÞ
2

fS†ðR; r; t1ÞSðR; r; t1Þ; ρSð0Þg þ ΓðrÞSðR; r; t1ÞρSð0ÞS†ðR; r; t1Þ
�
; ð34Þ

where the evolution term is explicitly trace preserving.
As above, we are interested in the bound state and will sandwich the density matrix between two bound quarkonium

states and then do a Wigner transform.

A. fS†ðR;r;tÞSðR;r;tÞ;ρSð0Þg term

We first compute the S†ðR; r; tÞSðR; r; tÞρSð0Þ term sandwiched between hk1; nl; 1j and jk2; nl; 1i and insert a complete
set of states jk3; n3l3; 1i:Z

t

0

dt1

Z
d3R

Z
d3r

−ΓðrÞ
2

Z
d3k3
ð2πÞ3

X
n3;l3

hk1; nl; 1jS†ðR; r; t1ÞSðR; r; t1Þjk3; n3l3; 1ihk3; n3l3; 1jρSð0Þjk2; nl; 1i

¼
Z

t

0

dt1

Z
d3R

Z
d3r

−ΓðrÞ
2

Z
d3k3
ð2πÞ3

X
n3;l3

ψn3l3ðrÞψ�
nlðrÞeijEnljt1−ik1·Re−ijEn3l3

jt1þik3·Rhk3; n3l3; 1jρSð0Þjk2; nl; 1i

¼ −1
2

t
Z

d3rψ�
nlðrÞΓðrÞψnlðrÞhk1; nl; 1jρSð0Þjk2; nl; 1i; ð35Þ
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where we have used the Markovian approximation and
written the delta function in energy as t. In the summation
over n3 and l3, only n3 ¼ n, l3 ¼ l contributes due to the
delta function in energy (we assume no degeneracy in the
bound-state eigenenergy beyond that implied by rotational
invariance).
We can define the annihilation rate of a quarkonium

state nl,

Γnl ≡
Z

d3rψ�
nlðrÞΓðrÞψnlðrÞ; ð36Þ

which is nonzero even in vacuum and should be distin-
guished from the dissociation rate inside QGP. For S-wave,
one may set ΓðrÞ ¼ Γδ3ðrÞ and then ΓS ¼ ΓjψSð0Þj2; i.e.,
the annihilation rate depends on the wave function of the
relative motion at the origin.

The other term in the anticommutator will give the same
result. Under a Wigner transform, these two terms lead in
the Boltzmann equations to

−Γnlfnlðx; k; tÞ: ð37Þ

Typically Γnl ∼ 10 keV, so for a QGP with a lifetime
∼10 fm ∼ 0.05 MeV−1, the effect from quarkonium anni-
hilations is negligible on the in-medium evolution. It is
justified to assume that the total number of heavy quarks is
conserved during the in-medium evolution.

B. SðR;r;tÞρSð0ÞS†ðR;r;tÞ term
Then, we compute the contribution from the SðR; r; tÞ×

ρSð0ÞS†ðR; r; tÞ term sandwiched between hk1; nl; 1j
and jk2; nl; 1i:

Z
t

0

dt1

Z
d3R

Z
d3rΓðrÞhk1; nl; 1jSðR; r; t1ÞρSð0ÞS†ðR; r; t1Þjk2; nl; 1i

¼
Z

d3rΓðrÞ
Z

d3k3
ð2πÞ3

X
n3;l3

Z
d3k4
ð2πÞ3

X
n4;l4

ψn3l3ðrÞψ�
n4l4

ðrÞð2πÞ4δ3ðk3 − k4ÞδðEk3 − Ek4Þ

× hk1; nl; 1; k3; n3l3; 1jρSð0Þjk2; nl; 1; k4; n4l4; 1i

¼ t
Z

d3k3
ð2πÞ3

X
n3;l3

Γn3l3

Z
d3k03
ð2πÞ3

Z
d3x0eik3 0·x0

�
k1; nl; 1; k3 þ

k30

2
; n3l3; 1jρSð0Þjk2; nl; 1; k3 −

k30

2
; n3l3; 1

	
; ð38Þ

where we have inserted an identity
R
d3k03δ

3ðk03Þ ¼ 1 and
written δ3ðk03Þ as a spatial integral over x0. It should be
noted that the integral over k30 is already a Wigner trans-
form on the density matrix of the second particle with
momentum k3 and position x0. If we further apply a Wigner
transform on the density matrix of the first particle and
properly reshuffle labels, we obtain the contribution of this
term in the Boltzmann equation

