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We study single, double and higher-order nonlinear Compton scattering where an electron interacts

nonlinearly with a high-intensity laser and emits one, two or more photons. We study, in particular, how

double Compton scattering is separated into one-step and two-step parts, where the latter is obtained

from an incoherent product of two single-photon emissions. We include all contributions to double

Compton scattering and show that the exchange term, which was not calculated in previous constant-

crossed field studies, is in general on the same order of magnitude as the other one-step terms. Our

approach reveals practically useful similarities between double Compton scattering and the trident

process, which allows us to transfer some of our previous results for trident to double Compton

scattering. We provide a new gluing approach for obtaining the dominant contribution to higher-order

Compton scattering for long laser pulses. Unlike the standard gluing approach, our new approach does
not require the intensity parameter a, to be much larger than one. For “hard” photons we obtain several
saddle-point approximations for various field shapes.

DOI: 10.1103/PhysRevD.99.096018

I. INTRODUCTION

In [I] we studied the trident process [2-8], e~ —
2¢~ + e, in plane-wave background fields, and derived
compact expressions for the probability for arbitrary back-
ground field shapes. Here we will apply the same methods
to another second-order process, namely double nonlinear
Compton scattering [9—14], where the incoming electron
emits two photons, e~ — e~ + 2y. This is also a process
that one can separate into one-step and two-step parts,
where the latter is obtained by incoherently gluing together
the probabilities of two single-photon emissions. The two-
step term is expected to be a good approximation of the
total probability for sufficiently high intensities, or more
precisely for ay = eE/(mw) > 1, where E is the field
strength and @ a typical/characteristic frequency of the
(in general pulsed) background field. This two-step domi-
nance is what makes it possible to use particle-in-cell (PIC)
simulations to study complicated higher-order processes in
high-intensity fields [15-18]. This regime is also associated
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with the locally constant field (LCF) approximation,
which entails further simplifications. There is now
interest in going beyond or improving the standard LCF
approximation [19,20].

In this paper we are interested in corrections to the two-
step approximation. In particular, the one-step part can be
separated into (what we call) direct' and exchange terms,
where the latter comes from the cross term between the two
terms in the amplitude which are related by exchanging the
two emitted photons. A similar exchange term appears in
the trident case, and in [1] we showed that, while omitted in
previous constant-crossed/LCF studies, it is in general on
the same order of magnitude as the direct part of the one-
step term. Here we make a similar investigation into the
importance of the exchange term in double Compton
scattering. That the exchange term can be important,
e.g., for ay ~ 1 was also found in [12].

For ay ~ 1 the one-step term is in general on the same
order of magnitude as the two-step term. However, if the
field is sufficiently long then the probability is again
dominated by a term that can be expressed as an incoherent
product of two single-photon emissions. If a, is not large
one should of course not expect this two-step term to be the

'Note that we do not use “direct” as synonymous to the one-
step term. By “direct” we mean instead the nonexchange part.
The two-step term only has a direct part while the one-step term
has both direct and exchange parts.
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same as the LCF two-step term. While spin effects are
usually neglected in PIC simulations, to obtain the complete
two-step term in the LCF regime one has to sum the
incoherent product over the spin of the intermediate electron
[9,14]. In this paper we identify a term in double Compton
scattering that dominates for sufficiently long pulses without
assuming a, > 1 or any particular field shape, and then we
show that this two-step term can be obtained from an
appropriate sum of the incoherent product of two single-
photon emissions. We do this for an arbitrary background
field. For fields with linear polarization one can obtain the
two-step term by summing over spin in essentially the same
way as in the LCF regime [9,14]. However, for fields that do
not have linear polarization things become more nontrivial,
because in general one has to take into account the fact that
there is a spin sum already on the amplitude level, which in
general leads to a double spin sum on the probability level.
We have found a simple prescription for obtaining the entire
two-step term from the spin-dependent probability for single
Compton scattering. This gluing approach is to the best of
our knowledge new and seems promising for studying
higher-order processes. We have checked that it gives the
correct results for triple and quadruple Compton scattering,
where the electron emits three and four photons.

Calculating higher-order processes means performing
higher-dimensional integrals. Numerical integration can
quickly become challenging. In our approach we integrate
analytically over the transverse components of the
momenta, and then the longitudinal momentum spectrum
is obtained by performing a number of lightfront-time (x™)
integrals. The exponential part of these integrands can in
general be expressed in terms of an (x*-dependent)
effective mass, and the integrals can be performed with
the saddle-point method. In fact, the integrals for double
Compton scattering are very similar to the ones in the
trident case [1], so we have, for example, been able to reuse
saddle points we found in [1] for double Compton
scattering, and the new saddle-point results we provide
here can also be translated to the trident case. For certain
simple field shapes we can obtain simple analytical
approximations, but the saddle-point method can also be
useful even if one has to find the saddle points numerically,
as it can offer a quick estimate and a check of exact
numerical integrations. We show here that the saddle-point
method can give a good approximation of even quite small
and fast oscillations in the spectrum.

In comparison with previous papers on double Compton
scattering, note that our focus is on the longitudinal
momentum spectra, which we obtain by performing all
integrals over the transverse momenta. We have several
reasons for this: 1) We can perform these integrals exactly
analytically for arbitrary pulse shape. 2) The total/inte-
grated probabilities only depend on the longitudinal
momentum of the initial particle, but not on its transverse
momentum, so it is natural to consider how the initial

longitudinal momentum is distributed among the final-state
particles. 3) The longitudinal momentum spectra are Lorentz
invariant, being expressed in terms of 4-vector products of
the particles’ momenta and the field’s wave vector, which
makes them especially suitable for theoretical studies. 4)
Even after performing these integrals for the first-order
processes the results are still general enough for the con-
struction of gluing estimates, which would not have been the
case if we had instead integrated over the longitudinal
momenta (or summed over the spins). 5) Higher orders in
general depend on several momentum and spin variables, so
by performing these integrals we reduce this to a more
manageable number of parameters, while still being sure that
we have not missed any important regions of phase space.
The previous points give motivation for reducing the number
of parameters by integrating over the transverse rather than
some other components of the momenta. So, while different
quantities might be more relevant for experiments, at least
from an analytical/theoretical point of view it is natural to
consider the longitudinal momentum spectrum integrated
over the transverse momenta.

This paper is organized as follows. We focus first on
double Compton scattering. In Sec. Il we give the necessary
definitions. In Sec. III we provide compact expressions for
the exact probability for arbitrary field shapes. In Sec. IV
we separate the probability into one-step and two-step
terms and compare with the incoherent product of two
single-photon emissions. This comparison helped us to find
a new gluing approach, which we confirm in Sec. V for
triple and quadruple Compton scattering. In Sec. VI we
derive simple analytical approximations for “hard” photons
for various field shapes. In Sec. VII we apply the saddle-
point method to fields with many oscillations and, hence,
many contributing saddle points, which lead to interference
effects in the momentum spectrum. We consider single
Compton scattering and compare this saddle-point approxi-
mation with an exact numerical integration and find very
good agreement. In Sec. VIII we consider double Compton
scattering in the LCF approximation. We show, in particu-
lar, that the exchange term can continue to be on the same
order as the direct part of the one-step term also for larger y.

II. DEFINITIONS

We use the same formalism and notation as in [1], which
we briefly recall here for convenience. Lightfront coor-
dinates are defined by v* =2v; =1"+¢* and vt =
{v', v?}, and we use X = {x~, x*} for coordinates and p =
{p—, p.} for momenta. The plane-wave background field
is given by f,, = k,a, —k,a,, where k, =k, 5} is a
lightlike wave vector and a,(¢), with ¢ =kx, is a
polarization vector with an arbitrary dependence on light-
front time x*. We use units with ¢ =#h =1 as well as
m, = 1, and absorb the electron charge into the background

field, i.e., ea, — a,.
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We have the same initial state as in [1], i.e., an electron
with momentum p, and spin o,

hn>:://dﬁf<pﬂﬂ<pa»o» (n

where dp = 0(p_)dp_d*p,/(2p_(2x)?) is the Lorentz-
invariant momentum measure, 6(.) is the Heaviside step
function, and f(p) a sharply peaked wave packet’ [21]
(we also use p for the position of this peak). The
normalization of the initial state, (in|in) = 1, and of the
mode operators, {b(q,r),b(q'.r")} =2p_d(q—q')s,.
where §(...) = (2z)35_ . (...), implies

/@m%ﬂ. 2)

We focus first on double Compton scattering, where the
final state contains one electron with p;, and ¢’ and two
photons with momenta and polarization vectors {, /5 and
€/, €. We use lightfront gauge, so in addition to le(l) = 0
we also have ke = 0. The amplitude for two-photon
emission, M, is defined via the evolution operator U by

(0[b(p'e")era(ly)era(l,)UbT (po)|0)

- M
:’5(P/+lz+ll—P>k—' (3)
+

As in [1], in order to reduce the number of parameters on
which the probability depends, we integrate analytically the
probability over the Gaussian transverse momentum inte-
grals [25] and sum/average over spins and polarizations,

Z / dp'dl,dl,

spms

:—Z/dldlzk k,

spins

2

/dpf—&( +L+1,-pM

(4)

where the factor of 1/4 is due to spin-averaging and the
presence of identical particles, and p’ = p — I, — [,.

