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We present a method to extract, in the leading- and next-to-leading-order approximations, the longitudinal
deep inelastic scattering structure function FLðx;Q2Þ from the experimental data by relying on a Froissart-
bounded parametrization of the transversal structure function F2ðx;Q2Þ and, partially, on the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi equations. Particular attention is paid to the kinematics of low and ultralow
values of theBjorkenvariable x, x ∼ 10−5–10−2. Analytical expressions forFLðx;Q2Þ in terms of the effective
parameters of the parametrization of F2ðx;Q2Þ are presented explicitly. We argue that the obtained structure
functionsFLðx;Q2Þwithin both, the leading- and next-to-leading-order approximations, manifestly obey the
Froissart boundary conditions.Numerical calculations and comparisonwith available data from theZEUSand
H1 collaborations at HERA demonstrate that the suggested method provides reliable structure functions
FLðx;Q2Þ at low x in a wide range of the momentum transfer (1 GeV2 < Q2 < 3000 GeV2) and can be
applied as well in analyses of ultrahigh-energy processes with cosmic neutrinos.
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I. INTRODUCTION

At small values of the Bjorken variable x, the non-
perturbative effects in the deep inelastic structure functions
(SFs) were expected to play a decisive role in describing the
corresponding cross sections.However, it has been observed,
cf. Ref. [1], that even in the region of lowmomentum transfer
Q2 ∼ 1 GeV2, where traditionally the soft processes were
considered to govern the cross sections, the perturbative
QCD (pQCD) methods could still adequately describe high-
energy processes, in particular, at relatively low values of x:
10−5 ≤ x ≤ 10−2. This has been clearly demonstrated in
early analyses of the pre-HERA data within approaches
based on pQCD and on the idea that the steep behavior of the
momentum distributions at low x can be generated purely
dynamically, merely from measured valence densities, by
utilizing QCD evolution equations [2]. This idea has been
confirmed by subsequent measurements of the structure
function F2ðx;Q2Þ at x > 10−2. At smaller x < 10−2, to
achieve a better agreement with data, the dynamical parton

distribution functions (PDFs) require additional fine-tuning
of the valence-like input parameters [3,4]. Such comple-
mentary tuning results in rather stable parametrizations of
PDFs in a broad range of Q2 [5]. Furthermore, there are
various groups (cf. Refs. [4,6] and references therein)
actively involved in extracting PDFs from experimental
data, with particular attention paid to the description of
low-x HERA and LHC data (cf. Refs. [7–9]). In most cases
the extraction procedure is supplemented by the small-x
Balitsky-Fadin-Kuraev-Lipatov (BFKL) resummation [10]
of the evolution equations and deep inelastic scattering (DIS)
coefficient functions, thereby leading to resummed PDF sets
(for recent reviews see, for example, Refs. [7,8]). It has been
shown, that the inclusion of BFKL resummation signifi-
cantly improves the quantitative description of the small-x
and small-Q2 HERA data, in particular in the next-to-
leading-order (NLO) and next-to-next-to-leading-order
(NNLO) approximations, for both the inclusive and the
charm structure functions. The resummation of logarithms at
low x also stabilizes the perturbative expansion, and the
resulting PDFs receive a specific shape, rising at small x.
It should also be noted that, at ultralow x, x → 0, the

pQCD evolution, leads, nonetheless, to a rather singular
behavior of PDFs (see e.g., Ref. [11] and references therein
quoted), which is in strong disagreement with the Froissart
boundary conditions [12]. In Refs. [13–15] M.M. Block
et al. have suggested a new parametrization of the SF
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F2ðx;Q2Þ which describes fairly well the available exper-
imental data on the reduced cross sections and, at asymp-
totically low x, provides a behavior of the hadron-hadron
cross sections ∼ ln2 s at large s, where s is the Mandelstam
variable denoting the square of the total invariant energy of
the process, in full accordance with the Froissart predic-
tions [12]. The most recent parametrization suggested in
Ref. [15] by Block, Durand and Ha—referred to here as the
BDH parametrization—is also pertinent in investigations of
lepton-hadron processes at ultrahigh energies, e.g., the
scattering of cosmic neutrinos from hadrons [14–18].
Note that, in the case of neutrino scattering other SFs,
such as the pure valence SF F3ðx;Q2Þ, and longitudinal SF
FLðx;Q2Þ, are relevant to describe the process. While at
low values of x the valence structure function F3ðx;Q2Þ
vanishes, the longitudinal SF FLðx;Q2Þ remains finite and
can even be predominant in the cross section. Thus, a
theoretical analysis of the longitudinal SF FLðx;Q2Þ at low
x, in the context of the fulfilment of the Froissart pre-
scriptions, is of great importance in treatments of ultrahigh
energy processes as well.
Hitherto, most theoretical analyses [17,19] of neutrino

processes have been performed in the leading-order (LO)
approximation, within which the Callan-Gross relation is
assumed to be satisfied exactly, i.e., the longitudinal
structure function FL ¼ 0. Beyond the LO the effects from
FL can be sizable, and hence it can no longer be neglected,
cf. Refs. [17,20].
In the present paper we present a method of extraction of

the longitudinal SF, FLðx;Q2Þ in the kinematical region
of low values of the Bjorken variable x from the known
structure function FBDH

2 ðx;Q2Þ and known derivative
dFBDH

2 =d lnðQ2Þ by relying, to some extent, on the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) Q2-
evolution equations [21]. In our calculationswe use themost
recent version of the BDH parametrization reported in
Ref. [15]. In fact, the presented approach is a further develop-
ment of themethods previously suggested inRefs. [22,23] to
extract some general characteristics of the gluon density and
longitudinal SF at low x from the experimentally known SF
F2ðx;Q2Þ and logarithmic derivative dF2=d lnQ2. The
extraction procedure was inspired by the Altarelli-
Martinelli formula [24] used to determine the gluon density
from FLðx;Q2Þ, and improved upon in Ref. [25].
In our case, the SF F2ðx;Q2Þ is considered experimen-

tally known as it is defined by the FBDH
2 ðx;Q2Þ para-

metrization [15], i.e., the x and Q2 dependencies of the
transverse SF and the corresponding logarithmic derivative
are supposed to be known. As a first step of the analysis, the
method has been applied to extract FLðx;Q2Þ in the LO.
The results of such a procedure have been briefly reported
in Ref. [26], where it has been demonstrated that the
extracted structure function FBDH

L ðx;Q2Þ at moderate and
low values of x is in reasonably good agreement with the

available experimental data [27]. However, for ultralow
values of x the agreement becomes less satisfactory and
even rather poor in the limit x → 0. This serves as a clear
indication that the LO analysis is not sufficient in the region
x → 0 and the NLO corrections become significant and are
to be implemented in the extraction procedure. Similar
investigations of the longitudinal SF have been performed
in Ref. [28].
In this paper, we present in some detail the LO analysis

[26], and provide further development of the method by
extending it beyond the LO approximation by considering
and resumming the NLO corrections.
It is worth emphasizing that the NLO approximation for

FLðx;Q2Þ, i.e., calculations up to α2s corrections, corre-
sponds to the NNLO approximation for F2ðx;Q2Þ which,
in the LO, is ∝α0s . Hence, in our approach it becomes
possible to perform NLO and NNLO analyses of the
ultrahigh-energy (

ffiffiffi
s

p
∼ 1 TeV) neutrino cross sections

similar to existing NLO [29] and NNLO [30] investigations
based on pQCD. Such analyses are rather important in view
of the recently arosed possibility of a direct comparison
with emerging data from the IceCube Collaboration [31]
(cf. also Ref. [32]) and anticipated data from IceCube-Gen2
[33], whose performance will be much better and which is
expected to provide substantially more precise measure-
ments of the neutrino-nucleon cross section.
Our paper is organized as follows.
In Sec. II we present the basic formulas of the approach.

