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We calculate the rare fluctuations of the S matrix for high-energy dipole-dipole scattering on top of the
full next-to-leading-order corrections in the center of mass frame. The relevant result in the saturation

regime shows that the exponential factor of the Smatrix is
ffiffiffi
2

p
as large as the result which emerges when the

rare fluctuation effects are taken into account. We find that the factor of
ffiffiffi
2

p
change of the exponential factor

is induced by the gluon loop corrections which compensate for part of the rapidity decrease of the S matrix
made by quark loops and lead to the rare fluctuations becoming important again. To ensure the relevant
results of the S matrix are independent of the frame choice, the rare fluctuations of the S matrix are also
derived in a general frame. It is found that all the results are consistent with each other in both frames.
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I. INTRODUCTION

In high-energy QCD, one of the most challenging
problem has been to study theoretically and experimentally
the parton saturation. This saturation phenomenon was first
introduced by Gribov, Levin, and Ryskin in 1983 and was
developed as a dual description of unitarity [1]. Since then,
many physicists are engaged in searching of QCD evolu-
tion equations for describing the evolution of high-energy
and density gluon systems. Among them, the most widely
used one is the Balitsky-Kovchegov (BK) equation [2,3]
because of its relatively simple structure. The BK equation
includes the nonlinear effect, which ensures the scattering
amplitude fully satisfying the unitarity constraints instead
of an exponential growth with rapidity in the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) dynamics [4,5]. At leading
logarithmic accuracy where the BK equation resums large
logarithms αs lnð1=xÞ corrections with fixed coupling
constant αs, the analytical [6,7] and numerical [8] studies
of the BK equation show that the BK equation with only a
leading-order (LO) contribution cannot precisely describe
the high-energy scattering in the small-x region.

In the past decade, the remarkable developments beyond
leading logarithmic accuracy have been made to system-
atically improve the precision of the BK equation. One of
the most important efforts was the consideration of the
running coupling corrections. The running coupling BK
(rcBK) equations were independently derived by Balitsky
in Ref. [9] and Kovchegov and Weigert in Ref. [10] via
resummation all order corrections associated with the
coupling. However, the rcBK equations resulting from these
two groups have different formats due to using different
separation schemes between the running coupling and
subtraction. Fortunately, in the saturation region (the most
interesting regime in this paper), our studies in Ref. [11]
show that these two rcBK equations reduce to a uniform
format and have a same solution. In a full region, the
numerical solutions to the rcBK equations show that the
evolution speed of the scattering amplitude from Balitsky’s
derivation is dramatically suppressed compared to the one
from the fixed coupling BK equation [12], which coincides
with the theoretical expectations. Although the running
coupling corrections significantly slow down the evolution
speed of the dipole amplitude as rapidity increasing, they are
not the only higher-order corrections relative to the LO BK
equation. Indeed in the language of Feynman diagram, the
running coupling corrections are only the contribution from
quark loops, as we know that the gluon loops also have a
large contribution to the evolution kernel [13]. By combin-
ing the contributions from quark and gluon loops, Balitsky
and Chirilli got a full next-to-leading-order (NLO) BK
equation [13]. The first numerical solution of the full
NLO BK equation shows that the solution is sensitive to
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the details of the initial condition and becomes negative
and nonvanishing at very small dipole size, which is
unphysical [14]. The origin of the instability of the solution
is due to the evolution equation including a large double
transverse logarithmic correction term (∼ ln½ðx⊥ − z⊥Þ2=
ðx⊥ − y⊥Þ2� ln½ðy⊥ − z⊥Þ2=ðx⊥ − y⊥Þ2�). Fortunately, the
studies in Ref. [15] found that the instability problem can
be solved by a resummation scheme for the double trans-
verse logarithms.
Parallel to the developments in the calculations of

contributions from quark and gluon loops, another effort
in higher-order contributions is also performed by includ-
ing the effect of rare fluctuations to improve the precision
of the BK equation [11,16–20]. As discussed by Iancu and
Mueller in Ref. [20], a typical configuration includes too
many gluons at the time of collision, therefore leading to a
very small Smatrix. A rare configuration containing a small
number of gluons in the wave function has been found
by suppressing the evolution of the gluons, which can
lead to a relatively large S matrix. In the fixed coupling
case, the S matrix obtained from the BK equation shows
a quadratic rapidity dependence in its exponent, and it
was found that the exponential factor of the S matrix
(∼ exp ½−c1ᾱ2sðY − Y0Þ2=2�) is twice as large as the one
which takes into account the rare fluctuation effects [20],
where ᾱs is the coupling constant, and c1 is a constant
which is not important in this paper. This result shows that
the rare fluctuations reduce the evolution speed of the
dipole scattering amplitude with respect to rapidity. We
would like to note that the result is obtained by including
the rare fluctuations on top of the fixed coupling. How
about the result for the rare fluctuations on top of the
running coupling?
From the above discussions, we know that both

running coupling and rare fluctuation effects can lead to
suppress the evolution speed of the dipole scattering
amplitude. To reveal which one is the dominant effect,
we studied the rare fluctuations on top of the running
coupling effect in Ref. [11]. First, we solved the rcBK
equation in the saturation region to get an analytic S matrix
(∼ exp ½−NcμðY − Y0Þ=πμ1� with μ and μ1 coming from
running coupling at one-loop accuracy) which shows a
linear rapidity dependence in its exponent. Then the rare
fluctuations is computed on top of this S matrix, it was
found that the rare fluctuation effects take a negligible
change of the exponent of the Smatrix, which mean that the
rare fluctuations are less important in the running coupling
case than in the fixed coupling case.
Recently, the solution to the full NLO BK equation was

derived in the saturation region [21]. The analytic result of
the S matrix shows that the exp ð−OðYÞÞ rapidity depend-
ence of the running coupling solution is replaced by
exp ð−OðY3=2ÞÞ in the NLO solution. As we know that
the rare fluctuations in the fixed coupling case shows a
significant suppression of the dipole amplitude, we believe

that the rare fluctuations in the full NLO case would also
play an important role in the evolution of dipole amplitude,
although the rare fluctuations are less important in the
running coupling case.
In this paper, we investigate the rare fluctuations of the S

matrix for high-energy dipole-dipole scattering on top of
full NLO corrections in the saturation region. To see the
rare fluctuation effects, we first recall the analytic solutions
of LO, running coupling, and NLO BK equations in the
saturation region, and we then study the rare fluctuation
effects on top of these solutions. We find an interesting
result, that the exponential factor of the S matrix from the
NLO BK equation without rare fluctuations is about

ffiffiffi
2

p
times larger than the one with rare fluctuations. The result
shows that the influence of the rare fluctuations in the NLO
BK case on the S matrix are greater than that in the running
coupling BK case, which indicates that the rare fluctuations
are important in the NLO BK case, although it is not as
significant as the LO BK case.

II. LEADING-ORDER EVOLUTION EQUATION

As we know, the simplest way to describe the scattering
of a quark-antiquark dipole on a target (maybe another
dipole, hadron, or nucleus) in the high-energy regime is
the BK equation, which is a mean field version of the
Balitsky-JIMWLK1 hierarchy [22–25] equations. The BK
equation resums leading logarithmic αs lnð1=xÞ corrections
with fixed coupling constant αs, which is a leading-order
equation.

A. Balitsky-Kovchegov equation

Consider a scattering of a quark-antiquark dipole with a
quark at transverse coordinate x⊥ and an antiquark at
transverse coordinate y⊥ on a target, where the dipole is left
moving (unevolved), and the target is right moving (highly
evolved); we usually call this frame a dipole frame [26]. In
this frame, almost all of the relative rapidity between the
dipole and the target, Y, is taken by the target. If one
increases the rapidity of the dipole by a small amount dY
while keeping the rapidity of the target fixed, then the
dipole has a probability of emitting a gluon at transverse
coordinate z⊥ due to the rapidity change. In the large Nc,
limit the quark-antiquark-gluon state can be viewed as a
system of two dipoles, which means a parent dipole
splitting into two daughter dipoles. In the fixed coupling
case, this evolution can be described by the following
equation [26],

1JIMWLK is the abbreviation for Jalilian-Marian, Iancu,
McLerran, Weigert, Leonidov, and Kovner.
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∂
∂YSðr;YÞ¼

Z
d2r1KLOðr;r1;r2Þ½Sð2Þðr1;r2;YÞ−Sðr;YÞ�;

ð1Þ
where the evolution kernel is given by

KLOðr; r1; r2Þ ¼
ᾱs
2π

r2

r21r
2
2

; ð2Þ

with ᾱs ¼ αsNc=π. Here we use the notation r ¼ x⊥ − y⊥
as the transverse size of parent dipole and r1 ¼ x⊥ − z⊥
and r2 ¼ z⊥ − y⊥ as the transverse sizes of the two emitted
daughter dipoles, respectively. It is easy to see that Eq. (1)
has a nonlinear term on the right-hand side, which accounts
for the simultaneous scattering of the two daughter dipoles
on the target. Equation (1) is almost impossible to use
directly since a solution for Sðr; YÞ desires knowing
Sð2Þðr1; r2; YÞ. In the mean field approximation, one can
simplify the nonlinear term as follows:

Sð2Þðr1; r2; YÞ ≃ Sðr1; YÞSðr2; YÞ: ð3Þ
Substituting Eq. (3) into Eq. (1), one obtains the BK
equation

∂
∂YSðr;YÞ

¼
Z

d2r1KLOðr;r1;r2Þ½Sðr1;YÞSðr2;YÞ−Sðr;YÞ�; ð4Þ

which is a closed equation and can be solved analytically in
the saturation region. With Nðr; YÞ ¼ 1 − Sðr; YÞ, another
version of the BK equation is obtained

∂
∂YNðr;YÞ¼

Z
d2r1KLOðr;r1;r2Þ½Nðr1;YÞ

þNðr2;YÞ−Nðr;YÞ−Nðr1;YÞNðr2;YÞ�: ð5Þ
On the right-hand side of Eq. (5), the first and second terms
describe the scattering of a single dipole with target, and the
third term is a virtual term which expresses the probability
for the parent dipole not to evolve, i.e., not to radiate small
x gluons. The virtual term can also be interpreted as the
parent dipole survival probability. The nonlinear term takes
into account a simultaneous interaction of two produced
dipoles with the target.