X
n0;l0

Γn0l0

Z
d3k0

ð2πÞ3
Z

d3x0fðx; k; nl; x0; k0; n0l0; tÞ: ð39Þ

It involves the two-particle distribution function
fðx; k; nl; x0; k0; n0l0; tÞ of two quarkonium states nl and
n0l0 with positions x, x0 and momenta k, k0, respectively.
When the second quarkonium with the quantum number
n0l0 annihilates, it leads to an increase in the one-particle
distribution function of quarkonium with quantum number
nl. Therefore, this term, together with the term in Eq. (37),
guarantees the conservation of probability in the one-
particle distribution of quarkonium. However, as men-
tioned earlier, the annihilation effect is negligible in current
heavy ion collision experiments.

V. CONCLUSION

In this paper, we used the open quantum system
formalism where the system of heavy quarks and quarko-
nium is described by pNRQCD at LO in the nonrelativistic
expansion while the environment is a weakly coupled
thermal QGP. We derived the Boltzmann transport equation
for a quarkonium inside a QGP below its melting temper-
ature from first principles under the assumptions of weak
coupling between the quarkonium and the QGP and
Markovian evolution. Both assumptions are justified by
our assumed separation of scales, M ≫ Mv ≫ Mv2≳
T ≳mD. This requires rT ≪ 1, where r is the typical size
of the quarkonium, which is probably a realistic assumption
for current heavy ion collisions for the most compact
quarkonium such as the ϒð1SÞ. It could work as well for
ϒð2SÞ for T ≲ 200 MeV. Correlations of environment
operators are calculated in real-time thermal field theory.
After tracing out the environment d.o.f., we obtained the
Lindblad equation, which is nonunitary and time irrevers-
ible. Under a Wigner transform, the Lindblad equation
leads to the Boltzmann transport equation.
The derivation here provides a theoretical justification of

quarkonium transport equations inside a weakly coupled
QGP below the melting temperature of the quarkonium.
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It connects two main approaches of the phenomenology of
quarkonium production in heavy ion collisions. One can
improve the derivation by working to next-leading order
in the coupling constant and expansion parameters in both
the system sector (pNRQCD) and the environment sector
(thermal QCD). In the case of a nonperturbative construc-
tion of pNRQCD, a similar derivation is possible. The
connection between the complex potential calculated on the
lattice [52] and the transport equation is worth exploring in
our framework. The derivation can be extended to the case
of quarkonium evolution inside a strongly coupled QGP, a
hot medium out of equilibrium or cold nuclear matter by
replacing the Green’s functions of thermal QCD with those
in the corresponding media. It would also be interesting to
study the viscous and anisotropic corrections to the Debye
screening, the dissociation rate of quarkonium [53–55], and
the recombination in a nonthermal QGP. The effect of a
turbulent plasma on the heavy quark-antiquark pair or
quarkonium in the early stage of heavy ion collisions can
also be explored [56]. A description of the quarkonium
evolution through cold nuclear matter will be useful to
studies of quarkonium production in both proton-ion and
electron-ion collisions.
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APPENDIX A: GREEN’S FUNCTIONS IN
REAL-TIME THERMAL FIELD THEORY

In real-time thermal field theory, the commonly used
Green’s functions are the “>”, “<”, retarded, advanced,
and time-ordered Green’s functions. They are defined as
follows:

D>ab
μν ðt; xÞ ¼ hAa

μðt; xÞAb
νð0; 0ÞiT;

D<ab
μν ðt; xÞ ¼ hAa

νð0; 0ÞAb
μðt; xÞiT;

DRab
μν ðt; xÞ ¼ hθðtÞ½Aa

μðt; xÞ; Ab
νð0; 0Þ�iT;