The relevant system of equations to be used in the extraction
of the longitudinal SF, together with the corresponding
splitting functions and coefficient functions are displayed
explicitly. In Secs. II A and II B we discuss the Mellin
transforms of the transversal and longitudinal SFs in the LO
andNLO approximations formomenta corresponding to low
x. Explicit expressions for the anomalous dimensions and
Wilson coefficients in the LO for low x are given as well.
In Sec. III wewrite down the details of obtaining all of the

quantities related to the BDH parametrization [15] needed in
the subsequent calculations, such as the corresponding
derivatives and Mellin transforms within the considered
kinematics and approximations. The next two sections,
Secs. IV and V, are entirely devoted to the description of
the gist of themathematical methods andmanipulations used
to calculate the Mellin transforms and their inverses to find
the longitudinal SF in the LO (Sec. IV) and NLO (Sec. V)
approximations. Numerical results for the extracted
FLðx;Q2Þ in the LO and NLO, together with comparisons
with the experimental data from the H1 Collaboration, are
presented in Sec. VI, where we discuss the Q2 and x
dependencies of the extracted SF FLðx;Q2Þ and the ratio
RLðx;Q2Þ of the longitudinal to transversal cross sections
within the LO and NLO approximations. Conclusions and a
summary are given in Sec. VII. The most cumbersome
expressions are relegated to Appendices A and B.
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II. BASIC FORMULAS

In view of the fact that at low values of x the nonsinglet
quark distributions become negligibly small in comparison
with the singlet distributions, in the present analysis they
are disregarded. Then, the transverse SF F2ðx;Q2Þ and
longitudinal SF FLðx;Q2Þ are expressed solely via the
singlet quark and gluon densities xfaðx;Q2Þ (hereafter
a ¼ s, g and k ¼ 2, L) as

Fkðx;Q2Þ ¼ e
X
a¼s;g

½Bk;aðxÞ ⊗ xfaðx;Q2Þ�; ð1Þ

where e is the average charge squared, e ¼ 1
f

Pf
i¼1 e

2
i≡

e2f
f where f is the number of considered flavors, and
q2 ¼ −Q2 and x ¼ Q2=2pq (with p being the momentum
of the nucleon) denote the momentum transfer and the
Bjorken scaling variable, respectively. The quantities
Bk;aðxÞ are the known Wilson coefficient functions. In
Eq. (1) and throughout the rest of the paper, the symbol
⊗ is used to denote the convolution formula, i.e.,
f1ðxÞ ⊗ f2ðxÞ≡ R

1
x

dy
y f1ðyÞf2ðxyÞ.

According to the DGLAPQ2-evolution equations [21] the
leading-twist quark, xfsðx;Q2Þ, and gluon, xfgðx;Q2Þ,
distributions obey the following system of integro-differential
equations:

dðxfaðx;Q2ÞÞ
d lnQ2

¼ −
1

2

X
a;b¼s;g

Pð0Þ
ab ðxÞ ⊗ xfbðx;Q2Þ; ð2Þ

where PabðxÞ (a, b ¼ s, g) are the corresponding splitting
functions.
Within pQCD, and up to the NLO corrections, the

coefficient functions Bk;aðxÞ and the splitting functions
PabðxÞ read as

B2;sðxÞ ¼ δð1 − xÞ þ asðQ2ÞBð1Þ
2;sðxÞ; ð3Þ

B2;gðxÞ ¼ asðQ2ÞBð1Þ
2;gðxÞ; ð4Þ

BL;aðxÞ ¼ asðQ2ÞBð0Þ
L;aðxÞ þ a2sðQ2ÞBð1Þ

L;aðxÞ; ð5Þ

Pa;bðxÞ ¼ asðQ2ÞPð0Þ
a;bðxÞ þ a2sðQ2ÞPð1Þ

a;bðxÞ; ð6Þ

where asðQ2Þ ¼ αsðQ2Þ=4π is the QCD running coupling,
which, for convenience, includes in its definition an addi-
tional factor of 4π in comparison with the standard
notation. In the above equations and hereafter the super-
scripts (0, 1) mark the corresponding order of the pertur-
bation theory: (0) for LO and (1) for NLO.
By inserting Eqs. (3)–(6) into Eqs. (1) and (2) the final

NLO system of equations for the desired PDFs becomes

dðxfgðx;Q2ÞÞ
dlnQ2

¼−
asðQ2Þ

2
½ðPð0Þ

gg ðxÞþasðQ2ÞP̃ð1Þ
gg ðxÞÞ⊗xfgðx;Q2Þþe−1ðPð0Þ

gs ðxÞþasðQ2ÞP̃ð1Þ
gs ðxÞÞ⊗F2ðx;Q2ÞþOða3sÞ�

ð7Þ
dF2ðx;Q2Þ
d lnQ2

¼−
asðQ2Þ

2
½eðPð0Þ

sg ðxÞþasðQ2ÞP̃ð1Þ
sg ðxÞÞ⊗ xfgðx;Q2ÞþðPð0Þ

ss ðxÞþasðQ2ÞP̃ð1Þ
ss ðxÞÞ⊗F2ðx;Q2ÞþOða3sÞ�; ð8Þ

FLðx;Q2Þ ¼ asðQ2Þ½eðBð0Þ
L;gðxÞ þ B̃ð1Þ

L;gðxÞÞ ⊗ xfgðx;Q2Þ þ ðBð0Þ
L;qðxÞasðQ2ÞB̃ð1Þ

L;qðxÞÞ ⊗ F2ðx;Q2Þ þOða3sÞ�; ð9Þ

where, for brevity, the following notations have been employed:

P̃ð1Þ
sg ðxÞ ¼ Pð1Þ

sg ðxÞ þ Bð1Þ
2;sðxÞ ⊗ Pð0Þ

sg ðxÞ þ Bð0Þ
2;gðxÞ ⊗ ð2β0δð1 − xÞ þ Pð0Þ

gg ðxÞ − Pð0Þ
ss ðxÞÞ;

P̃ð1Þ
ss ðxÞ ¼ Pð1Þ

ss ðxÞ þ 2β0B
ð1Þ
2;sðxÞ ⊗ δð1 − xÞ þ Bð1Þ

2;gðxÞ ⊗ Pð0Þ
gq ðxÞ;

P̃ð1Þ
gs ðxÞ ¼ Pð1Þ

gs ðxÞ − Bð1Þ
2;sðxÞ ⊗ Pð0Þ

gs ðxÞ; P̃ð1Þ
gg ðxÞ ¼ Pð1Þ

gg ðxÞ − Bð1Þ
2;gðxÞ ⊗ Pð0Þ

gs ðxÞ; ð10Þ

B̃ð1Þ
L;gðxÞ ¼ Bð1Þ

L;gðxÞ − Bð1Þ
2;gðxÞ ⊗ Bð0Þ

L;gðxÞ; B̃ð1Þ
L;sðxÞ ¼ Bð1Þ

L;sðxÞ − Bð1Þ
2;sðxÞ ⊗ Bð0Þ

L;sðxÞ ð11Þ

where β0 and β1 are the first two coefficients of the QCD β function

β0 ¼
1

3
ð11CA − 2fÞ; β1 ¼

1

3
ð34C2

A − 2fð5CA þ 3CFÞÞ: ð12Þ

In Eq. (12) CF ¼ ðN2
c − 1Þ=ð2NcÞ and CA ¼ Nc are the Casimir operators in the fundamental and adjoint representations of

the SUðNcÞ color group, respectively. Within QCD Nc ¼ 3, and hence CF ¼ 4=3 and CA ¼ 3.
A few remarks are in order here. As is known [34,35], Eq. (7) in its actual form leads to a too singular behavior of the gluon

distribution at small x, violating the Froissart boundary restrictions. One can go beyond the perturbative theory and try to cure
the problem by adding to the rhs of Eq. (7) terms proportional to ðxfgÞ2 which make the distribution (and hence, the
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corresponding cross sections [36]) less singular at the origin
and can, in principle, reconcile it with the Froissart require-
ments. A detailed inspection of Eq. (7) in the context of the
implementation of additional modifications to fulfill the
Froissart conditions is beyond the scope of the present paper
and in what follows we omit it in our analysis. However, the
gluon distribution originating from the omitted Eq. (7) and
entering into the remaining equations (8) and (9) is supposed
to have the correct asymptotic behavior, i.e., to be of the same
LO form as the BDH parametrization of FBDH

2 ðx;Q2Þ. This
conjecture has been confirmed in a previous analysis [37]
where the early parametrization of F2ðx;Q2Þ [14] has been
employed to determine the gluon density within the LO.
Then, Eq. (8) with the known FBDH

2 ðx;Q2Þ, can be consid-
ered as the definition of the gluon density xfBDHg ðx;Q2Þ in
the whole kinematical interval, cf. Ref. [37]. Consequently,
in the system (8)–(9) of two equations with two unknown
distributions one can eliminate the gluon part and solve the
remaining equation with respect to the longitudinal
FLðx;Q2Þ and express it via the known parameterization
ofF2ðx;Q2Þ.With these statements, nowwe are in a position
to solve Eqs. (8) and (9) and to extract the desired longi-
tudinal SF. Notice that, although at first glance the above
equations are relatively simple, directly solving Eqs. (8) and
(9) actually turns out to be a rather complicated and
cumbersome procedure. One can substantially simplify the
calculations by considering Eqs. (8) and (9) in the space of
Mellin momenta, and taking advantage of the fact that the
convolution form f1ðxÞ ⊗ f2ðxÞ in x space becomes merely
a product of individual Mellin transforms of the correspond-
ing functions in the space ofMellinmomenta. Consequently,
all of our further calculations are performed in Mellin space.

