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Moments play a crucial role in investigating the characteristics of charged particle multiplicities in high-
energy interactions. The success of any model which describes the multiplicity data can be understood well
by studying the normalized and factorial moments of that distribution. The Tsallis model is one of the most
successful models which describes the multiplicity spectra and transverse momentum (pT) spectra very
precisely in high-energy interactions. In our previous work, we used the Tsallis q statistics to describe the
multiplicity distributions in leptonic and hadronic collisions at various energies ranging from 14 GeV to
7 TeV. In the present study, we have extended our analysis for calculating the moments using the Tsallis
model for eþe− interactions at

ffiffiffi
s

p ¼ 91 to 206 GeV from the large electron-positron collider data and for
pp interactions at

ffiffiffi
s

p ¼ 0.9 to 7 TeV in various pseudorapidity intervals from the CMS data at the LHC. By
using the Tsallis model, we have also calculated the average charged multiplicity and its dependence on
energy. It is found that the moments and the mean multiplicities predicted by the Tsallis model are in good
agreement with the experimental values. We have also predicted the mean multiplicity at

ffiffiffi
s

p ¼ 500 GeV
for eþe− collisions and at

ffiffiffi
s

p ¼ 14 TeV for pp collisions in the extreme pseudorapidity interval, jηj < 2.4.

DOI: 10.1103/PhysRevD.99.096016

I. INTRODUCTION

In high-energy collisions, particles are made to collide
with relativistic momenta much greater than their rest
masses, resulting in the production of a large number of
particles in the final state [1] from a variety of processes.
These collisions can be hadronic, leptonic, or heavy-ion
interactions, summarized in the form of reaction, for
leptonic collision as l − l → X [2], where l is the lepton
or for hadronic collisions as h − h → X [3], where h is the
hadron or for hadron-nucleus collision as h − A → X [4],
with A being the nucleus. X in the final state of these
reactions represents any number of particles, produced due
to the gluon-gluon, quark-quark, and quark-gluon inter-
actions between the constituent quarks and gluons of
the colliding particles. The produced particles can be the
baryons (qqq state), mesons (q̄q state), or leptons. The
simplest but the most significant observation to describe the
mechanism of particle production is the observation of
charged particle multiplicity [5,6] and the distribution of
the number of particles produced, known as multiplicity
distribution [7]. Multiplicity distribution (MD) also carries

important information about the correlations of particles
produced, thus providing a very fine way to investigate the
dynamics of the quark-quark, gluon-gluon, and quark-
gluon interactions.
Collision or interaction of two particles is generally

described in terms of a cross section, which is calculated by
measuring the number of particles produced. The cross
section essentially gives the measure of the probability of
production of a particular number of particles. The multi-
plicity distribution is defined in terms of probability by the
formula

PN ¼ σN
σtotal

¼ Nch

Ntotal
; ð1Þ

where σN is the cross section for the production ofN number
of particles and σtotal represents the total cross section of
interaction at center-of-mass energy

ffiffiffi
s

p
. Experimentally,

this probability,PN , is obtained from the number of charged
particles produced at specific multiplicity,Nch, and the total
number of particles produced during the collisions, Ntotal.
TheMD obeys conventional Poisson distribution [8] if there
is no correlation between the particles produced; i.e.,
particles produced are exclusive and independent of each
other [9]. The presence of any kind of correlation among the
particles leads to the deviation from Poissonian form.
Higher-order moments and their cumulants are the precise
tools to study the correlation between the particles produced
in these interactions [10,11].
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In the last few years, the Tsallis model [12] has been
used successfully in describing the MDs in hadronic
and leptonic collisions for different collision energies.
Recently, we have analyzed the eþe−, pp, and p̄p
collisions at different energies by using the Tsallis model
[13–16]. In the present study, we use the Tsallis approach to
measure correlations between the particles produced in
both leptonic and hadronic interactions at energies ranging
from a few giga-electron-volts up to the LHC energies.
Additionally, the dependence of the average multiplicity on
the center-of-mass energy is also studied. Results from the
Tsallis model are compared with experimental values. In
Sec. II, we give a brief description of moments and the
formulation to calculate the higher-order moments.
Section III gives the details of the data used and results
obtained from the Tsallis model and its comparison with
the experimental values. The method of calculation of
uncertainty on the normalized and factorial moments is
discussed in Sec. IV. The discussion and conclusion are
presented in Sec. V.