DAab
μν ðt; xÞ ¼ −hθð−tÞ½Aa

μðt; xÞ; Ab
νð0; 0Þ�iT;

DT ab
μν ðt; xÞ ¼ hT ðAa

μðt; xÞAb
νð0; 0ÞÞiT: ðA1Þ

The Fourier transform is defined as

DXab
μν ðq0; qÞ ¼

Z
d4xeiðq0t−q·xÞDXab

μν ðt; xÞ; ðA2Þ

where X could be >, <, R, A, or T . In momentum space
for a free theory,

D>ab
μν ðqÞ ¼ ð1þ nBðq0ÞÞ

X
λ

ϵλ�μ ϵλνδabρFðqÞ;

D<ab
μν ðqÞ ¼ nBðq0Þ

X
λ

ϵλ�μ ϵλνδabρFðqÞ;

ρFðqÞ ¼ ð2πÞsignðq0Þδðq20 − q2Þ;

DRab
μν ðqÞ ¼ i

P
λϵ

λ�
μ ϵ

λ
νδ

ab

q20 − q2 þ isignðq0Þϵ
;

DAab
μν ðqÞ ¼ i

P
λϵ

λ�
μ ϵλνδ

ab

q20 − q2 − isignðq0Þϵ
;

DT ab
μν ðqÞ ¼ DRab

μν ðqÞ þD<ab
μν ðqÞ

¼
X
λ

ϵλ�μ ϵλνδ
ab

�
i

q20 − q2 þ iϵ

þ nBðjq0jÞð2πÞδðq20 − q2Þ
�
: ðA3Þ

APPENDIX B: − iσab½Lab;ρS� TERM
To compute

P
a;bσabLab, we first note that

�X
a;b

−i
2

Z
t

0

dt1

Z
t

0

dt2
X
α;β

Cαβðt1; t2Þθðt1 − t2ÞhajOðSÞ
α ðt1ÞOðSÞ

β ðt2ÞjbiLab

�†

¼
X
a;b

i
2

Z
t

0

dt1

Z
t

0

dt2
X
α;β

Cβαðt2; t1Þθðt1 − t2ÞhbjOðSÞ
β ðt2ÞOðSÞ

α ðt1ÞjaiLba

¼
X
a;b

−i
2

Z
t

0

dt1

Z
t

0

dt2
X
α;β

Cαβðt1; t2Þð−θðt2 − t1ÞÞhajOðSÞ
α ðt1ÞOðSÞ

β ðt2ÞjbiLab; ðB1Þ

where in the last line we flip α ↔ β, t1 ↔ t2, and jai ↔ jbi. We can split signðt1 − t2Þ into θðt1 − t2Þ and −θðt2 − t1Þ inP
a;bσabLab and just need to compute the θðt1 − t2Þ term. The −θðt2 − t1Þ term is given by the Hermitian conjugate of the

θðt1 − t2Þ term. Therefore,
P

a;bσabLab is Hermitian, and this term can be thought of as a correction to the system
Hamiltonian. To carry out the calculation explicitly, we first write

D>ab
μν ðR1; t1;R2; t2Þθðt1 − t2Þ ¼ ðDRab

μν ðR1; t1;R2; t2Þ þD<ab
μν ðR1; t1;R2; t2ÞÞθðt1 − t2Þ: ðB2Þ
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Then we can replace Cαβðt1; t2Þ in the first line of Eq. (B1), due to the θðt1 − t2Þ, with

Cαβðt1; t2Þ ¼ CR1i1a1;R2i2a2ðt1; t2Þ ¼
TF

NC
g2hEa1

i1
ðR1; t1ÞEa2

i2
ðR2; t2ÞiT

→
TF

NC
g2δa1a2

Z
d4q
ð2πÞ4 e

−iq0ðt1−t2Þþiq·ðR1−R2Þðq20δi1i2 − qi1qi2Þ
�

i
q20 − q2 þ iϵ

þ nBðjq0jÞð2πÞδðq20 − q2Þ
�
þOðg3Þ:

ðB3Þ
The term inside the square brackets is the time-ordered thermal propagator in momentum space.
We are interested in the bound-state part of the density matrix, so we set jai ¼ jk1; n1l1; 1i and jbi ¼ jk2; n2l2; 1i. Then

we can compute

θðt1 − t2ÞhajOðSÞ
α ðt1ÞOðSÞ

β ðt2Þjbi ¼ θðt1 − t2Þhk1; n1l1; 1jhSðR1; t1Þjri1 jOa1ðR1; t1ÞihOa2ðR2; t2Þjri2 jSðR2; t2Þijk2; n2l2; 1i

¼ δa1a2
Z

d3pcm

ð2πÞ3
Z

d3prel

ð2πÞ3 hψn1l1 jri1 jΨprel
ihΨprel

jri2 jψn2l2iθðt1 − t2Þ

× eiEpðt2−t1Þ−ipcm·ðR2−R1Þe−iEk2
t2þik2·R2eiEk1

t1−ik1·R1 ðB4Þ

where Ep ¼ p2rel
M . This can be written as

θðt1 − t2ÞhajOðSÞ
α ðt1ÞOðSÞ

β ðt2Þjbi ¼ hψn1l1 jri1
Z

d4pcm

ð2πÞ4
Z

d3prel

ð2πÞ3
ijΨprelihΨprel j
p0
cm − Ep þ iϵ

ri2 jψn2l2i

× δa1a2eip
0
cmðt2−t1Þ−ipcm·ðR2−R1Þe−iEk2

t2þik2·R2eiEk1
t1−ik1·R1 : ðB5Þ

It should be noted that p0
cm here does not represent the c.m. energy of the octet. In fact, it is the total energy of the composite

octet particle, p0
cm ¼ p2cm

4M þ p2rel
M ¼ p2rel

M þOðMv4Þ.
To simplify the expression, we make the Markovian approximation t → ∞. Then, integrating over t1 and t2 will give two

delta functions in energy. Plugging Eqs. (B3) and (B5) into
P

a;bσabLab and integrating over t1, t2, R1, and R2, we find

X
a;b

σabLab ¼
1

2



−i
X
n1;l1

X
n2;l2

X
i1;i2

Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3

Z
d4q
ð2πÞ4

Z
d4pcm

ð2πÞ4
Z

d3prel

ð2πÞ3
TF

NC
ðN2

C − 1Þg2ðq20δi1i2 − qi1qi2Þ

×

�
i

q20 − q2 þ iϵ
þ nBðjq0jÞð2πÞδðq20 − q2Þ

�
hψn1l1 jri1

ijΨprelihΨprel j
p0
cm − Ep þ iϵ

ri2 jψn2l2ið2πÞ3δ3ðk1 − pcm − qÞð2πÞ3

× δ3ðk2 − pcm − qÞð2πÞδðEk1 − p0
cm − q0Þð2πÞδðEk2 − p0

cm − q0ÞLjk1;n1l1;1ihk2;n2l2;1j þ H:c:

�
: ðB6Þ

The two time integrals give a product of two delta functions in energy δðω1Þδðω2Þ, where ωi¼Eki−p
0
cm−q0 for i ¼ 1, 2 and

ω1 ¼ ω2 ¼ ω. We interpret one factor of 2πδðωÞ to be the time interval, so the double time integral is interpreted as follows:Z
t

0

dt1

Z
t

0

dt2eiωt1e−iωt2 ¼
4sin2ðωt=2Þ

ω2
⟶
t→∞

t2πδðωÞ: ðB7Þ

See Ref. [57] for details. This argument also applies in Appendixes C and D. The delta functions in energy and momentum
give k1 ¼ k2 ¼ k, n1 ¼ n2 ¼ n, and l1 ¼ l2 ¼ l (we assume no degeneracy in the bound-state eigenenergy beyond that
implied by rotational invariance). So, we have