We separate the amplitude into M = M'? + M?!', where
M?' is obtained from M'> by replacing [, <> [, and
€1 <> €, which on the probability level gives |[M|> =
|M'2|? 4 |M?'|> + 2ReM*' M'?. We refer to the first two
terms as the direct part and the cross term as the exchange
part, i.e.,

“In this paper we do not consider effects of finite-sized wave
packets. See [22] for such effects in photon emission by a single
electron, and [23] for two-electron wave packets and the differ-
ence in coherence compared to the classical prediction [24].

l1 ll l2
p :i%p’-l—p ;'“—r‘:—é:’—l— (1< 2)
l2

FIG. 1. This diagram shows the separation of the amplitude for
double Compton scattering. The first and the second terms
represent M12 and M12, respectively. All particles, including
the intermediate electron in the second diagram, are on shell.

P =~ Z/dl dlzk k 4 M12|2+(1 <2), (5
spins

where (1 <> 2) is obtained from the first term by replacing
[y <> I, and €| <> ¢,, and

P, = Z/dldlz

spins

R M21M12 (6)

We have relegated the calculation of the amplitude to
the Appendix as it only involves standard methods. The
important thing to note is that the amplitude contains two
terms, M'> = M 1> + M}?, where M}? has one x* integral
and M2 has two. These terms are illustrated in Fig. 1. As in
[1], this leads to a separation of the direct and the exchange
part of the probability into three terms with different
numbers of x* integrals,

12
{Pdlr ’ [pdlr’ Pdlr

Z/dl dl, k( o 2{|M'2|2 2ReM!2M)?

spins

+ (1 < 2), (7)

{[pll [|:D12 |]j>22

ex» ex»

—Z/dl ou2

spins

Re{M21M12 M21M12
+(1 e 2),1‘71511‘452}- (8)

We perform the Gaussian integrals over the transverse
components of the photon momenta /; | and /, |, and define
a longitudinal momentum spectrum P(g) as

P—A%m@ﬁmwwx 9)

where g, = kl;/kp and s, = kp'/kp=1—¢q, — q,. We
also define by = kp,s; =1—¢qy,s1=1—¢, and sy = 1.
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FIG. 2. These diagrams illustrate the different contributions to the probability, with black, solid lines representing electrons and red,

wavy lines for photons.

III. EXACT ANALYTICAL RESULTS

The different contributions are illustrated in Fig. 2. For
the direct part of the simplest term we find

(12S2 1 1 —d¢12 ir20®21
sl d S a5t

(10)

P (q)

where r;; —(1/5) (l/S) dpi, = dgydep, 0 ij =¢;i— ¢j’

;=10 M,zj, and M is an effective mass given
by [26]
2 (N2 2 2
M;; = <”>ij =1+(a >ij - <a>ijv (11)
where the lightfront-time average is
1 [
=g [ aor @) (12)
3] j
and where the Lorentz momentum is given by
2ap — a*
7,(p) = p, —a, + 2 k,. (13)

The exchange part P!} (e, €,) depends nontrivially on the
polarization vectors, but after summing over polarization
vectors we find PLl(g) =0, in contrast to the trident
case [1] where the corresponding term is nonzero. For
the terms with three x* integrals we find

Pil(q) =Re

i /d¢1z39(931)(611612 —s5,Dy5)
87*by 51(021 + i€) (03 + ie)

i
X exp {2—%%1@23 + ’”10921}} + (1 < 2)
(14)

and

—ia? dep1230(63)D
P12(q) = Re la /Sl( $12360(031) D12

87T2b0 1 92] + i€)(923 + l€)

i
X exp {Zb (121923 + r10@21]} + (1 < 2),
(15)

where D12 = A12 . A32 and

A= a(p;) — <a>ij' (16)

The ie factors initially make the transverse momentum
integrals converge and at this stage provide a prescription
for how to avoid the singularities in the ¢ integrals. This is
equivalent to a shift in the ¢-integration contours. From
now on we leave these ie factors implicit; they can be
reinstated by replacing ¢ 3 — ¢35 —ie/2 and ¢4 —
(>4 + ie/2. For the direct term with four x* integrals

we find
9 (942) Oy3+r1)0
[FD22 _ / 31 Zb 521 @43+710021]
d1r 2b2 ¢1234 2921 943

919
X{ 5(1) %‘ﬁ[(wz—wl)'(w—wﬁ

n (1+s1)(s1 +52)

Wm4}+aem,un

§2
where
Ko Kk 2ibo A A-+1) =1 18
R e VER) BN
Wijk = (W; X W;) - (W X W)
= (w; Wk)(Wj W) = (W Wz)(Wj W), (19)
K’J = (Sl‘/Sj) =+ (Sj/s,-), and where W = AIZ’ Wy = AZI’

= A, and w, = Ay;. For linear polarization we have
Wi = 0. In contrast to the trident case, here we have a dot
product between the two steps even for linear polarization.
Finally, the last term is given by
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0(642)0(031)

P22(q) = Re
CX(q) S1S1S2d0

o2
—— [ d

1677,'217(2)/ ¢1234

i 9192 Oy ®23

0,30 —

Xexp{2b0S131S2do < 2 L]z 41]

® Q] C)
+ 621043 [ﬁ_®21:| +931942[ A 42})}
52 51 ST

2ib 2b 2
X {Fo + fo _%Ocl +21) + [d_o} Zz},
0 0
(20)
where
04,0 05,0
dy = — 201, O 43’ (21)
S187 $2
Fo = —(ko2 +x7)(d; - dy)(d; - d3)
= (ko2 —Ky7)(dy X dy) - (dy xd3),  (22)
fo= —7_[(51%(11 = s1q1da) - (51¢2d4 — 519, d3)
S15752
+ (q1d2 + g252d4) - (q2d; + q5,d35)], (23)

0
J1=kp (921‘11 d, —ﬁdz d4)

0 0
+Kll< 31d1 d3—£d2 d4>

04

0
+<K02+K1i)<q d, -d4+ 23dz d3> (24)

2
q S182 S182

Z1_——1< : >¢1 (3——>¢2
5192 S1 S1d1 ST

2 P 2 s
_L( __1>¢3_|_ il <3__1>¢4
18291 S182 $1529> S182
(25)

and

04305, o 03104 + (kop + K11) 023041
$2 §187 a 9192

ZZ = _KOZ (26)

The field enters the prefactor via

d, = _612 -—943921A,2+042931A,3 +923941A14_
sisadg [ 8o S a2 _

d, = q: __943921 A, +941923 Ay +931‘?42 A24_
sis2do [ 8o q 51 ]

d, = 61_1 __ 04205 Ay +941923 Ay, +921943 A34-
sosido [ 5 91 52 J

d, = g [62304) Ay _9311_942 Ay, +921943 Au
Sos1do | 4> 5 )

(27)

These expressions for P22 look remarkably similar to
the corresponding ones in the trident case [1]. In fact,
one can show that (20) can be obtained from Eq. (26) in
[1] by replacing ¢p5 — ie <> ¢4 + ic everywhere except in
the step functions, taking into account that sfident =
—s5 =1 —s; — 57 and s§9" = ;. and multiplying the
prefactor by an overall factor of —1, which seems
natural since we now have identical bosons instead of
fermions. One can also show that the individual terms in
the prefactor can be obtained in the same way. In
particular,”  dyident — diee  and  dyident - dhere,  This
means that P22 in double Compton scattering has the
same symmetries as in the trident case and can be
calculated in a similar way.

IV. TWO-STEP AND ONE-STEP TERMS

In this section we compare (17) with the product
of two single-photon emissions. To treat the electron
spin we use the following representation of the Dirac
matrices:

0010 0 0 0 1
s |0 o001 ] 0 0 10
= =

1000 0 -1 00

0100 -1 0 0 0

0 0 0 —i 0 01 0
, 0 0 i O 0 0 0 —I
r= = ,

0 i 0 0 100 0

—i 0 0 0 0 10 0

(28)

and the following spinor basis (cf. [27]):

*Note that the expressions for d; given here are simpler than
the equivalent ones given in [1]. There are only three instead of
four terms, and d; only involves A;; with j # i.
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1 P1—ip2
1 0 1 2p_
V| 2 SRVl B
—p1—ip2 1
(29)

This spinor basis is particularly convenient for the quan-
tities that we calculate here. An arbitrary spinor can be
expressed as a linear combination of these,

U = cos <’%> uy +sin (g) euy. (30)

Instead of p and 4 we express the spin dependence in terms
of the components of the unit vector n that points in the
average spin direction for p = 0, i.e.,

1,
n :=§uTEu(p =0)={cosisinp,sindsinp,cosp}, (31)

where £ = i{y*y’, ’r',v'r*}.
Now, the probability of single-photon emission, summed

over photon polarization and transverse momenta, is
given by

Pc=(P)+no-Py+P-n;+ny-Py-my, (32
where n, and n; are the spin vectors of the initial and

final electron, respectively. The first term (P) gives the
probability averaged® over initial and final spins,

_a ¢
n 47Z'b()S% 921

— QM 62‘70 : (33)

The remaining terms give the spin dependence,

&
i« a [P, 1+s0 KX |-Ve®, (34)
47Tb0SOSO 9 |

d ir
i@ a [$hy |y, Xk |[e™®, (35)
4ﬂ'b0S0S1 0 so
and
dZ 2 A
Py =2 2/—¢ Dgx —Dxi- N g
4mbgsg 0 |5 So 5051
2ib, G o]l
—+D;||1 kk||e? 36
" Lloé’+ 1][ +2S0S1 . (36)

*So, 2(P) gives the probability summed rather than averaged
over the final electron’s spin.

where k = {0,0,1}, kX - V=Kk(X-V) etc, D; = Ay, -
A21 and

1

X=2(w,+w) Vzioz-(wz—wl), (37)

1
2

where the Pauli matrix is given as usual by

az_<? ;i) (38)

Note that n; gives the average spin direction for p; = 0 and
we have integrated over p;; with n; fixed. Regardless of
whether or not this is the most directly relevant quantity
for spin-sensitive experiments, we show below that (32) can
be very useful for studying multiphoton emission. For a
detailed investigation of spin effects in nonlinear Compton
scattering see [28].