A. Mellin transforms

The Mellin transform of the PDFs entering into Eqs. (8)
and (9) are defined as

Mkðn;Q2Þ ¼
Z

1

0

dxxn−2Fkðx;Q2Þ;

Maðn;Q2Þ ¼
Z

1

0

dxxn−1faðx;Q2Þ; ð13Þ

γðiÞabðnÞ ¼
Z

1

0

dxxn−2PðiÞ
abðxÞ;

BðiÞ
k;aðnÞ ¼

Z
1

0

dxxn−2BðiÞ
k;aðxÞ; ð14Þ

where, as before, a, b ¼ s, g and k ¼ 2, L. Then, after some
algebra, the Mellin transforms of Eqs. (8) and (9) read as

dM2ðn;Q2Þ
dlnQ2

¼−
asðQ2Þ

2
½eðγð0Þsg ðnÞþasðQ2Þγ̃ð1Þsg ðnÞÞ

×Mgðn;Q2Þþðγð0Þss ðnÞ
þasðQ2Þγ̃ð1Þss ðnÞÞM2ðx;Q2ÞþOða3sÞ�; ð15Þ

MLðn;Q2Þ¼asðQ2Þ½eðBð0Þ
L;gðnÞþasðQ2ÞB̃ð1Þ

L;gðnÞÞMgðx;Q2Þ
þðBð0Þ

L;sðnÞþasðQ2ÞB̃ð1Þ
L;sðnÞÞM2ðx;Q2Þ

þOða3sÞ�; ð16Þ

where the anomalous dimensions γðiÞabðnÞ and the Wilson

coefficients BðiÞ
L;aðnÞ (i ¼ 0, 1) are

γ̃ð1Þsg ðnÞ ¼ γð1Þsg ðnÞ þ Bð1Þ
2;sðnÞγð0Þsg ðnÞ

þ Bð0Þ
2;gðnÞð2β0 þ γð0Þgg ðnÞ − γð0Þss ðnÞÞ;

γ̃ð1Þss ðnÞ ¼ γð1Þss ðxÞ þ 2β0B
ð1Þ
2;sðnÞ þ Bð1Þ

2;gðnÞγð0Þgq ðnÞ;

γ̃ð1Þgs ðnÞ ¼ Pð1Þ
gs ðnÞ − Bð1Þ

2;sðnÞγð0Þgs ðxÞ;
γ̃ð1Þgg ðnÞ ¼ γð1Þgg ðnÞ − Bð1Þ

2;gðnÞγð0Þgs ðnÞ; ð17Þ

B̃ð1Þ
L;gðnÞ ¼ Bð1Þ

L;gðnÞ − Bð1Þ
2;gðnÞBð0Þ

L;gðnÞ;
B̃ð1Þ
L;sðnÞ ¼ Bð1Þ

L;sðnÞ − Bð1Þ
2;sðnÞBð0Þ

L;sðnÞ: ð18Þ

The explicit expressions for the anomalous dimensions

γðiÞabðnÞ (i ¼ 0, 1) and the LOWilson coefficientsBð0Þ
L;aðnÞ can

be found in Ref. [38], whereas the NLO part, Bð1Þ
L;NSðnÞ and

Bð1Þ
L;aðnÞ, has been reported, for the first time, inRefs. [39,40].

Unfortunately, there are several misprints in the above-
mentioned references. Errata for Refs. [39,40] can be found
in, e.g., Ref. [41]. Yet, in Ref. [38] a factor of 2 in the LO

coefficients Bð0Þ
L;aðnÞ was missed. Observe that as mentioned

above, the Mellin transform significantly simplifies our
calculations for, the complicated integro-differential system
of equations (8)–(9) in x space, is translated into a relatively
simple system (15)–(16) of pure algebraic equations. Now,
we solve the system (15)–(16) with respect to the longi-
tudinalMellin momentumMLðn;Q2Þ and express it through
the known momentum M2ðx;Q2Þ and the derivative
dM2ðn;Q2Þ=d lnQ2

MLðn;Q2Þ ¼ −2
Bð0Þ
L;gðnÞ þ asðQ2ÞB̃ð1Þ

L;gðnÞ
γð0Þsg ðnÞ þ asðQ2Þγ̃ð1Þsg ðnÞ

dM2ðn;Q2Þ
d lnQ2

þ
�
ðBð0Þ

L;sðnÞ þ asðQ2ÞB̃ð1Þ
L;sðnÞÞ

− ðBð0Þ
L;gðnÞ þ asðQ2ÞB̃ð1Þ

L;gðnÞÞ

×
γð0Þss ðnÞ þ asðQ2Þγ̃ð1Þss ðnÞ
γð0Þsg ðnÞ þ asðQ2Þγ̃ð1Þsg ðnÞ

�
M2ðx;Q2Þ

þOða3sÞ: ð19Þ
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B. Anomalous dimensions and coefficient functions

Here we present the explicit expressions for the LO
ingredients only. The corresponding expressions for the
NLO corrections are rather cumbersome and, as already
mentioned, can be found in Refs. [38–41]. Explicitly, the
LO anomalous dimensions γð0Þab ðnÞ and the Wilson coef-

ficients Bð0Þ
L;aðnÞ, are as follows:

γð0Þsg ðnÞ ¼ −
4fðn2 þ nþ 2Þ
nðnþ 1Þðnþ 2Þ ;

γð0Þss ðnÞ ¼ 8CF

�
S1ðnÞ −

3

4
−

1

2nðnþ 1Þ
�
; ð20Þ

γð0Þga ðnÞ¼−
4CFðn2þnþ2Þ
ðn−1Þnðnþ1Þ ;

γð0Þss ðnÞ¼ 8CA

�
S1ðnÞ−

1

ðn−1Þn−
1

ðnþ1Þðnþ2Þ
�
þ2β0;

Bð0Þ
L;gðnÞ¼

8f
ðnþ1Þðnþ2Þ ; Bð0Þ

L;qðnÞ¼
4CF

ðnþ1Þ : ð21Þ

In Eqs. (20) and (21) we introduce, and shall widely use
throughout the rest of the paper, the notion of the so-called
nested sums, defined as

S�iðnÞ¼
Xn
m¼1

ð�1Þm
mi ; S�i;jðnÞ¼

Xn
m¼1

ð�1Þm
mi SjðmÞ: ð22Þ

Note that in previous calculations [38–40] the notion of
the nested sums (22) was not incorporated. Instead, other
notations related to the nested sums of negative indices
have been used

S0m

�
n
2

�
¼ 2m−1ðSmðnÞ þ S−mðnÞÞ;

S̃mðnÞ ¼ S−2;1ðnÞ ðRef: ½38�Þ;
KmðnÞ ¼ −S−mðnÞ;
QðnÞ ¼ −S−2;1ðnÞ ðRefs: ½39; 40�Þ: ð23Þ

Coming back to the Mellin transforms (15), (16) and
(19), we recall that we are interested in investigation of the
PDFs in the region of low x. In Mellin space it corresponds
to small momenta, and at extremely low x, it suffices to
restrict the analysis to the first momentum and to study the
solutions of Eqs. (15), (16) and (19) for n ¼ 1þ ω at
ω → 0. The nested sums SmðnÞ (here n is not necessarily an
integer) for positive indices m can be expressed via the
familiar Riemann Ψ functions ΨðnÞ as

S1ðnÞ ¼ Ψðnþ 1Þ −Ψð1Þ;

SmðnÞ ¼ ζm −
X∞
l¼0

1

ðnþ lþ 1Þm ; ðm > 1Þ; ð24Þ

where ζm are Euler constants and the last series on the rhs
of Eq. (24) is related to themth derivative of theΨ function.
A more complicated situation occurs for negative indices

m < 0 for which the analytical continuation of the nested
sums depends on the parity of the starting value of n. Since
the anomalous dimensions (20) have been calculated for
even n, in what follows we employ the analytical continu-
ation of S−mðnÞ and S−m;kðnÞ starting from even values
of n. The result is [42]

S1ðnÞ ¼ − ln 2 −
X∞
l¼0

ð−1Þlþ1

nþ lþ 1
;

S−mðnÞ ¼ ζ−m −
X∞
l¼0

ð−1Þlþ1

ðnþ lþ 1Þm ðm ≥ 2Þ;

ζ−m ¼ ð1 − 2−mÞζm;