II. MOMENTS

Multiplicity distributions at low energies of approxi-
mately 10 GeV for leptonic and hadronic collisions such as
eþe− or pp could be described very well using Poisson
distribution [8,17]. In such cases, dispersion, defined by
D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN2i − hNi2

p
, is related with the average multiplic-

ity hNi. The multiplicity distributions exhibited a broader
width at higher energies, showing the significant deviation
from the Poissonian form. The correlation in the particles
produced during the collisions was found to be responsible
for the deviations. The shape of multiplicity distribution
can be described well using the assumption that energy
dependence of multiplicity distribution at higher energies
could be formulated using the average multiplicity. To
explain the energy dependence of multiplicity, Koba et al.
[18] in 1972 proposed the scaling relation for multiplicity
distributions known as KNO scaling. It is the theory of
universal scaling for multiplicity distributions in the
asymptotic limit of energy. The energy dependence of
the dispersion defined by relation D ∝ hNi implied the
compliance of KNO scaling. But a few years later, violation
of KNO scaling was observed by the UA5 Collaboration
while analyzing the multiplicity data at

ffiffiffi
s

p ¼ 540 GeV
[19] obtained from p̄p collisions. Later on, it was shown by
the collaboration that KNO scaling was violated even atffiffiffi
s

p ¼ 200 GeV [20]. Higher-order moments and its cumu-
lants are the precise tools to study the correlations between
the particles produced in collisions [21,22]. The departure
from independent and uncorrelated production of particles
can be measured well using the factorial moments, Fm [23].
Not only the correlation between the particles but also the
violation or holding of KNO scaling at higher energies can
also be studied and understood correctly by using the

normalized moments of order m, Cm [24]. These moments
are defined as

Cm ¼ hNmi
hNim ð2Þ

Fm ¼ hðNðN − 1Þ…:ðN −mþ 1ÞÞi
hNim : ð3Þ

The factorial moments and their cumulants, Km, are near
to precise in defining the tail part of distribution where
events with a multitude of particles give a meaningful
contribution. The factorial moments and cumulants are
related to each other by the relation

Fm ¼
Xm−1

i¼0

Ci
m−1Km−iFi: ð4Þ

Factorial moments exhibit the features of any kind of
correlation present between the particles and cumulants of
order m illustrate absolute m-particle correlation which
cannot be brought down to the lower-order correlation.
In other words, if all m particles are related to each other in
mth order of cumulants, then it cannot be divided into
disconnected groups, i.e., the m particle cluster cannot be
split in to smaller clusters. These moments and their
dependence on energy

ffiffiffi
s

p
help in improving, redefining,

and rejecting various Monte Carlo or statistical models,
which can be used in describing the production of particles
at high energies.

A. Tsallis distribution

Tsallis statistics [12] uses the concept of the nonexten-
sive nature of entropy, which is the modification of the
usual Boltzman-Gibbs [25] and is given by

S ¼ 1 −
P

aP
q
a

q − 1
; ð5Þ

where Pa is the probability associated with microstate a
and the sum of the probabilities over all microstates is
normalized:

P
aPa ¼ 1. For the entropic index q with

value q > 1, 1 − q measures the departure of entropy from
its extensive behavior.
The probability distribution function in the case of

Tsallis q statistics is defined using the partition function
Z as

PN ¼ ZN
q

Z
; ð6Þ

where Z represents the total partition function and ZN
q

represents partition function at a particular multiplicity. For
N particles, the partition function can be written as
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Zðβ; μ; VÞ ¼
X�

1

N!

�
ðnV − nv0NÞN: ð7Þ

n represents the gas density, V is the volume of the system,
and v0 is the excluded volume. The generating function of
the distribution plays an important role in providing the
physical information of the multiplicity distribution. The
generating function for multiplicity distribution is related to
the probability as

GðtÞ ¼
X∞
N¼0

PNtN ð8Þ

and can be obtained by using the expression of probability
distribution function as given by

GðtÞ ≈ expðt − 1ÞVn½1þ ðq − 1ÞλðVnλ − 1Þ − 2v0n�

þ ðt − 1Þ2ðVnÞ2
�
ðq − 1Þ λ

2

2
−
v0
V

�
: ð9Þ

The Tsallis probability generating function has the
same form as that of the negative binomial distribution

(GNBD ¼ ½1 − hNi
k ðt − 1Þ�−k ¼ exp½hNiðt − 1Þ�) with the

average of number of particles N̄ for the Tsallis prob-
ability as

N̄ ¼ Vn½1þ ðq − 1ÞλðVnλ − 1Þ − 2v0n�; ð10Þ

where λ is related to the temperature through parameter λ as

λðβ; μÞ ¼ −
β

n
∂n
∂β : ð11Þ

More details about the calculations can be found in
Refs. [16,26].