X
a;b

σabLab → t
X
n;l

Z
d3k
ð2πÞ3ℜ



−ig2CF

X
i1;i2

Z
d4q
ð2πÞ4

Z
d4pcm

ð2πÞ4
Z

d3prel

ð2πÞ3 ðq
2
0δi1i2 − qi1qi2Þ

×

�
i

q20 − q2 þ iϵ
þ nBðjq0jÞð2πÞδðq20 − q2Þ

�

× hψnljri1
ijΨprelihΨprel j
p0
cm − Ep þ iϵ

ri2 jψnlið2πÞ3δ3ðk − pcm − qÞð2πÞδðEk − p0
cm − q0Þ

�
Ljk;nl;1ihk;nl;1j; ðB8Þ

where the terms for the unbound singlet and octet are not shown here but can be written out similarly.
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APPENDIX C: − 1
2 γab;cdfL†

cdLab;ρSð0Þg TERM

We will show that this term gives the dissociation term in the Boltzmann equation. We first compute the term
− 1

2
γab;cdL

†
cdLabρSð0Þ. As explained previously, we are interested in the bound-state part of the density matrix and take

hk1; n1l1; 1jρSðtÞjk2; n2l2; 1i, so we set jdi ¼ jk1; n1l1; 1i. Since at lowest order of the expansion, the transition between the
bound state and unbound pair only occurs via singlet-octet transition, we have jai ¼ jci ¼ jpcm; prel; a1i, and double
summations over jai and jci become just one summation. Similarly, we have jbi ¼ jk3; n3l3; 1i. We need to compute

γab;cd ¼
Z

d3R1

Z
d3R2

X
i1;i2;b1;b2

Z
t

0

dt1

Z
t

0

dt2CR1i1b1;R2i2b2ðt1; t2Þ

× hk1; n1l1; 1jhSðR1; t1Þjri1 jOb1ðR1; t1Þijpcm; prel; a1i
× hpcm; prel; a1jhOb2ðR2; t2Þjri2 jSðR2; t2Þijk3; n3l3; 1i: ðC1Þ

We can start with

hk1; n1l1; 1jhSðR1; t1Þjri1 jOb1ðR1; t1Þijpcm; prel; a1i ¼ hψn1l1 jri1 jΨpreliδa1b1e−iðEpt1−pcm·R1ÞeiðEk1
t1−k1·R1Þ

hpcm; prel; a1jhOb2ðR2; t2Þjri2 jSðR2; t2Þijk3; n3l3; 1i ¼ hΨprel jri2 jψn3l3iδa1b2e−iðEk3
t2−k3·R2ÞeiðEpt2−pcm·R2Þ; ðC2Þ

where Ep ¼ p2rel
M and Eki ¼ −jEnili j up to v2 corrections. The correlation needed is

CR1i1b1;R2i2b2ðt1; t2Þ ¼
TF

NC
g2hEb1

i1
ðR1; t1ÞEb2

i2
ðR2; t2ÞiT

¼ TF

NC
g2δb1b2

Z
d4q
ð2πÞ4 e

iq0ðt1−t2Þ−iq·ðR1−R2Þðq20δi1i2 − qi1qi2ÞnBðq0Þð2πÞsignðq0Þδðq20 − q2Þ þOðg3Þ;

ðC3Þ

where we have used the expression ofD<ab
μν ðqÞ in Appendix A. It should be pointed out that one can also use the expression

of D>ab
μν ðqÞ and will obtain the same result due to the relation 1þ nBðq0Þ þ nBð−q0Þ ¼ 0. Now, we can write the term

hk1; n1l1; 1jγab;cdL†
cdLabρSð0Þjk2; n2l2; 1i out explicitly as

Z
d3pcm

ð2πÞ3
d3prel

ð2πÞ3
d3k3
ð2πÞ3

d4q
ð2πÞ4

Z
d3R1

Z
d3R2

Z
t

0

dt1

Z
t

0

dt2

×
X

n3;l3;a1;b1;b2;i1;i2

TF

NC
g2ðq20δi1i2 − qi1qi2ÞnBðq0Þδb1b2ð2πÞsignðq0Þδðq20 − q2Þeiq0ðt1−t2Þ−iq·ðR1−R2Þ

× hψn1l1 jri1 jΨpreliδa1b1e−iðEpt1−pcm·R1ÞeiðEk1
t1−k1·R1ÞhΨprel jri2 jψn3l3iδa1b2e−iðEk3