In evaluating these expressions we can put s, = 1. One
reason for keeping s, explicit is that it helps us to glue
together two single-photon emissions, which one might
expect to be done according to

1
Z Z [FDC(S() — I)PC(S() - 51,81 ™ S2) + (1 <> 2),

ny,n;.ny

(39)

where one factor of 1/2 comes from averaging over the
spin of the initial electron and another factor of 1/2 comes
from the symmetrization. We can write this as

22
E<[<P>+HO'PO+PI ‘ny +ng- Py -ny
[<|]3’>+n1-P0+P1-n2+n1-P01-n2])

=2((P)(P) + P, - (nym) - Py), (40)

where the factor of 22 is due to the replacement of the sum
of two spins with their average for n; and n,, and we have
omitted the arguments of the probability terms [the second
factor in each term is obtained by making the appropriate
replacements in (33), (34), (35) and (36)]. It is easy to show
that the (P)(P) term gives the QQ-term in (17). The
remaining terms are more subtle. We first note that these
terms can be expressed as

—;1 [(Wz — W) (Wy—W3) +MW1234}
S2

—V,. [1+ (1 +s—1) (1 +S—I)X1X2} v,
) $2
A N S A~

S R P I R PO
) §2

(41)

096018-6



SINGLE AND DOUBLE NONLINEAR COMPTON SCATTERING

PHYS. REV. D 99, 096018 (2019)

where V; and X, are given by (37), and V, and X, are
obtained by replacing ¢, — ¢s, ¢y = ¢3 in (37). This
should be compared with the corresponding term in
P] . <n]n1> . P(), i.e.,

. [1+ <1 +ﬂ>X1f<] < (mym,)

S0

: {1 + (1 +s—1)f<xz] V,. (42)

$2

The gluing approach works if (42) gives (41) after summing
over n;. In (40) we have only used (1) = 1 and (n) = 0.
For linear polarization with a « e; we have X - V = 0, and
then we can simply sum over n; = *e,. For arbitrary
polarization we cannot in general obtain (41) from (42)
unless we let n; depend on both ¢ and ¢, (or ¢; and ¢,).
For arbitrary polarization in the LCF regime we have

_On

W r 2

a'(o) wy x—=a'(031). (43)
where 6;; = (¢); + ¢;)/2, so then we can neglect the X
terms and obtain (41) by choosing the spin direction to be
perpendicular to the locally constant field and k, i.e., either
n, = +k x 4(0,;) or n; = £k x 4(0,3), where 4 = a/|a|.
In the LCF regime and for linear polarization our gluing
approach reduces to the one in [9,14], and then we have the
same one-step/two-step separation as in [9,14].

The reason that the naive gluing approach does not
always work is because we actually have a sum over the
spin of the intermediate electron already on the amplitude
level, so, instead of having on the probability level just one
sum over n;, one should have one sum for the amplitude
and a second sum for its complex conjugate,

P= Z"'u(nlvpl)a(nlvpl)“'u(n/l’pl)u(nllvpl)”"

I
n;.n}

(44)

where the sum is over +n (or p and p + x) for some n.
While the momentum p; is the same in the amplitude and
its complex conjugate, the spins n; and n| need not be
the same. Let

Pame = - Pag= > ... (45)

n,=n/ n,#n/
Compared to (40), one can show that
Psame = 2((P)(P) + Py -nn, - Py) (46)
and
Par = —2(Py xny) - (ny x Py). (47)

These clearly depend on the spin directions 4+n; one
chooses to sum over, but their sum is independent of n,,

Psame + Paitr = 2(<P><P> +P- PO)- (48)

As we saw above, for linear polarization or in the LCF
regime we can choose n; such that Py vanishes, but in
general we need to include this term. Fortunately, our
results suggests a simple cure for the naive gluing
approach: Include factors of 2 in the overall prefactor as
if we only had one sum over n; as above, and then simplify
using (1) =1, (n;) =0 and, importantly, (njn;) =1,
where the last ingredient is motivated by the contribution
from n; # n|. We show in the next section that this simple
procedure also works for triple and quadruple nonlinear
Compton scattering. Note that this improved gluing pro-
cedure gives us the dominant term for sufficiently long
pulses, for any polarization and field shape, and we can
in particular go beyond the usual LCF regime (where
gluing first order, albeit spin-averaged, processes is a basic
component of PIC codes for ay > 1) and consider ag ~ 1.

In the gluing approach one also has to make sure that the
second step happens after the first, which can be done by
including a step function 6(c43 — ;). In (17) we have two
step functions, which we deal with in the same way as in
[1], i.e., we write P22 = P2272 4+ P22~! where P32 and
P22~1 are obtained, respectively, from the first and second
term in

9(042)9(031)

(49)

It is Py, = P22~ (rather than P%2) which we refer to as
the two-step term. Although it can be obtained from the
above gluing approach, we can obtain it without reference
to the gluing approach by selecting one part of the exact/
total probability. This part scales quadratically in the
volume/pulse length and dominates for sufficiently long
pulses.

V. MULTIPHOTON EMISSION
A. Triple Compton

In this section we calculate the three-step part of triple
nonlinear Compton scattering, i.e., the part of the proba-
bility of three-photon emission that dominates for long
pulses, illustrated in Fig. 3. The emission of three photons
by an electron colliding with a single photon has been
studied in [29], but to the best of our knowledge nonlinear
triple Compton scattering has not been studied in the
regime we are interested in here. This is in principle a
straightforward generalization of our results for the
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two-step part of double Compton scattering, except that it takes more time to simplify the prefactor. After some

simplification we find

ar 06504361

+ OB 2%y {1+ [1 +z—2] [1 + }szg]
1 §3

Vv, +9192V1

. 3 .
33 e 3;ags S /d6¢6(964)9(842)6(953)9(931) eﬁ[r32®65+r21®43+r10®21] {Q;(]) ‘2‘% Qgg
2

{ {1+s—1] [1+ ]X Xz}-Vngg
S0

2 2ib
+—M3V1-[ {1+ HH—S—Z]X1X3+[ l0+D2} {1+Kﬂ[1 HH }x X3]
S152 25152 So $3 21043 2 So 53
148 [1 + ]X X, — kb [1 + ]X2X3} -V3} -+ permutations, (50)
$2 S 53

where s, =1—q, 50 =1—-q,—q2, 53=1—q, — q

_q3>OsD2:

Az, - Ayz, V3 and X5 are obtained by replacing

¢y = e, P — s in (37), and “permutation” is an instruction to sum over all permutations of the emitted photons. Note
that the exponential part is a simple generalization from single and double Compton scattering. Compare this with the result
of the gluing approach described in the previous section, which in this case gives

2’%

[(P) +n,-Py+ P, -n3+n, - Py - n3]) + permutations

_4

=3 (PYP)P) + (P)P,

where the arguments are again suppressed. The factor of 23
comes from the (initial) assumption that we are summing
over two spin states for n;, n, and ns, and for linear
polarization a « e; we can obtain (50) by summing over
n; = t+e, and n, = +e,. For arbitrary polarization we can
obtain (50) from the following procedure: We write an
overall factor of 2V /N! and replace all sums with {...), and
then we simplify with (1) =1, (n) =0 and (nn) =1.
Note again that it is the replacement (nn) = 1 that allows
us to obtain all terms in the general case.

3

AN
/

S0 q1 q2 qs S3

T

®a

FIG. 3.
scattering.

This diagram illustrates P3) for triple Compton

<[< )+ng-Py+P-ny +ny- Py -n][(P) +ny - Py+ Py -ny +ny - Py -y

~(mpmy) - Py + Py - (nyny) - Po(P) + Py - (nyny) - Py, - (myny) - Py) + permutations,  (51)

We already have a factorization into the different steps
(with appropriate spin/polarization sums) before perform-
ing the transverse momentum integrals. Because the
momenta are related via momentum conservation, one
might have thought that performing the transverse
momentum integrals could have led to a nonfactorized
result. To understand why we still have factorization, note
first that after integrating single Compton scattering over
the transverse momenta of the final particles, the results
(33), (34), (35) and (36) do not depend on the initial
transverse momentum. Similarly, after performing the
integrals over the transverse momenta of the final
electron and the photon emitted from the last vertex,
this step becomes independent on the other transverse
momenta and, hence, factorizes, and then the same thing
happens for the second step.

In analogy to (49), we define the three-step Py, Dy
replacing the product of step functions in (50) according to

0(064)0(042)0(053)0(031) — O(065 — 643)0(043 — 621).
(52)

B. Quadruple Compton

We have also checked that the above gluing procedure
gives the correct result for quadruple nonlinear Compton
scattering, i.e., the emission of four photons, which is
illustrated in Fig. 4. Here our gluing approach is not only
useful for interpreting the expressions, it is also very useful
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P3 €<— 52 o5
/ ~
81 53
p% fq o7
q2 qs q4 S4
J§ %}L ¢s
81 53
Y /
@4 S2 —> e

FIG. 4. This diagram illustrates Pdlr for quadruple Compton
scattering.

for simplifying the complicated prefactor. We have checked
that the result can be expressed neatly and compactly as

,<[< ) +mo-Py+Pr-n;+ng-Py -0

[(P) +n;-Py+P;-n; +n; - Py - ny

[(P) +mny-Py+ Py -n3 +n, - Py - ny

[(P) +mn3- Py + Py -ny +nj3- Py, - ny)

+ permutations, (53)

where (1) =1, (n) =0 and (nn) =1 for each n;. Even
with the help of an advanced symbolic-calculation program
such as Mathematica, obtaining or confirming this result by a
direct calculation can take some time. Instead of calculating
the prefactor from the trace of a long expression, we replaced
all factors of p; + 1 (which would appear in the trace) by
sums of uii expressed with a particular spinor representation.
Note again that we only obtain all terms by replacing (nn) =
1 to account for the terms that would be missing if one
replaces the double sums over the spins of the intermediate
states, i.e., n, N, and nj in this case, with single sums as
explained above for double Compton scattering.

