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We study single, double and higher-order nonlinear Compton scattering where an electron interacts
nonlinearly with a high-intensity laser and emits one, two or more photons. We study, in particular, how
double Compton scattering is separated into one-step and two-step parts, where the latter is obtained
from an incoherent product of two single-photon emissions. We include all contributions to double
Compton scattering and show that the exchange term, which was not calculated in previous constant-
crossed field studies, is in general on the same order of magnitude as the other one-step terms. Our
approach reveals practically useful similarities between double Compton scattering and the trident
process, which allows us to transfer some of our previous results for trident to double Compton
scattering. We provide a new gluing approach for obtaining the dominant contribution to higher-order
Compton scattering for long laser pulses. Unlike the standard gluing approach, our new approach does
not require the intensity parameter a0 to be much larger than one. For “hard” photons we obtain several
saddle-point approximations for various field shapes.
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I. INTRODUCTION

In [1] we studied the trident process [2–8], e− →
2e− þ eþ, in plane-wave background fields, and derived
compact expressions for the probability for arbitrary back-
ground field shapes. Here we will apply the same methods
to another second-order process, namely double nonlinear
Compton scattering [9–14], where the incoming electron
emits two photons, e− → e− þ 2γ. This is also a process
that one can separate into one-step and two-step parts,
where the latter is obtained by incoherently gluing together
the probabilities of two single-photon emissions. The two-
step term is expected to be a good approximation of the
total probability for sufficiently high intensities, or more
precisely for a0 ¼ eE=ðmωÞ ≫ 1, where E is the field
strength and ω a typical/characteristic frequency of the
(in general pulsed) background field. This two-step domi-
nance is what makes it possible to use particle-in-cell (PIC)
simulations to study complicated higher-order processes in
high-intensity fields [15–18]. This regime is also associated

with the locally constant field (LCF) approximation,
which entails further simplifications. There is now
interest in going beyond or improving the standard LCF
approximation [19,20].
In this paper we are interested in corrections to the two-

step approximation. In particular, the one-step part can be
separated into (what we call) direct1 and exchange terms,
where the latter comes from the cross term between the two
terms in the amplitude which are related by exchanging the
two emitted photons. A similar exchange term appears in
the trident case, and in [1] we showed that, while omitted in
previous constant-crossed/LCF studies, it is in general on
the same order of magnitude as the direct part of the one-
step term. Here we make a similar investigation into the
importance of the exchange term in double Compton
scattering. That the exchange term can be important,
e.g., for a0 ∼ 1 was also found in [12].
For a0 ∼ 1 the one-step term is in general on the same

order of magnitude as the two-step term. However, if the
field is sufficiently long then the probability is again
dominated by a term that can be expressed as an incoherent
product of two single-photon emissions. If a0 is not large
one should of course not expect this two-step term to be the
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1Note that we do not use “direct” as synonymous to the one-
step term. By “direct” we mean instead the nonexchange part.
The two-step term only has a direct part while the one-step term
has both direct and exchange parts.
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same as the LCF two-step term. While spin effects are
usually neglected in PIC simulations, to obtain the complete
two-step term in the LCF regime one has to sum the
incoherent product over the spin of the intermediate electron
[9,14]. In this paper we identify a term in double Compton
scattering that dominates for sufficiently long pulses without
assuming a0 ≫ 1 or any particular field shape, and then we
show that this two-step term can be obtained from an
appropriate sum of the incoherent product of two single-
photon emissions. We do this for an arbitrary background
field. For fields with linear polarization one can obtain the
two-step term by summing over spin in essentially the same
way as in the LCF regime [9,14]. However, for fields that do
not have linear polarization things become more nontrivial,
because in general one has to take into account the fact that
there is a spin sum already on the amplitude level, which in
general leads to a double spin sum on the probability level.
We have found a simple prescription for obtaining the entire
two-step term from the spin-dependent probability for single
Compton scattering. This gluing approach is to the best of
our knowledge new and seems promising for studying
higher-order processes. We have checked that it gives the
correct results for triple and quadruple Compton scattering,
where the electron emits three and four photons.
Calculating higher-order processes means performing

higher-dimensional integrals. Numerical integration can
quickly become challenging. In our approach we integrate
analytically over the transverse components of the
momenta, and then the longitudinal momentum spectrum
is obtained by performing a number of lightfront-time (xþ)
integrals. The exponential part of these integrands can in
general be expressed in terms of an (xþ-dependent)
effective mass, and the integrals can be performed with
the saddle-point method. In fact, the integrals for double
Compton scattering are very similar to the ones in the
trident case [1], so we have, for example, been able to reuse
saddle points we found in [1] for double Compton
scattering, and the new saddle-point results we provide
here can also be translated to the trident case. For certain
simple field shapes we can obtain simple analytical
approximations, but the saddle-point method can also be
useful even if one has to find the saddle points numerically,
as it can offer a quick estimate and a check of exact
numerical integrations. We show here that the saddle-point
method can give a good approximation of even quite small
and fast oscillations in the spectrum.
In comparison with previous papers on double Compton

scattering, note that our focus is on the longitudinal
momentum spectra, which we obtain by performing all
integrals over the transverse momenta. We have several
reasons for this: 1) We can perform these integrals exactly
analytically for arbitrary pulse shape. 2) The total/inte-
grated probabilities only depend on the longitudinal
momentum of the initial particle, but not on its transverse
momentum, so it is natural to consider how the initial

longitudinal momentum is distributed among the final-state
particles. 3) The longitudinal momentum spectra are Lorentz
invariant, being expressed in terms of 4-vector products of
the particles’ momenta and the field’s wave vector, which
makes them especially suitable for theoretical studies. 4)
Even after performing these integrals for the first-order
processes the results are still general enough for the con-
struction of gluing estimates, which would not have been the
case if we had instead integrated over the longitudinal
momenta (or summed over the spins). 5) Higher orders in
general depend on several momentum and spin variables, so
by performing these integrals we reduce this to a more
manageable number of parameters, while still being sure that
we have not missed any important regions of phase space.
The previous points give motivation for reducing the number
of parameters by integrating over the transverse rather than
some other components of the momenta. So, while different
quantities might be more relevant for experiments, at least
from an analytical/theoretical point of view it is natural to
consider the longitudinal momentum spectrum integrated
over the transverse momenta.
This paper is organized as follows. We focus first on

double Compton scattering. In Sec. II we give the necessary
definitions. In Sec. III we provide compact expressions for
the exact probability for arbitrary field shapes. In Sec. IV
we separate the probability into one-step and two-step
terms and compare with the incoherent product of two
single-photon emissions. This comparison helped us to find
a new gluing approach, which we confirm in Sec. V for
triple and quadruple Compton scattering. In Sec. VI we
derive simple analytical approximations for “hard” photons
for various field shapes. In Sec. VII we apply the saddle-
point method to fields with many oscillations and, hence,
many contributing saddle points, which lead to interference
effects in the momentum spectrum. We consider single
Compton scattering and compare this saddle-point approxi-
mation with an exact numerical integration and find very
good agreement. In Sec. VIII we consider double Compton
scattering in the LCF approximation. We show, in particu-
lar, that the exchange term can continue to be on the same
order as the direct part of the one-step term also for larger χ.

II. DEFINITIONS

We use the same formalism and notation as in [1], which
we briefly recall here for convenience. Lightfront coor-
dinates are defined by v� ¼ 2v∓ ¼ v0 � v3 and v⊥ ¼
fv1; v2g, and we use x̄ ¼ fx−; x⊥g for coordinates and p̄ ¼
fp−; p⊥g for momenta. The plane-wave background field
is given by fμν ¼ kμa0ν − kνa0μ, where kμ ¼ kþδþμ is a
lightlike wave vector and a⊥ðϕÞ, with ϕ ¼ kx, is a
polarization vector with an arbitrary dependence on light-
front time xþ. We use units with c ¼ ℏ ¼ 1 as well as
me ¼ 1, and absorb the electron charge into the background
field, i.e., eaμ → aμ.
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We have the same initial state as in [1], i.e., an electron
with momentum pμ and spin σ,

jini ¼
Z

dp̃fðpÞb†ðpσÞj0i; ð1Þ

where dp̃ ¼ θðp−Þdp−d2p⊥=ð2p−ð2πÞ3Þ is the Lorentz-
invariant momentum measure, θð:Þ is the Heaviside step
function, and fðpÞ a sharply peaked wave packet2 [21]
(we also use p for the position of this peak). The
normalization of the initial state, hinjini ¼ 1, and of the
mode operators, fbðq; rÞ; b̄ðq0; r0Þg ¼ 2p−δ̄ðq − q0Þδrr0
where δ̄ð…Þ ¼ ð2πÞ3δ−;⊥ð…Þ, implies

Z
dp̃jfj2 ¼ 1: ð2Þ

We focus first on double Compton scattering, where the
final state contains one electron with p0

μ and σ0 and two
photons with momenta and polarization vectors lμ1, l

μ
2 and

ϵμ1, ϵ
μ
2. We use lightfront gauge, so in addition to lϵðlÞ ¼ 0

we also have kϵ ¼ 0. The amplitude for two-photon
emission, M, is defined via the evolution operator U by

h0jbðp0σ0Þϵ1aðl1Þϵ2aðl2ÞUb†ðpσÞj0i

≕ δ̄ðp0 þ l2 þ l1 − pÞ M
kþ

: ð3Þ

As in [1], in order to reduce the number of parameters on
which the probability depends, we integrate analytically the
probability over the Gaussian transverse momentum inte-
grals [25] and sum/average over spins and polarizations,

P ¼ 1

4

X
spins

Z
dp̃0dl̃1dl̃2

����
Z

dp̃f
1

kþ
δ̄ðp0 þ l2 þ l1 − pÞM

����2

¼ 1

4

X
spins

Z
dl̃1dl̃2

θðkp0Þ
kpkp0 jMj2; ð4Þ

where the factor of 1=4 is due to spin-averaging and the
presence of identical particles, and p̄0 ¼ p̄ − l̄1 − l̄2.
We separate the amplitude into M ¼ M12 þM21, where

M21 is obtained from M12 by replacing l1 ↔ l2 and
ϵ1 ↔ ϵ2, which on the probability level gives jMj2 ¼
jM12j2 þ jM21j2 þ 2ReM̄21M12. We refer to the first two
terms as the direct part and the cross term as the exchange
part, i.e.,

Pdir ¼
1

4

X
spins

Z
dl̃1dl̃2

θðkp0Þ
kpkp0 jM12j2 þ ð1 ↔ 2Þ; ð5Þ

where ð1 ↔ 2Þ is obtained from the first term by replacing
l1 ↔ l2 and ϵ1 ↔ ϵ2, and

Pex ¼
1

2

X
spins

Z
dl̃1dl̃2

θðkp0Þ
kpkp0 ReM̄

21M12: ð6Þ

We have relegated the calculation of the amplitude to
the Appendix as it only involves standard methods. The
important thing to note is that the amplitude contains two
terms, M12 ¼ M12

1 þM12
2 , where M12

1 has one xþ integral
andM12

2 has two. These terms are illustrated in Fig. 1. As in
[1], this leads to a separation of the direct and the exchange
part of the probability into three terms with different
numbers of xþ integrals,

fP11
dir;P

12
dir;P

22
dirg

≔
1

4

X
spins

Z
dl̃1dl̃2

θðkp0Þ
kpkp0 fjM12

1 j2; 2ReM̄12
1 M12

2 ; jM12
2 j2g

þ ð1 ↔ 2Þ; ð7Þ

fP11
ex ;P12

ex ;P22
exg

≔
1

2

X
spins

Z
dl̃1dl̃2

θðkp0Þ
kpkp0 RefM̄21

1 M12
1 ; M̄21

1 M12
2

þ ð1 ↔ 2Þ; M̄21
2 M12

2 g: ð8Þ

We perform the Gaussian integrals over the transverse
components of the photon momenta l1⊥ and l2⊥, and define
a longitudinal momentum spectrum PðqÞ as

P ¼
Z

1

0

dq1dq2θðs2ÞPðqÞ; ð9Þ

where qi ¼ kli=kp and s2 ¼ kp0=kp ¼ 1 − q1 − q2. We
also define b0 ¼ kp, s1 ¼ 1 − q1, s1̄ ¼ 1 − q2 and s0 ¼ 1.