t2−k3·R2ÞeiðEpt2−pcm·R2Þ

× hk3; n3l3; 1jρSð0Þjk2; n2l2; 1i: ðC4Þ

Integrating over R1 and R2 gives two delta functions in momenta, δ3ðk1 − pcm þ qÞδ3ðk3 − pcm þ qÞ. Under the Markovian
approximation, t → ∞, integrating over t1 and t2 will give another two delta functions, δðEk1 − Ep þ q0ÞδðEk3 − Ep þ q0Þ.
Since Eki < 0 and Ep > 0, some energy has to be transferred to the bound state to break it up to an unbound state, and thus
q0 has to be positive. [If we use D>ab

μν ðqÞ, here we would have δðEk1 − Ep − q0ÞδðEk3 − Ep − q0Þ, and q0 is negative.]
Integrating over R1, R2, t1, t2, and k3 gives

X
n3;l3;a1;i1

Z
d3pcm

ð2πÞ3
d3prel

ð2πÞ3
d3q

ð2πÞ32q nBðqÞð2πÞ
5δðEk1 − Ep þ qÞδðEk3 − Ep þ qÞδ3ðk1 − pcm þ qÞ

×
2TF

3NC
q2g2hψn1l1 jri1 jΨprelihΨprel jri1 jψn3l3ihk1; n3l3; 1jρSð0Þjk2; n2l2; 1i; ðC5Þ

where we have used for any smooth function fðqÞ
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Z
d3q
ð2πÞ3 ðq

2δi1i2 − qi1qi2ÞfðqÞ ¼
2

3
δi1i2

Z
d3q
ð2πÞ3 q

2fðqÞ:

ðC6Þ

Due to the energy delta functions, the sum over n3 and l3
gives n3 ¼ n1, l3 ¼ l1 (we assume no degeneracy in the
bound-state eigenenergy beyond that implied by rotational
invariance). Then, one of the energy delta functions
multiplied by 2π can be interpreted as the time interval t.
So we have

t
Z

d3pcm

ð2πÞ3
d3prel

ð2πÞ3
d3q

ð2πÞ32q nBðqÞð2πÞ
4

× δ3ðk1 − pcm þ qÞδðEk1 − Ep þ qÞ

×
2TF

3NC
ðN2

C − 1Þq2g2jhψn1l1 jrjΨprelij2

× hk1; n1l1; 1jρSð0Þjk2; n2l2; 1i: ðC7Þ

Under a Wigner transform of the form Eq. (21) (where we
set k1 ¼ kþ k0

2
, k2 ¼ k − k0

2
, n1 ¼ n2 ¼ n, and l1 ¼ l2 ¼ l

and then do a shift in c.m. momentum pcm → pcm þ k0
2
),

Eq. (C7) finally leads to

t
Z

d3pcm

ð2πÞ3
d3prel

ð2πÞ3
d3q

ð2πÞ32q nBðqÞð2πÞ
4

× δ3ðk − pcm þ qÞδðEk − Ep þ qÞ

×
2

3
CFq2g2jhψnljrjΨprelij2fnlðx; k; t ¼ 0Þ: ðC8Þ

The other term in the anticommutator gives the same result.
So applying the Wigner transform to the − 1

2
γab;cdhk1; n1l1;

1jfL†
cdLab; ρSð0Þgjk2; n2l2; 1i term in the Lindblad equa-

tion yields the negative of Eq. (C8).