Although we have not yet proved that this gluing
procedure works at arbitrarily high orders, the fact that it
does work for double, triple and quadruple Compton
scattering suggests that we have a method for obtaining
the exact N-step part for N-Compton scattering for arbi-
trary N, where the N-step dominates for sufficiently long
pulses. We plan to further study this gluing approach and to
generalize it to other higher-order processes involving more
than one fermion, like the trident process.

VI. SADDLE-POINT APPROXIMATION

In this section we obtain saddle-point approximations,
which help us to understand the structure and relative

importance of the various terms. We can expect these
approximations to be good for y <« 1 as long as ¢; and ¢,
are not too small, so we are in particular outside the infrared
region and do not have to worry about IR divergences.
We also have to assume that a; is not too small. The
calculations are very similar to the ones in [1], except that
this time, in order to avoid IR divergences, we do not
integrate over the longitudinal momenta. We consider
linearly polarized fields, a(¢) = aof(¢). In this section
we focus on the dominant contribution from a single saddle
point located around a single field maximum.

A. Locally constant fields

We consider first the LCF regime where we can expand
the probability in 1/ay < 1. For the one-step terms we find

2 1 d¢ 2r
pi— ¥ xs—2|:—+—]/ fex { 20}’ >4
167 /oo s P Y
where y(¢) = aof'(¢)by,

pl2 _ a’ 4‘11‘12+32[1 __}/%)(ze T+ (102),

W48 53/ rlJ bo
(55)
2 1 1 1 d :
P2 = ¢ ; {———}/—qbﬁe_% + (1 < 2),
4872 51/T20 P10 121 bo
(56)
2 T
p2-1 — _(x_ n [QI+Q2+ﬂ} /%Xée-zgﬁo (57)
42 92 91 9192 by
and
P& = -P>71, (58)
and for the two-step term we find
proa _ % [0 L [ql Ly SIST]
8” S2 51192 91 9192
do do 2rig -
/ 1 2\/)((52 x(6y)e e e
+ (1 < 2). (59)

For a constant field for which y(¢) is zero outside an
interval of length A¢, we simply have [d¢p — A¢p
and [dodo,0(cy —0)) = AP?/2.

For a pulsed field we can also perform the remaining ¢
integral with the saddle-point approximation. Let us for
simplicity assume one dominant field maximum with
f(0) =1, f"(0) =0 and f®(0) = —¢. By performing
the above ¢-integrals with the saddle-point method we find
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that the results are obtained from the corresponding
constant field results by replacing y — yo,

37y,

Ad —
¢ {ry

(60)

for the one-step terms, so for example

3 2
[FD22—>1 :_\/_a o |:ﬂ+2

S1ST| 220
+—e 3, (61
4nv/C g a ] (61)

9192

and

Ad? (1 1 3 1 1
i<—+—>—> ’%( + ) (62)
2 \s1 0 si 20 \s1\/rario  Siy/Tailio

for the two-step term, which simplifies to

pr2 304 {ﬂ+@+ﬂ} e (63)
8 a2 @1 9192

We see a few things that are similar to the trident case: All
terms have the same exponential, and P!' and P'? are
smaller than P?>~! by a factor of y. We also see that the
exchange terms are on the same order of magnitude as the
direct part of the one-step term. In fact, here P2? cancels
P?2~! to leading order, so the y expansion of the prefactor
of P, starts at one order higher than the leading order of
the direct part of P,,.. This also means that P'! and P!
contribute to the first nonzero order, in contrast to the trident
case. Thus, the exchange term is even more important for the
one-step part for double Compton scattering.

In the trident case we could compare our saddle-point
approximations for the direct terms with previous constant-
crossed field results. For double Compton scattering, on the
other hand, we are not aware of any previous approxima-
tions for hard photons with which we could compare our
saddle-point results. The y < 1 approximation in, e.g., [9]
is for the probability integrated over the photon momenta,
which has a different form because of the contribution from
softer photons. We have, however, checked that our
approximations agree with the exact expressions in [14]
for the direct part of the one-step term, see Appendix C 3.

The exponential part of the above terms can be written

2 YW g
exp{__zzijv%}, (64)
31— Zi:] qi

where N = 2. Assuming again one dominant field maxi-
mum, for triple Compton scattering it follows from (50) and
rij 1y = ry that Py~ (64) with N = 3. Similarly,
for quadruple Compton scattering we find P, ~ (64)
with N = 4. This suggests a simple generalization to the
emission of an arbitrary number of photons.

B. Sauter pulse

In the previous section we considered ay > 1 which
allows us to consider an arbitrary pulse shape. Here we will
consider a particular pulse shape, namely a Sauter pulse
a(¢) = agtanh ¢, which allows us to obtain explicit
analytical expressions also for ay 2 1, i.e., to go beyond
the LCF approximation. The calculation is very similar to
the corresponding one in [1] for the trident case. In
particular, we have a saddle point at the same values of
the ¢; variables as in [1], independently of ¢;. For the “two-

2
p2-2 = % [ﬁ + &

step” term we find
S187
n 4}
8l @1 9192

agexp {—"22ao[(1 + aj)arccotag — agl}

(1 + ad)arccotay|(1 + a)arccotay — ag)”
(65)

For ay > 1 we recover (63) to leading order. For the “one-
step” terms we find

un:p22—>2 (66)

2 a
P22-! = —Zarctan, /1 — 5 0
b3 (1 4 ag)arccotay

and
P2 = —p2-1, (67)

while P11 and P'2 are again smaller than the above terms
by a factor of y. Notice that these expressions are very
similar to the ones in [1] for trident: the dependence on a
in the exponent is exactly the same as in [1], and the
relation between P??~! and P?2~? is also exactly the same.
We also find that the (leading order) exchange term P22 is
on the same order of magnitude as the (leading order) direct
terms P??~! and P??~2. Here, though, P22 is not only on
the same order of magnitude, but it in fact cancels P?>~! to
leading order in y; this generalizes the ag > 1 results in the
previous section to a, = 1. Note also that the dependence
on the momenta remains the same as in the ag > 1 limit.

C. Monochromatic field

For a monochromatic field we can again find saddle-
point approximations for general a, 2 1. For this field there
are many saddle points that contribute. We begin in this
section with the simplest ones, which are the same as those
we studied [1] for the integrated trident probability,

1
921 = 643 =2jarcsinh— Oy =M T Oy3=N)7. (68)

o

These already give a good approximation to the locally
averaged spectrum. In the next section we include

096018-10



SINGLE AND DOUBLE NONLINEAR COMPTON SCATTERING

PHYS. REV. D 99, 096018 (2019)

additional saddle points that give oscillations to the
spectrum. For the two-step term we have saddle points
both for n; = n, and n; < n,, where the two photons are
emitted at the same and different field maxima, respec-
tively. For the contribution from one saddle point with
ny = ny we find

-2 _“_[ﬂ D slsl}
n=n, — —_—
8 92 1 9192

L oxP {—%2a[(2 + af)arceschay — /1 + af]}
Marccschao Marccschao -1

(69)

We have again the same function of g in the exponent as
in the trident case [1]. For ay > 1 we recover the LCF
approximation (63) from (69). The contributions from one
saddle point (with n; = n,) to the dominant one-step terms
are given by

2
P2z = ——arctan P2z2  (70)
V1 +a0arccscha0
and
2
a 1 1
2252 222 N
Pnz—n1+2n - l]j)nzznl-'an—l - 4 52 |:S2 + S2:|
1 1

This difference has the same a, dependence but a different
dependence on the momenta in the prefactor. This differ-
ence is due to the (w, — w;) - (wy — w3) term in (17).

For ay > 1 we recover the LCF results. For ay < 1 the
exponent goes as

e—'zz—loao [(2+a§)arccscha0—M] N QSZO/bo
9

(74)

which is the expected perturbative scaling: Momentum
conservation at O(a)),

(p+Nk),=(p' + 11+ 1), (75)
implies
1 (h-ap)i | (L=ap)
N=— 0 + +
2b, q1 q>
(P/ - Szp)i 20
e 2t v > 2 =N, 76
+ ) - 2b0 0 ( )

Thus, the exponent scales as aéN", where N is the

minimum number of photons from the background field

22—1
lpnl =ny*

|]:D22

ex,n=n, — (71)
The relation (70) is exactly the same as in the trident
case [1], and, as for the LCF and Sauter cases, we find that
the exchange term cancels the direct part of the one-step
term to leading order. The other one-step terms, PiL, P12
and P2, are again smaller by a factor of y < 1, but have to
be included if one is interested in the first nontrivial order of
the total one-step term, since P22 cancels P?>~! to leading
order. These expressions give the contribution from one
field maximum with the shape of a sinusoidal field, and for
ag 2 1 they are on the same order of magnitude. If we have
a sinusoidal field with several equivalent field maxima,
then the two-step term dominates because it also receives
contributions from n; < n, and not only n; = n,, which
means that it scales quadratically in the number of
oscillations compared to the linear scaling of the one-step
terms. In contrast to the trident case, here the contributions
from n, = n; +2n — 1 are different from the ones from
n, = n; + 2n, where

P 1an = 2PR2, (72)
and
exp {—52ag[(2 + ag)arceschag — /1 + ag]} 73)

/1 + agarceschay[/1 + ajarceschag — 1] '

|
that need to be absorbed in order to emit two photons with
longitudinal momenta ¢, and ¢,.