B. Moments of the Tsallis distribution

The normalized moments of order m of the Tsallis
distribution can be calculated through the average number

of particles using Cm ¼ hNmi
hNim, where average multiplicity

N̄ ¼ hNi. The factorial moments are defined as

Fm ¼ hðNðN − 1Þ…:ðN −mþ 1ÞÞi
hNim ð12Þ

Fm ¼
�

1

hNim
�
dmGðtÞ
dtm

; ð13Þ

where GðtÞ is the generating function of the Tsallis
distribution defined by Eq. (9). The factorial moments
are related to the normalized moments and can be written in
the terms of Cm. The first five factorial moments are

F2 ¼ C2 −
C1

hNi
F3 ¼ C3 − 3

C2

hNi þ 2
C1

hNi2

F4 ¼ C4 − 6
C3

hNi þ 11
C2

hNi2 − 6
C1

hNi3

F5 ¼ C5 − 10
C4

hNi þ 35
C3

hNi2 − 50
C2

hNi3 þ 24
C1

hNi4 : ð14Þ

III. RESULTS

Experimental data of proton-proton collisions from the
CMS experiment at the Large Hadron Collider and the data
of eþe− annihilation at different collision energies from the
OPAL and L3 experiments are analyzed. The pp data are
analyzed at

ffiffiffi
s

p ¼ 0.9, 2.34, 7 TeV in the restricted
pseudorapidity windows of jηj < 0.5; 1.0; 1.5; 2.0; 2.4
[27]. The leptonic data from the L3 and OPAL experiments
at

ffiffiffi
s

p ¼ 91 to 206 GeV [28–32] in the full phase space are
analyzed. Various analyses on the multiplicity distributions
using these data have been done by us previously, and
results can be found in Refs. [13–16]. In the following
sections, results of the moments and average multiplicities
obtained using the Tsallis statistics at different energies are
discussed.

A. Average multiplicities

The energy dependence of mean charged multiplicity
hNi is expected to reflect the underlying particle production
process. A number of phenomenological models have been
proposed to describe the behavior of mean charged multi-
plicity with energy. One of the most widely accepted
relations that describes the multiplicity as a function of
energy

ffiffiffi
s

p
is [33]

hNi ¼ aþ blnð ffiffiffi
s

p Þ þ cln2ð ffiffiffi
s

p Þ: ð15Þ

We calculate the values of average charged multiplicity
from the Tsallis model and compare with the experimental
values for eþe− collision data and for pp collision data.
The hNi calculated from the Tsallis model are given in
Tables I and II. The values are found to be in good
agreement with the experimental values, taking the errors
into account.
Figure 1 shows the comparison of hNi values from the

data and the Tsallis model for eþ e− collisions at different
center-of-mass energies, with

ffiffiffi
s

p
expressed in giga-

electron-volts. The data are also fitted to Eq. (15) as given
below.
For data,

hNi ¼ 176.74 − 70.52ðln ffiffiffi
s

p Þ þ 7.99ðln ffiffiffi
s

p Þ2: ð16Þ
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For the Tsallis model,

hNi ¼ 134.85 − 53.11ðln ffiffiffi
s

p Þ þ 6.183ðln ffiffiffi
s

p Þ2: ð17Þ

In the case of pp collision data, the extreme pseudor-
apidity regions, jηj < 0.5 and 2.4, are chosen because of the
availability of hNi values for these pseudorapidities only.
Figure 2 shows the comparison of hNi values from the data
and the model at jηj < 2.4. In this case, the empirical
relation describing the dependence of hNi on the center-of-
mass energy, with

ffiffiffi
s

p
in tera-electron-volts takes the form

as follows.
For data,

hNi ¼ 18.77þ 4.39ðln ffiffiffi
s

p Þ þ 0.845ðln ffiffiffi
s

p Þ2: ð18Þ

For the Tsallis model,

hNi ¼ 19.35þ 3.874ðln ffiffiffi
s

p Þ þ 1.146ðln ffiffiffi
s

p Þ2: ð19Þ

Using the Tsallis model, the average multiplicity is pre-
dicted for eþe− interactions at

ffiffiffi
s

p ¼ 500 GeV in the full
phase space and for pp interactions at 14 TeV for
pseudorapidity range jηj < 2.4.
For eþe− interactions at

ffiffiffi
s

p ¼ 500 GeV, the value of
average multiplicity hNi is found to be 43.53� 3.79,
whereas for pp collisions, the value of hNi at

ffiffiffi
s

p ¼
14 TeV at jηj < 2.4 is found to be 36.18� 3.21.

B. Moment analysis

The Tsallis gas model has been used to calculate the
moments in order to understand the correlation of the final
particles produced during the interaction process. The
Tsallis distribution calculated from Eq. (6) is fitted to
the experimental data on multiplicity distributions at each
of the energies. The multiplicity distribution obtained from
the Tsallis model is then used to calculate the moments
of the distribution using Eqs. (2) and (3). Figures 3 and 4
show the dependence of normalized and factorial moments
on the center-of-mass energy

ffiffiffi
s

p
, calculated by using i) the

Tsallis model and also ii) experimental distributions for eþ

TABLE I. Average multiplicity hNi at ffiffiffi
s

p ¼ 91 to 206 GeV for
eþe− interactions. The values obtained from the Tsallis model are
compared with the OPAL and the L3 experimental values.