FIG. 1. This diagram shows the separation of the amplitude for
double Compton scattering. The first and the second terms
represent M12

1 and M12
2 , respectively. All particles, including

the intermediate electron in the second diagram, are on shell.

2In this paper we do not consider effects of finite-sized wave
packets. See [22] for such effects in photon emission by a single
electron, and [23] for two-electron wave packets and the differ-
ence in coherence compared to the classical prediction [24].
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III. EXACT ANALYTICAL RESULTS

The different contributions are illustrated in Fig. 2. For
the direct part of the simplest term we find

P11
dirðqÞ ¼

α2s2
8π2

�
1

s21
þ 1

s2
1̄

� Z
−dϕ12

ðθ21 þ iϵÞ2 exp
�
ir20Θ21

2b0

�
;

ð10Þ

where rij¼ð1=siÞ−ð1=sjÞ, dϕ12 ¼ dϕ1dϕ2, θij ¼ ϕi − ϕj,
Θij ≔ θijM2

ij, and M is an effective mass given
by [26]

M2
ij ≔ hπi2ij ¼ 1þ ha2iij − hai2ij; ð11Þ

where the lightfront-time average is

hFiij ≔
1

θij

Z
ϕi

ϕj

dϕFðϕÞ; ð12Þ

and where the Lorentz momentum is given by

πμðϕÞ ¼ pμ − aμ þ
2ap − a2

2kp
kμ: ð13Þ

The exchange part P11
exðϵ1; ϵ2Þ depends nontrivially on the

polarization vectors, but after summing over polarization
vectors we find P11

exðqÞ ¼ 0, in contrast to the trident
case [1] where the corresponding term is nonzero. For
the terms with three xþ integrals we find

P12
dirðqÞ ¼ Re

iα2

8π2b0

Z
dϕ123θðθ31Þðq1q2 − s2D12Þ

s31ðθ21 þ iϵÞðθ23 þ iϵÞ

× exp

�
i

2b0
½r21Θ23 þ r10Θ21�

�
þ ð1 ↔ 2Þ

ð14Þ

and

P12
exðqÞ ¼ Re

−iα2

8π2b0

Z
dϕ123θðθ31ÞD12

s1̄ðθ21 þ iϵÞðθ23 þ iϵÞ

× exp

�
i

2b0
½r21Θ23 þ r10Θ21�

�
þ ð1 ↔ 2Þ;

ð15Þ

where D12 ¼ Δ12 · Δ32 and

Δij ≔ aðϕiÞ − haiij: ð16Þ

The iϵ factors initially make the transverse momentum
integrals converge and at this stage provide a prescription
for how to avoid the singularities in the ϕ integrals. This is
equivalent to a shift in the ϕ-integration contours. From
now on we leave these iϵ factors implicit; they can be
reinstated by replacing ϕ1;3 → ϕ1;3 − iϵ=2 and ϕ2;4 →
ϕ2;4 þ iϵ=2. For the direct term with four xþ integrals
we find

P22
dirðqÞ ¼ −

α2

8π2b20

Z
dϕ1234

θðθ31Þθðθ42Þ
s21θ21θ43

e
i

2b0
½r21Θ43þr10Θ21�

×

�
Q10

21Q
21
43 −

q1q2
4s21

�
ðw2 − w1Þ · ðw4 − w3Þ

þ ð1þ s1Þðs1 þ s2Þ
s2

W1234

��
þ ð1 ↔ 2Þ; ð17Þ

where

Qkl
ij ¼

κkl
2

�
2ib0
rklθij

þ Δij · Δji þ 1

�
− 1; ð18Þ

Wijkl ≔ ðwi × wjÞ · ðwk × wlÞ
¼ ðwi · wkÞðwj · wlÞ − ðwi · wlÞðwj · wkÞ; ð19Þ

κij ¼ ðsi=sjÞ þ ðsj=siÞ, and where w1 ¼ Δ12, w2 ¼ Δ21,
w3 ¼ Δ34 and w4 ¼ Δ43. For linear polarization we have
Wijkl ¼ 0. In contrast to the trident case, here we have a dot
product between the two steps even for linear polarization.
Finally, the last term is given by

FIG. 2. These diagrams illustrate the different contributions to the probability, with black, solid lines representing electrons and red,
wavy lines for photons.
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P22
exðqÞ ¼ Re

α2

16π2b20

Z
dϕ1234

θðθ42Þθðθ31Þ
s1s1̄s2d0

× exp

�
i

2b0

q1q2
s1s1̄s2d0

�
θ23θ41

�
Θ41

q2
þ Θ23

q1

�

þ θ21θ43

�
Θ43

s2
− Θ21

�
þ θ31θ42

�
Θ31

s1
−
Θ42

s1̄

���

×

�
F0 þ f0 −

2ib0
d0

ðf1 þ z1Þ þ
�
2b0
d0

�
2

z2

�
;

ð20Þ

where

d0 ¼ −
θ42θ31
s1s1̄

þ θ21θ43
s2

; ð21Þ

F0 ¼ −ðκ02 þ κ11̄Þðd1 · d4Þðd2 · d3Þ
− ðκ02 − κ11̄Þðd1 × d4Þ · ðd2 × d3Þ; ð22Þ

f0 ¼ −
1

s1s1̄s2
½ðs1q2d1 − s1̄q1d2Þ · ðs1̄q2d4 − s1q1d3Þ

þ ðq1d2 þ q2s2d4Þ · ðq2d1 þ q1s2d3Þ�; ð23Þ

f1 ¼ κ02

�
θ21d1 · d2 −

θ43
s2

d3 · d4

�

þ κ11̄

�
θ31
s1

d1 · d3 −
θ42
s1̄

d2 · d4

�

þ ðκ02 þ κ11̄Þ
�
θ41
q2

d1 · d4 þ
θ23
q1

d2 · d3

�
; ð24Þ

z1 ¼ −
q21
s1q2

�
3 −

s1̄s2
s1

�
ϕ1 þ

q22
s1̄q1

�
3 −

s1s2
s1̄

�
ϕ2

−
q22

s1s2q1

�
3 −

s1̄
s1s2

�
ϕ3 þ

q21
s1̄s2q2

�
3 −

s1
s1̄s2

�
ϕ4

ð25Þ

and

z2 ¼ −κ02
θ43θ21
s2

− κ11̄
θ31θ42
s1s1̄

þ ðκ02 þ κ11̄Þ
θ23θ41
q1q2

: ð26Þ

The field enters the prefactor via

d1 ¼
q2

s1̄s2d0

�
−
θ43θ21
s0

Δ12 þ
θ42θ31
s1

Δ13 þ
θ23θ41
q2

Δ14

�

d2 ¼
q1

s1s2d0

�
−
θ43θ21
s0

Δ21 þ
θ41θ23
q1

Δ23 þ
θ31θ42
s1̄

Δ24

�

d3 ¼
q1

s0s1̄d0

�
−
θ42θ31
s1

Δ31 þ
θ41θ23
q1

Δ32 þ
θ21θ43
s2

Δ34

�

d4 ¼
q2

s0s1d0

�
θ23θ41
q2

Δ41 −
θ31θ42
s1̄

Δ42 þ
θ21θ43
s2

Δ43

�
:

ð27Þ

These expressions for P22
ex look remarkably similar to

the corresponding ones in the trident case [1]. In fact,
one can show that (20) can be obtained from Eq. (26) in
[1] by replacing ϕ3 − iϵ ↔ ϕ4 þ iϵ everywhere except in
the step functions, taking into account that strident3 ¼
−s2 ¼ 1 − s1 − s1̄ and strident2 ¼ s1̄, and multiplying the
prefactor by an overall factor of −1, which seems
natural since we now have identical bosons instead of
fermions. One can also show that the individual terms in
the prefactor can be obtained in the same way. In
particular,3 dtrident

3 → dhere
4 and dtrident

4 → dhere
3 . This

means that P22
ex in double Compton scattering has the

same symmetries as in the trident case and can be
calculated in a similar way.

IV. TWO-STEP AND ONE-STEP TERMS

In this section we compare (17) with the product
of two single-photon emissions. To treat the electron
spin we use the following representation of the Dirac
matrices:

γ0 ¼

0
BBB@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCCA γ1 ¼

0
BBB@

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

1
CCCA

γ2 ¼

0
BBB@

0 0 0 −i
0 0 i 0

0 i 0 0

−i 0 0 0

1
CCCA γ3 ¼

0
BBB@

0 0 1 0

0 0 0 −1
−1 0 0 0

0 1 0 0

1
CCCA;

ð28Þ

and the following spinor basis (cf. [27]):

3Note that the expressions for di given here are simpler than
the equivalent ones given in [1]. There are only three instead of
four terms, and di only involves Δij with j ≠ i.
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u↑ ¼ 1ffiffiffiffiffiffiffiffi
2p−

p

0
BBB@

1

0

2p−

−p1 − ip2

1
CCCA u↓ ¼ 1ffiffiffiffiffiffiffiffi

2p−
p

0
BBB@

p1 − ip2

2p−

0

1

1
CCCA:

ð29Þ

This spinor basis is particularly convenient for the quan-
tities that we calculate here. An arbitrary spinor can be
expressed as a linear combination of these,

u ¼ cos

�
ρ

2

�
u↑ þ sin

�
ρ

2

�
eiλu↓: ð30Þ

Instead of ρ and λ we express the spin dependence in terms
of the components of the unit vector n that points in the
average spin direction for p ¼ 0, i.e.,

n≔
1

2
u†Σuðp¼0Þ¼fcosλsinρ;sinλsinρ;cosρg; ð31Þ

where Σ ¼ ifγ2γ3; γ3γ1; γ1γ2g.
Now, the probability of single-photon emission, summed

over photon polarization and transverse momenta, is
given by

PC ¼ hPi þ n0 · P0 þ P1 · n1 þ n0 · P01 · n1; ð32Þ

where n0 and n1 are the spin vectors of the initial and
final electron, respectively. The first term hPi gives the
probability averaged4 over initial and final spins,

hPi ¼ iα
4πb0s20

Z
d2ϕ
θ21

Q10
21e

ir10
2b0

Θ21 : ð33Þ

The remaining terms give the spin dependence,

P0¼
iα

4πb0s20

q1
s0

Z
d2ϕ
θ

�
1þ

�
1þs0

s1

�
k̂X

�
·Ve

ir10
2b0

Θ; ð34Þ

P1¼
iα

4πb0s20

q1
s1

Z
d2ϕ
θ

V ·

�
1þ

�
1þs1

s0

�
Xk̂

�
e
ir10
2b0

Θ; ð35Þ

and

P01 ¼
iα

4πb0s20

Z
d2ϕ
θ

�
q1
s1

k̂X −
q1
s0

Xk̂ −
q21

2s0s1
k̂ k̂

þ
�
2ib0
r10θ

þD1

��
1þ q21

2s0s1
k̂ k̂

��
e
ir10
2b0

Θ; ð36Þ

where k̂ ¼ f0; 0; 1g, k̂X · V ¼ k̂ðX · VÞ etc., D1 ¼ Δ12 ·
Δ21 and

X ¼ 1

2
ðw2 þ w1Þ V ¼ 1

2
σ2 · ðw2 − w1Þ; ð37Þ

where the Pauli matrix is given as usual by

σ2 ¼
�
0 −i
i 0

�
: ð38Þ

Note that n1 gives the average spin direction for p1 ¼ 0 and
we have integrated over p1⊥ with n1 fixed. Regardless of
whether or not this is the most directly relevant quantity
for spin-sensitive experiments, we show below that (32) can
be very useful for studying multiphoton emission. For a
detailed investigation of spin effects in nonlinear Compton
scattering see [28].
In evaluating these expressions we can put s0 ¼ 1. One

reason for keeping s0 explicit is that it helps us to glue
together two single-photon emissions, which one might
expect to be done according to