For a Sauter pulse the exponent scales as

0

20 _
~e %,

) [(1+a?)arccotag—ay)

(77)

Since the Sauter pulse has a wide Fourier transform with only
exponential decay (which is slow in this context), this scaling
agrees with the absorption of a single photon from the
background field with (Fourier) frequency Nyk, (cf. [1,30]).

D. General antisymmetric potential

Both the Sauter pulse and the sinusoidal field considered
in the previous two sections fall in the class of fields that
have antisymmetric potentials, a(—¢) = —a(¢). In this
section we derive the probability for such fields, assuming
for simplicity one dominant field maximum and linear
polarization but without choosing a specific field shape.
Let a(¢p) = aof(¢p). We have a saddle point at

0=2iz z=-—if" <i> >0,
ao

(78)
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where f~! is the inverse of f, and, as before, ¢ = ¢ =
n = 0. We can still perform the integrals with the saddle-
point method and the results are quite simple,

2/ 42
Pzzﬁzzo‘z[quqz Slsi]eXP{—r;oaoZ[]+ao<f )}

8 1o a1 qi192] zaof'(iz)zaof (iz) — 1]
(79)
where
) =i [ aur (30)
“2i ). uf(u),
and for the one-step terms we find
P22l = —%arctan 1- ¥P22_’2 (81)
n apzf'(iz)
and
pR — _p2-1, (82)

In deriving these expressions we have assumed that
f'(iz) >0 and 0 < 1 ——— < 1, which we will justify

agzf (iz)
below. Note that P2? cancels P?>~! to leading order
independently on the field shape.
To make these expressions more explicit, we consider the
class of fields defined implicitly via [31]

f'(@#) =[1=F)° (83)

where each ¢ characterizes a different field shape, see Fig 5.
For example, ¢ = 1/2 and ¢ =1 give us the sinusoidal
field (or rather one peak of it) and the Sauter pulse,
respectively. For general ¢ the field f(¢) is given implicitly
in terms of a hypergeometric function by

1 3
¢:f2Fl<2vC,2,f2>. (84)

For this class of fields we find simple explicit expressions
for the probability, using for the exponent

1 3 1
apz[1 +a(2)<f2)] =,F {E’C’E’_a_ﬁj
1 3 5 1
R |22 - 85
32 l|:27C727 a(z):|7 ( )

and for the prefactor

f(¢)

— ¢

FIG. 5. This figure illustrates four examples from the class of
fields defined by (83) with ¢ = 1,3/2,2,5/2.

. 1\¢ 1 3 1
Zaof’(lZ) = <1 +?> F, (E,C,E,—?>
0 0

3 1
=,F/({l,c,=,—— ). 86
2 1<’C’2’1+a2> ( )

: 1
It is easy to check that 0 < 1 — i)

and c. Now everything is explicitly expressed in terms of a
and ¢, which in turn only enter in the arguments of , F';. For
¢ =1/2 and ¢ = 1 we recover the results in the previous
two sections for a monochromatic field and a Sauter pulse,
and for arbitrary ¢ we recover for ay > 1 the LCF results
above by expanding in 1/a and using the relation ¢ = £/2.
The hypergeometric functions also simplify more generally
for ¢ = j/2 where j is an integer. For example, for ¢ = 3/2,
which corresponds to f'(¢) = (1 + ¢*)™3/2, we find a
particularly simple prefactor

< 1 for general a,

2 }
p22-2 :a_ |:ﬂ+2_|_—slsli|
8lx a1 9192
ag "0 2_ 0
X T exp —7(10 [ 14+a5- aoarccschao}
(87)

and

2
P22=1 = — Zarccoty/ 1 + a3P?~2, (88)
T

while for ¢ = 5/2 we find a simple exponent

p2-2 — a_2 {ﬂ_ﬁlz 5151]

8l 41 9192

2r a,
948 ex {—i 0 }
0SXP ™3 /l+al

X
4 4+ 20a3 + 3la$ + 154§

(39)

and
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2 2+ 5a?
|]]>22—>1 —_= t 0 [p22—>2‘ 90
7 N2 542 + 3a (50)

The prefactors above have been derived under the
assumption that a; is not too small. The exponents, on
the other hand, have the expected perturbative limit for
ay < 1: For ¢ > 1/2 the exponent becomes independent of
the field strength,

ayp < 1: |P~exp<

rao VT (c—1/2)
RS o

In the perturbative regime the minimum energy that needs
to be absorbed is Nyw, where N is given by (76). For a
monochromatic field, N, photons have to be absorbed. For
¢ > 1/2, on the other hand, the Fourier transform a(w;)
has a slow, exponential decay, which (since |a(w)|*Vo/
la(Now)|* ~ aé(N_l) < 1) means that the process occurs
already at first order, with the absorption of a single photon
with w; = Now. At @y > o, the exponential behavior of
the Fourier transform is governed by the singularity ¢,
closest to the real axis, i.e., a(a)f) ~ e~ lords/ol We find
from the |f]| — oo limit of (84) a singularity at

VAD(c=1/2)
=i————". 92
b= 52)
At w; = Ny this implies |a(a)f)|2~(91), so (91) agrees
with what one can expect to find in the perturbative limit.

E. Single Compton scattering

While the results in the previous section are for double
Compton scattering, it should be clear that the same method
can be used to derive similar expressions for other plane-
wave processes, like nonlinear Breit-Wheeler or trident pair
production. In this subsection we simply give the corre-
sponding result for single Compton scattering. The saddle-
point approximation is obtained, e.g., from (33) in the same
way as for the above expressions for double Compton
scattering, and we find

Pelq) 7i(1<10—l)exp{—%aozﬂ%—a%(fz)]}’ (93)

2ryg zaof'(iz) /1= m

where s; now corresponds to the final electron. For the
class of fields defined by (83) we can again obtain explicit
expressions using (85) and (86).

In (93) we have integrated over all ¢ variables. In order
to compare with the literature for the LCF regime we need
to leave one ¢ integral. We find for ay > 1

Pc<q>—/%ﬁum—l)\/%exp{—%}, (94)

which for high-energy photons with 1 —¢g <1 agrees
perfectly with Eq. (19) in [32].

VII. SADDLE-POINT APPROXIMATION FOR
INTERFERENCE EFFECTS

In this section we study fields with many oscillations and
with several saddle points that lead to oscillations in the
spectrum. We choose the following field:

a(¢) = aysin e~ /T, (95)

Since the exponential part of the integrand for the N-step
part of the N-photon emission probability is a simple
generalization of the N = 1 case, we focus here on single
Compton scattering. See [13,33-39] for other semiclass-
ical/saddle-point approximations, in particular [33—-37] for
single Compton scattering and [13] for double Compton
scattering. Note though that we consider different quan-
tities here.
The saddle points for (33) are determined by

8®l~j . 8®U .
aﬁl‘j o 89 o

ij

(96)

where, again, 0;; = ¢, — ¢; and o,; = (¢; + ¢;)/2. Note
that these equations only depend on the field parameters, a,
and 7 in our case, but not on the momenta b, or g;. To
obtain the saddle points for finite 7, we first find the saddle
points for a monochromatic field (7 = o) and then use
them as starting points for a numerical root-finding of the
corresponding saddle points for finite 7. Depending on
how large/small 7 is, one may find it useful to obtain the
saddle points by first considering a sequence of 7 values
between 7 = oo and the desired value, and/or by starting
with a simple a, value and gradually change to a more
difficult one, cf. the numerical continuation in [40]. The
saddle-point equations can be expressed in terms of the
“prefactor functions” A (16) as

00,
0= _ 53, i, o7)
and
0= =1+—(A2 A? 8
005, +2( 51+ AnL), (98)

which imply that all saddle points, for any field shape,
are determined by A = =£i. The saddle points are therefore
necessarily complex. For the monochromatic field we find
saddle points at
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(0,0} {nﬂ,2iarcsinh H + Zmﬂ}, (99)

ap

where n,m = 0, &1, +2, .... We also have saddle points at

(!

where 17, can be found numerically by using
2iarcsinh[;—0] + (2m — 1)z as starting points. In Fig. 6 we

(100)

show saddle points for a pulsed field, which are obtained
numerically with the ones in (99) as starting points. For the
first set of saddle points (99) we find

By = —App =i(=1)"™" (101)
and for the second set (100)
Dy = App = —i(=1)"m, (102)

Note that these values of A do not change as we decrease
the pulse length from 7 = oo to a finite 7.

Let now 66 =6 — 6,441 and 60 = 0 — O,qq1.- The quad-
ratic fluctuation of ® around any point can be expressed in

Im(o)

Re(o)

Im(6) o

100 750 0 50 100 Re(6)
FIG. 6. Some of the saddle points for a pulsed field with aq = 1
and 7 = 80. For comparison, note that for a monochromatic
field, 7 = oo, the saddle points are given by (99), i.e., Imoc = 0
and Imé ~ 1.76.

terms of A and the derivative of the field f/, but at the
saddle points we can simplify using A = 4i. To leading
order we can put do, 60 — 0 in the preexponential part
of the integrand. Having expanded ® to second order in
do and 660, we now have simple Gaussian integrals for each
n and m which we perform analytically, i.e., we have for
each saddle point

/d50d59 exp {—c;86% — ¢,60% — c36680}, (103)

where the coefficients ¢; are in general complex and
obtained by finding the saddle points numerically.