Average charged multiplicity hNi
Experiment Energy Experimental Tsallis model

OPAL 91 21.40� 0.43 21.07� 0.21
133 23.40� 0.65 23.17� 0.29
161 24.46� 0.63 24.01� 0.47
172 25.77� 1.05 24.98� 0.53
183 26.85� 0.58 26.17� 0.39
189 26.95� 0.53 26.33� 0.66

L3 130.1 23.28� 0.26 23.21� 0.35
136.1 24.13� 0.29 23.53� 0.17
172.3 27.00� 0.58 26.93� 0.25
182.8 26.84� 0.34 26.77� 0.19
188.6 26.84� 0.32 26.51� 0.08
194.4 27.14� 0.42 26.87� 0.49
200.2 27.73� 0.47 27.09� 0.31
206.2 28.09� 0.33 27.38� 0.20

TABLE II. Average multiplicity hNi at two extreme pseudor-
apidity intervals, jηj < 0.5 and jηj < 2.4, at

ffiffiffi
s

p ¼ 0.9, 2.36, and
7 TeV.

Average charged multiplicity (hNi)
jηj Interval Energy (TeV) CMS experiment Tsallis model

0.5 0.9 4.355� 0.207 4.583� 0.772
2.36 5.262� 0.250 5.489� 0.992
7.00 6.808� 0.335 7.409� 1.022

2.4 0.9 18.320� 1.273 18.957� 1.174
2.36 23.166� 1.716 23.524� 1.382
7.00 30.516� 3.660 31.231� 3.042
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FIG. 1. Dependence of the average multiplicity hNi on the
center-of-mass energy,

ffiffiffi
s

p
, for eþe− collisions and comparison

with experimental values. The solid line corresponds to Eq. (16).
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FIG. 2. Dependence of the average multiplicity on the center-
of-mass energy. The values from the Tsallis model are compared
with the CMS experimental values. The solid line is the fit for the
Tsallis model from Eq. (18).
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e− data. The values of these moments are compared with
the experimental values and are listed in Tables III and IV. It
is observed that the Fm and Cm moments in each case is
nonzero and remains nearly constant with energy.

Moments are also calculated for the pp collisions using
the CMS data at different pseudorapidity intervals. The
dependence of normalized moments, Cm, and factorial
moments, Fm, on the pseudorapidity, jηj, at a given energy
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FIG. 3. Dependence of Cm and Fm moments on the center-of-
mass energy,
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s

p
, and comparison of the moments obtained using

the Tsallis model with the L3 experimental values.
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p
, and comparison of the moments obtained using

the Tsallis model with the OPAL experimental values.

TABLE III. Cm moments calculated from the Tsallis model for center-of-mass energies,
ffiffiffi
s

p ¼ 91 to 206 GeV, for the eþe− data.

Energy
(GeV) Experimental reduced moments Tsallis reduced moments

OPAL experiment

C2 C3 C4 C5 C2 C3 C4 C5

91 1.089�0.003 1.287�0.012 1.636�0.029 2.218�0.072 1.048�0.011 1.141�0.032 1.280�0.069 1.472�0.127
133 1.095�0.002 1.317�0.021 1.716�0.063 2.396�0.147 1.068�0.059 1.204�0.181 1.416�0.341 1.725�0.153
161 1.082�0.002 1.277�0.010 1.618�0.023 2.180�0.077 1.093�0.021 1.293�0.088 1.643�0.157 2.225�0.052
172 1.080�0.052 1.258�0.061 1.565�0.069 2.063�0.074 1.095�0.091 1.301�0.161 1.659�0.149 2.261�0.129
183 1.070�0.026 1.257�0.024 1.586�0.044 2.126�0.058 1.102�0.108 1.313�0.099 1.696�0.202 2.341�0.094
189 1.063�0.018 1.241�0.019 1.549�0.019 2.046�0.015 1.110�0.057 1.323�0.193 1.715�0.066 2.382�0.115