APPENDIX D: γab;cdLabρSð0ÞL†
cd TERM

For this term we set jai¼ jk1;n1l1;1i, jci ¼ jk2; n2l2; 1i,
jbi ¼ jp1 cm; p1rel; a1i and jdi ¼ jp2 cm; p2rel; a2i, where a1
and a2 are color indexes. We need to evaluate

γab;cd ¼
Z

d3R1

Z
d3R2

X
i1;i2;b1;b2

Z
t

0

dt1

Z
t

0

dt2CR2i2b2;R1i1b1ðt2; t1Þhk1; n1l1; 1jhSðR1; t1Þjri1 jOb1ðR1; t1Þijp1 cm; p1rel; a1i

× hp2 cm; p2rel; a2jhOb2ðR2; t2Þjri2 jSðR2; t2Þijk2; n2l2; 1i: ðD1Þ

We first compute the singlet-octet transition term,

hk1; n1l1; 1jhSðR1; t1Þjri1 jOb1ðR1; t1Þijp1 cm; p1rel; a1i ¼ hψn1l1 jri1 jΨp1reliδa1b1e−iðEp1
t1−p1 cm·R1ÞeiðEk1

t1−k1·R1Þ

hp2 cm; p2rel; a2jhOb2ðR2; t2Þjri2 jSðR2; t2Þijk2; n2l2; 1i ¼ hΨp2rel jri2 jψn2l2iδa2b2e−iðEk2
t2−k2·R2ÞeiðEp2

t2−p2 cm·R2Þ: ðD2Þ

The correlation in real-time thermal field theory is

CR2i2b2;R1i1b1ðt2; t1Þ ¼
TF

NC
g2hEb2

i2
ðR2; t2ÞEb1

i1
ðR1; t1ÞiT

¼ TF

NC
g2δb1b2

Z
d4q
ð2πÞ4 e

iq0ðt1−t2Þ−iq·ðR1−R2Þðq20δi1i2 − qi1qi2Þð1þ nBðq0ÞÞð2πÞsignðq0Þδðq20 − q2Þ

þOðg3Þ; ðD3Þ

where we have used the expression of D>ab
μν ðqÞ in Appendix A.

Now we can combine everything and write the hk1; n1l1; 1jγab;cdLabρSð0ÞL†
cdjk2; n2l2; 1i term out explicitly:

Z
d4q
ð2πÞ4

d3p1 cm

ð2πÞ3
d3p1rel

ð2πÞ3
d3p2 cm

ð2πÞ3
d3p2rel

ð2πÞ3
Z

d3R1

Z
d3R2

Z
t

0

dt1

Z
t

0

dt2

×
X

a1;a2;b1;b2;i1;i2

TF

NC
g2δb1b2ðq20δi1i2 − qi1qi2Þð1þ nBðq0ÞÞð2πÞsignðq0Þδðq20 − q2Þeiq0ðt1−t2Þ−iq·ðR1−R2Þ

× hψn1l1 jri1 jΨp1reliδa1b1e−iðEp1
t1−p1 cm·R1ÞeiðEk1

t1−k1·R1Þ

× hΨp2rel jri2 jψn2l2iδa2b2e−iðEk2
t2−k2·R2ÞeiðEp2

t2−p2 cm·R2Þhp1 cm; p1rel; a1jρSð0Þjp2 cm; p2rel; a2i: ðD4Þ
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Integrating over R1 and R2 gives two delta functions in momenta, δ3ðk1 − p1 cm þ qÞδ3ðk2 − p2 cm þ qÞ. Under the
Markovian approximation, t → ∞, integrating over t1 and t2 gives another two delta functions,
δðEk1 − Ep1

þ q0ÞδðEk2 − Ep2
þ q0Þ. Then q0 has to be positive because Eki < 0 and Epi

> 0. [Using the representation
D<ab

μν ðqÞ will give q0 < 0 but lead to the same result due to 1þ nBðq0Þ þ nBð−q0Þ ¼ 0]. Again, we set
q20δi1i2 − qi1qi2 →

2
3
q2δi1i2 , since the gluon is on shell, q0 ¼ jqj ¼ q. Now we have

Z
d3p1 cm

ð2πÞ3
d3p1rel

ð2πÞ3
d3p2 cm

ð2πÞ3
d3p2rel

ð2πÞ3
d3q

ð2πÞ32q ð1þ nBðqÞÞ
X
a;i

ð2πÞ8δ3ðk1 − p1 cm þ qÞδ3ðk2 − p2 cm þ qÞ

× δðEk1 − Ep1
þ qÞδðEk2 − Ep2

þ qÞ

×
2TF

3NC
q2g2hψn1l1 jrijΨp1relihΨp2rel jrijψn2l2ihp1 cm; p1rel; ajρSð0Þjp2 cm; p2rel; ai: ðD5Þ