S−m;kðnÞ ¼
X∞
l¼0

ð−1Þlþ1

ðlþ 1Þm Skðlþ 1Þ

−
X∞
l¼0

ð−1Þlþ1

ðnþ lþ 1Þm Skðnþ lþ 1Þ; ð25Þ

where the above series are well defined for any n including
noninteger values.
In what follows we are interested in quantities which

contribute to NLO at low x, i.e., in the initial series S−2ðnÞ,
S−3ðnÞ and S−2;1ðnÞ, anomalous dimensions and the
coefficient functions, at n ¼ 1þ ω. In the vicinity of
ω ¼ 0 we have

S−2ð1þ ωÞ ¼ 1 − ζ2 þOðωÞ;

S−3ð1þ ωÞ ¼ 1 −
3

2
ζ3 þOðωÞ;

S−2;1ð1þ ωÞ ¼ 1 −
5

4
ζ3 þOðωÞ: ð26Þ

III. BDH-LIKE RESULTS

We reiterate that, our analysis is based on Eqs. (8) and (9)
or, equivalently, on Eqs. (15), (16) and (19), where the
structure function F2ðx;Q2Þ is supposed to be known and
determined from the existing experimental data. In the
present paper we employ the BDH parametrization
[15], obtained from a combined fit of the H1 and ZEUS
collaborations’ data [27] in the following ranges of the
kinematical variables x and Q2: x<0.01 and 0.15GeV2<
Q2<3000GeV2. The explicit expression for the BDH para-
metrization reads as

FBDH
2 ðx;Q2Þ ¼ DðQ2Þð1 − xÞν

X2
m¼0

AmðQ2ÞLm ð27Þ
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where the dependence on the effective parameters is encoded
in DðQ2Þ and AmðQ2Þ

DðQ2Þ ¼ Q2ðQ2 þ λM2Þ
ðQ2 þM2Þ2 ;

A0ðQ2Þ ¼ a00 þ a01L2;

AiðQ2Þ ¼
X2
k¼0

aikLk
2; i ¼ ð1; 2Þ; ð28Þ

where the logarithmic terms L are

L¼ ln
1

x
þL1; L1¼ ln

�
Q2

Q2þμ2

�
; L2¼ ln

�
Q2þμ2

μ2

�
:

ð29Þ

The performed fit of the experimental data [27] provided
the following values of the effective parameters [15]:

μ2 ¼ 2.82� 0.29 GeV2;

M2 ¼ 0.753� 0.008 GeV2;

ν ¼ 11.49� 0.99;

λ ¼ 2.430� 0.153; ð30Þ

and

a00¼ 0.255�0.016; a01 ·101¼ 1.475�0.3025;

a10 ·104 ¼ 8.205�4.620; a11 ·102¼−5.148�0.819;

a12 ·103 ¼−4.725�1.010; a20 ·103¼ 2.217�0.142;

a21 ·102 ¼ 1.244�0.0860; a22 ·104 ¼ 5.958�2.320:

ð31Þ

Notice that, the BDH parametrization (27) is written in
(x −Q2) space, whereas Eq. (19) is in the space of Mellin
momenta. Hence, before proceeding with a consideration
of Eq. (19), we transform the BDH parametrization to
Mellin space. Then, in the transformed parametrization
M2ðn;Q2Þ we consider the first momenta n ¼ 1þ ω and
take the limit ω → 0, which corresponds to low x, and
obtain

MBDH
2 ðn;Q2Þ ¼ DðQ2Þ

X2
m¼0

AmðQ2ÞPmðω; ν; L1Þ þOðωÞ

≡DðQ2ÞM̂BDH
2 ðn;Q2Þ; ð32Þ

where the quantity Pmðω; ν; L1Þ stands for the approximate
expression of the integral

Z
1

0

dxxω−1ð1 − xÞνLkðxÞ ¼ Pkðω; ν; L1Þ þOðωÞ: ð33Þ

The explicit expression for the integral (33) is relegated to
AppendixA. It should be noted thatPkðω; ν; L1Þ, besides the
finite part at ω → 0, also contains negative powers of ω, i.e.,
it is a singular function at ω ¼ 0. These singularities are of
our interests in further procedure of solving Eqs. (8)–(19).
The strategy is as follows: we disregard the finite part of
MBDH

2 ðn;Q2Þ and keep only the singular terms. Then we
repeat the same procedure for the longitudinal momentum
MBDH

L ðn;Q2Þ, Eq. (19), and equate the coefficients in front of
each singularity. In such a way we obtain the representation
for the longitudinal SF. Actually, in our calculations, we
analyze the singularities in a slightly different way by using
some specific properties of the expansions over ω, thus
avoiding a direct comparison of the singular coefficients (see
below). At ω → 0 the integral (33) becomes independent
of ν and the singular part of M̂BDH

2 ðn;Q2Þ can be written as

M̂BDH
2 ðn;Q2Þ ¼

X2
m¼0

AmðQ2ÞPsing
m ðω; L1Þ þOðω0Þ; ð34Þ

where

Psing
0 ðωÞ ¼ 1

ω
; Psing

1 ðω; L1Þ ¼
1

ω2
þ L1

ω
;

Psing
2 ðω; L1Þ ¼

2

ω3
þ 2L1

ω2
þ L2

1

ω
: ð35Þ

Note that Psing
i ðωÞ (i ¼ 1, 2, 3) in the limit ω → 0 satisfy

the following useful recurrence relations:

ωPsing
0 ðωÞ ¼ Oðω0Þ;

ωPsing
1 ðωÞ ¼ Psing

0 ðωÞ þOðω0Þ;
ωPsing

2 ðωÞ ¼ 2Psing
1 ðωÞ þOðω0Þ;

ω2Psing
2 ðωÞ ¼ 2Psing

0 ðωÞ þOðω0Þ; ð36Þ
which are widely used subsequently.

A. Derivation of MBDH
2 (n;Q2)

To conclude the low-x analysis one needs the explicit
expressions for dMBDH

2 ðn;Q2Þ=d lnQ2 in Eq. (19), i.e., the
derivatives of the corresponding ingredients

d
dlnQ2

MBDH
2 ðn;Q2Þ¼dDðQ2Þ

dlnQ2

X2
m¼0

AmðQ2ÞPsing
m ðω;L1Þ

þDðQ2Þ
X2
m¼0

dAmðQ2Þ
d lnQ2

Psing
m ðω;L1Þ

þDðQ2Þ
X2
m¼0

AmðQ2ÞdP
sing
m ðω;L1Þ
dlnQ2

þOðω0Þ: ð37Þ
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Noticing that

d
d lnQ2

L2 ¼
Q2

Q2 þ μ2
;

d
d lnQ2

L1 ¼
μ2

Q2 þ μ2
;

d
d lnQ2

D ¼ M2Q2ðð2 − λÞQ2 þ λM2Þ
ðQ2 þM2Þ3 ≡ D̃; ð38Þ

we can write

d
d lnQ2

Am ¼ Q2

Q2 þ μ2
Ām;

Ām ¼ am1 þ 2am2L2;

a02 ¼ 0; ð39Þ

d
d lnQ2

Psing
m ðω; L1Þ ¼

Q2

Q2 þ μ2
P̄sing
m ðω; L1Þ;

P̄sing
m ðω; L1Þ ¼ ðm − 1ÞPsing

m−1ðω; L1Þ: ð40Þ

Collecting all of the results together, we have

d
d lnQ2

MBDH
2 ðn;Q2Þ ¼

X2
m¼0

ÂmðQ2ÞPsing
m ðω; L1Þ þOðω0Þ;

ð41Þ

where

Â2¼ Ã2; Â1¼ Ã1þ2DA2

μ2

Q2þμ2
;

Â0¼ Ã0þDA1

μ2

Q2þμ2
ð42Þ

and

Ãi ¼ D̃Ai þDĀi
Q2

Q2 þ μ2
: ð43Þ

IV. LO ANALYSIS

Here we present in detail the extraction of the longi-
tudinal SF, FBDH

L ðx;Q2Þ, in the LO approximation. In the
LO Eq. (19) reads as

ML;LOðn;Q2Þ ¼ −2
Bð0Þ
L;gðnÞ

γð0Þsg ðnÞ
dM2ðn;Q2Þ
d lnQ2

þ asðQ2ÞB̃ð0Þ
L;sðnÞM2ðx;Q2Þ; ð44Þ

where

B̃ð0Þ
L;sðnÞ ¼ Bð0Þ

L;sðnÞ − Bð0Þ
L;gðnÞ

γð0Þss ðnÞ
γð0Þsg ðnÞ

: ð45Þ

The next step is to consider Eq. (44) at n ¼ 1þ ω and to
perform the series expansion of the anomalous dimensions
and the coefficient functions about ω ¼ 0. Restricting the
expansion up to terms ∝ω2 we obtain