L3 experiment
130.1 1.082�0.014 1.258�0.057 1.563�0.042 2.058�0.096 1.065�0.012 1.195�0.041 1.401�0.096 1.705�0.193
136.1 1.095�0.002 1.301�0.007 1.656�0.019 2.237�0.045 1.069�0.015 1.208�0.046 1.426�0.112 1.748�0.226
172.3 1.094�0.004 1.299�0.012 1.656�0.021 2.245�0.028 1.082�0.002 1.253�0.071 1.534�0.061 1.993�0.023
182.8 1.091�0.005 1.287�0.016 1.626�0.025 2.180�0.069 1.084�0.031 1.264�0.011 1.540�0.018 1.998�0.046
188.6 1.086�0.007 1.273�0.020 1.591�0.047 2.106�0.098 1.087�0.011 1.269�0.013 1.566�0.027 2.081�0.043
194.4 1.093�0.005 1.294�0.017 1.644�0.035 2.216�0.066 1.090�0.073 1.274�0.007 1.578�0.016 2.098�0.038
200.2 1.093�0.004 1.294�0.015 1.643�0.032 2.215�0.058 1.092�0.052 1.284�0.015 1.584�0.029 2.139�0.034
206.2 1.091�0.006 1.290�0.016 1.634�0.035 2.195�0.067 1.093�0.009 1.291�0.036 1.618�0.097 2.168�0.092
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and dependence of Cm and Fm on energy,
ffiffiffi
s

p
at a given

pseudorapidity interval are shown in Figs. 5–8. Figures 5
and 6 show the dependence of the normalized and factorial
moments on the pseudorapidity intervals at the given
energy [27]. The value of Cm decreases with the increase
in the pseudorapidity interval at a given energy. This
decrease is clearly visible for C5 because of its large
values. But in the case of factorial moments, the value of
Fm remains the same within the limit with the increase in
the pseudorapidity interval as shown in Fig. 6. Moments
obtained from the Tsallis distributions at these pseudor-
apidity intervals at various energies are compared with the
CMS experimental values and are given in Table V. It is
found that at each set of pseudorapidity intervals the values

of both the moments Cm and Fm increase with increase in
the center-of-mass energy,

ffiffiffi
s

p
, as shown in Figs. 7 and 8.

The values of the moments obtained using the Tsallis
distribution are found to be in good agreement with the
experimental values in both the cases of leptonic and
hadronic collisions. In both kinds of interactions, it is
found that the factorial moments are larger than unity,
which indicates the presence of correlations among par-
ticles and deviation from the independent production
mechanism.
In the case of leptonic interactions, it is found that the

values of normalized moments Cm and factorial moments
Fm are independent of the center-of-mass energy and
remain constant with the increase in

ffiffiffi
s

p
within energy
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FIG. 5. Cm moments obtained from the Tsallis model and its
dependence on pseudorapidity intervals jηj at ffiffiffi

s
p ¼ 0.9, 2.36,

and 7 TeV for the pp data.
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FIG. 7. The variation of Cm moments with the center-of-mass
energy at pseudorapidity intervals jηj < 0.5 and jηj < 2.4 and
comparison of the moments calculated from the Tsallis model
with the CMS experimental values [27].
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FIG. 8. The variation of Fm moments with the center-of-mass
energy at pseudorapidity intervals jηj < 0.5 and jηj < 2.4 and
comparison of the moments calculated from the Tsallis model
with the CMS experimental values [27].

TABLE IV. Fm moments calculated from the Tsallis model for center-of-mass energies,
ffiffiffi
s

p ¼ 91 to 206 GeV, for the eþe− data.

Energy
(GeV) Experimental factorial moments Tsallis factorial moments

OPAL experiment

F2 F3 F4 F5 F2 F3 F4 F5

91 1.043�0.003 1.139�0.011 1.301�0.026 1.549�0.054 1.009�0.018 1.022�0.024 1.079�0.048 1.110�0.077
133 1.052�0.002 1.181�0.024 1.402�0.064 1.748�0.133 1.025�0.051 1.069�0.229 1.125�0.247 1.187�0.010
161 1.041�0.002 1.148�0.010 1.324�0.031 1.589�0.066 1.036�0.019 1.145�0.103 1.306�0.088 1.252�0.065
172 1.041�0.052 1.135�0.043 1.287�0.049 1.513�0.036 1.047�0.072 1.157�0.092 1.332�0.109 1.352�0.133
183 1.032�0.025 1.140�0.029 1.321�0.033 1.594�0.037 1.051�0.101 1.173�0.041 1.368�0.072 1.373�0.014
189 1.026�0.018 1.126�0.017 1.288�0.012 1.528�0.004 1.056�0.031 1.175�0.011 1.373�0.026 1.381�0.233