For a monochromatic field we find with (99) an
exponential part given by [cf. (69)]

. . 2
exp {%@21}(”,}%) = exp {lr1a0 (1 +%>mﬂ'}
O x
1
exp {_’”Zo [(2 + a%)arcsinha— —/1+ a(z)} } (104)

0

From this we see that the saddle points with m # 0 lead to
oscillations in the spectrum around the m = 0 result studied
in the previous section. We also see that the frequencies of
these oscillations increase with decreasing y or increasing
ag. Since this saddle-point approximation is good for small
., these oscillations can be relatively fast and, hence,
contribute less after integrating over the momenta.

In Figs. 7-9 we compare this approximation with the
results obtained by an exact numerical integration. How
many saddle points one needs to include depends of course
on several parameters. To obtain these results we have
summed over the saddle points with |n| < 40 and |m| < 20.
These plots show that the saddle-point approximation is
remarkably good. It can in fact be difficult to see that there
are actually two different curves in the large g; part. Note
that at a; = 1 the LCF approximation is not good, not even
for an average where the oscillations are neglected. Our
non-LCF saddle-point approximation, on the other hand,
gives a very good approximation of even the nontrivial
oscillations. From these plots we see that the oscillations in
the spectrum become smaller and faster as a increases.
Figure 8 shows that already at a, = 2 the oscillations are
quite small on a log scale. However, by zooming in one can
see that our approximation is capable of correctly describ-
ing even very fine details in the spectrum. In these figures
we also plot the saddle-point approximation obtained by
only including the m = 0 saddles from (99). This gives a
good approximation of a locally averaged spectrum. While
the LCF approximation becomes more accurate for increas-
ing ay, for ay = 2 our approximation, even just the simpler
one, is still much better. In Fig. 9 we see that for a; = 4 the
oscillations are so small that it might be difficult to see them
without zooming in, and in this case the LCF approxima-
tion is quite good.
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boP(q1)

20

10°boP(q1)

7.0 7.5 8.0
a1/x

FIG. 7. The spectrum for single nonlinear Compton scattering
for 7 =80, ag =1, y = 0.001 (blue and orange curves), y =
0.01 (magenta and green curves) and y = 0.1 (red and cyan
curves). The blue, magenta and red curves show the exact result
and the orange, green and cyan curves are obtained with the
saddle-point approximation. In the first plot we have included
both sets of saddle points [the ones from (99) and (100)], but in
the second plot only the m = 0 saddles from the first set. The
dashed lines in the second plot show the corresponding LCF
approximation.

boP(q1)

105boP(g1)

Q
8.0 8.2 8.4 8.6 8.8 9.0
a1/x

FIG. 8. Same as Fig. 7 but with gy = 2.

Although there are no IR divergences in single
Compton for this field shape [21,41], the probability can
become larger than one even for some of these non-
extreme parameter values. That this can happen is well

known [25,42].
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FIG. 9. Same as Fig. 7 but with ay = 4.

VIII. DOUBLE COMPTON SCATTERING LCF

We now return to double Compton scattering in the LCF
regime. In the previous sections we showed that for y < 1
the exchange term is on the same order of magnitude and

even cancels the direct part of the one-step term to leading
order. Here we study what happens at larger y. We need to
keep ¢, sufficiently large as it is known that the LCF
approximation is not good for softer photons [43]. We
expect that both ¢; and ¢, have to be considerably larger
than b,/ a3 [43,44]. The LCF approximation only depends
nontrivially on aqy and by via y. For example, to plot
Pone/ao and Py,,/a} as functions of y we do not have to
choose a value of a. So, for the lowest value of ¢; and the
highest value of y which we consider there should be a
sufficiently large aq to justify the LCF approximation.
In Figs. 10 and 11 we show the one-step term as a function
of y for different values of ¢g;. What is actually shown in
these figures is the corresponding “rate” R defined by

Pone() = / %Rlqu), (105)

where ¢ = (¢ + ¢ + P53 + ¢4)/4, in which ¢4 = ¢, for
Py, and ¢4 = ¢,, ¢p3 = ¢ for Py;. As in the trident case,
we find that the one-step term can be both positive and
negative depending on y.

Figure 10 shows that the direct and exchange parts of the
one-step term can for smaller g; + ¢, continue to be close
to each other also for large y. The fact that P32~! and PZ
almost cancel each other means that the other one-step
contributions, P}l P}2 and P!2, are more important than in
the trident case [1]. So, even though P32~! and P2 are
much larger than PLL, P12 and P12, the size of the total one-
step term is closer to the latter rather than the former.

However, we also see that P22~! and P22 are no longer
close in magnitude for 1 — ¢; — g, < 1, where the electron
loses most of its initial longitudinal momentum to the
emitted photons, and larger y. The last plot in the first
row of Fig. 10 shows one example with 1 —¢; — ¢, < 1
and ¢, = g, where P3~! dominates and where P27
changes sign at large y. The second and third rows show
examples with 1 —¢; — ¢, <1 and ¢, < ¢, or q; > ¢,
where the one-step term is instead dominated by the
exchange term P22 and where P22~! can change sign.

We have made a comparison between our numerical
results and our saddle-point approximation similar to the
one in Appendix C in [1] for the trident case. For
sufficiently small y we again find that each of the first
couple of orders give a better agreement. However, here we
find that the coefficients in the series in y increase quite
fast. For example, at ¢, = g, = 1/3 we find

4181a%ay/x < 4)
one ¥ T /= CXp | =~
252012732 3y

x (1= 11.0y + 130.5% — 1847.5,% + ...).  (106)

Given that the saddle-point approximation can lead to
asymptotic series, this growth of the coefficients should not

096018-16



SINGLE AND DOUBLE NONLINEAR COMPTON SCATTERING PHYS. REV. D 99, 096018 (2019)

q=(1/3,1/3) q=(1/3,9/20) q=(1/3,3/5) q=(1/3,21/32) q=(9/20,9/20) q=(99/200,99/200)
10-2 1073 1072
G
SF
& 107 107 107
= 1070 1070 1070
C
T
85 p
& 10712 10712 110712
Qi» 10715 10715 410715
= 10-18 10-18 110-18
C ]
3
= R1()<0,RZ(0)>0) R1(q)<0 RE(A)>01
L 10—21 10—21 i N 10—21 i
0.1 1. 10. 100. 1. 10. 100. 1. 10. 100. 1. 10. 100. 1.
X X X X X
q=(1/10,1/10) q=(1/10,1/3) q=(1/10,2/3) q=(1/10,4/5)
G 10 1073 107 10
O
g 10- 10 10 10-6
g 1070 1070 107° 1070
zg
G 10712 10712 1012 10712
: 10718 10718 10718 10718
3z 10718 1078 10718 1078
& 12 2 o
- R1(q)<0| R1(q)>0 Reir(@)>0 <0 | R1(q)>0 Rgir(q)>0 R1(q)>0 R.i(q)=0
" " . " 10-21 " " " 10-21 o " 10-21 " 10-21 .
0.01 0.1 1. 10. 100. 0.1 1. 10. 100. 0.1 1. 10. 100. 0.1 1. 10. 100. 1. 10. 100.
X X X X X
q=(1/100,1/100) q=(1/100,1/10) q=(1/100,1/2) q=(1/100,9/10) q=(1/100,49/50)
1 1 1. 1.
C4
& 107 107 1073 1073
« 106 106 106 106
Ci
g5 107 10°° 10~ 10-
&
g 1012 1012 10-12 1012
e
> 1015 10-15 10718 10715
:: -18 -18 -18 -18
g R (@)<0] ' ®%(@)<0]" 7% (@)<0] "0 R (@)<0] '
& <0 | Ri(q)>0 RiE(a)=0 R1(q)>0 RI2(q)<0 R1(q)>0 RI2(q)<0 R1(q)>0 RI2(q)<0
1 10—21 10—21 [ 10—21 [l 10—21 I
10 0.01 0.1 1. 10. 100. 10 0.01 01 1. 10. 100. 0.01 0.1 1. 10. 100. 0.1 1. 10. 100. 1.
X X X X X

FIG. 10. The one-step term as a function of y for different values of ¢;. The blue, green and cyan solid curves show the direct terms
Rgizr"l, R(lﬁzr and R(lhlr, respectively. The red and orange dashed curves show the exchange terms R2? and R.2, respectively. The black
curves show the total one-step term.

be too surprising, but it does mean that the higher orders are
less useful than in the trident case. They only provide an
improvement for quite small y, but there the probability is
very small because of the exponential suppression. This is a
bit unfortunate if one wants an approximation for the total
one-step term, because one needs at least the next-to-
leading order of P32~! and P22 since they cancel each other
to leading order.

On the other hand, this cancellation also means that
neglecting the total one-step compared to the two-step term

should be a better approximation5 here than in the trident
case. The two-step term is shown in Fig. 12 in terms of the
following “rate”:

Puwo(q) = /d043d021 Ra(x(043), x(021), ). (107)

b

The one-step terms give of course only the next-to-leading
order term in the LCF 1/ay < 1 expansion, and so are already
suppressed by a factor of 1/a, with respect to the two-step term.
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FIG. 11. The total one-step term as a function of y for different

values of ¢; = ¢.
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FIG. 12. The two-step term as a function of y; and y,, the two
locally constant values of y at the two steps.