Bð0Þ
L;gð1þωÞ

eγð0Þsg ð1þωÞ
¼−

1

2

�
1þω

4
−

7

16
ω2

�
;

Bð0Þ
L;sð1þωÞ¼ 2CF

�
1−

ω

2
þω2

4

�
;

γð0Þss ð1þωÞ¼ 8CFω

�
ζð2Þ−5

8
þ
�
9

16
−ζð3Þ

�
ω

�
: ð46Þ

Observe that, in the above Eq. (44) both, the momentum
M2ðx;Q2Þ and the derivative dM2ðn;Q2Þ=d lnQ2 are of a
similar form, cf. Eqs. (34) and (41), so that the rhs of
Eq. (44) with the expansions (46) can be represented as

X2
m¼0

AmP
sing
m × ða cubic polynomial in ωÞ:

This substantially simplifies the calculations since, in such
a case, we can apply the recurrence relations (36) to find the
desired coefficients. For instance, for any (known) series of
the form

TðωÞ ¼ T0 þ T1ωþ T2ω
2 þOðω3Þ ð47Þ

one easily obtains the result

TðωÞ
X2
m¼0

AmP
sing
m ¼T0

X2
m¼0

AmP
sing
m þT1ð2A2P

sing
2 þA1P

sing
1 Þ

þ2T2A2P
sing
1 þOðω0Þ

¼
X2
m¼0

¯̄AmP
sing
m þOðω0Þ; ð48Þ

where

¯̄A2 ¼ T0A2;

¯̄A1 ¼ T0A1 þ 2T1A2;

¯̄A0 ¼ T0A0 þ T1A1 þ 2T2A2: ð49Þ

It is seen that it is sufficient to determine the coefficients T0,
T1 and T2 to find the solution of the system, avoiding in
such a way, lengthy and cumbersome calculations. In our
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case the explicit expressions for Ti can be inferred directly
from Eq. (46). Then the coefficients Cm of the LO
expansions of the longitudinal Mellin momenta

MBDH
L;LOðn;Q2Þ ¼

X2
m¼0

CmP
sing
m þOðω0Þ; ð50Þ

explicitly read as

C2 ¼ Â2 þ
8

3
asDA2;

C1 ¼ Â1 þ
1

2
Â2 þ

8

3
asD

�
A1 þ

�
4ζ2 −

7

2

�
A2

�
;

C0 ¼ Â0 þ
1

4
Â2 −

7

8
Â2 þ

8

3
asD

�
A0 þ

�
2ζ2 −

7

4

�
A1

þ
�
ζ2 − 4ζ3 þ

17

8

�
A2

�
: ð51Þ

It is worth mentioning once more that, the above results
for Ci (i ¼ 0, 1, 2) have been obtained in a straightforward
way by avoiding direct comparisons of singularities in
Eq. (44), as previously reported in Refs. [26,37]. Another
important result is that the adopted BDH parametrization
for F2ðx;Q2Þ led directly to the same BDH-like form of the
longitudinal structure functions FBDH

L;LOðx;Q2Þ which, con-
sequently, also obey the Froissart boundary condition

FBDH
L;LOðx;Q2Þ ¼ ð1 − xÞνL

X2
m¼0

CmðQ2ÞLm; ð52Þ

where, for simplicity, we adopt νL ¼ ν. In principle, at large
x the quark counting rules [43] predict a rather different
behaviour of the valence and sea quark distributions. Since
we consider the small-x kinematics, our choice of νL does
not affect the analysis.

V. NLO ANALYSIS

In this section we discuss the longitudinal structure
function within the NLO approximation. As before, par-
ticular attention is paid to the region of asymptotically
small x → 0 in the context of the Froissart boundary.
Multiplying both sides of Eq. (19) by the factor

ð1þ asðQ2Þ½δð1Þsg ðnÞ − Rð1Þ
L;gðnÞ�Þ, we have

ð1þ asðQ2Þ½δð1Þsg ðnÞ − Rð1Þ
L;gðnÞ�ÞMLðn;Q2Þ

¼ −2
Bð0Þ
L;gðnÞ

γð0Þsg ðnÞ
dM2ðn;Q2Þ
d lnQ2

þ asðQ2ÞðB̃ð0Þ
L;sðnÞ

þ asðQ2ÞB̃ð1Þ
L;sðnÞÞM2ðn;Q2Þ þOða3sÞ; ð53Þ

where

δð1Þsa ðnÞ ¼ γ̃ð1Þsa ðnÞ
γð0Þsg ðnÞ

; Rð1Þ
L;aðnÞ ¼

B̃ð1Þ
L;aðnÞ

Bð0Þ
L;aðnÞ

ð54Þ

and

B̃ð1Þ
L;sðnÞ ¼ Bð0Þ

L;sðnÞðRð1Þ
L;sðnÞ þ δð1Þsg ðnÞ − Rð1Þ

L;gðnÞÞ
− Bð0Þ

L;gðnÞδð1Þss ðnÞ: ð55Þ

Using Eqs. (44) and (53) together, it is straightforward to
obtain

ð1þ asðQ2Þ½δð1Þsg ðnÞ − Rð1Þ
L;gðnÞ�ÞMLðn;Q2Þ

¼ ML;LOðn;Q2Þ þ a2sðQ2ÞB̃ð1Þ
L;sðnÞM2ðn;Q2Þ: ð56Þ

When computing the inverse Mellin transform of
Eq. (56) we use the fact that on the lhs of Eq. (56), up
to Oða3sÞ corrections, we can write

asðQ2Þ½δð1Þsg ðnÞ − Rð1Þ
L;gðnÞ�MLðn;Q2Þ

¼ asðQ2Þ½δð1Þsg ðnÞ − Rð1Þ
L;gðnÞ�ML;LOðn;Q2Þ þOða3sÞ;

ð57Þ

where the LO momentum ML;LOðn;Q2Þ has already been
calculated in the previous section, cf. Eq. (50).
Prior to proceeding with the inverse Mellin transforms, it

is convenient to extract the singular structure of the NLO

coefficients δð1Þsg ðnÞ, Rð1Þ
L;gðnÞ and B̃ð1Þ

L;sðnÞ. We have

δð1Þsg ðnÞ ¼ δ̂ð1Þsa

ω
þ δ̄ð1Þsa ð1þ ωÞ;

Rð1Þ
L;gðnÞ ¼

R̂ð1Þ
L;g

ω
þ R̄ð1Þ

L;gð1þ ωÞ;

B̃ð1Þ
L;sðnÞ ¼

B̂ð1Þ
L;g

ω
þ B̄ð1Þ

L;gð1þ ωÞ; ð58Þ

with (ω → 0)

B̂ð1Þ
L;s ¼

20

3
CFð3CA − 2fÞ;

B̄ð1Þ
L;sð1Þ ¼ 8CF

�
25

9
f −

449

72
CF

þ ð2CF − CAÞ
�
ζ3 þ 2ζ2 −

59

72

��
;

δ̂ð1Þsg ¼ 26

3
CA; δ̄ð1Þsg ð1Þ ¼ 3CF −

347

18
CA;

R̂ð1Þ
L;g ¼ −

4

3
CA; R̄ð1Þ

L;gð1Þ ¼ −5CF −
4

9
CA: ð59Þ
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Then, Eq. (56) can be rewritten in the following form:

MLðn;Q2Þ þ asðQ2Þ
ω

½δ̂ð1Þsg ðnÞ − R̂ð1Þ
L;gðnÞ�ML;LOðn;Q2Þ

¼ ð1 − asðQ2Þ½δ̄ð1Þsg ðnÞ − R̄ð1Þ
L;gðnÞ�Þ

×ML;LOðn;Q2Þ þ a2sðQ2Þ
�
B̂ð1Þ
L;s

ω
þ B̄ð1Þ

L;sðnÞ
�

×M2ðn;Q2Þ þOða3sÞ: ð60Þ

Now the inverse Mellin transforms of the last equations
can be easily performed (see also Appendix B). The result
is