1

4

X
n0;n1;n2

PCðs0 → 1ÞPCðs0 → s1; s1 → s2Þ þ ð1 ↔ 2Þ;

ð39Þ

where one factor of 1=2 comes from averaging over the
spin of the initial electron and another factor of 1=2 comes
from the symmetrization. We can write this as

22

2
h½hPi þ n0 · P0 þ P1 · n1 þ n0 · P01 · n1�

½hPi þ n1 · P0 þ P1 · n2 þ n1 · P01 · n2�i
¼ 2ðhPihPi þ P1 · hn1n1i · P0Þ; ð40Þ

where the factor of 22 is due to the replacement of the sum
of two spins with their average for n1 and n2, and we have
omitted the arguments of the probability terms [the second
factor in each term is obtained by making the appropriate
replacements in (33), (34), (35) and (36)]. It is easy to show
that the hPihPi term gives the QQ-term in (17). The
remaining terms are more subtle. We first note that these
terms can be expressed as

−
1

4

�
ðw2 −w1Þ · ðw4 −w3Þ þ

ð1þ s1Þðs1 þ s2Þ
s2

W1234

�

¼ V1 ·

�
1þ

�
1þ s1

s0

��
1þ s1

s2

�
X1X2

�
·V2

¼ V1 ·

�
1þ

�
1þ s1

s0

�
X1k̂

�
·

�
1þ

�
1þ s1

s2

�
k̂X2

�
·V2;

ð41Þ
4So, 2hPi gives the probability summed rather than averaged

over the final electron’s spin.
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where V1 and X1 are given by (37), and V2 and X2 are
obtained by replacing ϕ2 → ϕ4, ϕ1 → ϕ3 in (37). This
should be compared with the corresponding term in
P1 · hn1n1i · P0, i.e.,

V1 ·

�
1þ

�
1þ s1

s0

�
X1k̂

�
· hn1n1i

·

�
1þ

�
1þ s1

s2

�
k̂X2

�
· V2: ð42Þ

The gluing approach works if (42) gives (41) after summing
over n1. In (40) we have only used h1i ¼ 1 and hni ¼ 0.
For linear polarization with a ∝ e1 we haveX · V ¼ 0, and
then we can simply sum over n1 ¼ �e2. For arbitrary
polarization we cannot in general obtain (41) from (42)
unless we let n1 depend on both ϕ1 and ϕ2 (or ϕ3 and ϕ4).
For arbitrary polarization in the LCF regime we have

w1 ≈ −
θ21
2

a0ðσ21Þ w2 ≈
θ21
2

a0ðσ21Þ; ð43Þ

where σij ¼ ðϕi þ ϕjÞ=2, so then we can neglect the X
terms and obtain (41) by choosing the spin direction to be
perpendicular to the locally constant field and k̂, i.e., either
n1 ¼ �k̂ × âðσ21Þ or n1¼�k̂× âðσ43Þ, where â ¼ a=jaj.
In the LCF regime and for linear polarization our gluing
approach reduces to the one in [9,14], and then we have the
same one-step/two-step separation as in [9,14].
The reason that the naive gluing approach does not

always work is because we actually have a sum over the
spin of the intermediate electron already on the amplitude
level, so, instead of having on the probability level just one
sum over n1, one should have one sum for the amplitude
and a second sum for its complex conjugate,

P ¼
X
n1;n0

1

…uðn1; p1Þūðn1; p1Þ…uðn0
1; p1Þūðn0

1; p1Þ…;

ð44Þ

where the sum is over �n (or ρ and ρþ π) for some n.
While the momentum p1 is the same in the amplitude and
its complex conjugate, the spins n1 and n0

1 need not be
the same. Let

Psame ¼
X
n1¼n0

1

… Pdiff ¼
X
n1≠n0

1

…: ð45Þ

Compared to (40), one can show that

Psame ¼ 2ðhPihPi þ P1 · n1n1 · P0Þ ð46Þ

and

Pdiff ¼ −2ðP1 × n1Þ · ðn1 × P0Þ: ð47Þ

These clearly depend on the spin directions �n1 one
chooses to sum over, but their sum is independent of n1,

Psame þ Pdiff ¼ 2ðhPihPi þ P1 · P0Þ: ð48Þ

As we saw above, for linear polarization or in the LCF
regime we can choose n1 such that Pdiff vanishes, but in
general we need to include this term. Fortunately, our
results suggests a simple cure for the naive gluing
approach: Include factors of 2 in the overall prefactor as
if we only had one sum over n1 as above, and then simplify
using h1i ¼ 1, hn1i ¼ 0 and, importantly, hn1n1i ¼ 1,
where the last ingredient is motivated by the contribution
from n1 ≠ n0

1. We show in the next section that this simple
procedure also works for triple and quadruple nonlinear
Compton scattering. Note that this improved gluing pro-
cedure gives us the dominant term for sufficiently long
pulses, for any polarization and field shape, and we can
in particular go beyond the usual LCF regime (where
gluing first order, albeit spin-averaged, processes is a basic
component of PIC codes for a0 ≫ 1) and consider a0 ∼ 1.
In the gluing approach one also has to make sure that the

second step happens after the first, which can be done by
including a step function θðσ43 − σ21Þ. In (17) we have two
step functions, which we deal with in the same way as in
[1], i.e., we write P22

dir ¼ P22→2
dir þ P22→1

dir where P22→2
dir and

P22→1
dir are obtained, respectively, from the first and second

term in

θðθ42Þθðθ31Þ

¼ θðσ43 − σ21Þ
�
1 − θ

�jθ43 − θ21j
2

− ½σ43 − σ21�
��

:

ð49Þ

It is Ptwo ≔ P22→2
dir (rather than P22

dir) which we refer to as
the two-step term. Although it can be obtained from the
above gluing approach, we can obtain it without reference
to the gluing approach by selecting one part of the exact/
total probability. This part scales quadratically in the
volume/pulse length and dominates for sufficiently long
pulses.

V. MULTIPHOTON EMISSION

A. Triple Compton

In this section we calculate the three-step part of triple
nonlinear Compton scattering, i.e., the part of the proba-
bility of three-photon emission that dominates for long
pulses, illustrated in Fig. 3. The emission of three photons
by an electron colliding with a single photon has been
studied in [29], but to the best of our knowledge nonlinear
triple Compton scattering has not been studied in the
regime we are interested in here. This is in principle a
straightforward generalization of our results for the
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two-step part of double Compton scattering, except that it takes more time to simplify the prefactor. After some
simplification we find

P33
dir ¼

−iα3

48π3b30s
2
1s

2
2

Z
d6ϕ

θðθ64Þθðθ42Þθðθ53Þθðθ31Þ
θ65θ43θ21

e
i

2b0
½r32Θ65þr21Θ43þr10Θ21�

�
Q10

21Q
21
43Q

32
65

þQ10
21

q2q3
s22

V2 ·

�
1þ

�
1þ s2

s1

��
1þ s2

s3

�
X2X3

�
· V3 þ

q1q2
s21

V1 ·

�
1þ

�
1þ s1

s0

��
1þ s1

s2

�
X1X2

�
· V2Q32

65

þ q1q3
s1s2

V1 ·

�
−

q22
2s1s2

�
1þ s1

s0

��
1þ s2

s3

�
X1X3 þ

�
2ib0
r21θ43

þD2

��
1þ κ21

2

�
1þ s1

s0

��
1þ s2

s3

�
X1X3

�

þ q2
s2

�
1þ s1

s0

�
X1X2 −

q2
s1

�
1þ s2

s3

�
X2X3

�
· V3

�
þ permutations; ð50Þ

where s1 ¼ 1 − q1, s2 ¼ 1 − q1 − q2, s3 ¼ 1 − q1 − q2 − q3 > 0, D2 ¼ Δ34 · Δ43, V3 and X3 are obtained by replacing
ϕ2 → ϕ6, ϕ1 → ϕ5 in (37), and “permutation” is an instruction to sum over all permutations of the emitted photons. Note
that the exponential part is a simple generalization from single and double Compton scattering. Compare this with the result
of the gluing approach described in the previous section, which in this case gives

23

3!
h½hPi þ n0 · P0 þ P1 · n1 þ n0 · P01 · n1�½hPi þ n1 · P0 þ P1 · n2 þ n1 · P01 · n2�

½hPi þ n2 · P0 þ P1 · n3 þ n2 · P01 · n3�i þ permutations

¼ 4

3
ðhPihPihPi þ hPiP1 · hn2n2i · P0 þ P1 · hn1n1i · P0hPi þ P1 · hn1n1i · P01 · hn2n2i · P0Þ þ permutations; ð51Þ

where the arguments are again suppressed. The factor of 23

comes from the (initial) assumption that we are summing
over two spin states for n1, n2 and n3, and for linear
polarization a ∝ e1 we can obtain (50) by summing over
n1 ¼ �e2 and n2 ¼ �e2. For arbitrary polarization we can
obtain (50) from the following procedure: We write an
overall factor of 2N=N! and replace all sums with h…i, and
then we simplify with h1i ¼ 1, hni ¼ 0 and hnni ¼ 1.
Note again that it is the replacement hnni ¼ 1 that allows
us to obtain all terms in the general case.