Figure 13 shows that, given a fixed total emitted longi-
tudinal momentum ¢; + ¢,, most of it is given to one of the
two photons, ¢; < ¢, or g, < ¢;. This is expected since
the probability is in general larger for softer photons.
However, to directly compare the one-step and the two-
step terms we need to integrate over ¢ for some pulse shape.
In Fig. 14 we compare P, and Py, for a Gaussian pulse
(95). We find that P, can be much larger than P,,. even

g1+q2=0.01, 0.1, 0.5, 0.9; x=1

?:; 107 | >0
&
1078
>0 <0 >0
109}
10—10 P R P N R 1 ST
0.0 0.2 0.4 0.6 0.8 1.0
q1/(q1+92)
q1+q2=0.01, 0.1, 0.5, 0.9; x4=x2=1
0.100 }
—~ 0.001
S
N
X
107°
10—7...|...|...|...|...
0.0 0.2 0.4 0.6 0.8 1.0
q1/(q1+92)
FIG. 13. The dependence on the longitudinal momentum of one

photon ¢, for fixed g; + ¢g,. The LCF approximation breaks
down as g; — O or g, — 0. This happens further out for larger ay,.

for a very short pulse and even before taking the a(-scaling
into account, which gives a further increase due to P, ~
a} and P, ~ay. We find that for larger ¢ + ¢, the
relative difference between P, /a3 and P,,./a, decreases.
However, the exponential suppression (64) for 1 — ¢, —
g, < 1 means that we then need larger y to have a
significant probability, which is presumably more likely
to be achieved by increasing a, rather than b, and a larger
ag again favors Py,,. Further, the pulse length in Fig. 14 is
probably about 30 times shorter than what one can expect
in a typical experiment, so for a more realistic pulse the
one-step term will be even less important. So, even in cases
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FIG. 14. The two-step vs. the one-step term in the LCF
approximation for a Gaussian pulse (95) with 7 = z.

without near cancellation between P32~! and P22 the one-
step term will probably not be very important. However, the
one-step term could be important for a short pulse with
ag ~ 1. For such fields we can of course not use LCF and so
we leave that for future studies.

IX. CONCLUSIONS

In this paper we have studied double nonlinear Compton
scattering. By using the same approach as in our previous
paper on trident pair production [1], we have showed that
many of the results are very similar, which allows us to use
the same methods. We have focused on the emission of
“hard” photons which makes things more similar to the
trident process than if we had included soft photons, we
can, for example, obtain saddle-point approximations for
y <1 that are similar to the ones we obtained in [1].
Focusing on hard photons is also motivated by the fact that
they can be more interesting/useful, e.g., for subsequent
pair production. The saddle-point method has not only
allowed us to find simple analytical expressions for simple
field shapes, we have also considered a more nontrivial,
pulsed oscillating field. We then have to obtain the saddle
points numerically, but by comparing with the exact
numerical result for single Compton scattering we find a
very good agreement, even for small and fast oscillations in
the spectrum. Since the saddle-point approach is much
faster it can therefore be a useful method for studying this
as well as similar processes. Indeed, since the exponential
part of the integrand is very similar for double and higher-
order Compton scattering, one can also apply this method
to those processes, for which an exact numerical integration
would take a long or too long time. We have also made
preliminary calculations for trident and found that the same
saddle-point method can also be used to study oscillations
in the momentum spectrum there.

The two-step part of the probability is related to two one-
photon emissions. By studying this relation in detail for
arbitrary polarization we have discovered a new gluing
approach, i.e., a method for obtaining the dominant part for
sufficiently long laser pulses. Gluing (spin-averaged) LCF
probabilities is an important part of PIC simulations, where
using LCF results is motivated by considering a > 1. Our
new gluing approach takes the spin of the intermediate
electron into account and gives the dominant contribution
for arbitrary field polarization and for ay 2 1. For a¢ > 1
and linear polarization our gluing approach reduces to the
one in [9,14]. So, this goes beyond the usual gluing
approach. We have checked that our approach gives the
correct results for triple and quadruple Compton scattering.
To the best of our knowledge, these processes have not
been studied in this regime before. In this paper we have
only presented this gluing approach for intermediate
electrons. Our preliminary results for trident suggest that
we will be able to generalize our gluing approach to
processes with intermediate photons. More work is needed
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to more precisely delineate the region of parameter space
where corrections to our new gluing estimates can be
neglected. One can expect that the smaller ay, is or the larger
by is the longer the pulse has to be, and softer photons may
also make corrections more important. To answer these
questions we plan to perform a detailed numerical study for
both trident and double Compton scattering.
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APPENDIX A: HOW TO OBTAIN
THE AMPLITUDE

In this appendix we provide the basic ingredients needed
to calculate the amplitude using either the standard covar-
iant or the lightfront quantization approach.

1. Lightfront quantization

As is standard in this field, the background is treated
exactly by using Volkov solutions and the Furry picture.
The amplitude can be obtained either with the standard
covariant approach or with the lightfront quantization
formalism [45,46], which naturally accommodates
plane-wave background fields [47-49]. The lightfront
Hamiltonian governs the evolution in x™, and has three
terms,

H l/d‘ 'A+62' L i+ 2P 4 r AP
mt = = | dxe — o5 J-te —AY,
) T (ié‘_)2] 4i0_

(A1)

where j#* = Wy#*W. The first term is similar to the usual
Hamiltonian, while the other terms are referred to as
“instantaneous” [45,50]. The first instantancous term
contributes to trident [1], while the second instantaneous
term contributes to the two-photon emission considered
here. The photon and fermion fields are expressed in terms
of mode expansions with only on-shell momenta. The
photon field is given by

A, (x) = /d?aﬂe"“ + aje'™, (A2)
where the mode operators obey
la, (1), ay(I')] = =21_8(1 = I')L,,, (A3)

with

k), + Lk,
L/w = 9w — % . (A4)
The fermion field is given by
Y(x) = /di)Kub(p + Kvd p(-p), (AS)

where the background enters via the Volkov solution [51],

. k2ap — a* ke
Q@ exp{ l(px—i—/ 2%p )} +2kp’

(A6)

and where K = 1 — g/ (2kp).

As in [1], we use M, to denote the term in the amplitude
that comes from two vertices of the noninstantaneous part
of the Hamiltonian,

1 -
k_5(p/ + lz + ll - p)M2
+
= —<O|b(p/)€]Cl(l])é’za(lz)\/dxzrdJCTLH(JCEL _x;r)
1 1 +
x Hyy) (x3)Hy! (67)b' ()]0).

(A7)

and M, to denote the term coming from the instantaneous
part of the Hamiltonian,

1 -
k_5(P/+lz+11—P)M1
+

= Olb(p)erally)esally)(—i) / dxtHE (x* )b (p)0).

(A8)
After some straightforward calculation we obtain
__ " == ilxs
= dprit K pgre'™ Ko (py + 1)
kp, —— ~~
V4 P
2 _ .
x/ dop, K p e Kug, (A9)
~— e
Pi p

where p, = p — [, is the momentum of the intermediate
electron, and

ira _ ; _
MY == b [ ape g, (A10)
Pir P

pr

where p; is the same as in M,.
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2. Covariant approach

Next we show how the results from the previous section
can be obtained with the standard, covariant approach. In
the covariant approach the amplitude is given by

1 -
—o(p'+ L+ 1, — p)M*?
k.

— (~ie)? / &, A (52 a2 S () )y 0 ().
4 p

(Al1)

where v = Ku¢g includes the spin factor of the Volkov
solution and the fermion propagator is given by

d*p 1

S(xvy) =1 (2”)4

As in [12], we perform the g, integral by first separating
the propagator into two terms using

LU, Patm
P-mtie 4p_\" TP, — PP 1 icsign(P))’
(A13)

where P = (m* + P%)/(4P_). The (lightfront) spatial
coordinate integrals in (A11) give delta functions implying
P=p—1, = p' +1,, which means P_ > 0. Upon per-
forming the P integral, the two terms in (A13) give terms
with 8(x3 — x|) and O(x3 — x;), respectively. We find that
the term with 5(x] — x{") is exactly equal to the term (A10)
that comes from the instantaneous part of the lightfront
Hamiltonian, and the term with 0(x; — x{") is exactly equal
to the term (A9) that comes from two vertices with the
noninstantaneous part of the Hamiltonian.