FBDH
L ðx;Q2Þ þ asðQ2Þ

3
LC½δ̂ð1Þsg − R̂ð1Þ

L;g�FBDH
L;LOðx;Q2Þ

¼ ½1 − asðQ2Þðδ̄ð1Þsg ð1Þ − R̄ð1Þ
L;gð1ÞÞ�FBDH

L;LOðx;Q2Þ

− a2sðQ2Þ
�
B̂ð1Þ
L;s

3
LA þ B̄ð1Þ

L;sð1Þ
�
MBDH

2 ðx;Q2Þ; ð61Þ

where

LA ¼ Lþ A1

2A2

; LC ¼ Lþ C1

2C2

: ð62Þ

With the considered accuracy the obtained equation (61)
can be rewritten as

�
1þ 1

3
asðQ2ÞLCðδ̂ð1Þsg − R̂ð1Þ

L;gÞ
�
FBDH
L ðx;Q2Þ

¼ ½1 − asðQ2Þðδ̄ð1Þsg − R̄L;gÞ�FBDH
L;LOðx;Q2Þ

− a2sðQ2Þ
�
1

3
B̂ð1Þ
L;sLA þ B̄ð1Þ

L;sð1Þ
�
MBDH

2 ðx;Q2Þ

þOða3sÞ: ð63Þ

Eventually, the final expression for the longitudinal SF
F̂BDH
L ðx;Q2Þ reads as

FBDH
L ðx;Q2Þ ¼ 1

½1þ 1
3
asðQ2ÞLCðδ̂ð1Þsg ð1Þ − R̂ð1Þ

L;gÞ�

×

�
½1 − asðQ2Þðδ̄ð1Þsg − R̄L;gÞ�FBDH

L;LOðx;Q2Þ

− a2sðQ2Þ
�
1

3
B̂ð1Þ
L;sLA þ B̄ð1Þ

L;sð1Þ
�

× FBDH
2 ðx;Q2Þ

�
: ð64Þ

This is our final expression for the longitudinal SF
FBDH
L ðx;Q2Þ within the NLO approximation for low

values of x.

VI. RESULTS

With the explicit form of the basic expressions described
above, we can proceed to extract the longitudinal structure
function FLðx;Q2Þ from data described by the BDH
parametrization of FBDH

2 ðx;Q2Þ. In our calculations we
employ the standard representation for QCD couplings in
the LO and NLO (within the MS scheme) approximations

asðQ2Þ¼ 1

β0 lnðQ2=Λ2Þ ðLOÞ;

asðQ2Þ¼ 1

β0 lnðQ2=Λ2Þ−
β1 lnlnðQ2=Λ2Þ
β0½β0 lnðQ2=Λ2Þ�2 ðNLOÞ: ð65Þ

The QCD parameter Λ has been extracted from the
running coupling αs normalized at the Z-boson mass,
αsðM2

ZÞ, using the b- and c-quark thresholds according
to Ref. [44]. Applying this procedure to ZEUS data, with
αsðM2

ZÞ ¼ 0.1166 [45], we obtain the following results for
Λ, cf. Ref. [46]:

LO∶ Λðf ¼ 5Þ ¼ 80.80 MeV;

Λðf ¼ 4Þ ¼ 136.8 MeV;

Λðf ¼ 3Þ ¼ 136.8 MeV;

NLO∶ Λðf ¼ 5Þ ¼ 195.7 MeV;

Λðf ¼ 4Þ ¼ 284.0 MeV;

Λðf ¼ 3Þ ¼ 347.2 MeV: ð66Þ

We have calculated the Q2 dependence, at low x, of the
longitudinal structure function FBDH

L ðx;Q2Þ as described
above, in the LO [Eq. (52)] and NLO [Eq. (64)] approx-
imations. The results of our calculations and a comparison
with data from the H1 Collaboration [47] are presented in
Fig. 1, where the dashed and solid lines correspond to the
extracted SF in the LO and NLO approximations, respec-
tively. Calculations have been performed at a fixed value of
the invariant massW,W ¼ 230 GeV, allowing the Bjorken
variable x to vary in the interval (3 × 10−5 < x < 7 × 10−2)
when Q2 varies in the interval (1 GeV2 < Q2 <
3000 GeV2). Figure 1 clearly demonstrates that the extrac-
tion procedure provides the correct behaviors of the extracted
SF in both the LO andNLO approximations. At intermediate
and high Q2 the extracted SFs are in good agreement with
experimental data. In this region the NLO corrections are
rather small and canbeneglected.Adifferent situationoccurs
at lowQ2 < 5 GeV2, where the LO FLðx;Q2Þ substantially
exceeds experimental data. The NLO corrections here are
negative and result in a better agreement with data. However,
at extremely low momenta, Q2 < 1.5 GeV2, the extracted
SF within NLO is still above the experimental data. It should
also be mentioned that our calculations are consistent with
other theoretical results, obtained, e.g., in the framework of
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perturbation theory [7,8] and/or in Ref. [48] in the so-called
kt-factorization approach [49], both of which incorporate the
BFKL resummation [10] at low x (for a review of low-x
phenomenology see, e.g., Ref. [50]). Recall that the inclusion
of the BFKL resummation in a study of PDFs leads to an
improvement of the description of data at small x and
nowadays appears as an integral part in a majority of
approaches. The NNPDF Collaboration [51] and the
XFITTER HERAPDF team [27,52], whose approaches are
based on theDGLAP equations, recently included theBFKL
resummation in their analysis of the combined H1þ ZEUS
inclusive cross section [53] achieving, in such a way, a much
better description of the data [7,8]. Analogous studies have
been performed in Refs. [7,54–56]. This is in some contrast
to the results of the standard PDF sets [4,6,51,52]without the
BFKL resummations.
A particular interests presents the ratio of the longi-

tudinal to transversal cross sections, defined as

RLðx;Q2Þ ¼ FLðx;Q2Þ
F2ðx;Q2Þ − FLðx;Q2Þ : ð67Þ

Recently, the H1 Collaboration reported the ratio RLðx;Q2Þ
measured in several kinematical bins of averagedQ2 and x,
cf. Table 6 of Ref. [47]. Within such kinematics, the
invariant mass W changes from W ∼ 230 GeV to W ∼
184 GeV with an increase of Q2 and x in the selected bins.
In Fig. 2 we present the ratio (67), calculated with the
extracted FBDH

L ðx;Q2Þ and parametrized FBDH
2 ðx;Q2Þ, in

comparison with the mentioned H1 data. The open and full
stars are the results of calculations within the LO and NLO
approximations, where x and Q2 correspond exactly to the
experimental bins reported in Ref. [47]. The shaded areas

are calculations for two fixed (minimal and maximal)
values of the invariant mass W within the chosen bins.
From Fig. 2 one can infer that the NLO results essentially
improve the agreement with the data in comparison with
the LO calculations. As in the previous case, the extracted
longitudinal SF FBDH

L ðx;Q2Þ slightly overestimates the
data at relatively low Q2.
Now we proceed with an analysis of the x evolution of

the longitudinal SF at fixed Q2. As mentioned above, the
investigation of FLðx;Q2Þ as a function of x is of interest in
connection with theoretical investigations of ultrahigh-
energy processes with cosmic neutrinos and also in the
context of the Froissart restrictions at x → 0. We have
calculated the x dependence of the longitudinal SF at
several fixed values of Q2 corresponding to H1
Collaboration data. The results are presented in Fig. 3
where the x evolution of FLðx;Q2Þ is clearly exhibited. It is
seen that, for all values of the presented Q2, the extracted
SF within the NLO approximation is in much better
agreement with the data. This persuades us that the
obtained SF in the NLO approximation can be pertinent
in future analyses of ultrahigh-energy neutrino data.
In Fig. 4 we present the ratio (67) calculated for the same

kinematics as in Fig. 3. As in previous calculations, the
NLO results are in better agreement with the data. It is also
seen from Fig. 4 that the NLO ratio RLðx;Q2Þ exhibits a
tendency to be almost independent on x in each bin of Q2,
decreasing, however, as Q2 increases, as it should be. We
also mention that, as in the case of Q2 dependence, our
extracted longitudinal SF as a function of x is in reasonably

FIG. 1. The extracted longitudinal structure function FLðx;Q2Þ
from the BDH parametrization of F2ðx;Q2Þ at a fixed value of the
invariant mass W ¼ 230 GeV. The dashed line represents cal-
culations within the LO approximation [Eq. (52)], while the solid
line represents the structure function within the NLO approxi-
mation [Eq. (64)]. Experimental data are from the H1 Collabo-
ration [47]. The Bjorken variable x corresponding to the chosen
kinematics lies in the interval (3 × 10−5 < x < 7 × 10−2).