We already have a factorization into the different steps
(with appropriate spin/polarization sums) before perform-
ing the transverse momentum integrals. Because the
momenta are related via momentum conservation, one
might have thought that performing the transverse
momentum integrals could have led to a nonfactorized
result. To understand why we still have factorization, note
first that after integrating single Compton scattering over
the transverse momenta of the final particles, the results
(33), (34), (35) and (36) do not depend on the initial
transverse momentum. Similarly, after performing the
integrals over the transverse momenta of the final
electron and the photon emitted from the last vertex,
this step becomes independent on the other transverse
momenta and, hence, factorizes, and then the same thing
happens for the second step.
In analogy to (49), we define the three-step Pthree by

replacing the product of step functions in (50) according to

θðθ64Þθðθ42Þθðθ53Þθðθ31Þ → θðσ65 − σ43Þθðσ43 − σ21Þ:
ð52Þ

B. Quadruple Compton

We have also checked that the above gluing procedure
gives the correct result for quadruple nonlinear Compton
scattering, i.e., the emission of four photons, which is
illustrated in Fig. 4. Here our gluing approach is not only
useful for interpreting the expressions, it is also very useful

FIG. 3. This diagram illustrates P33
dir for triple Compton

scattering.
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for simplifying the complicated prefactor. We have checked
that the result can be expressed neatly and compactly as

24

4!
h½hPi þ n0 · P0 þ P1 · n1 þ n0 · P01 · n1�
½hPi þ n1 · P0 þ P1 · n2 þ n1 · P01 · n2�
½hPi þ n2 · P0 þ P1 · n3 þ n2 · P01 · n3�
½hPi þ n3 · P0 þ P1 · n4 þ n3 · P01 · n4�i
þ permutations; ð53Þ

where h1i ¼ 1, hni ¼ 0 and hnni ¼ 1 for each ni. Even
with the help of an advanced symbolic-calculation program
such asMathematica, obtaining or confirming this result by a
direct calculation can take some time. Instead of calculating
the prefactor from the trace of a long expression, we replaced
all factors of =pi þ 1 (which would appear in the trace) by
sums of uū expressed with a particular spinor representation.
Note again that we only obtain all terms by replacing hnni ¼
1 to account for the terms that would be missing if one
replaces the double sums over the spins of the intermediate
states, i.e., n1, n2 and n3 in this case, with single sums as
explained above for double Compton scattering.
Although we have not yet proved that this gluing

procedure works at arbitrarily high orders, the fact that it
does work for double, triple and quadruple Compton
scattering suggests that we have a method for obtaining
the exact N-step part for N-Compton scattering for arbi-
trary N, where the N-step dominates for sufficiently long
pulses. We plan to further study this gluing approach and to
generalize it to other higher-order processes involving more
than one fermion, like the trident process.

VI. SADDLE-POINT APPROXIMATION

In this section we obtain saddle-point approximations,
which help us to understand the structure and relative

importance of the various terms. We can expect these
approximations to be good for χ ≪ 1 as long as q1 and q2
are not too small, so we are in particular outside the infrared
region and do not have to worry about IR divergences.
We also have to assume that a0 is not too small. The
calculations are very similar to the ones in [1], except that
this time, in order to avoid IR divergences, we do not
integrate over the longitudinal momenta. We consider
linearly polarized fields, aðϕÞ ¼ a0fðϕÞ. In this section
we focus on the dominant contribution from a single saddle
point located around a single field maximum.

A. Locally constant fields

We consider first the LCF regime where we can expand
the probability in 1=a0 ≪ 1. For the one-step terms we find

P11
dir ¼

α2

16π
3
2

s2ffiffiffiffiffiffi
r20

p
�
1

s21
þ 1

s2
1̄

� Z
dϕ
b0

χ
3
2 exp

�
−
2r20
3χ

�
; ð54Þ

where χðϕÞ ¼ a0f0ðϕÞb0,

P12
dir¼

α2

48π
3
2

4q1q2þs2
s31

ffiffiffiffiffiffi
r20

p
�
1

r10
−

1

r21

�Z
dϕ
b0

χ
3
2e−

2r20
3χ þð1↔2Þ;

ð55Þ

P12
ex ¼ α2

48π
3
2

1

s1̄
ffiffiffiffiffiffi
r20

p
�
1

r10
−

1

r21

� Z
dϕ
b0

χ
3
2e−

2r20
3χ þ ð1 ↔ 2Þ;

ð56Þ

P22→1 ¼ −
α2

4π
3
2

ffiffiffiffiffiffi
r20

p �
q1
q2

þ q2
q1

þ s1s1̄
q1q2

� Z
dϕ
b0

χ
1
2e−

2r20
3χ ð57Þ

and

P22
ex ¼ −P22→1; ð58Þ

and for the two-step term we find

P22→2 ¼ α2

8π

ffiffiffiffiffiffiffiffiffiffi
q1q2
s2

r
1

s1

�
q1
q2

þ q2
q1

þ s1s1̄
q1q2

�

×
Z

dσ1
b0

Z
σ1

dσ2
b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χðσ2Þχðσ1Þ

p
e−

2r10
3χðσ1Þ−

2r21
3χðσ2Þ

þ ð1 ↔ 2Þ: ð59Þ

For a constant field for which χðϕÞ is zero outside an
interval of length Δϕ, we simply have

R
dϕ → Δϕ

and
R
dσ1dσ2θðσ2 − σ1Þ → Δϕ2=2.

For a pulsed field we can also perform the remaining ϕ
integral with the saddle-point approximation. Let us for
simplicity assume one dominant field maximum with
f0ð0Þ ¼ 1, f00ð0Þ ¼ 0 and fð3Þð0Þ ¼ −ζ. By performing
the above ϕ-integrals with the saddle-point method we find

FIG. 4. This diagram illustrates P44
dir for quadruple Compton

scattering.
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that the results are obtained from the corresponding
constant field results by replacing χ → χ0,

Δϕ →

ffiffiffiffiffiffiffiffiffiffi
3πχ0
ζr20

s
ð60Þ

for the one-step terms, so for example

P22→1 ¼ −
ffiffiffi
3

p
α2a0

4π
ffiffiffi
ζ

p
�
q1
q2

þ q2
q1

þ s1s1̄
q1q2

�
e−

2r20
3χ ; ð61Þ

and

Δϕ2

2

�
1

s1
þ 1

s1̄

�
→

3πχ0
2ζ

�
1

s1
ffiffiffiffiffiffiffiffiffiffiffiffi
r21r10

p þ 1

s1̄
ffiffiffiffiffiffiffiffiffiffiffiffi
r21̄r1̄0

p
�

ð62Þ

for the two-step term, which simplifies to

P22→2 ¼ 3α2a20
8ζ

�
q1
q2

þ q2
q1

þ s1s1̄
q1q2

�
e−

2r20
3χ : ð63Þ

We see a few things that are similar to the trident case: All
terms have the same exponential, and P11 and P12 are
smaller than P22→1 by a factor of χ. We also see that the
exchange terms are on the same order of magnitude as the
direct part of the one-step term. In fact, here P22

ex cancels
P22→1 to leading order, so the χ expansion of the prefactor
of Pone starts at one order higher than the leading order of
the direct part of Pone. This also means that P11 and P12

contribute to the first nonzero order, in contrast to the trident
case. Thus, the exchange term is even more important for the
one-step part for double Compton scattering.
In the trident case we could compare our saddle-point

approximations for the direct terms with previous constant-
crossed field results. For double Compton scattering, on the
other hand, we are not aware of any previous approxima-
tions for hard photons with which we could compare our
saddle-point results. The χ < 1 approximation in, e.g., [9]
is for the probability integrated over the photon momenta,
which has a different form because of the contribution from
softer photons. We have, however, checked that our
approximations agree with the exact expressions in [14]
for the direct part of the one-step term, see Appendix C 3.
The exponential part of the above terms can be written

exp

�
−

2

3χ

P
N
i¼1 qi

1 −
P

N
i¼1 qi

�
; ð64Þ

where N ¼ 2. Assuming again one dominant field maxi-
mum, for triple Compton scattering it follows from (50) and
rij þ rjk ¼ rik that Pthree ∼ ð64Þ with N ¼ 3. Similarly,
for quadruple Compton scattering we find Pfour ∼ ð64Þ
with N ¼ 4. This suggests a simple generalization to the
emission of an arbitrary number of photons.

B. Sauter pulse

In the previous section we considered a0 ≫ 1 which
allows us to consider an arbitrary pulse shape. Here we will
consider a particular pulse shape, namely a Sauter pulse
aðϕÞ ¼ a0 tanhϕ, which allows us to obtain explicit
analytical expressions also for a0 ≳ 1, i.e., to go beyond
the LCF approximation. The calculation is very similar to
the corresponding one in [1] for the trident case. In
particular, we have a saddle point at the same values of
the ϕi variables as in [1], independently of qi. For the “two-
step” term we find

P22→2 ¼ α2

8

�
q1
q2

þ q2
q1

þ s1s1̄
q1q2

�

×
a20 exp f− r20

χ a0½ð1þ a20Þarccota0 − a0�g
ð1þ a20Þarccota0½ð1þ a20Þarccota0 − a0�

:

ð65Þ

For a0 ≫ 1 we recover (63) to leading order. For the “one-
step” terms we find

P22→1 ¼ −
2

π
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

a0
ð1þ a20Þarccota0

r
P22→2 ð66Þ

and

P22
ex ¼ −P22→1; ð67Þ

while P11
dir and P12 are again smaller than the above terms

by a factor of χ. Notice that these expressions are very
similar to the ones in [1] for trident: the dependence on a0
in the exponent is exactly the same as in [1], and the
relation between P22→1 and P22→2 is also exactly the same.
We also find that the (leading order) exchange term P22

ex is
on the same order of magnitude as the (leading order) direct
terms P22→1 and P22→2. Here, though, P22

ex is not only on
the same order of magnitude, but it in fact cancels P22→1 to
leading order in χ; this generalizes the a0 ≫ 1 results in the
previous section to a0 ≳ 1. Note also that the dependence
on the momenta remains the same as in the a0 ≫ 1 limit.

C. Monochromatic field

For a monochromatic field we can again find saddle-
point approximations for general a0 ≳ 1. For this field there
are many saddle points that contribute. We begin in this
section with the simplest ones, which are the same as those
we studied [1] for the integrated trident probability,

θ21¼θ43¼2iarcsinh
1

a0
σ21¼n1π σ43¼n2π: ð68Þ

These already give a good approximation to the locally
averaged spectrum. In the next section we include
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additional saddle points that give oscillations to the
spectrum. For the two-step term we have saddle points
both for n1 ¼ n2 and n1 < n2, where the two photons are
emitted at the same and different field maxima, respec-
tively. For the contribution from one saddle point with
n1 ¼ n2 we find

P22→2
n1¼n2 ¼

α2

8

�
q1
q2

þ q2
q1

þ s1s1̄
q1q2

�

×
exp f− r20

2χ a0½ð2þ a20Þarccscha0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

p
�gffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a20
p

arccscha0½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

p
arccscha0 − 1� :

ð69Þ

We have again the same function of a0 in the exponent as
in the trident case [1]. For a0 ≫ 1 we recover the LCF
approximation (63) from (69). The contributions from one
saddle point (with n1 ¼ n2) to the dominant one-step terms
are given by