L3 experiment
130.1 1.039�0.005 1.123�0.018 1.261�0.041 1.465�0.084 1.034�0.009 1.101�0.072 1.199�0.061 1.329�0.117
136.1 1.054�0.002 1.167�0.008 1.352�0.018 1.624�0.040 1.041�0.009 1.086�0.134 1.162�0.082 1.388�0.133
172.3 1.057�0.005 1.181�0.014 1.384�0.025 1.691�0.035 1.045�0.003 1.142�0.006 1.278�0.014 1.502�0.023
182.8 1.053�0.003 1.167�0.017 1.354�0.026 1.633�0.064 1.048�0.010 1.145�0.009 1.291�0.010 1.515�0.035
188.6 1.049�0.005 1.154�0.019 1.322�0.048 1.571�0.089 1.050�0.021 1.146�0.008 1.301�0.003 1.522�0.061
194.4 1.056�0.006 1.176�0.018 1.374�0.036 1.670�0.061 1.051�0.005 1.152�0.046 1.307�0.017 1.547�0.009
200.2 1.057�0.005 1.178�0.016 1.378�0.032 1.676�0.056 1.053�0.013 1.158�0.011 1.319�0.021 1.552�0.030
206.2 1.056�0.006 1.175�0.018 1.372�0.035 1.665�0.063 1.056�0.012 1.164�0.052 1.334�0.033 1.572�0.039

MOMENTS OF MULTIPLICITY DISTRIBUTIONS USING … PHYS. REV. D 99, 096016 (2019)

096016-7



range of 91–206 GeV. However, in the case of hadronic
interactions, both types of moments increase with the
increase in

ffiffiffi
s

p
, whereby the range of

ffiffiffi
s

p
extends from

900 GeV to 7 TeV. These results clearly point toward an
understanding of the behavior of produced particles. This
also indicates the violation of KNO scaling at larger
energies. But no violation of KNO scaling is observed at
lower energies as indicated by the study of leptonic
interactions.

IV. UNCERTAINTIES ON MOMENTS

Errors on the moments for a given normalized proba-
bility distribution, PN (i.e.,

P
NPN ¼ 1), having an uncer-

tainty eN can be calculated by the method of partial
derivatives. This method is consistent with the assumption
that errors on the individual bins are assumed to be
uncorrelated. We follow this method as described in
Ref. [34],

∂Cm

∂PN
¼ NmhNi − hNmimN

hNimþ1
ð20Þ

∂Fm

∂PN
¼ NðN − 1Þ…:ðN −mþ 1ÞhNi

hNimþ1

−
hNðN − 1Þ……ðN −mþ 1ÞimN

hNimþ1
: ð21Þ

The total is then

E2
m ¼

X
N

�∂Xm

∂PN
eN

�
2

; ð22Þ

where Xm is Cm or Fm.

V. CONCLUSION

Detailed analysis of the data on electron-positron anni-
hilation at energies

ffiffiffi
s

p ¼ 91 to 206 GeVand proton-proton
collisions at

ffiffiffi
s

p ¼ 0.9 to 7 TeV in various pseudorapidity
regions has been done by using the Tsallis distribution. The
particle production in such interactions is not uncorrelated.
The dynamical fluctuations arising due to random cascading
processes in particle production can lead to correlations
among the particles. The study of higher-order moments of
the distributions serves as a very important tool to under-
stand these correlations. The deviation from independent
production can be understood if the factorial moments are
larger or smaller than unity. Theviolation or holding ofKNO
scaling at higher energies can also be studied and understood
correctly by using the normalized moments. The KNO
scaling implies the energy independence of these moments,
whereas energy dependence of these moments reflects the
KNO scaling violation. The normalized and factorial
moments have been calculated using the Tsallis model
and compared with the experimental values. The obtained
values of moments are found to be in good agreement with
the experimental values, within experimental uncertainties.
The values obtained from the Tsallis gas model confirm the

TABLE V. Cm and Fm moments calculated from the Tsallis model for different pseudorapidity intervals at center-of-mass energy,ffiffiffi
s

p ¼ 0.9, 2.36, and 7 TeV, for the pp data.

Pseudorapidity
interval Tsallis reduced moments Tsallis factorial momentsffiffiffi

s
p ¼ 0.9 TeV

jηj C2 C3 C4 C5 F2 F3 F4 F5

0.5 1.59� 0.02 3.49� 0.14 9.59� 0.83 31.15� 4.49 1.37� 0.01 2.54� 0.01 5.79� 0.21 15.27� 2.40
1.0 1.55� 0.02 3.21� 0.10 8.22� 0.35 25.04� 0.55 1.42� 0.01 2.66� 0.06 6.13� 0.25 16.56� 1.02
1.5 1.53� 0.06 3.12� 0.35 7.75� 1.52 22.33� 5.17 1.45� 0.04 2.75� 0.24 6.32� 1.15 16.65� 4.12
2.0 1.51� 0.03 3.06� 0.10 7.05� 0.44 21.13� 1.97 1.46� 0.02 2.78� 0.08 6.39� 0.34 16.81� 1.43
2.4 1.49� 0.01 2.92� 0.05 6.93� 0.22 19.02� 0.85 1.44� 0.01 2.69� 0.05 6.06� 0.19 15.67� 0.70ffiffiffi