APPENDIX B: GAUGE INVARIANCE

In this work we have used the lightfront gauge for the
emitted photons, where ke = 0 in addition to le(!) = 0, or
in terms of the components e =0 and e, =1,¢, /(21_).
The probability is of course gauge invariant, but that does
not necessarily mean that each contribution to the proba-
bility will be separately gauge invariant. Indeed, it is well
known, e.g., from QED without a background field, that
individual diagrams are in general not gauge invariant. To
check gauge invariance we replace ¢; in (Al1) with /. Let
us first study the following spinor part:

P+

715 e KB 0K (p.dou, (B1)

where P = p — [, but P, is still an integration variable.
We write

h=p—-P+ck
= [#(p.¢1) = 1] = [#(P. 1) — 1]

+le=Vip.¢1) + V(P. )L, (B2)

where ¢ = (I, = p+ P), /k, and V(p.¢) = (2ap — a*)/
(2kp). The ¢; dependent part of the exponent is given by

ew i ["apic-vip.9) - viralf. (B3

so the last term in (B2) is a total derivative (note that
K¥K = ) and vanishes upon integrating over ¢,. From
#K = Ky we find

#(p.¢1) = 11K(p.¢1)u = K(p.¢)(§ — )u = 0. (B4)

From K# = pK we find

L R P )~ 1) = (P4

(BS)

The P, integral gives a delta function and we find

- 2
2= apuR K el g
P

Mg‘l - 2 xp/ (B6)

This is in general nonzero, so we also have to take the
exchange term M?! into account.
For M?' we begin with

P+1

a'K(p'.2)h K (P, ¢2)P2——1—|—i€’ (B7)
where P = p’ 4 ;. So, this time we write
I =[#P.¢) 1] = [#(P'. $2) — 1]
+ e+ V(P d2) = V(P.$)IK. (B3)

where ¢ = (p’ + 1} — P) . /k,. The last two terms in (B8)
vanish as before, and

p+1

#P.p2) = UK (P ) 35—

=+4+K(P,¢,). (B9)

The rest of the calculation is the same as for M'?, except

that (B9) has opposite sign compared to (BS), and, hence,
_ g2 20 _

My =M, +M;_, =0. (B10)

Thus, although M'? and M?! might not be separately gauge
invariant, the total amplitude M = M'> + M?! is.
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Note that in the trident case the terms corresponding to
M"? and M?! are separately gauge invariant, which makes
the direct-exchange separation of the one-step term gauge
invariant. In the double Compton case, in general one has to
consider both the direct and the exchange parts of the one-
step term together to have a gauge-invariant result. Note
though that the separation between the two-step and the
total one-step term should be gauge invariant because the
two-step term can be obtained by gluing together two first-
order processes.

APPENDIX C: EXACT COMPARISON

In this section we provide a nontrivial consistency check
demonstrating that our results agree with the previous
literature. We have already shown that our two-step term
agrees with previous results in the LCF limit. To check also
the one-step term we will compare the LCF limit of our
results with the results for the direct part of the one-step
term as obtained with the approach in [6,14].

1. Previous constant-crossed approach

In this subsection we follow closely the approach
described in detail in [6]. We first Fourier transform the
lightfront-time dependencies of the vertices,

dr]

k¢¢leil|x1K(p _ /_ei(PJrll—p—rlk)x]F(rl) (Cl)
P p 27[
and
B o il A2 ity ty=prak
K ppreKp = [ —=elWrhmPmrbinp(r). (C2)
p/ P 277:

The spatial as well as the lightfront-time integrals now give
delta functions

/dx?dxé = 2r)**(p' + 1, + L — p—[r1 + r)k)

x (27)**(P = [p — 1, + rk]). (C3)
We use the second delta function to perform the P, integral
and the k. component of the first delta function to perform
the r, integral. In the electron propagator we have
P? — 1 =2kP(r, —r}), where ri = pl,/kP. It is therefore
natural change Varlable from ry =:r + r] to r. The result
we want to compare with is for the probability integrated
over the transverse momenta. For these integrals we make
the following change of variables /; | = ¢,(L,, + p,) and
Ly =%(Lyy +s1p1 —qiL11), where Ly and L, are
the new integration variables. In terms of these variables
we have rj =472 (1 + L3)),and r, = (1 + L3)) -

For a constant field the Fourier transforms I"'and A can be

expressed in terms of the Airy function Ai(c) and Ai'(c).
The argument of these Airy functions is

1 2r
=57 (Zl + \/—+21L ) (C4)
for I" and
1 2r
=— - L3 C5
) 22/3 <Z2 aO\/5+ 22 ZL) ( )
for A, where
r0\3 1\ 3
] = <ﬂ) iy = (ﬂ> (C6)
X X

The momentum integrals parallel to the field, i.e., L;; and
L5, can be interpreted in terms of lightfront-time volume
factors by changing variables to ¢ = (L,; + Ly1)/(2ay)
and @ = (L, — Ly;)/ay. The integral over ¢ gives the
overall volume factor, while the other gives

/dr1 e“rF(r
2r r+ie

/ dgb(~0)|F(0)]2

1 [oodr 5
e A L

where the ¢ integral in the first term gives an additional
volume factor, so the first term is the two-step part and the r
integral term gives the one-step part. The integrals over the
momentum components perpendicular to the field, i.e., L,
and L,,, take the following form:

[F(0)P).
(€7)

/ dxx?"{Ai, AiAT, AP} (c + x?), (C8)

which can be performed as in the appendix of [6]. We can
now express the two-step as

A 2
P, =2 4(0) (9)
and the direct part of the one-step as
. 1 [od
PIT=agy | SIAC)-AO)L  (C10)

where A is given below.

At this point one has to decide what to do with the
photon polarization sum. Let us first check the standard
replacement
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Zeﬂey = —Gu- (C11)
pol.
This gives
’ay [ g9
= C"Ai(zy,)Ail(z,,
= ot I i)
K10K21

o A¥(2,,) Al (z0,) + ‘OC”AI (z1,) A (22,)
1

Al 2 AT 2) + €A 1) ) |
+ (41 < q2). (C12)

where Aij(z) = [ dyAi(y); the arguments of the Airy
functions are given by

2R 2R
Xz Ve
R = ry/ay, and where the coefficients C are given by [the
g-subscript indicates (C11)]

Zr = 22— (C13)

>

si(1+ 1) (s +32)R

g Cl4
. q192 ( )
Cl=1-q,R Cl=1+¢qR (C15)
2 _
Cl =14 TN B R (6~ giq)R. (Cl6)

S

This agrees6 with the result in [14].

However, to compare with our results for the direct part
we should calculate the corresponding quantity in the
lightfront gauge ke = 0, so that we can be sure that we
are comparing exactly the same quantities. In this gauge

we have
k,l,+ 1k,
= _<g/w _%>7 (C17)

Z%%(l)

pol.

where the /, terms vanish when applied to a gauge invariant
term. We then find that A is given by (C12), but this time
the coefficients are given by

Cip=1-12p

Cl18
9192 ( )

®There seem to be some trivial typos in [14]: The signs can be
independently checked by comparing the two-step part with what
one finds by gluing together the results in [14] for single
Compton scattering. The sign errors would otherwise lead to a
negative probability. There also seems to be a missing factor of 2
in the one-step term coming from rescaling r — ayr/2.

Cl=1-p  ¢l=14+59%  (C19)
21 10
Gl =14 [0S0y, S0 e
o 721 S 10 21
(C20)

By comparing the coefficients C and Cpr we see that A,

and A; r agree for R = 0, which they should because .A(0 )
gives the two-step term. However, for R # 0 they do not
have to be the same because of gauge dependence. In any
case, we can directly compare (C12) for A; p with the LCF
approximation of our exact results.

2. Our approach

The starting point in this subsection is our exact
expressions for P{" = p22=! 4 pPl2 + Pl where P21,
P12 and P} are given by (49), (17), (14) and (10). These
expressions are valid for any inhomogeneous field. The
locally constant field approximation is obtained by expand-
ing in 1/ay < 1 as explained in [1]. For P?*~! we use the
following integration variables, ¢ = (643 + 6,;)/2 and
@ = 643 — 05, Where 6;; = (¢; + ¢;)/2, and 043, 05;. In
the constant field limit the ¢ integral is trivial and gives

Julone(z-n)] -2

— 0,,. To factorize the 8,; and 6,5 integrals

(C21)

where 1 = 0,3
we write

e — 1

Il 1 / ‘
M~ g
2 2w d r?

For P12 we change variables from ¢ and ¢3 to 6,; and 6s;.
To factorize these integrals we note that we can replace

(C22)

0(—n) — —sign(n)/2, where n = 63 — 6,;, and
1 e—inr
—551gn = ——73/ dr (C23)

where P is an instruction to take the principal value. Finally
for PLL we write

/ d9221 6’2’723921
071

:/M(s(@@ 921)62’7094*+2b0®21

021043
(C24)
and use the representation
50n) =~ [ dre-i (C25)
=5 re
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The 0;; integrals in each of these terms can now be
performed and give Airy functions. We find exactly the
same result as in (C12) with the coefficients given by Cy .
Since these two approaches are entirely different, this gives
a highly nontrivial check of our methods and results.

Note that the gauge dependence does not necessarily
mean that A, and A,y are completely different. Indeed, in
the next section we will show that they are equal to leading
order for y < 1 and hard photons.

3. Saddle-point comparison

As already noted, there are no explicit results for hard
photons that we can immediately compare with, but it is
possible to derive such results from, e.g., the analytic
expressions in [14], see (C12). To obtain the longitudinal
momentum spectrum for hard photons, there is only one
integral to perform, namely

/dt.A(t) + A(t—zt) —2A(0)

, (C26)

where A(¢) is given by (C12) and t = 2r/ay. For y < 1
and hard photons we can perform the ¢ integral with the
saddle-point method. It turns out that || ~ \ /¥ < 1, so we
rescale t = 7/, /y and expand the integrand to leading order

in y, which involves
282
AilE> 1) v (C27)

2\/7_[51/4

and similar expansions for Ai’ and Ai;. Now we can
perform the resulting elementary 7 integral

G|
/ dr = = —2y/xe. (C28)

There is no difference between A, and Ay to leading
order; they both give

: atay |[r
P(lllr:_ 30 ﬂ[ﬂ_f_@_’_
42 X 92 9

This agrees perfectly with our result (57) for the direct
part of the one-step term, demonstrating consistency. To
obtain the corresponding expression for the two-step term
[P, one just has to omit the ¢ integral, the result agrees
with (59).

We have thus demonstrated consistency between our
expressions and those of [14], with all the nontrivial
dependencies on the various parameters. In addition, the
short calculation here is very different from the derivation
of (57) in the main text, providing further reassurance that
our results are consistent. Since we have checked that our
analytical results agree with our numerical results, this
comparison also gives us a benchmark of our numerical
results.

e .

(C29)
9192
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