FIG. 2. The ratio of the longitudinal to transversal cross
sections, Eq. (67), calculated with the extracted longitudinal
SF within the leading- and next-to-leading-order approximations.
The open and full stars are the results of LO and NLO
calculations, respectively, within the exact kinematical conditions
reported in Ref. [47], i.e., for each experimental point the variable
x is taken from the corresponding ðQ2; xÞ bin. The shaded areas
are calculations with minimal and maximal values of W from
Table 6 of Ref. [47]: W ¼ 232 GeV and W ¼ 184 GeV for the
upper and lower boundaries, respectively.
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good agreement with other theoretical predictions; see e.g.,
Refs. [7,8] for pQCD results and/or Ref. [57] for results
obtained within the kt-factorization approach. Likewise our
results are in good agreement with the previous inves-
tigations reported in Ref. [23], where a similar analysis has
been performed within the framework of pQCD, with the
experimental data for the transverse SF F2ðx;Q2Þ and the
logarithmic derivative dF2=d lnðQ2Þ.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we presented a further development of the
method of extracting the longitudinal DIS structure function
FLðx;Q2Þ suggested in Refs. [22,23,26]. The method relies
on the DGLAP equations and on the Froissart-bounded
parametrization of the DIS structure function F2ðx;Q2Þ. We

focused our attention on the kinematical region of low
Bjorken variable (10−5 ≲ x≲ 0.1) in a large interval of the
momentum transfer (1 GeV2 ≲Q2 ≲ 3 × 103 GeV2). The
extraction procedure has been elaborated for an analysis of
the SF FLðx;Q2Þ within the leading- and next-to-leading-
order approximations. To this end, we considered the known
transversal SF F2ðx;Q2Þ and used the DGLAP equations to
relate it to the longitudinal SF. Then, in the space of Mellin
momenta we found, up to α2s corrections, the corresponding
Mellin transforms for themomenta corresponding to low and
ultralow values of x. The inverse Mellin transform provides
the desired longitudinal SF in the usual x −Q2 representa-
tion. The obtained explicit expression for FLðx;Q2Þ is
entirely determined by the effective parameters of the
BDH parametrization (27) and is presented in Eq. (64).
Some comments are in order here. Observe that, the final
expression (64) contains the dominant logarithmic terms
∼ lnð1=xÞ in both the numerator and denominator. In
principle, due to the smallness of the running coupling
αsðx;Q2Þ, the denominator with LC can be rewritten in the
numerator as an alternate series leading to a behavior similar
to the one known within pQCD, where the NLO corrections,
in the considered kinematical region, are negative and large,
while NNLO contributions are positive and also large (see,
e.g., Ref. [58]). A resummation of these contributions would
allow to avoid such an alternate behavior. In our case, this is
achieved by keeping the logarithmic term in the denominator
without expanding it into series relative to αsðx;Q2Þ. To
some extent, our representation of thebasicNLOcorrections,
Eq. (64), can be considered as an effective resummation of
the most important (at low x) logarithmic terms in each order
of the perturbation theory. Another observation is that by
keeping the logarithmicLC terms in the denominator we also
manifestly demonstrate that the SF FLðx;Q2Þ obeys the
Froissart conditions. As shown in Appendix B, the loga-
rithmic part in Eq. (64) is a direct consequence of the inverse
Mellin transforms of terms ∼1=ω.
We have applied the developed method to extract the

longitudinal SF within kinematical conditions correspond-
ing to those available at the HERA collider. It has been
found that, at relatively large Q2 > 10 GeV2 both, LO and
NLO results reproduce fairly well the experimental data. At
smaller Q2 the LO approximation fails to describe the data,
being systematically larger. Accounting for NLO correc-
tions, which at low x turn out to be negative, substantially
improves the description of the SF and the ratio of the
longitudinal to transversal cross section. However, at
extremely low momentum transfer Q2 ≲ 1 GeV2, the
extracted SF still exceeds the data.
We have performed an analysis of the x evolution of the

extracted SF. It has been demonstrated that the x depend-
ence of FLðx;Q2Þ also reproduces the behavior of the
experimental data at low x. Both, the extracted SF and the
ratio RLðx;Q2Þ as functions of x, are in fairly good

FIG. 3. The longitudinal structure function FLðx;Q2Þ extracted
from the BDH parametrization of F2ðx;Q2Þ at fixed Q2 as a
function of the Bjorken variable x. The dashed lines represent
results of calculations within the LO approximation, while the
solid lines represent the SFs obtained within the NLO approxi-
mation. Experimental data are from the H1 Collaboration [47].

FIG. 4. The same as in Fig. 3, but for the ratio of the
longitudinal to transversal cross sections, RLðx;Q2Þ, Eq. (67).
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agreement with the data, while the NLO results are in much
better agreement not only with the data, but also with other
existing theoretical investigations based on perturbative
QCD, improved by the BFKL resummation (see Refs. [7,8]
and references therein), as well as with the results [48]
obtained in the framework of the kt-factorization method
[49], also based on the BFKL approach [10]. Calculations
of the longitudinal SF based on traditional pQCD without
such improvements turn out to be rather unstable, due to the
fact that the subsequent perturbative corrections can be
even larger than the previous ones [58,59]. The incorpo-
ration of corrections inspired by the BFKL resummation
leads to substantially more stable results for FLðx;Q2Þ [59]
(see also similar investigations in Refs. [7,54–56]), and
allows to achieve a rather good description of the combined
H1þ ZEUS inclusive cross sections [53].
Apart from the study of the Froissart boundary restric-

tions, the knowledge of the FLðx;Q2Þ at low x is of great
interest in connection with the theoretical treatments of the
ultrahigh-energy processes with cosmic neutrinos. As
already mentioned in the Introduction, the NLO approxi-
mation for FLðx;Q2Þ, i.e., calculations up to α2s corrections,
corresponds to the NNLO for F2ðx;Q2Þ which, in the LO,
is ∝ α0s . Consequently, with the NLO results (64), in our
approach it becomes possible to perform NLO and NNLO
analyses of the ultrahigh-energy (

ffiffiffi
s

p
∼ 1 TeV) neutrino

cross sections similar to NLO [29] and NNLO [30]
investigations based on pQCD. Such calculations are of
great importance in view of expected reliable cross sections
from existing and forthcoming data at IceCube [32] and
from the substantially improved IceCube-Gen2 [33].
Therefore, a direct comparison of the theoretical predic-
tions with experimental data becomes feasible.
In the kinematical region where the gluon contributions

are sizable the (large) corrections within traditional pQCD
can be strongly reduced by a proper change of the
factorization and renormalization scales [60]. An analysis
of the precise H1þ ZEUS combined data [27] obtained
within the kinematics near the limit of applicability of
pQCD has shown [61] that using effective scales with large
parameters provides much smaller high-order perturbative
corrections. In such a case the strong couplings decrease as
well and, as a rule, calculations with effective scales lead to
better agreement with data [cf. investigations of the NLO
corrections in the context of high-energy asymptotics of
virtual photon-photon collisions [62] and studies of
FLðx;Q2Þ in the framework of the kt-fragmentation
approach [48]]. This encourages us to continue our
low-x analysis of the SFs by implementing a special
change in the factorization and renormalization scales
[60]. This is the subject of our further investigations and
results will be presented elsewhere.
Furthermore, we plan to improve our approach by

modifying the method to extract, in the LO and NLO
approximations, the gluon densities as well. We shall note

that, the gluon distribution is by far less known, both
experimentally and theoretically. Even the shape of the
gluon density is often taken to be quite different in different
PDF sets [6,9], although considered within the same
framework of pQCD. However, the range of variation of
the gluon density strongly decreases when BFKL resum-
mation is included in the analyses at low x (see the most
recent publication [30] and the discussion therein).
An extraction of the gluon distributions from experi-

mental data, performed within an approach similar to the
one suggested in the present paper, can provide valuable
additional information on the problem. Such an analysis
can be accomplished by employing the charm, Fcc

2 ðx;Q2Þ,
and beauty, Fbb

2 ðx;Q2Þ, components of the SF F2ðx;Q2Þ,
which are directly related to the gluon density in photo-
gluon fusion reactions (see Ref. [63] and the discussion
therein). The extracted SFs can be compared with the
recently obtained combined H1þ ZEUS data [64] for
Fcc
2 ðx;Q2Þ and Fbb

2 ðx;Q2Þ and with the theoretical pre-
dictions [30] based on pQCD with BFKL corrections
included, and also with the results [65] obtained in the
framework of kt fragmentation.
Furthermore, the charmed parts of the transverse SF

Fcc
2 ðx;Q2Þ and longitudinal SF Fcc

L ðx;Q2Þ calculated
within our approach, can be used to predict the charmed
part of the neutrino-nucleon cross sections at ultrahigh
energy and to compare with other calculations [30] based
on pQCD with BFKL corrections. Yet, the BDH gluon
density itself can serve as a useful tool for estimations of the
cross sections with cosmic rays, cf. Ref. [66] (for a more
recent review on the subject, see Ref. [67] and references
therein). Recall that, the gluon density in the BDH-like
form already contains information about the violation of the
standard DGLAP evolution (cf. discussions in Sec. II) and
indicates the possible presence of shadowing effects, which
are among the basic subjects of physical programs of
operating (e.g., NICA in Dubna) and planned facilities
(EIC@China, ELIC@JLAB, ENC@GSI, etc.) aimed at
studying the properties of nuclear matter at high energies
[68]. Our investigations in this direction are in progress.
In summary, we presented a theoretical method to

extract, from the experimental data, the longitudinal DIS
structure function FLðx;Q2Þ at low x within the leading-
and next-to-leading-order approximations. Explicit, ana-
lytical expressions for the structure function in both the LO
and NLO approximations have been obtained in terms of
the effective parameters of the Froissart-bound parametri-
zation of F2ðx;Q2Þ and the results of numerical calcula-
tions as well as comparisons with available experimental
were presented.
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APPENDIX A: DETAILS OF THE EVALUATION
OF SOME RELEVANT INTEGRALS