B. Analytic solution in the saturation region

In the saturation region where the unitarity corrections
become important or S is very small, the nonlinear term in
Eq. (4) is much smaller than the linear term. Therefore, the
nonlinear term can be neglected, and Eq. (4) simplifies to

∂
∂Y Sðr; YÞ ¼ −

Z
d2r1KLOðr; r1; r2ÞSðr; YÞ: ð6Þ

Since the dipole size is much larger than the characteristic
size 1=Qs in the saturation regime, the lower bound of
integration in Eq. (6) can be set to 1=Qs, where Qs is the

saturation scale. We set the upper bound of the integration
to r due to a rapid decrease of the integration beyond r. By
analyzing the kernel of the integration in Eq. (6), one can
know that the integration is dominated by the region either
from 1=Qs ≪ jr1j ≪ jrj; jr2j ∼ jrj or from 1=Qs ≪ jr2j ≪
jrj; jr1j ∼ jrj. Suppose that we work in the region jr2j ∼ jrj,
and that the kernel in Eq. (6) becomes 1=r21, which
significantly simplifies the calculations. Now it is easy
to get the analytic solution of the BK equation by perform-
ing the integrations over r1 and Y [26,27],

Sðr; YÞ ¼ exp

�
−
c
2
ᾱ2sðY − Y0Þ2

�
Sðr; Y0Þ; ð7Þ

where we have used Q2
sðYÞ ¼ exp ½cᾱsðY − Y0Þ�Q2

sðY0Þ
with Q2

sðY0Þr2 ¼ 1. From Eq. (7), we can see that the
analytic solution of the LO BK equation has a quadratic
rapidity dependence in the exponent. However, we will see
in the following sections that the solution will be modified
by taking into account the higher-order contributions,
especially rare fluctuation effects. The reason why we
have gone through such a detailed “derivation” of Eq. (7) is
that the major aim of this study is to show how the S matrix
is modified by rare fluctuation effects in the cases of LO,
running coupling and NLO cases, respectively.

III. NEXT-TO-LEADING-ORDER EVOLUTION
EQUATION

The LO BK equation discussed above considers only the
resummation of leading logarithmic αs lnð1=xBjÞ correc-
tions with a fixed coupling constant. Beyond the leading
logarithmic approximation, significant progress in the evo-
lution equation has been made via the resummation of αsNf

to all orders, which is usually called the running coupling
corrections [9,10].

A. Running coupling Balitsky-Kovchegov equation and
its analytic solution

When one resums all powers of αsNf in the evolution
kernel, the αsNf corrections modify the structure of the
evolution equation. The evolution equation with running
coupling corrections can be expressed as [12]

∂Sðx⊥ − y⊥; YÞ
∂Y

¼
Z

d2z⊥Krcðx⊥; y⊥; z⊥Þ½Sðx⊥ − z⊥; YÞSðz⊥ − y⊥; YÞ

− Sðx⊥ − y⊥; YÞ�

− α2μ

Z
d2z⊥1d2z⊥2K①ðx⊥; y⊥; z⊥1; z⊥2Þ

× ½Sðx⊥ − w⊥; YÞSðw⊥ − y⊥; YÞ
− Sðx⊥ − z⊥1; YÞSðz⊥2 − y⊥; YÞ�; ð8Þ
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where w⊥ is the subtraction point which can be chosen to
be the transverse coordinate of the emitted gluon z⊥ or the
transverse coordinate of either the quark z⊥1 or the
antiquark z⊥2. From Eq. (8), we know that it has two
parts, the “running coupling” part [the first line on the rhs of
Eq. (8)] and the “subtraction” part [the second line on the
rhs of Eq. (8)]. The running coupling part has the same
structure as the LO BK evolution equation but with a
modified kernel Krc. The subtraction part has a new
structure with two quadratic terms and a resummed
JIMWLK kernel K①. It has been found that the separation
between the running coupling and subtraction contributions
is not unique, which depends on the choice of subtraction
point [9,10]. Fortunately, we are only interesting in the
analytic solution of the evolution equation in the saturation
region in which the running coupling BK equation is
independent of the selection of subtraction point [11] since,
in this regime, the S matrix is so small that its quadratic
terms in Eq. (8) can be neglected. Therefore, the running
coupling BK evolution equation simplifies to

∂Sðr; YÞ
∂Y ¼ −

Z
d2z⊥Krcðr; r1; r2ÞSðr; YÞ; ð9Þ

where the modified kernel Krcðr; r1; r2Þ has two kinds of
expressions (Balitsky and Kovchegov-Weigert kernels)
since two different separation schemes have been used
(please see Refs. [11,12] for more details about the kernels).
Although Balitsky and Kovchegov-Weigert kernels have a
different format at a glance, it has been shown in Ref. [11]
that both kernels reduce to a unique form, Eq. (12), in the
saturation region. In this study, we adopt the choice
proposed by Kovchegov and Weigert in Ref. [10], and
the modified kernel is written as [10]

KrcKWðr; r1; r2Þ

¼ Nc

2π2

�
αsðr21Þ

1

r21
− 2

αsðr21Þαsðr22Þ
αsðR2Þ

r1 · r2
r21r

2
2

þ αsðr22Þ
1

r22

�
;

ð10Þ

with

R2ðr; r1; r2Þ ¼ r1r2

�
r2
r1

�r2
1
þr2

2

r2
1
−r2

2

−2
r2
1
r2
2

r1 ·r2
1

r2
1
−r2

2 : ð11Þ

In the saturation regime, the dominant integral region on the
rhs of Eq. (9) comes from either 1=Qs ≪ jr1j ≪ jrj; jr2j ∼
jrj or 1=Qs ≪ jr2j ≪ jrj; jr1j ∼ jrj. In this work, we choose
the first one, and the modified kernel becomes

KrcKWðr; r1; r2Þ ¼
Nc

2π2
αsðr21Þ

1

r21
: ð12Þ

Wewould like to note that if oneworks in the second region,
the same result should be obtained. It is worth pointing out
that Eq. (12) is the same as the kernel obtained in the case of
r ≫ 1=Q2

s in Ref. [28], in which the authors aimed to show
that the geometric scaling of the scattering amplitude is
violated in the case of the running coupling.
Here αs is not fixed, and we use the running coupling at

one-loop accuracy,

αsðr21Þ ¼
μ

1þ μ1 lnð 1
r2
1
Λ2Þ : ð13Þ

Substituting the simplified kernel (12) into Eq. (9) and
using Eq. (13), we can get the running coupling BK
equation in the saturation region

∂Sðr; YÞ
∂Y ¼ −2

Nc

2π2

Z
r2

1=Q2
s

d2r1
αsðr21Þ
r21

Sðr; YÞ; ð14Þ

whose analytic solution is [11]

Sðr;YÞ¼ exp
�
−
Ncμ

cπμ1

�
ln2

�
Q2

sðYÞ
Λ2

�
ln
�
1þμ1 ln

Q2
sðYÞ
Λ2

1þμ1 ln
1

r2Λ2

−
1

2

�

þ 1

μ1
ln

�
Q2

sðYÞ
Λ2

�

−
1

μ21
ln

�
1þμ1 ln

Q2
sðYÞ
Λ2

���
Sðr;Y0Þ; ð15Þ

with [1,6,29]

lnðQ2
sðYÞ=Λ2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY − Y0Þ

p
þOðY1=6Þ: ð16Þ

Interestingly, Eq. (15) is consistent with the running
coupling solution which is obtained by naive extending
of the LO BK equation to the running coupling case in
Ref. [30]. From the first term in the exponent in Eq. (15),
one can see that the S matrix has an independence on the
dipole size r, which supports the intuitive guess of the
violation of the geometric scaling behavior of the running
coupling scattering amplitude in Ref. [28].
It is important to stress that the rapidity dependence of

the S matrix in the running coupling case is different from
the one in the fixed coupling case. The exponent of the S
matrix in the running coupling case, Eq. (15), decreases
linearly with rapidity, while the exponent of the S matrix
has a quadratic decrease with rapidity in the fixed coupling
case; see Eq. (7).