s
p ¼ 2.36 TeV

0.5 1.64� 0.03 3.71� 0.23 10.48� 1.29 34.05� 6.39 1.45� 0.01 2.88� 0.09 6.98� 0.62 19.26� 3.16
1.0 1.62� 0.04 3.59� 0.29 9.73� 0.93 30.20� 2.01 1.48� 0.02 2.95� 0.07 7.40� 0.32 20.90� 2.46
1.5 1.60� 0.06 3.46� 0.36 9.15� 1.78 27.93� 8.29 1.53� 0.04 3.15� 0.29 7.85� 1.40 22.37� 7.30
2.0 1.57� 0.05 3.27� 0.32 8.22� 1.49 23.49� 6.38 1.52� 0.05 3.04� 0.27 7.29� 1.25 19.71� 5.19
2.4 1.55� 0.01 3.12� 0.31 7.51� 1.34 20.30� 5.30 1.51� 0.06 2.93� 0.27 6.74� 1.16 17.30� 4.42ffiffiffi

s
p ¼ 7 TeV

0.5 1.65� 0.02 3.84� 0.10 11.44� 0.48 41.52� 2.54 1.52� 0.02 3.21� 0.08 8.65� 0.37 28.32� 2.20
1.0 1.62� 0.02 3.59� 0.07 10.11� 0.34 34.15� 1.70 1.52� 0.01 3.17� 0.05 8.30� 0.24 25.98� 1.18
1.5 1.73� 0.04 4.14� 0.26 12.07� 1.35 40.01� 6.72 1.68� 0.03 3.88� 0.22 10.86� 1.17 34.28� 5.63
2.0 1.71� 0.01 4.08� 0.14 11.72� 0.51 38.24� 2.84 1.69� 0.02 3.91� 0.14 10.82� 0.52 34.01� 2.35
2.4 1.69� 0.04 3.87� 0.25 10.57� 1.22 32.45� 5.57 1.67� 0.05 3.71� 0.23 9.85� 1.92 29.21� 4.95
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violation of KNO scaling as observed in the experimental
values at higher energies, but no such violations are
observed at the lower energies. Also, the average multiplic-
ity values calculated from the Tsallis model have been
compared with the experimental values and found to be in
good agreement with them. Using the Tsallis model, we
have predicted the values of average multiplicities for eþe−

collisions at
ffiffiffi
s

p ¼ 500 GeV and for pp collisions at
ffiffiffi
s

p ¼
14 TeV in the pseudorapidity region jηj < 2.4. In one of the
previous studies, the value of average multiplicity at

ffiffiffi
s

p ¼
13 TeV at pseudorapidity region jηj < 2.4was predicted by
using the Weibull model by A. Pandey et al. [24]. The hNi
value predicted by the Tsallis model at

ffiffiffi
s

p ¼ 14 TeV at

pseudorapidity interval jηj < 2.4 is found to be consistent
with the value predicted by the Weibull model [24]. The
study of moments of multiplicity distributions and depend-
ence of average multiplicity on the energy provides inter-
esting features of particle production and helps in the
understanding of the mechanism of particle production at
higher energies. It will be interesting to study the behavior of
particles produced at higher LHC energies (

ffiffiffi
s

p
> 13 TeV)

in the future with the Tsallis model.
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ship grant.

[1] E. De Wolf, J. J. Dumont, and F. Verbeure, Nucl. Phys. B87,
325 (1975).

[2] F. J. Gilman, Studies in the Natural Sciences (Springer,
Boston, MA, 1975).

[3] M. L. Mangano, Phys. Usp. 53, 109 (2010).
[4] N. Dobrotin, International Cosmic Ray Conference 10, 456

(1977).
[5] I. M. Dremin, Phys. Usp. 37, 715 (1994).
[6] I. Dremin, Phys. Lett. B 341, 95 (1994).
[7] I. M. Dremin and J. W. Gary, Phys. Rep. 349, 301 (2001).
[8] M. Althoff et al., Z. Phys. C 22, 307 (1984).
[9] K. Goulianos, Gleb Wataghin School on High Energy

Phenomenology, Campinas, Brazil, 1994, http://lss.fnal
.gov/archive/1994/conf/Conf-94-266-E.pdf.

[10] A. Capella, I. M. Dremin, V. A. Nechitailo, and J. T. T. Van,
Z. Phys. C 75, 89 (1997).

[11] M. Praszalowicz, Phys. Lett. B 704, 566 (2011).
[12] C. Tsallis, J. Stat. Phys. 52, 479 (1988).
[13] S. Sharma, M. Kaur, and S.Thakur, Int. J. Mod. Phys. E 27,

1850101 (2018).
[14] S. Sharma and M. Kaur, Phys. Rev. D 98, 034008 (2018).
[15] S. Sharma, M. Kaur, and S. Thakur, Phys. Rev. D 95,

114002 (2017).
[16] S. Sharma, M. Kaur, and Sandeep Kaur, Int. J. Mod. Phys. E

25, 1650041 (2016).

