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We endow a class of Lorentz Invariant Lagrangians with a simple shape factor and demonstrate that it
induces Q balls and radial Q vortices that, as is to be expected from particlelike modes, have a genuinely
compact supportwith the latter turning above a critical azimuthal number into planar rings with sharp inner
and outer radii.
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I. THE PROBLEM

Following the introduction of compactons [1]—solitary
waves with a compact support, in scalar dispersive systems,
see [1] or a primer on the subject [2]—we have introduced
in [3,4], a Lorenz Invariant class of complex Lagrangians
that induce Q balls with a strict compact support and thus
dispense with the perennial nuisance of infinite tails of Q
balls [5–7] and strictly compact planar vortices which
above a critical azimuthal number become genuine multi-
nodal radial rings of a finite span [2–4] (see, also, [8–9]).
Such solutions can in earnest be viewed as particlelike
modes. In this paper, we present yet another complex class
of compactness inducing Lorenz-Invariant Lagrangians,
but from a different angle. Whereas in [3,4] to induce
compactness the conventional potential was appended with
a subquadratic part, here we equip the Lorenz-Invariant
Lagrangian with a shape factor. Shape factors were already
employed in different contexts. In the complex Sine-
Gordon equation [10–11], the shape factor enabled inte-
grability, whereas in [12], the coordinate-depending scale
factors enable to construct self-dual modification of the
Skyrme model. In contradistinction, in the present work,
the chosen shape factor degenerates at the ground state. The
resulting local loss of solution’s uniqueness is then used to
enforce compactification of the resulting Q balls and Q
vortices. To demonstrate the idea, the simplest possible
shape factor is used. It will then become patently clear how
to extend it to more realistic setups.
We start with the ðx; tÞ domain. Let Z be complex in

ðx; tÞ and L the Lagrangian,

L ¼ FðjZjÞjZαj2 − PðjZjÞ where α ¼ 1; 2; ð1Þ

andZα denotes partial differentiation ofZ. The shape factor
F will be presented shortly. From (1), we have

FðjZjÞ∂2
αZþ Z̄

2jZjF
0ðjZjÞZ2

α þ P0ðjZjÞ Z
2jZj ¼ 0: ð2Þ

Since a Lorenz boost is available, it suffices to seek
radial stationary compact Q balls and assume that Z ¼
expð{ωtÞRðxÞ. Equation (2) then takes the simple form,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
FðjRjÞ

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
FðjRjÞ

p
RxÞx þ fP0

ωðjRjÞ − P0ðjRjÞg R
2jRj ¼ 0;

ð3Þ

and P0
ωðjRjÞ ¼ ω2FðjRjÞjRj2. Upon one integration and

dropping the constant of integration,

FðjRjÞfR2
x þ ω2R2g − PðjRjÞ ¼ 0; ð4Þ

or

R2
x þ PeffðjRjÞ ¼ 0; where Peff ≐ ω2R2 −

PðjRjÞ
FðjRjÞ : ð5Þ

We now proceed to the crucial issue of picking a suitable
shape factor F and the potential P which enable formation
of compact solitary structures. Perhaps the simplest choice
which exemplifies our assertion is

FðjRjÞ ¼ jRj1−δ; 0 ≤ δ< 1 and P¼ R2ð1þ μjRjÞ;
ð6Þ

which yields the effective potential Peff ,

Peff ¼ ω2R2 − jRj1þδð1þ μjRjÞ; ð7Þ

with μ being a non-negative free parameter.
We now pause for the following observations; whereas

in (4), the compactification is due to the degeneracy of the
shape factor F at the ground state, the reduction from (4)
to (7), possible only in 1D, shifts the action to the effective*rosenau@tauex.tau.ac.il
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potential Peff which is subquadratic and thus supports
compact structures. It may seem that one could have
assumed such potential ab initio and thus reduce the
problem to the one already addressed in [3], but the
apparent equivalence holds only on the ode level of
Eq. (5). The true dynamics governed by the underlying
PDEs may be quite different. Moreover, as we shall see
shortly, the apparent mathematical equivalence holds only
in 1D. However, in spite the different origin of the effective
potential insofar as the ensuing patterns are concerned,
the final effect is the same: a local loss of a solution’s
uniqueness at the vicinity of the ground state enables us to
“glue” the solution across the singular manifold with a
vacuum solution to form a finite span entity: the compac-
ton. Clearly, such a solution has a finite degree of smooth-
ness, but since it is bounded, its energy is finite [1–4].
Returning to the problem at hand, we turn to solve