B. Full next-to-leading-order Balitsky-Kovchegov
equation and its analytic solution

In the above section, we discussed the running coupl-
ing modified BK equation, which considers only the
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contributions from quark loops. However, except for the
quark loop contributions there are gluon loop contributions
to the kernel of the evolution equation. A comprehensive
corrections should include both the contributions from the

quark and gluon loops, as well as from the tree gluon
diagrams with quadratic and cubic nonlinearities [13].
Combining all of these contributions, one can get a full
NLO evolution equation [13]

∂Sðx⊥−y⊥;YÞ
∂Y ¼ ᾱs

2π

Z
d2z⊥

ðx⊥−y⊥Þ2
ðx⊥−z⊥Þ2ðy⊥− z⊥Þ2

�
1þ ᾱs

4

�
b lnðx⊥−y⊥Þ2μ2−b

ðx⊥− z⊥Þ2− ðy⊥− z⊥Þ2
ðx⊥−y⊥Þ2

×ln
ðx⊥− z⊥Þ2
ðy⊥− z⊥Þ2

þ67

9
−
π2

3
−
10Nf

9Nc
−2 ln

ðx⊥− z⊥Þ2
ðx⊥−y⊥Þ2

ln
ðy⊥− z⊥Þ2
ðx⊥−y⊥Þ2

��

× ½Sðx⊥− z⊥;YÞSðz⊥−y⊥;YÞ−Sðx⊥−y⊥;YÞ�þ
ᾱ2s
8π2

Z
d2z⊥d2z0⊥
ðz0⊥− z⊥Þ4

×

��ðx⊥− z⊥Þ2ðy⊥− z0⊥Þ2þðx⊥− z0⊥Þ2ðy⊥− z⊥Þ2−4ðx⊥−y⊥Þ2ðz0⊥−z⊥Þ2
ðx⊥− z⊥Þ2ðy⊥−z0⊥Þ2− ðx⊥− z0⊥Þ2ðy⊥−z⊥Þ2

þðx⊥−y⊥Þ2ðz0⊥− z⊥Þ2
ðx⊥− z⊥Þ2ðy⊥− z0⊥Þ2

þ ðx⊥−y⊥Þ4ðz0⊥− z⊥Þ4
ðx⊥−z⊥Þ2ðy⊥− z0⊥Þ2ððx⊥− z⊥Þ2ðy⊥− z0⊥Þ2− ðx⊥− z0⊥Þ2ðy⊥− z⊥Þ2Þ

�
ln
ðx⊥− z⊥Þ2ðy⊥−z0⊥Þ2
ðx⊥− z0⊥Þ2ðy⊥−z⊥Þ2

−2

�

× ½Sðx⊥− z0⊥;YÞSðz0⊥− z⊥;YÞSðz⊥−y⊥;YÞ−Sðx⊥− z0⊥;YÞSðz0⊥−y⊥;YÞ�

þ ᾱ2sNf

8π2Nc

Z
d2z0⊥d2z⊥
ðz0⊥− z⊥Þ4

�
−
ðx⊥− z0⊥Þ2ðy⊥− z⊥Þ2þðx⊥−z⊥Þ2ðy⊥− z0⊥Þ2− ðx⊥−y⊥Þ2ðz0⊥− z⊥Þ2

ðx⊥− z⊥Þ2ðy⊥− z0⊥Þ2− ðx⊥− z0⊥Þ2ðy⊥− z⊥Þ2

×ln
ðx⊥− z⊥Þ2ðy⊥− z0⊥Þ2
ðx⊥− z0⊥Þ2ðy⊥− z⊥Þ2

þ2

�
½Sðx⊥− z⊥;YÞSðz0⊥−y⊥;YÞ−Sðx⊥−z0⊥;YÞSðz0⊥−y⊥;YÞ�; ð17Þ

where the b ¼ ð11Nc − 2NfÞ=3Nc is the first coefficient of
the β function, Nf is the number of flavors, and μ is the
renormalization scale. The full NLO BK equation shows
two remarkable features in its structure as compared to the
LO BK equation. First, the single integration term which
gets a correction of orderOðᾱ2sÞ to the evolution kernel has a
similar structure to the LO BK equation. Second, there are
two double integration terms, of orderOðᾱ2sÞ, which contain
only the nonlinear S matrix. The double integrations over
the transverse coordinates z⊥ and z0⊥ refer to partonic
fluctuations involving two additional partons (besides the
original quark and the antiquark) at the time of collision.We
use the notation r¼ x⊥−y⊥, r1 ¼ x⊥ − z⊥, r01 ¼ x⊥ − z0⊥,

r2 ¼ z⊥ − y⊥, and r02 ¼ z⊥0 − y⊥ for the sizes of parent
dipole and of the new daughter dipoles produced by the
evolutions.
In the saturation regime, the unitarity corrections become

important or S is very small. Therefore, the nonlinear terms
can be neglected in Eq. (17). The full NLO BK equation in
saturation regime becomes

∂Sðr; YÞ
∂Y ¼ −

Z
d2z⊥KfNLOðr; r1; r2ÞSðr; YÞ; ð18Þ

with the modified kernel

KfNLOðr;r1;r2Þ¼
ᾱsðr2Þ
2π

�
r2

r21r
2
2

þ 1

r21

�
αsðr21Þ
αsðr22Þ

−1

�
þ 1

r22

�
αsðr22Þ
αsðr21Þ

−1

�
þ ᾱsðr2Þ

4

r2

r21r
2
2

�
67

9
−
π2

3
−
10Nf

9Nc
−2 ln

r21
r2
ln
r22
r2

��
: ð19Þ

To analytically solve Eq. (18), one should work in either the 1=Qs ≪ jr1j ≪ jrj; jr2j ∼ jrj or the 1=Qs ≪ jr2j ≪
jrj; jr1j ∼ jrj region, as mentioned in the LO case. If one chooses the first regime, the NLO kernel can simplify as follows:

KfNLOðr; r1; r2Þ ¼
ᾱsðr2Þ
2π

�
1

r21

αsðr21Þ
αsðr2Þ

þ 1

r2

�
αsðr2Þ
αsðr21Þ

− 1

�
þ ᾱsðr2Þ

4

1

r21

�
67

9
−
π2

3
−
10Nf

9Nc
− 2 ln

r21
r2
ln
r22
r2

��

≃
ᾱsðr21Þ
2πr21

þ ᾱ2sðr2Þ
8πr21

�
67

9
−
π2

3
−
10Nf

9Nc

�
: ð20Þ

Substituting the simplified kernel into Eq. (18), the evolution equation becomes
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∂Sðr; YÞ
∂Y ¼ −2

1

2π

Z
r2

1=Q2
s

d2r1

�
ᾱsðr21Þ
r21

þ ᾱ2sðr2Þ
4

1

r21

�
67

9
−
π2

3
−
10Nf

9Nc

��
Sðr; YÞ ð21Þ

and has the following solution [21],

Sðr; YÞ ¼ exp

�
−
Ncμ

cπμ1

�
2Cr

3
ln3

Q2
sðYÞ
Λ2

þ ln2
Q2

sðYÞ
Λ2

ln
ðr2Λ2ÞCr þ ðr2Λ2ÞCrμ1 ln

Q2
sðYÞ
Λ2

1þ μ1 ln 1
ðr2Λ2Þ

þ 1

μ1
ln
Q2

sðYÞ
Λ2

−
1

μ21
ln

�
1þ μ1 ln

Q2
sðYÞ
Λ2

���
Sðr; Y0Þ; ð22Þ

with lnðQ2
sðYÞ=Λ2Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðY − Y0Þ
p þOðY1=6Þ and Cr ¼

α2sðr2ÞNcμ1ð67=9 − π2=3 − 10Nf=9NcÞ=4πμ. From this
solution, we can see that the full NLO corrections (quark
plus gluon loop contributions) bring a large change to the
S matrix. The linear rapidity dependence of the running
coupling solution, Eq. (15), is now replaced by the rapidity
raised to the power of 3=2 in the full NLO case; see
Eq. (22). By comparing the solutions in the LO, running
coupling, and full NLO cases, one can find that the running
coupling effect (only quark loops) makes the quadratic
rapidity (∼Y2) dependence of the exponent of the S matrix
changing to linear (∼Y) dependence, while the full NLO
effects (quark plus gluon loops) let the linear Y dependence
returning to Y3=2 dependence since the gluon loop con-
tributions compensate for part of the decrease. To double-
check the analytic solution given by Eq. (22), we also
derive the solution of Eq. (17) by using the method
developed in Ref. [31]; see the Appendix for details. We
find that the two solutions are consistent with each other.
We would like to note that the numerical solution of the

full NLO BK equation shows that it is unstable, the dipole
amplitude decreases with growing energy and can switch to
a negative value [14]. It has been found that the instability
comes from a large double-logarithmic contribution [15].
To solve this problem, one needs to resum double trans-
verse logarithms to all orders and gets a double-logarithmic
approximation (DLA) evolution equation which can be
extending to full next-to-leading logarithmic (NLL) accu-
racy via including the quark and gluon loop contributions.
We usually call this stabilized high-order evolution equa-
tion a NLL BK equation. Our previous studies in Ref. [21]
found that, in the saturation region, the NLL BK equation
has the same analytic solution as the NLO BK equation
since the DLA kernel is equal to 1 under the saturation
condition. This is why we neglect the detail derivation of
the NLL BK equation and its solution in this study.