P22→1
n1¼n2 ¼−

2

π
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

1ffiffiffiffiffiffiffiffiffiffiffiffi
1þa20

p
arccscha0

s
P22→2
n1¼n2 ð70Þ

and

P22
ex;n1¼n2 ¼ −P22→1

n1¼n2 : ð71Þ

The relation (70) is exactly the same as in the trident
case [1], and, as for the LCF and Sauter cases, we find that
the exchange term cancels the direct part of the one-step
term to leading order. The other one-step terms, P11

dir, P
12
dir

and P12
ex , are again smaller by a factor of χ ≪ 1, but have to

be included if one is interested in the first nontrivial order of
the total one-step term, since P22

ex cancels P22→1 to leading
order. These expressions give the contribution from one
field maximum with the shape of a sinusoidal field, and for
a0 ≳ 1 they are on the same order of magnitude. If we have
a sinusoidal field with several equivalent field maxima,
then the two-step term dominates because it also receives
contributions from n1 < n2 and not only n1 ¼ n2, which
means that it scales quadratically in the number of
oscillations compared to the linear scaling of the one-step
terms. In contrast to the trident case, here the contributions
from n2 ¼ n1 þ 2n − 1 are different from the ones from
n2 ¼ n1 þ 2n, where

P22→2
n2¼n1þ2n ¼ 2P22→2

n1¼n2 ð72Þ

and

P22→2
n2¼n1þ2n − P22→2

n2¼n1þ2n−1 ¼
α2

4
s2

�
1

s21
þ 1

s2
1̄

� exp f− r20
2χ a0½ð2þ a20Þarccscha0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

p
�gffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a20
p

arccscha0½
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

p
arccscha0 − 1� : ð73Þ

This difference has the same a0 dependence but a different
dependence on the momenta in the prefactor. This differ-
ence is due to the ðw2 − w1Þ · ðw4 − w3Þ term in (17).
For a0 ≫ 1 we recover the LCF results. For a0 ≪ 1 the

exponent goes as

e−
r20
2χ a0½ð2þa2

0
Þarccscha0−

ffiffiffiffiffiffiffiffi
1þa2

0

p
� ∼ ar20=b00 ; ð74Þ

which is the expected perturbative scaling: Momentum
conservation at OðaN0 Þ,

ðpþ NkÞμ ¼ ðp0 þ l1 þ l2Þμ; ð75Þ

implies

N ¼ 1

2b0

�
r20 þ

ðl1 − q1pÞ2⊥
q1

þ ðl2 − q2pÞ2⊥
q2

þ ðp0 − s2pÞ2⊥
s2

�
≥

r20
2b0

≕N0: ð76Þ

Thus, the exponent scales as a2N0

0 , where N0 is the
minimum number of photons from the background field

that need to be absorbed in order to emit two photons with
longitudinal momenta q1 and q2.
For a Sauter pulse the exponent scales as

e−
r20
χ a0½ð1þa2

0
Þarccota0−a0� ∼ e−

πr20
2b0 : ð77Þ

Since the Sauter pulse has awide Fourier transformwith only
exponential decay (which is slow in this context), this scaling
agrees with the absorption of a single photon from the
background field with (Fourier) frequency N0k0 (cf. [1,30]).

D. General antisymmetric potential

Both the Sauter pulse and the sinusoidal field considered
in the previous two sections fall in the class of fields that
have antisymmetric potentials, að−ϕÞ ¼ −aðϕÞ. In this
section we derive the probability for such fields, assuming
for simplicity one dominant field maximum and linear
polarization but without choosing a specific field shape.
Let aðϕÞ ¼ a0fðϕÞ. We have a saddle point at

θ ¼ 2iz z ¼ −if−1
�

i
a0

�
> 0; ð78Þ
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where f−1 is the inverse of f, and, as before, ϕ ¼ φ ¼
η ¼ 0. We can still perform the integrals with the saddle-
point method and the results are quite simple,

P22→2 ¼ α2

8

�
q1
q2

þ q2
q1

þ s1s1̄
q1q2

� exp f− r20
χ a0z½1þ a20hf2i�g

za0f0ðizÞ½za0f0ðizÞ − 1� ;

ð79Þ

where

hf2i ¼ 1

2iz

Z
iz

−iz
duf2ðuÞ; ð80Þ

and for the one-step terms we find

P22→1 ¼ −
2

π
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

a0zf0ðizÞ

s
P22→2 ð81Þ

and

P22
ex ¼ −P22→1: ð82Þ

In deriving these expressions we have assumed that
f0ðizÞ > 0 and 0 < 1 − 1

a0zf0ðizÞ < 1, which we will justify

below. Note that P22
ex cancels P22→1 to leading order

independently on the field shape.
To make these expressions more explicit, we consider the

class of fields defined implicitly via [31]

f0ðϕÞ ¼ ½1 − f2ðϕÞ�c; ð83Þ

where each c characterizes a different field shape, see Fig 5.
For example, c ¼ 1=2 and c ¼ 1 give us the sinusoidal
field (or rather one peak of it) and the Sauter pulse,
respectively. For general c the field fðϕÞ is given implicitly
in terms of a hypergeometric function by

ϕ ¼ f2F1

�
1

2
; c;

3

2
; f2

�
: ð84Þ

For this class of fields we find simple explicit expressions
for the probability, using for the exponent

a0z½1þ a20hf2i� ¼ 2F1

�
1

2
; c;

3

2
;−

1

a20

�

−
1

3 2F1

�
3

2
; c;

5

2
;−

1

a20

�
; ð85Þ

and for the prefactor

za0f0ðizÞ ¼
�
1þ 1

a20

�
c

2F1

�
1

2
; c;

3

2
;−

1

a20

�

¼ 2F1

�
1; c;

3

2
;

1

1þ a20

�
: ð86Þ

It is easy to check that 0 < 1 − 1
a0zf0ðizÞ < 1 for general a0

and c. Now everything is explicitly expressed in terms of a0
and c, which in turn only enter in the arguments of 2F1. For
c ¼ 1=2 and c ¼ 1 we recover the results in the previous
two sections for a monochromatic field and a Sauter pulse,
and for arbitrary c we recover for a0 ≫ 1 the LCF results
above by expanding in 1=a0 and using the relation c ¼ ζ=2.
The hypergeometric functions also simplify more generally
for c ¼ j=2where j is an integer. For example, for c ¼ 3=2,
which corresponds to f0ðϕÞ ¼ ð1þ ϕ2Þ−3=2, we find a
particularly simple prefactor

P22→2 ¼ α2

8

�
q1
q2

þ q2
q1

þ s1s1̄
q1q2

�

×
a40

1þ a20
exp

�
−
r20
χ
a0
h ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a20

q
− a20arccscha0

i�
ð87Þ

and

P22→1 ¼ −
2

π
arccot

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

q
P22→2; ð88Þ

while for c ¼ 5=2 we find a simple exponent

P22→2 ¼ α2

8

�
q1
q2

þ q2
q1

þ s1s1̄
q1q2

�

×
9a80 exp

n
− 2r20

3χ
a0ffiffiffiffiffiffiffiffi
1þa2

0

p
o

4þ 20a20 þ 31a40 þ 15a60
ð89Þ

and

FIG. 5. This figure illustrates four examples from the class of
fields defined by (83) with c ¼ 1; 3=2; 2; 5=2.
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P22→1 ¼ −
2

π
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 5a20

2þ 5a20 þ 3a40

s
P22→2: ð90Þ

The prefactors above have been derived under the
assumption that a0 is not too small. The exponents, on
the other hand, have the expected perturbative limit for
a0 ≪ 1: For c > 1=2 the exponent becomes independent of
the field strength,

a0 ≪ 1∶ P ∼ exp

�
−
r20
b0

ffiffiffi
π

p
2

Γðc − 1=2Þ
ΓðcÞ

�
: ð91Þ

In the perturbative regime the minimum energy that needs
to be absorbed is N0ω, where N0 is given by (76). For a
monochromatic field, N0 photons have to be absorbed. For
c > 1=2, on the other hand, the Fourier transform aðωfÞ
has a slow, exponential decay, which (since jaðωÞj2N0=

jaðN0ωÞj2 ∼ a2ðN−1Þ
0 ≪ 1) means that the process occurs

already at first order, with the absorption of a single photon
with ωf ¼ N0ω. At ωf ≫ ω, the exponential behavior of
the Fourier transform is governed by the singularity ϕs

closest to the real axis, i.e., aðωfÞ ∼ e−jωfϕs=ωj. We find
from the jfj → ∞ limit of (84) a singularity at

ϕs ¼ i
ffiffiffi
π

p
2

Γðc − 1=2Þ
ΓðcÞ : ð92Þ

At ωf ¼ N0ω this implies jaðωfÞj2∼(91), so (91) agrees
with what one can expect to find in the perturbative limit.

E. Single Compton scattering

While the results in the previous section are for double
Compton scattering, it should be clear that the same method
can be used to derive similar expressions for other plane-
wave processes, like nonlinear Breit-Wheeler or trident pair
production. In this subsection we simply give the corre-
sponding result for single Compton scattering. The saddle-
point approximation is obtained, e.g., from (33) in the same
way as for the above expressions for double Compton
scattering, and we find

PCðqÞ ¼
α

2r10

ðκ10 − 1Þ exp f− r10
χ a0z½1þ a20hf2i�g

za0f0ðizÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

za0f0ðizÞ
q ; ð93Þ

where s1 now corresponds to the final electron. For the
class of fields defined by (83) we can again obtain explicit
expressions using (85) and (86).
In (93) we have integrated over all ϕ variables. In order

to compare with the literature for the LCF regime we need
to leave one ϕ integral. We find for a0 ≫ 1

PCðqÞ ¼
Z

dσ
b0

α

2
ffiffiffi
π

p ðκ10 − 1Þ
ffiffiffiffiffiffi
χ

r10

r
exp

�
−
2r10
3χ

�
; ð94Þ

which for high-energy photons with 1 − q ≪ 1 agrees
perfectly with Eq. (19) in [32].

VII. SADDLE-POINT APPROXIMATION FOR
INTERFERENCE EFFECTS

In this section we study fields with many oscillations and
with several saddle points that lead to oscillations in the
spectrum. We choose the following field:

aðϕÞ ¼ a0 sinϕe−ðϕ=T Þ2 : ð95Þ

Since the exponential part of the integrand for the N-step
part of the N-photon emission probability is a simple
generalization of the N ¼ 1 case, we focus here on single
Compton scattering. See [13,33–39] for other semiclass-
ical/saddle-point approximations, in particular [33–37] for
single Compton scattering and [13] for double Compton
scattering. Note though that we consider different quan-
tities here.
The saddle points for (33) are determined by

∂Θij

∂σij ¼
∂Θij

∂θij ¼ 0; ð96Þ

where, again, θij ¼ ϕi − ϕj and σij ¼ ðϕi þ ϕjÞ=2. Note
that these equations only depend on the field parameters, a0
and T in our case, but not on the momenta b0 or qi. To
obtain the saddle points for finite T , we first find the saddle
points for a monochromatic field (T ¼ ∞) and then use
them as starting points for a numerical root-finding of the
corresponding saddle points for finite T . Depending on
how large/small T is, one may find it useful to obtain the
saddle points by first considering a sequence of T values
between T ¼ ∞ and the desired value, and/or by starting
with a simple a0 value and gradually change to a more
difficult one, cf. the numerical continuation in [40]. The
saddle-point equations can be expressed in terms of the
“prefactor functions” Δ (16) as

0 ¼ ∂Θ21

∂σ21 ¼ Δ2
21 − Δ2

12 ð97Þ

and

0 ¼ ∂Θ21

∂θ21 ¼ 1þ 1

2
ðΔ2

21 þ Δ2
12Þ; ð98Þ

which imply that all saddle points, for any field shape,
are determined by Δ ¼ �i. The saddle points are therefore
necessarily complex. For the monochromatic field we find
saddle points at