Before integrating the delta functions, we first apply the Wigner transform on Eq. (D5) (by setting k1 ¼ kþ k0
2
, k2 ¼ k − k0

2
,

n1 ¼ n2 ¼ n and l1 ¼ l2 ¼ l):

Z
d3k0

ð2πÞ3 e
ik0·x d

3p1 cm

ð2πÞ3
d3p1rel

ð2πÞ3
d3p2 cm

ð2πÞ3
d3p2rel

ð2πÞ3
d3q

ð2πÞ32q ð1þ nBðqÞÞ

×
X
a;i

ð2πÞ8δ3
�
kþ k0

2
− p1 cm þ q

�
δ3
�
k −

k0

2
− p2 cm þ q

�
δðEk1 − Ep1

þ qÞδðEk2 − Ep2
þ qÞ

×
2TF

3NC
q2g2hψnljrijΨp1relihΨp2rel jrijψnlihp1 cm; p1rel; ajρSð0Þjp2 cm; p2rel; ai: ðD6Þ

At order Mv2, the c.m. momentum does not enter the

energy: Eki ¼ −jEnlj and Epi
¼ p2irel

M . If we shift the
momentum

p1 cm ¼ p01 cm þ k0

2
;

p2 cm ¼ p02 cm −
k0

2
; ðD7Þ

then the two momentum delta functions become
δ3ðk − p01 cm þ qÞδ3ðk − p02 cm þ qÞ. So, we can integrate
over p02 cm and set p02 cm ¼ p01 cm ¼ pcm. Due to the two

energy delta functions, we have p1rel ¼ p2rel. To simplify
further, we assume the octet scattering wave function can
be factorized,

hrjΨpreli ¼ eiprel·rfðr; prelÞ; ðD8Þ

which is true for the plane wave solution. If we further let

p1rel ¼ prel;

p2rel ¼ prel þ p0rel; ðD9Þ

(remember that we have shown p1rel ¼ p2rel,) we obtain

t
Z

d3pcm

ð2πÞ3
d3prel

ð2πÞ3
d3q

ð2πÞ32q ð1þ nBðqÞÞ
X
a;i

ð2πÞ4δ3ðk − pcm þ qÞδ
�
−jEnlj þ q −

p2rel
M

�

×
2TF

3NC
q2g2hψnljrijΨpreli

Z
d3rψnlðrÞriΨ�

prelðrÞ

×
Z

d3p0
rel

ð2πÞ3 e
−ip0rel·r

Z
d3k0

ð2πÞ3 e
ik0·x

�
pcm þ k0

2
; prel; a

����ρSð0Þ
����pcm −

k0

2
; prel þ p0rel; a

	
: ðD10Þ

The last line is just the phase-space distribution function of a heavy quark-antiquark pair whose c.m. position is located at x
and whose relative position is r:

fQQ̄ðx; pcm; r; prel; a; t ¼ 0Þ ¼
Z

d3k0

ð2πÞ3 e
ik0·x

Z
d3p0

rel

ð2πÞ3 e
−ip0rel·r

�
pcm þ k0

2
; prel; a

����ρSð0Þ
����pcm −

k0

2
; prel þ p0rel; a

	
: ðD11Þ
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So, the hk1; n1l1; 1jγab;cdLabρSð0ÞL†
cdjk2; n2l2; 1i term in the Lindblad equation under a Wigner transform leads to

t
Z

d3pcm

ð2πÞ3
d3prel

ð2πÞ3
d3q

ð2πÞ32q ð1þ nBðqÞÞð2πÞ4δ3ðk − pcm þ qÞδ
�
−jEnlj þ q −

p2rel
M

�

×
X
a;i

2TF

3NC
q2g2hψnljrijΨpreli

Z
d3rψnlðrÞriΨ�

prelðrÞfQQ̄ðx; pcm; r; prel; a; t ¼ 0Þ: ðD12Þ
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