IV. EFFECTS OF RARE FLUCTUATIONS IN
HIGH-ENERGY DIPOLE-DIPOLE SCATTERING

IN THE CENTER OF MASS FRAME

In the high-energy region where S is small, rare fluc-
tuation effects can play an important role in the evolution of
the amplitude of dipole-dipole scattering [20]. These

fluctuations are rare and unimportant in a general inelastic
collision, but they can dramatically affect the S matrix in
the high-energy limit. The significance of the rare fluctua-
tions can be viewed by comparing the following two
scattering processes. First, at very high energy, if one
carries out dipole-dipole scattering, the typical configura-
tion of a dipole’s light cone wave function is a color glass
condensate at the time of scattering. Using this typical
configuration to compute the S matrix of this interaction in
the center of mass frame at relative rapidity Y in the
saturation domain,2 the S matrix of this scattering is
proportional to exp½−constQ2

sðY=2Þr2=α2s � [20,32], which
can be obtained by using ln S2ðrÞ ≃ −c0α2sN2ðr; r; Y=2Þ,
withN ≃ c1Q2

sðY=2Þr2=α2s , as the number of gluons in each
wave function, c0 and c1 as the constant, and r0 as the size of
the parent dipole. Second, if one performs a scattering of a
dipole (unevolved) on a nucleus (highly evolved) and
calculates the S matrix of this interaction process which
can be described by using the LO BK equation, one gets the
S matrix to be proportional to exp ½−const ln2ðQ2

sr2Þ�. By
comparing the S matrices of the two scattering processes
mentioned above, we can see that the Smatrix of the dipole-
dipole scattering with two typical configurations is much
smaller than the one from the dipole-nucleus scatteringwith
only one typical configuration. It has been found that the
inconsistency comes from the use of typical configurations
to calculate the elastic scattering Smatrix [20]. Actually, in
the saturation region, the S matrix is dominated by rare
configurations which are dilute states with few gluons.

A. Leading-order case

The BK equation is obtained under a mean field approxi-
mation, which uses the product Sðr1; YÞSðr2; YÞ replacing
Sð2Þðr1; r2; YÞ. This replacement is true only in the absence
of fluctuations. It has been found that the S matrix derived
from the BK equation is too small since the wave functions

2We would like to point out that it is not known how to
calculate the S matrix of dense-dense scattering in the framework
of a color glass condensate due to the unknown Lagrangian,
although several authors have made efforts to extend dilute-dilute
and dilute-dense scattering to dense-dense scattering approxi-
mately in the literature [32–35]. We concentrate on the study of
dipole-dipole scattering in this paper.
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contain too many gluons at the time of collision [11,20]. To
get a relatively large S matrix as compared to Eq. (7), one
needs to search for a rare configuration which includes less
than themean number of gluons. The best way to find such a
rare configuration is to minimize the number of gluons by
suppressing the evolution of the system.
To suppress the evolution, we take a similar method

which was used in Ref. [20]. Consider a central scattering
of a right-moving dipole on a left-moving dipole in the
center of mass frame at rapidity Y > Y0, where Y0 denotes
the critical value for the onset of unitarity corrections. For
the right-moving and left-moving dipoles, we require that
the wave function of each dipole has no more than one
dipole of size r0 (being the size of the parent dipole) or
larger in the rapidity intervals Y0=2 < y < Y=2 and
−Y=2 < y < Y0=2, respectively.
To guarantee that this is the case, we need to suppress the

emission of gluons (or creation of new dipoles3) from the
parent dipole at y > Y0=2 in such a way that gluon
emission is forbidden if gluon has k⊥ and y lying in the
shaded triangles of Fig. 1, with k⊥ being the momentum
conjugate to r⊥, because those emitted dipoles could evolve
into dipoles of size r0 or larger at rapidity Y0=2. However,
we allow for creation of very small dipoles which locate on
the right-hand side of the lines in Fig. 1. The line for the
upper triangle in Fig. 1, lnðk2⊥r20Þ ¼ cᾱsðy − Y0=2Þ with
c ≃ 4.883[1], is determined by the requirement that the
emitted dipoles located on the right-hand side of that line
cannot evolve by normal BFKL evolution to give dipoles
having k⊥ ≤ 1=r0 at Y0=2. Turning to the rapidity interval
0 < y < Y0=2 just before the time of scattering at y ¼ 0,
we let the wave function of the right-moving dipole
undergoing a normal BFKL evolution.

We would like to note that a similar requirement is put
into the evolution of the wave function of the left-moving
dipole in −Y=2 < y < Y0=2 as for the aforementioned
right-moving dipole in Y0=2 < y < Y=2. The wave func-
tion of the left-moving dipole also undergoes a normal
BFKL evolution in −Y0=2 < y < 0 as the right-moving
dipole in 0 < y < Y0=2.
By carrying out the operations mentioned above, the

LO S matrix including the rare fluctuations can be
computed [20],

Sðr; YÞ ¼ A

�
r;
Y − Y0

2

�
A

�
r;
Y − Y0

2

�
Sðr; Y0Þ; ð23Þ

where Aðr; ðY − Y0Þ=2Þ is the probability of the rare
configuration and has the same meaning as the parent
dipole’s survival probability after a BFKL evolution over a
rapidity Y − Y0 [20]. The terminology survival probability
implies that Aðr; Y − Y0Þ satisfies the same evolution
equation as the virtual term in the LO BK equation (5),

∂
∂YAðr;Y−Y0Þ¼−

Z
d2z1KLOðr;r1;r2ÞAðr;Y−Y0Þ:

ð24Þ
Substituting the LO BK kernel into Eq. (24), one can get

∂
∂Y Aðr; Y − Y0Þ ¼ −

Z
r2

1=Q2
s

d2r1
2ᾱs
2π

r2

r21r
2
2

Aðr; Y − Y0Þ:

ð25Þ
By a simple algebra calculation, we can obtain the solution
of Eq. (25),

Aðr; Y − Y0Þ ¼ exp

�
−
c
2
ᾱ2sðY − Y0Þ2Þ

�
: ð26Þ

Taking this solution to Eq. (23), one can obtain [20]

Sðr; YÞ ¼ exp

�
−
c
4
ᾱ2sðY − Y0Þ2

�
Sðr; Y0Þ; ð27Þ

which is significantly larger than the one in Eq. (7) by
comparing the exponent of the S matrix. From Eq. (27), we
can see that the exponential factor in Eq. (7) is twice as
large as the result, Eq. (27), which includes the rare
fluctuations. The rare fluctuations lead to the S matrix
becoming larger than the one coming from the LO BK
equation, which indicates that the effects of rare fluctua-
tions are very important in the LO case and cannot be
neglected when one studies gluon saturation phenomenol-
ogy in the saturation region at fixed coupling constant.
We would like to point out that one can use S2 as the

survival probability instead of Aðr; YÞ since S2 can be
interpreted as the probability that no interaction occurs in
the collision. However, we find that the S matrix with rare
fluctuations keeps the same form as the one without

FIG. 1. The LO configuration in the center of mass frame.

3In the dipole model, a gluon can be equivalent to a qq̄ dipole
in the large Nc limit.
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fluctuations once S2 is used as the survival probability,
which indicates that it seems the rare fluctuations make no
contribution to the S matrix. The reason why we get this
undesired result would come from two approximations used
during the derivation of the Smatrix. One is Sð2Þðr1; r2; YÞ ≃
Sðr1; YÞSðr2; YÞ [see Eq. (3)]; such a replacement is true
only in the absence of fluctuations in the wave function of
the target. Another approximation is that we assume the S is
small, andweneglectS2whenwe solve theBKequation; see
Eq. (6). The S matrix, Eq. (7), is obtained under the
condition that S2 is negligible. Therefore, using S2 as the
survival probability could be problematic under these
approximations. Fortunately, in Ref. [36], Kozlov and
Levin used the Reggeon-like diagram technique based on
the BFKL Pomerons to confirm the results of Ref. [20]
whose arguments are directly followed by our paper. Thus,
using Aðr; YÞ as the survival probability, which is proposed
in Ref. [20], is feasible. In the following studies, we use
Aðr; YÞ as the survival probability.