SINGLE AND DOUBLE NONLINEAR COMPTON SCATTERING PHYS. REV. D 99, 096018 (2019)

096018-13



fσ; θg ¼
�
nπ; 2iarcsinh

�
1

a0

�
þ 2mπ

�
; ð99Þ

where n;m ¼ 0;�1;�2;…. We also have saddle points at

fσ; θg ¼
��

n −
1

2

�
π; ηm

�
; ð100Þ

where ηm can be found numerically by using
2iarcsinh½ 1a0� þ ð2m − 1Þπ as starting points. In Fig. 6 we
show saddle points for a pulsed field, which are obtained
numerically with the ones in (99) as starting points. For the
first set of saddle points (99) we find

Δ21 ¼ −Δ12 ¼ ið−1Þnþm ð101Þ

and for the second set (100)

Δ21 ¼ Δ12 ¼ −ið−1Þnþm: ð102Þ

Note that these values of Δ do not change as we decrease
the pulse length from T ¼ ∞ to a finite T .
Let now δσ¼σ−σsaddle and δθ ¼ θ − θsaddle. The quad-

ratic fluctuation of Θ around any point can be expressed in

terms of Δ and the derivative of the field f0, but at the
saddle points we can simplify using Δ ¼ �i. To leading
order we can put δσ, δθ → 0 in the preexponential part
of the integrand. Having expanded Θ to second order in
δσ and δθ, we now have simple Gaussian integrals for each
n and m which we perform analytically, i.e., we have for
each saddle pointZ

dδσdδθ exp f−c1δσ2 − c2δθ2 − c3δσδθg; ð103Þ

where the coefficients ci are in general complex and
obtained by finding the saddle points numerically.
For a monochromatic field we find with (99) an

exponential part given by [cf. (69)]

exp

�
ir1
2b0

Θ21

�
ðn;mÞ ¼ exp

�
ir1a0
χ

�
1þ a20

2

�
mπ

�

exp

�
−
r1a0
2χ

�
ð2þ a20Þarcsinh

1

a0
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

q ��
: ð104Þ

From this we see that the saddle points with m ≠ 0 lead to
oscillations in the spectrum around them ¼ 0 result studied
in the previous section. We also see that the frequencies of
these oscillations increase with decreasing χ or increasing
a0. Since this saddle-point approximation is good for small
χ, these oscillations can be relatively fast and, hence,
contribute less after integrating over the momenta.
In Figs. 7–9 we compare this approximation with the

results obtained by an exact numerical integration. How
many saddle points one needs to include depends of course
on several parameters. To obtain these results we have
summed over the saddle points with jnj ≤ 40 and jmj ≤ 20.
These plots show that the saddle-point approximation is
remarkably good. It can in fact be difficult to see that there
are actually two different curves in the large q1 part. Note
that at a0 ¼ 1 the LCF approximation is not good, not even
for an average where the oscillations are neglected. Our
non-LCF saddle-point approximation, on the other hand,
gives a very good approximation of even the nontrivial
oscillations. From these plots we see that the oscillations in
the spectrum become smaller and faster as a0 increases.
Figure 8 shows that already at a0 ¼ 2 the oscillations are
quite small on a log scale. However, by zooming in one can
see that our approximation is capable of correctly describ-
ing even very fine details in the spectrum. In these figures
we also plot the saddle-point approximation obtained by
only including the m ¼ 0 saddles from (99). This gives a
good approximation of a locally averaged spectrum. While
the LCF approximation becomes more accurate for increas-
ing a0, for a0 ¼ 2 our approximation, even just the simpler
one, is still much better. In Fig. 9 we see that for a0 ¼ 4 the
oscillations are so small that it might be difficult to see them
without zooming in, and in this case the LCF approxima-
tion is quite good.

−100 −50 50 100

-2

-1

1

2

Im( )

−100 −50 0 50 100

1

2

3

4
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6

Im( )

Re( )

Re( )

FIG. 6. Some of the saddle points for a pulsed field with a0 ¼ 1
and T ¼ 80. For comparison, note that for a monochromatic
field, T ¼ ∞, the saddle points are given by (99), i.e., Imσ ¼ 0
and Imθ ≈ 1.76.
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Although there are no IR divergences in single
Compton for this field shape [21,41], the probability can
become larger than one even for some of these non-
extreme parameter values. That this can happen is well
known [25,42].

FIG. 8. Same as Fig. 7 but with a0 ¼ 2.FIG. 7. The spectrum for single nonlinear Compton scattering
for T ¼ 80, a0 ¼ 1, χ ¼ 0.001 (blue and orange curves), χ ¼
0.01 (magenta and green curves) and χ ¼ 0.1 (red and cyan
curves). The blue, magenta and red curves show the exact result
and the orange, green and cyan curves are obtained with the
saddle-point approximation. In the first plot we have included
both sets of saddle points [the ones from (99) and (100)], but in
the second plot only the m ¼ 0 saddles from the first set. The
dashed lines in the second plot show the corresponding LCF
approximation.
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VIII. DOUBLE COMPTON SCATTERING LCF

We now return to double Compton scattering in the LCF
regime. In the previous sections we showed that for χ ≪ 1
the exchange term is on the same order of magnitude and

even cancels the direct part of the one-step term to leading
order. Here we study what happens at larger χ. We need to
keep qi sufficiently large as it is known that the LCF
approximation is not good for softer photons [43]. We
expect that both q1 and q2 have to be considerably larger
than b0=a20 [43,44]. The LCF approximation only depends
nontrivially on a0 and b0 via χ. For example, to plot
Pone=a0 and Ptwo=a20 as functions of χ we do not have to
choose a value of a0. So, for the lowest value of qi and the
highest value of χ which we consider there should be a
sufficiently large a0 to justify the LCF approximation.
In Figs. 10 and 11 we show the one-step term as a function
of χ for different values of qi. What is actually shown in
these figures is the corresponding “rate” R defined by

PoneðqÞ≕
Z

dϕ
b0

R1ðχðϕÞ; qÞ; ð105Þ

where ϕ ¼ ðϕ1 þ ϕ2 þ ϕ3 þ ϕ4Þ=4, in which ϕ4 ¼ ϕ2 for
P12 and ϕ4 ¼ ϕ2, ϕ3 ¼ ϕ1 for P11. As in the trident case,
we find that the one-step term can be both positive and
negative depending on χ.
Figure 10 shows that the direct and exchange parts of the

one-step term can for smaller q1 þ q2 continue to be close
to each other also for large χ. The fact that P22→1

dir and P22
ex

almost cancel each other means that the other one-step
contributions, P11

dir, P
12
dir and P

12
ex , are more important than in

the trident case [1]. So, even though P22→1
dir and P22

ex are
much larger than P11

dir, P
12
dir and P

12
ex , the size of the total one-

step term is closer to the latter rather than the former.
However, we also see that P22→1

dir and P22
ex are no longer

close in magnitude for 1 − q1 − q2 ≪ 1, where the electron
loses most of its initial longitudinal momentum to the
emitted photons, and larger χ. The last plot in the first
row of Fig. 10 shows one example with 1 − q1 − q2 ≪ 1

and q1 ¼ q2 where P22→1
dir dominates and where P22

ex

changes sign at large χ. The second and third rows show
examples with 1 − q1 − q2 ≪ 1 and q1 ≪ q2 or q1 ≫ q2
where the one-step term is instead dominated by the
exchange term P22

ex and where P22→1
dir can change sign.

We have made a comparison between our numerical
results and our saddle-point approximation similar to the
one in Appendix C in [1] for the trident case. For
sufficiently small χ we again find that each of the first
couple of orders give a better agreement. However, here we
find that the coefficients in the series in χ increase quite
fast. For example, at q1 ¼ q2 ¼ 1=3 we find

Pone ≈ −
4181α2a0

ffiffiffi
χ

p
2520

ffiffiffi
2

p
π3=2

exp

�
−

4

3χ

�
× ð1 − 11.0χ þ 130.5χ2 − 1847.5χ3 þ…Þ: ð106Þ

Given that the saddle-point approximation can lead to
asymptotic series, this growth of the coefficients should not

FIG. 9. Same as Fig. 7 but with a0 ¼ 4.
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be too surprising, but it does mean that the higher orders are
less useful than in the trident case. They only provide an
improvement for quite small χ, but there the probability is
very small because of the exponential suppression. This is a
bit unfortunate if one wants an approximation for the total
one-step term, because one needs at least the next-to-
leading order of P22→1

dir and P22
ex since they cancel each other

to leading order.
On the other hand, this cancellation also means that

neglecting the total one-step compared to the two-step term

should be a better approximation5 here than in the trident
case. The two-step term is shown in Fig. 12 in terms of the
following “rate”:

PtwoðqÞ≕
Z

dσ43dσ21
b20

R2ðχðσ43Þ; χðσ21Þ; qÞ: ð107Þ

FIG. 10. The one-step term as a function of χ for different values of qi. The blue, green and cyan solid curves show the direct terms
R22→1

dir , R12
dir and R11

dir, respectively. The red and orange dashed curves show the exchange terms R22
ex and R12

ex , respectively. The black
curves show the total one-step term.

5The one-step terms give of course only the next-to-leading
order term in the LCF 1=a0 ≪ 1 expansion, and so are already
suppressed by a factor of 1=a0 with respect to the two-step term.
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Figure 13 shows that, given a fixed total emitted longi-
tudinal momentum q1 þ q2, most of it is given to one of the
two photons, q1 ≪ q2 or q2 ≪ q1. This is expected since
the probability is in general larger for softer photons.
However, to directly compare the one-step and the two-

step terms we need to integrate over σ for some pulse shape.
In Fig. 14 we compare Pone and Ptwo for a Gaussian pulse
(95). We find that Ptwo can be much larger than Pone even

for a very short pulse and even before taking the a0-scaling
into account, which gives a further increase due to Ptwo ∼
a20 and Pone ∼ a0. We find that for larger q1 þ q2 the
relative difference between Ptwo=a20 and Pone=a0 decreases.
However, the exponential suppression (64) for 1 − q1 −
q2 ≪ 1 means that we then need larger χ to have a
significant probability, which is presumably more likely
to be achieved by increasing a0 rather than b0, and a larger
a0 again favors Ptwo. Further, the pulse length in Fig. 14 is
probably about 30 times shorter than what one can expect
in a typical experiment, so for a more realistic pulse the
one-step term will be even less important. So, even in cases

FIG. 13. The dependence on the longitudinal momentum of one
photon q1 for fixed q1 þ q2. The LCF approximation breaks
down as q1 → 0 or q2 → 0. This happens further out for larger a0.

FIG. 11. The total one-step term as a function of χ for different
values of q1 ¼ q2.

FIG. 12. The two-step term as a function of χ1 and χ2, the two
locally constant values of χ at the two steps.
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without near cancellation between P22→1
dir and P22

ex the one-
step term will probably not be very important. However, the
one-step term could be important for a short pulse with
a0 ∼ 1. For such fields we can of course not use LCF and so
we leave that for future studies.