[17] M. Derrick et al., Phys. Rev. D 34, 3304 (1986).
[18] Z. Koba, H. B. Nielsen, and P. Olesen, Nucl. Phys. B40, 317

(1972).
[19] G. J. Alner et al., Phys. Lett. B 160, 199 (1985).
[20] R. E. Ansorge et al., Z. Phys. C 43, 357 (1989).
[21] J. F. Grosse-Oetringhaus and K. Reygers, J. Phys. G 37,

083001 (2010).
[22] N. Suzuki, M. Biyajima, and N. Nakajima, Phys. Rev. D 54,

3653 (1996).
[23] I. M. Dremin, arXiv:hep-ph/0404092.
[24] A. Pandey, P. Sett, and S. Dash, Phys. Rev. D 96, 074006

(2017).
[25] L. Boltzmann, Annalen der Physik 258, 291 (1872).
[26] C. E. Aguiar and T. Kodama, Physica (Amsterdam) 320A,

371 (2003).
[27] CMS Collaboration, J. High Energy Phys. 01 (2011) 79.
[28] P. D. Acton et al., Z. Phys. C 53, 539 (1992).
[29] G. Alexander et al., Z. Phys. C 72, 191 (1996).
[30] K. Ackerstaff et al., Z. Phys. C 75, 193 (1997).
[31] G. Abbiendi et al., Eur. Phys. J. C 16, 185 (2000).
[32] P. Achard et al., Phys. Rep. 399, 71 (2004).
[33] W. Thome et al., Nucl. Phys. B129, 365 (1977).
[34] J. F. Grosse-Oetringhaus and K. Reygers, J. Phys. G 37,

083001 (2010).

MOMENTS OF MULTIPLICITY DISTRIBUTIONS USING … PHYS. REV. D 99, 096016 (2019)

096016-9

https://doi.org/10.1016/0550-3213(75)90069-3
https://doi.org/10.1016/0550-3213(75)90069-3
https://doi.org/10.3367/UFNe.0180.201002a.0113
https://doi.org/10.1070/PU1994v037n08ABEH000037
https://doi.org/10.1016/0370-2693(94)01304-7
https://doi.org/10.1016/S0370-1573(00)00117-4
https://doi.org/10.1007/BF01547419
http://lss.fnal.gov/archive/1994/conf/Conf-94-266-E.pdf
http://lss.fnal.gov/archive/1994/conf/Conf-94-266-E.pdf
http://lss.fnal.gov/archive/1994/conf/Conf-94-266-E.pdf
http://lss.fnal.gov/archive/1994/conf/Conf-94-266-E.pdf
https://doi.org/10.1007/s002880050449
https://doi.org/10.1016/j.physletb.2011.09.101
https://doi.org/10.1007/BF01016429
https://doi.org/10.1142/S021830131850101X
https://doi.org/10.1142/S021830131850101X
https://doi.org/10.1103/PhysRevD.98.034008
https://doi.org/10.1103/PhysRevD.95.114002
https://doi.org/10.1103/PhysRevD.95.114002
https://doi.org/10.1142/S0218301316500415
https://doi.org/10.1142/S0218301316500415
https://doi.org/10.1103/PhysRevD.34.3304
https://doi.org/10.1016/0550-3213(72)90551-2
https://doi.org/10.1016/0550-3213(72)90551-2
https://doi.org/10.1016/0370-2693(85)91492-3
https://doi.org/10.1007/BF01506531
https://doi.org/10.1088/0954-3899/37/8/083001
https://doi.org/10.1088/0954-3899/37/8/083001
https://doi.org/10.1103/PhysRevD.54.3653
https://doi.org/10.1103/PhysRevD.54.3653
http://arXiv.org/abs/hep-ph/0404092
https://doi.org/10.1103/PhysRevD.96.074006
https://doi.org/10.1103/PhysRevD.96.074006
https://doi.org/10.1002/andp.18842580616
https://doi.org/10.1016/S0378-4371(02)01656-4
https://doi.org/10.1016/S0378-4371(02)01656-4
https://doi.org/10.1007/JHEP01(2011)079
https://doi.org/10.1007/BF01559731
https://doi.org/10.1007/s002880050237
https://doi.org/10.1007/s002880050462
https://doi.org/10.1007/s100520050015
https://doi.org/10.1016/j.physrep.2004.07.002
https://doi.org/10.1016/0550-3213(77)90122-5
https://doi.org/10.1088/0954-3899/37/8/083001
https://doi.org/10.1088/0954-3899/37/8/083001