B. Next-to-leading-order case

In this subsection, we investigate the rare fluctuations on
top of the running coupling and the full NLO effects. To get
the rare configuration, we need to follow the steps in our
previous studies [11]. Considering a right-moving dipole
scattering off a left-moving dipole, one needs to constrain
the wave functions of the right-moving and left-moving
dipoles in order to let the system consisting only of the
parent dipole itself with size r0 in the rapidity intervals
Y0=2 < y < Y=2 and −Y=2 < y < −Y0=2, respectively.
However, one cannot require that all evolutions of the
right-moving and left-moving dipoles are absent in the
rapidity intervals mentioned above. A feasible step that one
can take is to allow that the evolution can only produce very
small dipoles with size much smaller than r0 to avoid these
dipoles evolving into dipoles with similar size as r0 in
intermediate rapidities, which can guarantee that the
final dipole system at rapidity Y0=2 has no more than
one dipole of size r0 or larger; see Fig. 2. Note that the lines
for the upper and lower triangles in Fig. 2, lnðk2⊥r20Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðy − Y0=2Þ

p
and lnðk2⊥r20Þ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðyþ Y0=2Þ

p
, are deter-

mined as in the LO case except for the NLO corrections
included here. So the linear rapidity dependence of the line
in LO case is now replaced by square root dependence in
the NLO case.

1. In the case of running coupling

We follow Eq. (23) to derive an S matrix which includes
both rare fluctuation and running coupling corrections. As
in the LO case, the probability of a rare configuration in the
running coupling case satisfies

∂
∂Y Aðr; Y − Y0Þ ¼ −

Z
d2z1KrcKWðr; r1; r2ÞAðr; Y − Y0Þ;

ð28Þ

where KrcKWðr; r1; r2Þ is the modified kernel which is
given by Eq. (12). By solving the integro-differential
equation, Eq. (28), one gets

Aðr;Y−Y0Þ¼ exp

�
−
Ncμ

cπμ1

�
ln2

�
Q2

SðYÞ
Λ2

�
ln

�
1þμ1 lnðQ

2
SðYÞ
Λ2 Þ

1þμ1 lnð 1
r2Λ2Þ −

1

2

�
þ lnðQ2

SðYÞ
Λ2 Þ
μ1

−
1

μ21
ln

�
1þμ1 ln

�
Q2

SðYÞ
Λ2

����
: ð29Þ

By using Eq. (29), the S matrix including both rare fluctuation and running coupling corrections can be computed as

Sðr;YÞ¼A

�
r;
Y−Y0

2

�
A

�
r;
Y−Y0

2

�
Sðr;Y0Þ

¼ exp

�
−
Ncμ

cπμ1

�
ln2

�
Q2

SðYÞ
Λ2

�
ln

�
1þ μ1ffiffi

2
p lnðQ2

SðYÞ
Λ2 Þ

1þμ1 lnð 1
r2Λ2Þ −

1

2

�
þ

ffiffiffi
2

p
lnðQ2

SðYÞ
Λ2 Þ

μ1
−

2

μ21
ln

�
1þ μ1ffiffiffi

2
p ln

�
Q2

SðYÞ
Λ2

����
Sðr;Y0Þ;

ð30Þ

FIG. 2. The NLO configuration in the center of mass frame.
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where lnðQ2
SðYÞ=Λ2Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðY − Y0Þ
p

. To seewhether or not
the rare fluctuation effects bring a large change to the S
matrix, one can carry out a comparison between Eqs. (30)
and (15). It is easy to find that, in the exponent of the S
matrix, the dominant terms are almost the same and the
subterms have slight modifications, which means that the
rare fluctuations are less important in the running coupling
case than in the fixed coupling case, where the rare
fluctuations correct the exponential factor of the S matrix
by a factor of 2. The reasonwhy the rare fluctuations are less
important is that the running couplingmakes the exponent of
the S matrix change to a linear rapidity dependence instead
of a quadratic dependence in the fixed coupling case.

2. In the case of full next-to-leading order

The rare configuration in the full NLO case is similar to
the one in the running coupling case; see Fig. 2. The
probability of rare configuration Aðr; Y − Y0Þ satisfies the
evolution equation

∂
∂Y Aðr; Y − Y0Þ

¼ −
Z

d2z1KfNLOðr; r1; r2ÞAðr; Y − Y0Þ; ð31Þ

whose solution is

Aðr; Y − Y0Þ ¼ exp

�
−
Ncμ

cπμ1

�
2Cr

3
ðcðY − Y0ÞÞ3=2 þ cðY − Y0Þ ln

ðr2Λ2ÞCr þ ðr2Λ2ÞCrμ1ðcðY − Y0ÞÞ1=2
1þ μ1 ln 1

ðr2Λ2Þ

þ 1

μ1
ðcðY − Y0ÞÞ1=2 −

1

μ21
ln ð1þ μ1ðcðY − Y0ÞÞ1=2Þ

��
; ð32Þ

where we have used lnðQ2
SðYÞ=Λ2Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðY − Y0Þ
p

. To get the S matrix in the center of mass frame, we need to compute

A

�
r;
Y − Y0

2

�
¼ exp

�
−
Ncμ

cπμ1

�
2Cr

3

�
1

2

�
3=2

ðcðY − Y0ÞÞ3=2 þ
c
2
ðY − Y0Þ ln

ðr2Λ2ÞCr þ ðr2Λ2ÞCr μ1ffiffi
2

p ðcðY − Y0ÞÞ1=2
1þ μ1 ln 1

ðr2Λ2Þ

þ 1ffiffiffi
2

p
μ1

ðcðY − Y0ÞÞ1=2 −
1

μ21
ln ð1þ μ1ffiffiffi

2
p ðcðY − Y0ÞÞ1=2Þ

��
: ð33Þ

Then the S matrix can be calculated as

Sðr; YÞ ¼ A

�
r;
Y − Y0

2

�
A

�
r;
Y − Y0

2

�
Sðr; Y0Þ

¼ exp

�
−
Ncμ

cπμ1

�
2

�
1

2

�
3=2 2Cr

3
ln3

Q2
sðYÞ
Λ2

þ ln2
Q2

sðYÞ
Λ2

ln
ðr2Λ2ÞCr þ ðr2Λ2ÞCr μ1ffiffi

2
p ln Q2

sðYÞ
Λ2

1þ μ1 ln 1
ðr2Λ2Þ

þ
ffiffiffi
2

p

μ1
ln
Q2

sðYÞ
Λ2

−
2

μ21
ln

�
1þ μ1ffiffiffi

2
p ln

Q2
sðYÞ
Λ2

���
Sðr; Y0Þ

¼ exp

�
−
Ncμ

cπμ1

�
1ffiffiffi
2

p 2Cr

3
ln3

Q2
sðYÞ
Λ2

þ ln2
Q2

sðYÞ
Λ2

ln
ðr2Λ2ÞCr þ ðr2Λ2ÞCr μ1ffiffi

2
p ln Q2

sðYÞ
Λ2

1þ μ1 ln 1
ðr2Λ2Þ

þ
ffiffiffi
2

p

μ1
ln
Q2

sðYÞ
Λ2

−
2

μ21
ln

�
1þ μ1ffiffiffi

2
p ln

Q2
sðYÞ
Λ2

���
Sðr; Y0Þ: ð34Þ

By comparing Eq. (34) with Eq. (22), we can clearly see
that the exponential factor of the dominant term in Eq. (22)
is

ffiffiffi
2

p
times larger than the one which presents when the

rare fluctuation corrections are taken into account. This
result shows that the rare fluctuation effects become
important again in the full NLO case, which is not like
the case of running coupling, where the rare fluctuations are
washed away by the quark loop corrections. Before we

explain the reason why the rare fluctuations become
important again in the full NLO case, we do an analysis
about the change of rapidity dependence of the S matrix
from LO to running coupling, and from running coupling to
full NLO cases. As we obtain the solution to the LO BK
equation in Eq. (7), the exponent has quadratic rapidity
dependence, S ∼ expð−OðY2ÞÞ. While this quadratic rap-
idity dependence is replaced by linear dependence,
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Eq. (15), once the running coupling corrections are taken
into account, expð−OðY2ÞÞ → expð−OðYÞÞ. Further,
when one includes full NLO contributions, the linear
rapidity dependence of the S matrix changes to rapidity
raised to power of 3=2 dependence, expð−OðYÞÞ →
expð−OðY3=2ÞÞ. The global analysis shows that the gluon
loop contributions (one part of the NLO corrections)
compensate for part of the decrease of the rapidity made
by quark loops. The compensation induces the rare
fluctuations to become important again.

V. EFFECTS OF RARE FLUCTUATIONS IN
HIGH-ENERGY DIPOLE-DIPOLE SCATTERING

IN A GENERAL FRAME

To ensure that the results that we have obtained in the
above section are independent of the frame choice, we
study a scattering of a right-moving dipole of size r0 and
rapidity Y − Y2 off a left-moving dipole of size r1 and
rapidity −Y2 in a general frame. The frame and scattering
pictures in the LO and NLO cases are given in Figs. 3 and 4,
respectively.