Here we present the evaluation of the integrals Pkðω; νÞ
(k ¼ 0, 1, 2) appearing in Eq. (33). They can be rewritten in
a more general form

P̂kðω; νÞ ¼
Z

1

0

dxxω−1ð1 − xÞν
�
ln
1

x

�
k

¼
�
−

d
dω

�
k
Z

1

0

dxxω−1ð1 − xÞν; ðk ¼ 0; 1; 2Þ:

ðA1Þ

1. k= 0

P̂0ðω; νÞ ¼
Z

1

0

dxxω−1ð1 − xÞν

¼ ΓðωÞΓðνþ 1Þ
Γðωþ νþ 1Þ ¼

1

ω

Γðωþ 1ÞΓðνþ 1Þ
Γðωþ νþ 1Þ : ðA2Þ

The last results on the rhs can be represented as (cf. also
Ref. [69])

Γðωþ 1ÞΓðνþ 1Þ
Γðωþ νþ 1Þ ¼ exp

�
−
X∞
i¼1

SiðνÞωi

�
; ðA3Þ

where the nested sums SiðνÞ are defined by Eqs. (24)
and (25).
Expanding the rhs of Eq. (A2) in ω series, we have

P̂0ðω; νÞ ¼
1

ω
− S1ðνÞ: ðA4Þ

2. k = 1, 2

For the next basic integral P̂1ðωÞ we have

P̂1ðω; νÞ ¼
�
−

d
dω

�

P̂0ðω; νÞ ¼
�
−

d
dω

�
1

ω

Γðωþ 1ÞΓðνþ 1Þ
Γðωþ νþ 1Þ : ðA5Þ

Expanding the rhs of Eq. (A5) in series with respect to ω,
we have

P̂1ðω; νÞ ¼
1

ω2
− Z2ðνÞ; ðA6Þ

where (see, for example, Ref. [70])

Z1ðνÞ ¼ S1ðνÞ;

Z2ðνÞ ¼
1

2
S21ðνÞ −

1

2
S2ðνÞ;

Z3ðνÞ ¼
1

6
S21ðνÞ −

1

2
S1ðνÞS2ðνÞ þ S3ðνÞ; ðA7Þ

where SiðνÞ, for integer ν, are the known harmonic numbers
SiðνÞ ¼

P
ν
k¼1 1=k

i. For arbitrary arguments ν, these coef-
ficients are related to the Euler Ψð1þ νÞ function and its
derivatives ΨðmÞð1þ νÞ ¼ d=ðdνÞΨð1þ νÞ as

S1ðνÞ ¼ Ψð1þ νÞ þ γE;

S2ðνÞ ¼ ζ2 −Ψð1Þð1þ νÞ;

S2ðνÞ ¼
1

2
ðΨð2Þð1þ νÞ − ζ3Þ; ðA8Þ

where γE is the Euler constant and ζi are Euler ζ functions.
Analogous calculations for P̂2ðωÞ provide

P̂2ðω; νÞ ¼
�
−

d
dω

�
2

P̂0ðω; νÞ ¼
�
−

d
dω

�
2 1

ω

Γðωþ 1ÞΓðνþ 1Þ
Γðωþ νþ 1Þ ; ðA9Þ

which, being expanded in series about ω, results in

P̂2ðω; νÞ ¼ 2

�
1

ω3
− Z3ðνÞ

�
: ðA10Þ

Equations (A4), (A6) and (A10) allow to write the
considered integral (34) as

Z
1

0

dxxω−1ð1−xÞνLkðxÞ¼Pkðω;νÞþOðωÞ; ðA11Þ

where

P0ðω;νÞ¼
1

ω
−Z1ðνÞ;

P1ðω;ν;L1Þ¼
1

ω2
−Z2ðνÞþL1P0ðω;νÞ;

P2ðω;ν;L1Þ¼2

�
1

ω3
−Z3ðνÞ

�
þ2L1P1ðω;νÞþL2

1P0ðω;νÞ:

ðA12Þ

In Eq. (A12) the finite part of the integral is encoded in the
functions ZðνÞ [Eq. (A7)], while the singular one is given
by Eq. (35).
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3. k= 3

Consider now the integral

Z
1

0

dxxω−1ð1 − xÞν
�
ln
1

x

�
3

¼ P3ðω; νÞ þOðωÞ; ðA13Þ

which is the third derivative of P̂3ðωÞ with respect to ω

P̂3ðω; νÞ ¼
�
−

d
dω

�
3

P̂0ðω; νÞ

¼
�
−

d
dω

�
2 1

ω

Γðωþ 1ÞΓðνþ 1Þ
Γðωþ νþ 1Þ : ðA14Þ

Eventually, at ω → 0 we obtain

P̂3ðω; νÞ ¼ 6

�
1

ω4
þOðω0Þ

�
: ðA15Þ

APPENDIX B: INVERSE MELLIN
TRANSFORMS AT LOW x

In this Appendix we present some details of the
calculation of the inverse Mellin transform of the longi-
tudinal momentum MLðn;Q2Þ, Eq. (56). Observe, that
MLðn;Q2Þ is expressed viaMLO

L ðn;Q2Þ andMBDH
2 ðn;Q2Þ.

Hence, it is sufficient to determine the inverse Mellin
transforms of MBDH

2 ðn;Q2Þ augmented with some coef-
ficients depending on ω to find the desired longitudinal SF
FLðx;Q2Þ. To facilitate the calculations, consider the
following auxiliary integral:

Iðω; Q2Þ ¼
Z

1

0

dxxω−1
�
ln
1

x

�
FBDH
2 ðx;Q2Þ: ðB1Þ

It is obvious that this integral is proportional to the Mellin
transformM2ðω; Q2Þ with some coefficients of proportion-
ality as functions of ω,

Iðω;Q2Þ∝
�
K−1

ω
þK0þK1ωþK2ω

2þ�� �
�
MBDH

2 ðω;Q2Þ:

ðB2Þ

If so, we can avoid the direct calculation of the inverse
Mellin transform of MBDH

2 ðω; Q2Þ. Instead, for any con-
stants F̂1 and F̂2 and vanishing ω, we can use the obvious
relation

�
F̂1

ω
þ F̂2

�
MBDH

2 ðω; Q2Þ

⟶
Inverse Mellin

�
F̂1

3
LA þ F̂2

�
FBDH
2 ðx;Q2Þ; ðB3Þ

where LA ¼ ln 1
x þ L1 þ A1

2A2
, cf. Eqs. (62) and (29). The

integral Iðω; Q2Þ in Eq. (B1) can be calculated directly
by using Eqs. (A4), (A6), (A10) and (A15). Up to Oðω0Þ,
we have
Z

1

0

dxxω−1
�
ln
1

x

�
FBDH
2 ðx;Q2Þ

¼ D

�
A0

1

ω2
þ A1

�
2

ω3
þ L1

ω2

�
þ A2

�
6

ω4
þ 4L1

ω3
þ L2

1

ω2

��
:

ðB4Þ
Inserting Eqs. (32), (34), and (35) in to Eq. (B2) we rewrite
the latter in a form similar to Eq. (B4)

�
K−1

ω
þK0þK1ωþK2ω

2

�
MBDH

2 ðω;Q2Þ

¼
�
K−1

ω
þK0þK1ωþK2ω

2

�

×D

�
A0

1

ω
þA1

�
1

ω2
þL1

ω

�
þA2

�
2

ω3
þ2L1

ω2
þL2

1

ω

��
:

ðB5Þ

Now, equating in Eqs. (B4) and (B5) the corresponding
coefficients in front of ω−k we obtain

K−1 ¼ 3; K0 ¼ −L1 −
A1

2A2

; K1 ¼ −
A0

A2

þ A2
1

4A2
2

;

K2 ¼
1

2
L3
1 þ

3A1

4A2

L2
1 þ

3A0

2A2

L1 þ
3A0A1

4A2
2

−
A3
1

8A3
2

: ðB6Þ
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