IX. CONCLUSIONS

In this paper we have studied double nonlinear Compton
scattering. By using the same approach as in our previous
paper on trident pair production [1], we have showed that
many of the results are very similar, which allows us to use
the same methods. We have focused on the emission of
“hard” photons which makes things more similar to the
trident process than if we had included soft photons, we
can, for example, obtain saddle-point approximations for
χ < 1 that are similar to the ones we obtained in [1].
Focusing on hard photons is also motivated by the fact that
they can be more interesting/useful, e.g., for subsequent
pair production. The saddle-point method has not only
allowed us to find simple analytical expressions for simple
field shapes, we have also considered a more nontrivial,
pulsed oscillating field. We then have to obtain the saddle
points numerically, but by comparing with the exact
numerical result for single Compton scattering we find a
very good agreement, even for small and fast oscillations in
the spectrum. Since the saddle-point approach is much
faster it can therefore be a useful method for studying this
as well as similar processes. Indeed, since the exponential
part of the integrand is very similar for double and higher-
order Compton scattering, one can also apply this method
to those processes, for which an exact numerical integration
would take a long or too long time. We have also made
preliminary calculations for trident and found that the same
saddle-point method can also be used to study oscillations
in the momentum spectrum there.
The two-step part of the probability is related to two one-

photon emissions. By studying this relation in detail for
arbitrary polarization we have discovered a new gluing
approach, i.e., a method for obtaining the dominant part for
sufficiently long laser pulses. Gluing (spin-averaged) LCF
probabilities is an important part of PIC simulations, where
using LCF results is motivated by considering a0 ≫ 1. Our
new gluing approach takes the spin of the intermediate
electron into account and gives the dominant contribution
for arbitrary field polarization and for a0 ≳ 1. For a0 ≫ 1
and linear polarization our gluing approach reduces to the
one in [9,14]. So, this goes beyond the usual gluing
approach. We have checked that our approach gives the
correct results for triple and quadruple Compton scattering.
To the best of our knowledge, these processes have not
been studied in this regime before. In this paper we have
only presented this gluing approach for intermediate
electrons. Our preliminary results for trident suggest that
we will be able to generalize our gluing approach to
processes with intermediate photons. More work is needed

FIG. 14. The two-step vs. the one-step term in the LCF
approximation for a Gaussian pulse (95) with T ¼ π.
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to more precisely delineate the region of parameter space
where corrections to our new gluing estimates can be
neglected. One can expect that the smaller a0 is or the larger
b0 is the longer the pulse has to be, and softer photons may
also make corrections more important. To answer these
questions we plan to perform a detailed numerical study for
both trident and double Compton scattering.
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APPENDIX A: HOW TO OBTAIN
THE AMPLITUDE

In this appendix we provide the basic ingredients needed
to calculate the amplitude using either the standard covar-
iant or the lightfront quantization approach.

1. Lightfront quantization

As is standard in this field, the background is treated
exactly by using Volkov solutions and the Furry picture.
The amplitude can be obtained either with the standard
covariant approach or with the lightfront quantization
formalism [45,46], which naturally accommodates
plane-wave background fields [47–49]. The lightfront
Hamiltonian governs the evolution in xþ, and has three
terms,

Hint ¼
1

2

Z
dx̄ejAþ e2

2
j−

1

ði∂−Þ2
j− þ e2Ψ̄=A

γþ

4i∂−
=AΨ;

ðA1Þ

where jμ ¼ Ψ̄γμΨ. The first term is similar to the usual
Hamiltonian, while the other terms are referred to as
“instantaneous” [45,50]. The first instantaneous term
contributes to trident [1], while the second instantaneous
term contributes to the two-photon emission considered
here. The photon and fermion fields are expressed in terms
of mode expansions with only on-shell momenta. The
photon field is given by

AμðxÞ ¼
Z

dl̃aμe−ilx þ a†μeilx; ðA2Þ

where the mode operators obey

½aμðlÞ; a†νðl0Þ� ¼ −2l−δ̄ðl − l0ÞLμν; ðA3Þ

with

Lμν ¼ gμν −
kμlν þ lμkν

kl
: ðA4Þ

The fermion field is given by

ΨðxÞ ¼
Z

dp̃Kubφþ K̄vd†φð−pÞ; ðA5Þ

where the background enters via the Volkov solution [51],

φ ¼ exp

�
−i
�
pxþ

Z
kx 2ap − a2

2kp

��
K ¼ 1þ =k=a

2kp
;

ðA6Þ

and where K̄ ¼ 1 − =k=a=ð2kpÞ.
As in [1], we useM2 to denote the term in the amplitude

that comes from two vertices of the noninstantaneous part
of the Hamiltonian,

1

kþ
δ̄ðp0 þ l2 þ l1 − pÞM2

≔ −h0jbðp0Þϵ1aðl1Þϵ2aðl2Þ
Z

dxþ2 dx
þ
1 θðxþ2 − xþ1 Þ

×Hð1Þ
int ðxþ2 ÞHð1Þ

int ðxþ1 Þb†ðpÞj0i; ðA7Þ

and M1 to denote the term coming from the instantaneous
part of the Hamiltonian,

1

kþ
δ̄ðp0 þ l2 þ l1 − pÞM1

≔ h0jbðp0Þϵ1aðl1Þϵ2aðl2Þð−iÞ
Z

dxþHð2Þ
int ðxþÞb†ðpÞj0i:

ðA8Þ

After some straightforward calculation we obtain

M12
2 ¼ −

πα

kp1

Z
dϕ2ū K̄ φ̄|fflffl{zfflffl}

p0

=ϵ2eil2x2 Kφ|{z}
p1

ð=p1 þ 1Þ

×
Z

ϕ2

dϕ1 K̄ φ̄|{z}
p1

=ϵ1eil1x1 Kuφ|ffl{zffl}
p

; ðA9Þ

where p̄1 ¼ p̄ − l̄1 is the momentum of the intermediate
electron, and

M12
1 ¼ −

iπα
kp1

ū
p0
=ϵ2=k=ϵ1u

p

Z
dϕeiðl2þl1Þxφ̄

p0
φ
p
; ðA10Þ

where p1 is the same as in M2.
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2. Covariant approach

Next we show how the results from the previous section
can be obtained with the standard, covariant approach. In
the covariant approach the amplitude is given by

1

kþ
δ̄ðp0 þ l2 þ l1 − pÞM12

¼ ð−ieÞ2
Z

d4x1d4x2ψ̄ðx2Þ
p0

=ϵ2eil2x2Sðx2; x1Þ=ϵ1eil1x1ψ
p
ðx1Þ;

ðA11Þ

where ψ ¼ Kuφ includes the spin factor of the Volkov
solution and the fermion propagator is given by

Sðx; yÞ ¼ i
Z

d4P
ð2πÞ4KφðxÞ 1

=P −mþ iϵ
K̄ φ̄ðyÞ: ðA12Þ

As in [12], we perform the qþ integral by first separating
the propagator into two terms using

1

=P −mþ iϵ
¼ 1

4P−

�
γþ þ =Pon þm

Pþ − Ponþ þ iϵsignðP−Þ
�
;

ðA13Þ

where Ponþ ¼ ðm2 þ P2⊥Þ=ð4P−Þ. The (lightfront) spatial
coordinate integrals in (A11) give delta functions implying
P̄ ¼ p̄ − l̄1 ¼ p̄0 þ l̄2, which means P− > 0. Upon per-
forming the Pþ integral, the two terms in (A13) give terms
with δðxþ2 − xþ1 Þ and θðxþ2 − xþ1 Þ, respectively. We find that
the term with δðxþ2 − xþ1 Þ is exactly equal to the term (A10)
that comes from the instantaneous part of the lightfront
Hamiltonian, and the term with θðxþ2 − xþ1 Þ is exactly equal
to the term (A9) that comes from two vertices with the
noninstantaneous part of the Hamiltonian.

APPENDIX B: GAUGE INVARIANCE

In this work we have used the lightfront gauge for the
emitted photons, where kϵ ¼ 0 in addition to lϵðlÞ ¼ 0, or
in terms of the components ϵ− ¼ 0 and ϵþ ¼ l⊥ϵ⊥=ð2l−Þ.
The probability is of course gauge invariant, but that does
not necessarily mean that each contribution to the proba-
bility will be separately gauge invariant. Indeed, it is well
known, e.g., from QED without a background field, that
individual diagrams are in general not gauge invariant. To
check gauge invariance we replace =ϵ1 in (A11) with =l1. Let
us first study the following spinor part:

=Pþ 1

P2 − 1þ iϵ
K̄ðP;ϕ1Þ=l1Kðp;ϕ1Þu; ðB1Þ

where P̄ ¼ p̄ − l̄1, but Pþ is still an integration variable.
We write

=l1 ¼ =p − =Pþ c=k

¼ ½=πðp;ϕ1Þ − 1� − ½=πðP;ϕ1Þ − 1�
þ ½c − Vðp;ϕ1Þ þ VðP;ϕ1Þ�=k; ðB2Þ

where c ¼ ðl1 − pþ PÞþ=kþ and Vðp;ϕÞ ¼ ð2ap − a2Þ=
ð2kpÞ. The ϕ1 dependent part of the exponent is given by

exp

�
i
Z

ϕ

0

dϕ½c − Vðp;ϕÞ þ VðP;ϕÞ�
�
; ðB3Þ

so the last term in (B2) is a total derivative (note that
K̄=kK ¼ =k) and vanishes upon integrating over ϕ1. From
=πK ¼ K=p we find

½=πðp;ϕ1Þ − 1�Kðp;ϕ1Þu ¼ Kðp;ϕ1Þð=p − 1Þu ¼ 0: ðB4Þ

From K̄=π ¼ =pK̄ we find

=Pþ 1

P2 − 1þ iϵ
K̄ðP;ϕ1Þð−½=πðP;ϕ1Þ − 1�Þ ¼ −K̄ðP;ϕ1Þ:

ðB5Þ

The Pþ integral gives a delta function and we find

M12
ϵ1→=l1

¼ ie2

2

Z
dϕū0K̄p0=ϵ2Kpueiðl2þl1Þxφ̄

p0
φ
p
: ðB6Þ

This is in general nonzero, so we also have to take the
exchange term M21 into account.
For M21 we begin with

ū0K̄ðp0;ϕ2Þ=l1KðP;ϕ2Þ
=Pþ 1

P2 − 1þ iϵ
; ðB7Þ

where P̄ ¼ p̄0 þ l̄1. So, this time we write

=l1 ¼ ½=πðP;ϕ2Þ − 1� − ½=πðp0;ϕ2Þ − 1�
þ ½cþ Vðp0;ϕ2Þ − VðP;ϕ2Þ�=k; ðB8Þ

where c ¼ ðp0 þ l1 − PÞþ=kþ. The last two terms in (B8)
vanish as before, and

½=πðP;ϕ2Þ − 1�KðP;ϕ2Þ
=Pþ 1

P2 − 1þ iϵ
¼ þKðP;ϕ2Þ: ðB9Þ

The rest of the calculation is the same as for M12, except
that (B9) has opposite sign compared to (B5), and, hence,

Mϵ1→=l1 ¼ M12
ϵ1→=l1

þM21
ϵ1→=l1

¼ 0: ðB10Þ

Thus, althoughM12 andM21 might not be separately gauge
invariant, the total amplitude M ¼ M12 þM21 is.
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Note that in the trident case the terms corresponding to
M12 and M21 are separately gauge invariant, which makes
the direct-exchange separation of the one-step term gauge
invariant. In the double Compton case, in general one has to
consider both the direct and the exchange parts of the one-
step term together to have a gauge-invariant result. Note
though that the separation between the two-step and the
total one-step term should be gauge invariant because the
two-step term can be obtained by gluing together two first-
order processes.