A. Leading-order case

We let a right-moving dipole of size r0 and rapidity
Y − Y2 scatter on a left-moving dipole of size r1 and
rapidity −Y2 in a general frame. The scattering picture is
illustrated in Fig. 3. We assume that the right-moving
dipole is highly evolved, and that the left-moving dipole
has the smaller rapidity. In this study, the Y2 ≤ 1

2
ðY − Y0Þ is

required for the sake of later calculation convenience, where
Y0 is the rapidity gap between two such dipoles in which the
unitarity corrections begin to become important. In order to
get a rare configuration, one has to restrict the evolution of
both dipoles r0 and r1. For the dipole r0, its evolution over

the rapidity range Y1 þ Y0 < y < Y − Y2 (see the upper
shaded triangle in Fig. 3) is suppressed as it was in Sec. IVA.
In the lowest Y0 þ Y1 rapidity, the dipole r0 has normal
BFKL evolution. The unshaded triangle, 0 < Y < Y1, is a
saturation regime in which the dipole r0 has evolved into a
color glass condensate. Y1 is an intermediate variable which
will be determined bymaximizing theSmatrix.Note that the
line of the upper shaded triangle in Fig. 3,

lnðk2⊥r20Þ ¼ cᾱsðy − Y1 − Y0Þ; ð35Þ

is determined by the requirement that gluons locating on the
right-hand side of that line cannot evolve by normal BFKL
evolution into the shaded triangles. We wish to note that a
similar approach is employed to determine the line of the
lower shaded triangle in Fig. 3. For the dipole r1, we have to
strongly suppress the emission of those dipoles which can
become of size 1=Qs through a normal evolution over the
intermediate rapidity range −Y2 < y < 0. This means that,
at the time of scattering, the left-moving dipole system has
no additional dipoles of size λr1 or larger, with λ being a
constant of order 1. Based on this scattering picture, we can
now estimate the S matrix as [20]

Sðr0; r1; YÞ ¼ ARðr0; Y − Y0 − Y1 − Y2Þ
× Sðr0; r1; Y0 þ Y1ÞALðr1; Y2Þ; ð36Þ

where Sðr0; r1; Y0 þ Y1Þ is the Smatrix for the scattering of
an elementary dipole r1 on a color glass condensatewhich is
evolved from the dipole r0. It is a dipole-typical configu-
ration interaction and can be computed by using the LO BK
equation. After using Eq. (7), we obtain

FIG. 4. The NLO configuration in a general frame.FIG. 3. The LO configuration in a general frame.
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Sðr0; r1; Y0 þ Y1Þ ¼ exp

�
−
c
2
ᾱ2sY2

1

�
Sðr0; Y0Þ: ð37Þ

As usual, ARðr0; Y − Y0 − Y1 − Y2Þ and ALðr1; Y2Þ are the
suppression factors which denote no emission from the two
dipoles, and they are given in terms of the suppressions over
the upper and lower shaded regions in Fig. 3,

ARðr0; Y − Y2 − Y1 − Y0Þ

¼ exp

�
−
c
2
ᾱ2sðY − Y2 − Y1 − Y0Þ2

�
; ð38Þ

and

ALðr1; Y2Þ ¼ exp

�
−
c
2
ᾱ2sððY1 þ Y2Þ2 − Y2

1Þ
�
: ð39Þ

Substituting Eqs. (37), (38), and (39) into Eq. (36), one
obtains

Sðr0; r1; YÞ ¼ exp

�
−
c
2
ᾱ2s ½ðY − Y2 − Y1 − Y0Þ2

þ ðY1 þ Y2Þ2�
�
Sðr0; Y0Þ: ð40Þ

Note that the Y1 is a rapidity which describes the amount of
evolution in the right-moving dipole, and it can be deter-
mined by maximizing the S matrix through a minimization
of the exponent of Eq. (40). So one can get the optimal value
of Y1:

Y1 ¼
1

2
ðY − Y0Þ − Y2: ð41Þ

Taking Y1 into Eq. (40), one obtains the S matrix

Sðr0; r1; YÞ ¼ exp

�
−
c
4
ᾱ2sðY − Y0Þ2

�
Sðr0; Y0Þ: ð42Þ

As expected, this result is exactly the same as the corre-
sponding result (27) in the center of mass frame. We would
like to point out that the right-hand size of Eq. (42) depends
on r1 through the rapidity Y0.

B. Next-to-leading-order case

In the NLO case, the scattering picture in a general frame
is illustrated in Fig. 4. The line of the upper shaded triangle
in Fig. 4,

lnðk2⊥r20Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðy − Y1 − Y0Þ

p
; ð43Þ

is determined by the requirement that gluons located on the
right-hand side of that line cannot evolve by normal BFKL
evolution into the shaded triangles. We wish to note that a
similar approach is employed to determine the line of the
lower shaded triangle in Fig. 4.

1. In the case of running coupling

We use the same approach as mentioned above to
compute the S matrix. Based on Eq. (36), we know that
the suppression factors AR and AL need to be computed.
Since the suppression process has a similar meaning as the
survival probability of the parent dipoles in a normal BFKL
evolution, it can be calculated by using the virtual term in
the alternative form of Eq. (8) expressed in terms of the
scattering amplitude N. One obtains

ARðr0; Y − Y0 − Y1 − Y2Þ ¼ exp

�
−
Ncμ

cπμ1

�
c ln

�
1þ μ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY − Y2 − Y1 − Y0Þ

p
1þ μ1 lnð 1

r2Λ2Þ −
1

2

�
ðY − Y2 − Y1 − Y0Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY − Y2 − Y1 − Y0Þ

p
μ1

−
1

μ21
ln
	
1þ μ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY − Y2 − Y1 − Y0Þ

p 
��
ð44Þ

and

ALðr1; Y2Þ ¼ exp

�
−
Ncμ

cπμ1

�
c ln

�
1þ μ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY1 þ Y2Þ

p
1þ μ1 lnð 1

r2Λ2Þ −
1

2

�
ðY1 þ Y2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY1 þ Y2Þ

p
μ1

−
1

μ21
ln ð1þ μ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY1 þ Y2Þ

p
Þ

− c ln

�
1þ μ1

ffiffiffiffiffiffiffiffi
cY1

p
1þ μ1 lnð 1

r2Λ2Þ −
1

2

�
Y1 −

ffiffiffiffiffiffiffiffi
cY1

p
μ1

þ 1

μ21
ln ð1þ μ1

ffiffiffiffiffiffiffiffi
cY1

p
Þ
��

: ð45Þ

The S matrix for the dipole-typical configuration interaction in the running coupling case is derived in Eq. (15). By using
Eq. (15), the Sðr0; r1; Y0 þ Y1Þ in Eq. (36) can be written as

Sðr0; r1; Y0 þ Y1Þ ¼ exp

�
−
Ncμ

cπμ1

�
c ln

�
1þ μ1

ffiffiffiffiffiffiffiffi
cY1

p
1þ μ1 lnð 1

r2Λ2Þ −
1

2

�
Y1 þ

ffiffiffiffiffiffiffiffi
cY1

p
μ1

−
1

μ21
ln ð1þ μ1

ffiffiffiffiffiffiffiffi
cY1

p
Þ
��

Sðr0; Y0Þ: ð46Þ
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Combining Eqs. (44), (45), and (46), one gets

Sðr0; r; YÞ ¼ ARðr0; Y − Y0 − Y1 − Y2ÞSðr0; r1; Y0 þ Y1ÞALðr1; Y2Þ

¼ exp

�
−
Ncμ

cπμ1

�
c ln

�
1þ μ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY − Y2 − Y1 − Y0Þ

p
1þ μ1 lnð 1

r2Λ2Þ −
1

2

�
ðY − Y2 − Y1 − Y0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY − Y2 − Y1 − Y0Þ

p
μ1

−
1

μ21
ln ð1þ μ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY − Y2 − Y1 − Y0Þ

p
Þ þ c ln

�
1þ μ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY1 þ Y2Þ

p
1þ μ1 lnð 1

r2Λ2Þ −
1

2

�
ðY1 þ Y2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY1 þ Y2Þ

p
μ1

−
1

μ21
ln ð1þ μ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðY1 þ Y2Þ

p
Þ
��

Sðr0; Y0Þ: ð47Þ

The maximum value of the Smatrix can be determined in the sameway as in the leading order case. One can get the optimal
value of Y1 as in Eq. (41). Substituting Eq. (41) into Eq. (47), the final S matrix is

Sðr0;r1;YÞ¼ exp

�
−
Ncμ

cπμ1

�
ln2

�
Q2

SðYÞ
Λ2

�
ln

�
1þ μ1ffiffi

2
p lnðQ2

SðYÞ
Λ2 Þ

1þμ1 lnð 1
r2Λ2Þ −

1

2

�
þ

ffiffiffi
2

p
lnðQ2

SðYÞ
Λ2 Þ

μ1
−
2

μ21
ln

�
1þ μ1ffiffiffi

2
p ln

�
Q2

SðYÞ
Λ2

����
Sðr0;Y0Þ;

ð48Þ

which is exactly the same as the one, Eq. (30), in the center of mass frame.