R2
x þ ω2R2 − R1þδð1þ μRÞ ¼ 0; ð8Þ

or, using normalized coordinates, s ¼ ωx,R ¼ R0v,
R0 ¼ 1=ω

2
1−δ, and σ ¼ μ=ω

2
1−δ;

v2s þ PeffðvÞ ¼ 0; PeffðvÞ ≐ v2 − v1þδð1þ σvÞ: ð9Þ

PeffðvÞ is shown in Fig. (1) for 0 ≤ σ, with σ� the critical
value [0.385 in Fig. (1)] and the corresponding v� given as,
0 < δ < 1,

v� ¼ ð1=δÞ1=ð1−δÞ and σ� ¼ v−δ� − v−1� :

For compact structures to emerge, we need σ < σ� which
elevates ω above a critical threshold,

ω > ω� ¼
�
μ

σ�

�
γ

where γ ¼ 1 − δ

2
: ð10Þ

When δ ¼ 0, we assume ω >
ffiffiffi
μ

p
and define κ2 ¼ ω2 − μ.

The resulting compacton solution,

R ¼ 1

κ2
cos2

�
κx
2

�
Hðπ − κjxjÞ; ð11Þ

and vanishes elsewhere. Similarly, for σ ¼ 0,

R ¼ 1

ωγ cos
1
γðωγxÞHðπ − 2ωγjxjÞ: ð12Þ

For δ ≠ 0 and σ > 0, one has to solve

s ¼ 1

γ

Z
vγ

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σu1=γ − u2

p ; ð13Þ

which has a finite span and in a number of cases may be
expressed explicitly in terms of elliptic functions. In any
case, what matters is not the explicit form but the fact that
near the origin v ∼ s

2
1−δ, integral (13) converges and yields a

finite support. As noted, a solution’s compactness implies
its nonanalyticity (otherwise, it would have to extend
indefinitely). However, since both the solution and its
gradient are bounded, its finite span implies finite energy.
The same will be shortly seen to hold in higher dimensions.
Finally, since the presented solutions are in earnest

breathers, we note that for μ < 0 strictly static solutions
are available. Proceeding as before, we readily obtain

γx ¼
Z

Rγ

0

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jμjw1=γ

p ; ð14Þ

which for δ ¼ 0 yields

RðxÞ ¼ 1ffiffiffiffiffiffijμjp cos2ð2
ffiffiffiffiffiffi
jμj

p
xÞHðπ − 4

ffiffiffiffiffiffi
jμj

p
xÞ: ð15Þ

II. COMPACT Q BALLS AND Q VORTICES

As aforementioned, in N dimensions, N ¼ 2, 3, the
shortcut toward solution used in 1D is no longer available,
and we have to address directly the underlying PDE.
Let x̃ϵRN and rewrite Eq. (2),

FIG. 1. A normalized effective potential Peff ¼ v2−
jvj1þδð1þ σjvjÞ, 0 ≤ μ, δ ¼ 1=3. Similarly, the conventional
case, in higher dimensions, its doubly humped shape for
σ < σ� induces a countable sequence of multinodal compact
Q balls which condense near the top; however, unlike the
conventional case, the potential’s subquadratic nature near the
origin terminates particles motion in a “finite time,” which
amounts to a finite span of the resulting mode.
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FðjZjÞðZtt −∇2ZÞ þ Z̄
2jZj ðZt

2 − ð∇Z2ÞÞF0ðjZjÞ

−
Z

2jZjP
0ðjZjÞ ¼ 0: ð16Þ

Let jZj ¼ expð{ωtÞRðrÞ, where r ¼ jx̃j, then
ffiffiffiffiffiffiffiffiffiffiffiffiffi
FðjRjÞ

p ∇r · ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
FðjRjÞ

p ∇rRÞ

þ fP0
ωðjRjÞ − P0ðjRjÞg R

2jRj ¼ 0; ð17Þ

which amounts to x → r in Eq. (3) þ the N-dimensional

Laplacian trace ðN−1Þ
r RrFðjRjÞ. A formal integration then

yields

FðjRjÞfR2
r þ ω2R2 − PeffðjRjÞg

¼ −2ðN − 1Þ
Z

FðjRjÞR2
r
dr
r
þ 2E0; ð18Þ

where E0 ¼ const.
As in conventional cases [5–7], given the choice of the

potential P and the shape factor F in (6), the doubly
humped effective potential, see Fig. (1) for details, assures a
countable sequence of flat top multinodal solutions con-
densing near the top, provided that the vibration frequency
ω is held above the critical threshold ω�. This mimics the
standard procedure with a crucial distinction: the degen-
eracy of F and the resulting subquadratic potential assure a
finite span of the pattern. The compactons finite span
becomes crucial when their interactions are considered; for
unlike the conventional Q balls, they are oblivious of each
other up to the moment of their contact. For the cases
studied in [3], interactions in the relativistic range were
ballistic and quite clean, whereas interactions at low speeds
exhibited fission-fusion features [2–3]. The nature of
interactions in the present case has yet to be studied.
Q-Vortices. To construct compact planar vortices, we

let N ¼ 2 and jZj ¼ exp½{ðωtþmθÞ�RðrÞ. Since we limit
ourself to the simple choice (6) and an even γ ¼ p=q,
we may further simplify the description via u ¼ Rγþ1,
to obtain

d2u
dr̃2

þ 1

r̃
du
dr̃

þ
�
ϖ2 −

m̃2

r̃2

�
u − uγ�

�
1þ 3μ

2
juj 1

1þγ

�
¼ 0;