APPENDIX C: EXACT COMPARISON

In this section we provide a nontrivial consistency check
demonstrating that our results agree with the previous
literature. We have already shown that our two-step term
agrees with previous results in the LCF limit. To check also
the one-step term we will compare the LCF limit of our
results with the results for the direct part of the one-step
term as obtained with the approach in [6,14].

1. Previous constant-crossed approach

In this subsection we follow closely the approach
described in detail in [6]. We first Fourier transform the
lightfront-time dependencies of the vertices,

K̄ φ̄
P
=ϵ1eil1x1Kφ

p
¼

Z
dr1
2π

eiðPþl1−p−r1kÞx1Γðr1Þ ðC1Þ

and

K̄ φ̄
p0
=ϵ2eil2x2Kφ

P
¼

Z
dr2
2π

eiðp0þl2−P−r2kÞx1Δðr2Þ: ðC2Þ

The spatial as well as the lightfront-time integrals now give
delta functions

Z
dx41dx

4
2 → ð2πÞ4δ4ðp0 þ l1 þ l2 − p − ½r1 þ r2�kÞ

× ð2πÞ4δ4ðP − ½p − l1 þ r1k�Þ: ðC3Þ

We use the second delta function to perform the Pμ integral
and the kþ component of the first delta function to perform
the r2 integral. In the electron propagator we have
P2 − 1 ¼ 2kPðr1 − r�1Þ, where r�1 ¼ pl1=kP. It is therefore
natural change variable from r1≕ rþ r�1 to r. The result
we want to compare with is for the probability integrated
over the transverse momenta. For these integrals we make
the following change of variables l1⊥ ¼ q1ðL1⊥ þ p⊥Þ and
l2⊥ ¼ q2

s1
ðL2⊥ þ s1p⊥ − q1L1⊥Þ, where L1⊥ and L2⊥ are

the new integration variables. In terms of these variables
we have r�1 ¼ a0r10

2χ ð1þ L2
1⊥Þ, and r2 ¼ a0r21

2χ ð1þ L2
2⊥Þ − r.

For a constant field the Fourier transforms Γ and Δ can be

expressed in terms of the Airy function AiðcÞ and Ai0ðcÞ.
The argument of these Airy functions is

c1 ¼
1

22=3

�
z1 þ

2r
a0

ffiffiffiffiffi
z1

p þ z1L2
1⊥
�

ðC4Þ

for Γ and

c2 ¼
1

22=3

�
z2 −

2r
a0

ffiffiffiffiffi
z2

p þ z2L2
2⊥
�

ðC5Þ

for Δ, where

z1 ¼
�
r10
χ

�2
3

z2 ¼
�
r21
χ

�2
3

: ðC6Þ

The momentum integrals parallel to the field, i.e., L11 and
L21, can be interpreted in terms of lightfront-time volume
factors by changing variables to σ ¼ ðL21 þ L11Þ=ð2a0Þ
and φ ¼ ðL21 − L11Þ=a0. The integral over σ gives the
overall volume factor, while the other gives

Z
dφ

����
Z

dr1
2π

eiφrFðrÞ
rþ iϵ

����2 ¼
Z

dφθð−φÞjFð0Þj2

þ 1

2π

Z
∞

−∞

dr
r2

ðjFðrÞj2 − jFð0Þj2Þ;

ðC7Þ

where the φ integral in the first term gives an additional
volume factor, so the first term is the two-step part and the r
integral term gives the one-step part. The integrals over the
momentum components perpendicular to the field, i.e., L12

and L22, take the following form:

Z
dxx2nfAi2;AiAi0;Ai02gðcþ x2Þ; ðC8Þ

which can be performed as in the appendix of [6]. We can
now express the two-step as

P2 ¼
Δϕ2

2
Að0Þ ðC9Þ

and the direct part of the one-step as

Pdir
1 ¼ Δϕ

1

2π

Z
∞

−∞

dr
r2

½AðrÞ −Að0Þ�; ðC10Þ

where A is given below.
At this point one has to decide what to do with the

photon polarization sum. Let us first check the standard
replacement
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X
pol:

ϵμϵν → −gμν: ðC11Þ

This gives

A ¼ α2a20
2s21χ

2

�
q1q2

s21
ffiffiffiffiffiffiffiffiffi
z1z2

p Ĉ··Aiðz1rÞAiðz2rÞ

þ κ10κ21
z1z2

Ai0ðz1rÞAi0ðz2rÞ þ
κ10
z1

Ĉ01Ai0ðz1rÞAi1ðz2rÞ

þ κ21
z2

Ĉ10Ai1ðz1rÞAi0ðz2rÞ þ Ĉ11Ai1ðz1rÞAi1ðz2rÞ
�

þ ðq1 ↔ q2Þ; ðC12Þ

where Ai1ðzÞ ¼
R∞
z dyAiðyÞ; the arguments of the Airy

functions are given by

z1r ¼ z1 þ
2R

χ
ffiffiffiffiffi
z1

p z2r ¼ z2 −
2R

χ
ffiffiffiffiffi
z2

p : ðC13Þ

R ¼ rχ=a0, and where the coefficients Ĉ are given by [the
g-subscript indicates (C11)]

Ĉ··
g ¼ 1 −

s1ð1þ s1Þðs1 þ s2Þ
q1q2

R ðC14Þ

Ĉ01
g ¼ 1 − q2R Ĉ10

g ¼ 1þ q1R ðC15Þ

Ĉ11
g ¼ 1þ s21 − q1q2

s1
Rþ ðs2 − q1q2ÞR2: ðC16Þ

This agrees6 with the result in [14].
However, to compare with our results for the direct part

we should calculate the corresponding quantity in the
lightfront gauge kϵ ¼ 0, so that we can be sure that we
are comparing exactly the same quantities. In this gauge
we have

X
pol:

ϵμϵνðlÞ ¼ −
�
gμν −

kμlν þ lμkν
kl

�
; ðC17Þ

where the lμ terms vanish when applied to a gauge invariant
term. We then find that A is given by (C12), but this time
the coefficients are given by

Ĉ··
LF ¼ 1 −

s1s2
q1q2

R ðC18Þ

Ĉ01
LF ¼ 1 −

κ21
r21

R Ĉ10
LF ¼ 1þ κ10

r10
R ðC19Þ

Ĉ11
LF ¼ 1þ

�
κ10
r10

−
κ21
r21

−
q1q2
s1

�
Rþ

�
s2 −

κ10
r10

κ21
r21

�
R2:

ðC20Þ

By comparing the coefficients Ĉg and ĈLF we see that Ag

and ALF agree for R ¼ 0, which they should because Að0Þ
gives the two-step term. However, for R ≠ 0 they do not
have to be the same because of gauge dependence. In any
case, we can directly compare (C12) for ALF with the LCF
approximation of our exact results.

2. Our approach

The starting point in this subsection is our exact
expressions for Pdir

1 ¼ P22→1 þ P12
dir þ P11

dir, where P22→1,
P12
dir and P11

dir are given by (49), (17), (14) and (10). These
expressions are valid for any inhomogeneous field. The
locally constant field approximation is obtained by expand-
ing in 1=a0 ≪ 1 as explained in [1]. For P22→1 we use the
following integration variables, σ ¼ ðσ43 þ σ21Þ=2 and
φ ¼ σ43 − σ21, where σij ¼ ðϕi þ ϕjÞ=2, and θ43, θ21. In
the constant field limit the φ integral is trivial and givesZ

dφ

�
−θðφÞθ

�jηj
2
− φ

��
¼ −

jηj
2
; ðC21Þ

where η ¼ θ43 − θ21. To factorize the θ21 and θ43 integrals
we write

−
jηj
2

¼ 1

2π

Z
dr

e−iηr − 1

r2
: ðC22Þ

For P12
dir we change variables from ϕ1 and ϕ3 to θ21 and θ23.

To factorize these integrals we note that we can replace
θð−ηÞ → −signðηÞ=2, where η ¼ θ23 − θ21, and

−
1

2
signðηÞ ¼ −

i
2π

P
Z

dr
e−iηr

r
; ðC23Þ

whereP is an instruction to take the principal value. Finally
for P11

dir we writeZ
dθ21
θ221

e
ir20
2b0

Θ21 ¼
Z

dθ21dθ43
θ21θ43

δðθ43 − θ21Þe
ir21
2b0

Θ43þir10
2b0

Θ21 ;

ðC24Þ

and use the representation

δðηÞ ¼ 1

2π

Z
dre−iηr: ðC25Þ

6There seem to be some trivial typos in [14]: The signs can be
independently checked by comparing the two-step part with what
one finds by gluing together the results in [14] for single
Compton scattering. The sign errors would otherwise lead to a
negative probability. There also seems to be a missing factor of 2
in the one-step term coming from rescaling r → a0r=2.
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The θij integrals in each of these terms can now be
performed and give Airy functions. We find exactly the
same result as in (C12) with the coefficients given by ĈLF.
Since these two approaches are entirely different, this gives
a highly nontrivial check of our methods and results.
Note that the gauge dependence does not necessarily

mean that Ag and ALF are completely different. Indeed, in
the next section we will show that they are equal to leading
order for χ < 1 and hard photons.

3. Saddle-point comparison

As already noted, there are no explicit results for hard
photons that we can immediately compare with, but it is
possible to derive such results from, e.g., the analytic
expressions in [14], see (C12). To obtain the longitudinal
momentum spectrum for hard photons, there is only one
integral to perform, namelyZ

dt
AðtÞ þAð−tÞ − 2Að0Þ

t2
; ðC26Þ

where AðtÞ is given by (C12) and t ¼ 2r=a0. For χ ≪ 1
and hard photons we can perform the t integral with the
saddle-point method. It turns out that jχtj ∼ ffiffiffi

χ
p ≪ 1, so we

rescale t ¼ τ=
ffiffiffi
χ

p
and expand the integrand to leading order

in χ, which involves

Aiðξ ≫ 1Þ ≈ e−
2ξ3=2

3

2
ffiffiffi
π

p
ξ1=4

ðC27Þ

and similar expansions for Ai0 and Ai1. Now we can
perform the resulting elementary τ integral

Z
dτ

e−cτ
2 − 1

τ2
¼ −2

ffiffiffiffiffi
πc

p
: ðC28Þ

There is no difference between Ag and ALF to leading
order; they both give

Pdir
1 ¼ −

α2a0
4π

3
2

ffiffiffiffiffiffi
r20
χ

r �
q1
q2

þ q2
q1

þ s1s1̄
q1q2

�
e−

2r20
3χ : ðC29Þ

This agrees perfectly with our result (57) for the direct
part of the one-step term, demonstrating consistency. To
obtain the corresponding expression for the two-step term
P2 one just has to omit the t integral, the result agrees
with (59).
We have thus demonstrated consistency between our

expressions and those of [14], with all the nontrivial
dependencies on the various parameters. In addition, the
short calculation here is very different from the derivation
of (57) in the main text, providing further reassurance that
our results are consistent. Since we have checked that our
analytical results agree with our numerical results, this
comparison also gives us a benchmark of our numerical
results.
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