2. In the case of full next-to-leading order

Since we have already derived the effect of rare fluctuations on top of running coupling, it is now easy to transform the
corresponding formalisms to the full next-to-leading case by changing only the corresponding running coupling Smatrix to
the S matrix of full next-to-leading corrections. Using Eq. (22), we obtain

ARðr; Y − Y0 − Y1 − Y2Þ ¼ exp

�
−
Ncμ

cπμ1

�
2Cr

3
ðcðY − Y0 − Y1 − Y2ÞÞ3=2 þ cðY − Y0 − Y1 − Y2Þ

× ln
ðr2Λ2ÞCr þ ðr2Λ2ÞCrμ1ðcðY − Y0 − Y1 − Y2ÞÞ1=2

1þ μ1 ln
1

ðr2Λ2Þ
þ 1

μ1
ðcðY − Y0 − Y1 − Y2ÞÞ1=2

−
1

μ21
ln ð1þ μ1ðcðY − Y0 − Y1 − Y2ÞÞ1=2Þ

��
ð49Þ

and

ALðr1;Y2Þ¼ exp

�
−
Ncμ

cπμ1

�
2Cr

3
ðcðY1þY2ÞÞ3=2þcðY1þY2Þ ln

ðr2Λ2ÞCr þðr2Λ2ÞCrμ1ðcðY1þY2ÞÞ1=2
1þμ1 ln

1
ðr2Λ2Þ

þ 1

μ1
ðcðY1þY2ÞÞ1=2

−
1

μ21
lnð1þμ1ðcðY1þY2ÞÞ1=2Þ−

2Cr

3
ðcY1Þ3=2−cY1 ln

ðr2Λ2ÞCr þðr2Λ2ÞCrμ1ðcY1Þ1=2
1þμ1 ln 1

ðr2Λ2Þ

−
1

μ1
ðcY1Þ1=2þ

1

μ21
lnð1þμ1ðcY1Þ1=2Þ

��
: ð50Þ

Similarly, the S matrix for the scattering of an elementary dipole on a color glass condensate state is

Sðr0; r1; Y0 þ Y1Þ ¼ exp
�
−
Ncμ

cπμ1

�
2Cr

3
ðcY1Þ3=2 þ cY1 ln

ðr2Λ2ÞCr þ ðr2Λ2ÞCrμ1ðcY1Þ1=2
1þ μ1 ln

1
ðr2Λ2Þ

þ 1

μ1
ðcY1Þ1=2 −

1

μ21
lnð1þ μ1ðcY1Þ1=2Þ

��
Sðr0; Y0Þ: ð51Þ
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Thus,

Sðr0;r1;YÞ¼ARðr0;Y−Y0−Y1−Y2ÞSðr0;r1;Y0þY1ÞALðr1;Y2Þ

¼ exp

�
−
Ncμ

cπμ1

�
2Cr

3
ðcðY−Y0−Y1−Y2ÞÞ3=2þcðY−Y0−Y1−Y2Þ

×ln
ðr2Λ2ÞCr þðr2Λ2ÞCrμ1ðcðY−Y0−Y1−Y2ÞÞ1=2

1þμ1 ln 1
ðr2Λ2Þ

þ 1

μ1
ðcðY−Y0−Y1−Y2ÞÞ1=2

−
1

μ21
lnð1þμ1ðcðY−Y0−Y1−Y2ÞÞ1=2ÞÞ−

Ncμ

2cπμ1

�
2Cr

3
ðcðY1þY2ÞÞ3=2þcðY1þY2Þ

×ln
ðr2Λ2ÞCr þðr2Λ2ÞCrμ1ðcðY1þY2ÞÞ1=2

1þμ1 ln
1

ðr2Λ2Þ
þ 1

μ1
ðcðY1þY2ÞÞ1=2−

1

μ21
lnð1þμ1ðcðY1þY2ÞÞ1=2Þ

�
Sðr0;Y0Þ:

ð52Þ

Substituting the optimal value of Y1 into Eq. (52), the maximum value of the S matrix is

Sðr0;r1;YÞ¼ exp

�
−

Ncμ

2cπμ1

�
2Cr

3
2

�
c
Y−Y0

2

�
3=2

þ2c
ðY−Y0Þ

2
ln
ðr2Λ2ÞCr þðr2Λ2ÞCrμ1ðcY−Y0

2
Þ1=2

1þμ1 ln
1

ðr2Λ2Þ
þ 2

μ1

�
c
Y−Y0

2

�
1=2

−
2

μ21
ln

�
1þμ1

�
c
Y−Y0

2

�
1=2

���
Sðr0;Y0Þ

¼ exp

�
−

Ncμ

2cπμ1

�
1ffiffiffi
2

p 2Cr

3
ln3

Q2
sðYÞ
Λ2

þ ln2
Q2

sðYÞ
Λ2

ln
ðr2Λ2ÞCr þðr2Λ2ÞCr μ1ffiffi

2
p lnQ2

sðYÞ
Λ2

1þμ1 ln
1

ðr2Λ2Þ

þ
ffiffiffi
2

p

μ1
ln
Q2

sðYÞ
Λ2

−
2

μ21
ln

�
1þ μ1ffiffiffi

2
p ln

Q2
sðYÞ
Λ2

���
Sðr0;Y0Þ; ð53Þ

which is exactly the same as the corresponding result (34)
in the center of mass frame.
Through the calculations that we have done above, we

know that the results of Eqs. (27), (30), and (34) are
independent of the frame choice. The exponential factors of
the S matrices are twice and

ffiffiffi
2

p
as large as the results

which emerge when the rare fluctuation effects are taken
into account in the LO and full NLO cases, respectively.
These findings indicate that the rare fluctuation effects are
important in the LO and full NLO cases.
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APPENDIX: CALCULATE THE ANALYTIC
SOLUTION OF THE FULL NLO BK

EVOLUTION EQUATION

In this appendix, we give the details of the derivation of
the analytic solutions to the full NLO BK evolution
equation in two different approaches: one is developed
by us and the other is used in Ref. [31]. Then we compare
them with each other.
The full NLO BK evolution equation is given by

Eq. (17). In this work, we analytically solve the equation
in the saturation region where the S matrix is very small.
Therefore, the quadratic and cubic terms of the S matrix in
Eq. (17) are neglected. Thus, Eq. (17) is reduced to a simple
linear equation,

∂Sðr; YÞ
∂Y ¼ −

Z
d2r1

ᾱs
2π

r2

r21r
2
2

�
1þ ᾱs

4

�
b ln r2μ2 − b

r21 − r22
r2

ln
r21
r22

þ 67

9
−
π2

3
−
10Nf

9Nc
− 2 ln

r21
r2

ln
r22
r2

��
Sðr; YÞ: ðA1Þ
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In the above equation, we have used the notation r ¼ x⊥ − y⊥, r1 ¼ x⊥ − z⊥, and r2 ¼ z⊥ − y⊥. The running coupling
terms in Eq. (A1) are scale dependent, and a scheme developed in Ref. [37] is employed to rewrite the running coupling
part. If we replace all terms proportional to b with the Balitsky running coupling, Eq. (A1) can be rewritten as

∂Sðr;YÞ
∂Y ¼−

Z
d2r1

ᾱsðr2Þ
2π

�
r2

r21r
2
2

þ 1

r21

�
αsðr21Þ
αsðr22Þ

−1

�
þ 1

r22

�
αsðr22Þ
αsðr21Þ

−1

�
þ ᾱsðr2Þ

4

r2

r21r
2
2

�
67

9
−
π2

3
−
10Nf

9Nc
−2 ln

r21
r2
ln
r22
r2

��
Sðr;YÞ:

ðA2Þ

For solving Eq. (A2), we can choose the saturation region to be either 1=Qs ≪ jr1j ≪ jrj; jr2j ∼ jrj or
1=Qs ≪ jr2j ≪ jrj; jr1j ∼ jrj, as mentioned in Sec. III B. Under this saturation condition, Eq. (A2) can be simplified to

∂Sðr; YÞ
∂Y ¼ −2

Z
r2

1=Q2
s

d2r1
ᾱsðr2Þ
2π

�
1

r21

αsðr21Þ
αsðr2Þ

þ 1

r2

�
αsðr2Þ
αsðr21Þ

− 1

�
þ ᾱsðr2Þ

4

1

r21

�
67

9
−
π2

3
−
10Nf

9Nc
− 2 ln

r21
r2
ln
r22
r2

��
Sðr; YÞ

≃ −2
Z

r2

1=Q2
s

d2r1

�
ᾱsðr21Þ
2πr21

þ ᾱ2sðr2Þ
8πr21

�
67

9
−
π2

3
−
10Nf

9Nc

��
Sðr; YÞ

¼ −2
1

2π

Z
r2

1=Q2
s

d2r1

�
ᾱsðr21Þ
r21

þ ᾱ2sðr2Þ
4

1

r21

�
67

9
−
π2

3
−
10Nf

9Nc

��
Sðr; YÞ: ðA3Þ

For the running coupling and saturation momentum mentioned in the above equation, we use Eqs. (13) and (16).
Substituting Eq. (14) into Eq. (A3), we can get