ð19Þ

where r̃ ¼ r
ffiffiffiffiffiffiffiffiffiffiffi
1þ γ

p
, ϖ ¼ ω

ffiffiffiffiffiffiffiffiffiffiffi
1þ γ

p
, m̃ ¼ m

ffiffiffiffiffiffiffiffiffiffiffi
1þ γ

p
and

γ� ¼
1 − γ

1þ γ
¼ 1þ δ

3 − δ
< 1: ð20Þ

Note that whereas m is integer, m̃ is not. Since γ� < 1, ode
(19) is sublinear. The simplicity of the assumed shape plays

further into our hands, for the reduced Eq. (19) was recently
addressed by us in a different context; see [2] or [4], with a
particular attention paid to a detailed characterization of
the plethora of compact patterns which Eq. (19) supports.
Thus, in principle, we could delegate the reader there, but to
round off the presentation, we shall briefly outline the
landscape of compact vortex rings detailed in [4]. To this
end, consider the power expansion around a vortex’s center
at the origin,

u ≃ u0r̃m̃ þ u1r̃2þm̃γ� ;

viable only if m̃ < 2=ð1 − γ�Þ or, in terms of original
parameters, if

m < m∞ ≐
ffiffiffiffiffiffiffiffiffiffiffi
1þ γ

p
γ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3 − δÞp
1 − δ

≥
ffiffiffi
6

p
: ð21Þ

Notably, the only modes that satisfy (20) for all δs are
m ¼ 1, 2. This delineates three distinctive regimes of
azimuthal modes. For m ¼ 1 and m ¼ 2, all vortices,
whether uninodal or multinodal have a sharp finite span
and extend to the origin. On the other end, if for a given δ,
m∞ðδÞ < m, then all corresponding uni- and multinodal
solutions have finite inner and outer radii and are thus
genuine radial rings.
Finally, in the intermediate regime wherein 2 < m <

m∞ðδÞ, the plot thickens. Here, for a given δ, we find a
sequence 2 < m1 < m2 < … < m∞ and a corresponding
sequence of solutions such that
(1) As in the first case, for m < m1, there exists a

countable set of finite span multinodal vortices
which start at the origin.

(2) For m1 ≤ m < m2, the uninodal vortex solution is
detached from the origin and thus turns into a true
radial ring, but higher nodal compact vortices extend
to the origin.

(3) For mk ≤ m < mkþ1, one finds k-rings Q vortices
(a uninodal, two nodal, up to a k-nodal vortex),
whereas all kþ j; j ¼ 1; 2… nodal vortices extend
to the origin.

(4) The k-nodal ring vortex is nested within the kþ 1
vortex. As a by-product of their embedding, the high
k’s ring vortices become very wide with the inner
radius coming very close to the origin, whereas
ring’s outer radius becomes very large.

Note that since the physically admissible m’s are
integers, depending on the chosen δ, some of the described
mathematical features may be not realized. A far more
detailed exposition of these features accompanied by their
approximate analytical description and a graphical display
is presented in [2,4].
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III. SUMMARY

Using a simple shape factor to append a Lorentz-
Invariant Lagrangian, we have demonstrated how one
complex scalar field may induce compact Q balls and
compact ring vortices. The assumed form of the Lagrangian
is complimentary to our earlier work wherein the compac-
tification was due to an ab initio assumed subquadratic site
potential.
Similarly to the conventional theory [5–7], the efforts to

unfold multidimensional patterns is richly rewarded with
the single 1D mode, whether soliton or compacton, turning
into a whole spectrum of multinodal modes and vortices.
Moreover, both our earlier and the present work reveal that

whenever compact structures are admissible additional
structures, unavailable in the conventional cases, of both
radial and nonradial nature may join the gallery of patterns
[1–4]. Notable among those are multinodal ring vortices
of finite radii. Both the assumed shape factor and the
employed potential were perhaps the simplest forms that
support formation of compact Q balls and Q vortices. Far
more general forms could be employed to achieve more
realism. With the only essential part being the nature of
shape-factors degeneracy at the ground state.
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