∂Sðr; YÞ
∂Y ¼ −

Nc

π

Z
ln r2

ln 1=Q2
s

d ln r21

�
μ

1þ μ1 lnð 1
r2
1
Λ2Þ þ

Nc

π

αsðr2Þ
4

�
67

9
−
π2

3
−
10Nf

9Nc

��
Sðr; YÞ

¼
�
−
Ncμ

πμ1

�
ln

�
1þ μ1 ln

Q2
sðYÞ
Λ2

�
− ln

�
1þ μ1 ln

1

r2Λ2

��
þ N2

c

π2
αsðr2Þ
4

�
67

9
−
π2

3
−
10Nf

9Nc

�
lnðQ2

sr2Þ
�
Sðr; YÞ:

ðA4Þ

By integrating Eq. (A4) over Y, we can obtain the analytic solution [21]

Sðr; YÞ ¼ exp

�
−
Ncμ

cπμ1

�
2Cr

3
ln3

Q2
sðYÞ
Λ2

þ ln2
Q2

sðYÞ
Λ2

ln
ðr2Λ2ÞCr þ ðr2Λ2ÞCrμ1 ln

Q2
sðYÞ
Λ2

1þ μ1 ln 1
ðr2Λ2Þ

þ 1

μ1
ln
Q2

sðYÞ
Λ2

−
1

μ21
ln

�
1þ μ1 ln

Q2
sðYÞ
Λ2

���
Sðr; Y0Þ; ðA5Þ

with Cr ¼ α2sðr2ÞNcμ1ð67=9 − π2=3 − 10Nf=9NcÞ=4πμ. Note that Eq. (A5) is the same as Eq. (22).

On the other hand, the authors in Ref. [31] solved Eq. (A1) by taking the integration in the polar coordinate. To perform
the integration, they rewrote Eq. (A1) as

∂Sðr; YÞ
∂Y ¼ −

ᾱs
2π

KConðQs; rÞSðr; YÞ; ðA6Þ
with

KConðQs; rÞ ¼
Z

d2r1
r2

r21r
2
2

�
1þ ᾱs

4

�
b ln r2μ2 − b

r21 − r22
r2

ln
r21
r22

þ 67

9
−
π2

3
−
10Nf

9Nc
− 2 ln

r21
r2
ln
r22
r2

��
: ðA7Þ

Then the integration of Eq. (A7) can be divided into three parts:

KConðQs; rÞ ¼
Z

d2r1
r2

r21r
2
2

�
1þ ᾱs

4

�
b ln r2μ2 þ 67

9
−
π2

3
−
10Nf

9Nc

��
þ
Z

d2r1
r2

r21r
2
2

ᾱs
4
b
r22 − r21
r2

ln
r21
r22

−
Z

d2r1
r2

r21r
2
2

ᾱs
2
ln
r21
r2

ln
r22
r2
: ðA8Þ
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Following Ref. [31], we define R2
0 ¼ 1=Q2

sr2, R2
1 ¼ 1 − 1=Q2

sr2, and R2 ¼ r21=r
2. The three integral terms on the right-hand

side of Eq. (A8) can be rewritten, respectively, as [31]

I1 ¼
1

2

Z
R2
1

R2
0

dR2

R2

Z
2π

0

1

1þ R2 − 2R cos θ
dθ

�
1þ ᾱs

4

�
b ln r2μ2 þ 67

9
−
π2

3
−
10Nf

9Nc

��
; ðA9Þ

I2 ¼
ᾱs
4
b
Z

R2
1

R2
0

dR2

R2

Z
2π

0

ln

�
R2

1þ R2 − 2R cos θ

�
dθ; ðA10Þ

I3 ¼ −
ᾱs
4

Z
R2
1

R2
0

dR2

R2
lnðR2Þ

Z
2π

0

1

1þ R2 − 2R cos θ
lnð1þ R2 − 2R cos θÞdθ: ðA11Þ

In the saturation region, one performs integrations on Eqs. (A9), (A10), and (A11) and gets [31]

I1 ¼
1

2

Z
R2
1

R2
0

dR2

R2
2π

1

1 − R2

�
1þ ᾱs

4

�
b ln r2μ2 þ 67

9
−
π2

3
−
10Nf

9Nc

��

¼ π

�
1þ ᾱs

4

�
b ln r2μ2 þ 67

9
−
π2

3
−
10Nf

9Nc

��Z
R2
1

R2
0

dR2

R2ð1 − R2Þ

¼ π

�
1þ ᾱs

4

�
b ln r2μ2 þ 67

9
−
π2

3
−
10Nf

9Nc

���
ln

�
R2
1

R2
0

�
− ln

�
1 − R2

0

1 − R2
1

��

¼ 2π lnðQ2
sr2Þ

�
1þ ᾱs

4

�
b ln r2μ2 þ 67

9
−
π2

3
−
10Nf

9Nc

��
; ðA12Þ

I2 ¼
ᾱs
4
b
Z

R2
1

R2
0

dR2

R2

Z
2π

0

ln
�

R2

1þ R2 − 2R cos θ

�
dθ

¼ ᾱs
4
b
Z

R2
1

R2
0

dR2

R2

Z
2π

0

�
lnR2 þ 2

X∞
n¼1

cosðnθÞ
n

Rn

�
dθ

¼ ᾱs
4
b
Z

R2
1

R2
0

dR2

R2
2π lnR2

¼ π
ᾱs
4
bln2

�
R2
1

R2
0

�

¼ π
ᾱs
4
bln2

�
1 − 1=Q2

sr2

1=Q2
sr2

�

≃ π
ᾱs
4
bln2ðQ2

sr2Þ; ðA13Þ

I3 ¼ −
ᾱs
4

Z
R2
1

R2
0

dR2

R2
lnðR2Þ

Z
2π

0

1

1þ R2 − 2R cos θ

�
−2

X∞
n¼1

cosðnθÞ
n

Rn

�
dθ

¼ −
ᾱs
4

Z
R2
1

R2
0

dR2
lnðR2Þ

R2ð1 − R2Þ
X∞
n¼1

R2n

n

¼ −πᾱs
Z

R2
1

R2
0

dR2
lnðR2Þ lnð1 − R2Þ

R2ð1 − R2Þ
¼ −2πζð3Þ: ðA14Þ
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Substituting Eqs. (A9), (A10), and (A11) into Eq. (A8), the evolution equation becomes

∂Sðr; YÞ
∂Y ¼

�
−ᾱs

�
1þ ᾱs

4

�
b ln r2μ2 þ 67

9
−
π2

3
−
10Nf

9Nc

��
lnðQ2

sr2Þ −
ᾱ2s
8
bln2ðQ2

sr2Þ þ ᾱsζð3Þ
�
Sðr; YÞ: ðA15Þ

As was done in Ref. [31], we replace μ2 with Q2
s , and Eq. (A15) reduces to

d ln Sðr; YÞ ¼
�
−ᾱsðQsÞ

�
1þ 3ᾱsðQsÞ

8
b lnðQ2

sr2Þ þ ᾱsðQsÞ
�
67

36
−
π2

12
−

5Nf

18Nc

��
lnðQ2

sr2Þ þ ᾱsðQsÞζð3Þ
�
dY: ðA16Þ

We take the same form of the saturation momentum as Ref. [31],

lnðQ2
sðYÞ=Q2

0Þ ¼ lnðQ2
sðYÞr2Þ − lnðQ2

0r
2Þ ¼ ᾱsðQsÞ × ρ × ðY − Y0Þ; ðA17Þ

then we can rewrite Eq. (A16) as

d ln Sðr; YÞ ¼
�
−ᾱsðQsÞ

�
1þ 3ᾱsðQsÞ

8
b lnðQ2

sr2Þ þ ᾱsðQsÞ
�
67

36
−
π2

12
−

5Nf

18Nc

��
lnðQ2

sr2Þ þ ᾱsðQsÞζð3Þ
�
d lnðQ2

sr2Þ
ᾱsðQsÞρ

:

ðA18Þ

One can easily get the solution of the above equation as [31]

Sðr; YÞ ¼ exp

�
−

1

2ρ

�
1

4
ᾱsðQsÞbln3ðQ2

sr2Þ þ
�
1þ ᾱsðQsÞ

�
67

36
−
π2

12
−

5Nf

18Nc

��
ln2ðQ2

sr2Þ − 2ζð3Þ lnðQ2
sr2Þ

��
: ðA19Þ

We would like to point out that the two solutions, Eqs. (A5) and (A19), are consistent with each other, although the
coefficients of the corresponding terms look different due to different handling methods of the running coupling and
saturation momentum used in this paper and in Ref. [31].
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