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The exact Foldy-Wouthuysen transformation method is generalized here. In principle, it is not possible
to construct the exact Foldy-Wouthuysen transformation for any Hamiltonian. The transformation
conditions are the same, but the involution operator has a new form. We took a particular example
and constructed explicitly the new involution operator that allows one to perform the transformation. We
treat the case of the Hamiltonian with 160 possible CPT-Lorentz breaking terms, using this new technique.
The transformation was performed, and physics analysis of the equations of motion is shown.
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I. INTRODUCTION

The study of the possible candidates to break CPT-
Lorentz symmetry is very important nowadays [1]. There are
a large number of studies over the last ten years that show the
possible experiments that could give the more prominent
physical effect to measure one of these fields [2]. Until now,
none of them has been directly observed. The most promi-
nent theoretical approaches that consider these cases are
based on indirect physical effects, as is shown in Refs. [3,4].
In other words, the search for thesemanifestations starts with
an action that considers at least two independent fields, as
one can see in recent papers [5]. For the nonrelativistic
scenario, the results are well established in Refs. [6–9], for
the torsion field, for example. It is very interesting to see [10]
that the torsion field could be generated from the symmetry
breaking. Some recent theoretical studies have been devel-
oped with the same phenomenological background [11–14].
InRef. [15], a relativistic description of aDirac particle in the
torsion field has been fulfilled.
Another possible phenomenological approach to this

problem can be constructed step by step by searching for
new terms in the Hamiltonian that describes this situation.
Thinking this way, it is possible to find, in the transformed

Hamiltonian, a term with explicit mix between a known
external field and one of the CPT-Lorentz terms. The most
interesting scenario is found when the external field has an
amplitude which is big enough to compensate the weakness
of the CPT-Lorentz term.
The idea is the same as that shown in Ref. [16], in which

the strong magnetic field could, in principle, change the
trajectory of the Dirac particle that interacts with gravita-
tional waves. It is important to take into account the
corrections, made with canonical Foldy-Wouthuysen trans-
formation (FWT), to these results that are shown in
Ref. [17]. The massive linearized gravity is studied in
Ref. [18], and the general relativistic description of a Dirac
particle in a gravitational wave and a magnetic field has
been carried out (with canonical FWT) in Ref. [19],
wherein some possible experiments that could measure
indirect effects of gravitational waves on Dirac fermions are
indicated. However, solving the Dirac equation for the
general case is not a simple procedure [20]. It is well known
in the literature that working with the exact Foldy-
Wouthuysen transformation (EFWT) is a more prominent
approach to interpreting a Dirac Hamiltonian than the
canonical transformation [21,22]. But this is true not only
for the fact that it can give us new terms but also that it is a
faster and more economic (in terms of algebraic calcu-
lation) procedure [16,23–25]. One can see this transforma-
tion as an improvement of the usual FWT.
Let us perform a comparison of the two procedures. It is

possible to see that in the usual FWT the multiplication on
each step (on each order on 1=m) by the term that makes the
Hamiltonian even generates a maximum of 1þ 2n even
terms, where n represents the number of terms of the
previous Hamiltonian (see, for example, pp. 48–51 in
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Ref. [26]). The maximum number of terms in the nth
Hamiltonian is straightforwardly obtained by the fact that
this is an expansion in power series of an operator. The
factor 2 on 1þ 2n expression is obtained in case in which it
does not commute with all original terms.
On the other hand, the EFWTs impose the multiplication

of all terms of the Hamiltonian by themselves. Analogous
arguments give us the maximum of 1þ 2n2 on the expanded
Hamiltonian. If the parameter of expansion here is also taken
to be 1=m, one can see that the possibility of having new
terms in comparison with the usual method is greater. In
many particular known cases [24,27,28], the anticommuta-
tors on both cases are such that the results are the same. But it
is not thegeneral case. Thiswas explicitly shown inRef. [21].
In this paper, we show another case in which it happens.
In Ref. [29], the author performs in a very didactic way

the formal comparison between the two methods. He also
describes which is the most efficient method for each
possible application. The explicit calculations are per-
formed in the series of three works in which the generality
for the exact procedure becomes evident [30–32].
References [33–35] are a series of papers in which the

EFWT conditions are not satisfied. In these articles, the
study of the CPT-Lorentz violating terms is used as a
background for this transformation. It is possible to see in
Ref. [36] the diagonalized Hamiltonian for all possible
terms that allows this procedure.
Using the result of Ref. [35], we develop an algorithm to

construct a generalized involution operator for the EFWT.
We show a method to construct the explicit form of the
operator that allows the Hamiltonian to be diagonalized. In
some sense, the logic here is inverse: we do not test if it is
possible to perform the EFWT, but we search for the
operator that gives us this possibility.
By showing the explicit analytic form of this operator,

the EFWT usual algorithm can be applied to the initial
Hamiltonian. We construct the general operator, and the

complete case of CPT-Lorentz interacting with the Dirac
field [20] is studied here using the EFWT technique. We
also compare the result with the usual transformation, and
two new terms show up.

II. COMPLETE HAMILTONIAN FOR A DIRAC
THEORY WITH CPT-LORENTZ INVARIANCE

VIOLATION

In Ref. [25], the authors present a table that specifies the
80 cases ofCPT and Lorentz violating terms in themodified
Dirac equation. A complete study of the EFWT, taking into
account these 80 cases, is presented in Ref. [36].
However, it should be noted that a sort of terms was

not considered in Refs. [25,36]. To perform the EFWT
study of the complete set of cases, it is necessary for the
Hamiltonian to admit the involution operator [21,24,27,
28,36]. In this work, we present a new table corresponding
to all the CPT-Lorentz breaking terms. The main point is
the search for an involution operator J, which satisfies the
anticommutation relation,

JH þHJ ¼ 0; ð1Þ
for the complete set of terms, presented in Table I.
The quantities aμ, bμ, m5, cμν, dμν, eμ, fμ, gμνλ, and Hμν

represent the CPT-Lorentz violating parameters [37–39].
We adopt notations as described in Ref. [26] for Dirac
matrices and the useful notations for Pi, used in Ref. [25].
The terms highlighted in bold font in Table I, correspond

to the empty spaces, in the table presented in Ref. [25].
These terms do not obey the anticommutation relation (1),
if one takes into account the following form of the
involution operator:

J ¼ iγ5γ0: ð2Þ
The set of terms that obey relation (1), considering the
involution operator (2), is presented in Ref. [25]. From now

TABLE I. Interaction coefficients.

m al b0 Hlj m5 bl a0 H0μ

P�
νeν P�

νclν P�
νd0ν P�

νgljν P�
νfν P�

νdlν P�
νc0ν P�

νg0μν

P̄l P̄0

γ0 1 γl −γ0γ5 1
2
σlj iγ5 γ5γl γ0 1

2 σ
0μ

c00 −γ0 −αl γ5 − 1
2
γ0σlj −iγ0γ5 γ5αl −1 − 1

2 γ
0σ0μ

f0 iγ5 iγ5γl iγ0 i
2
γ5σlj −1 iγl iγ5γ0 i

2 γ
5σ0μ

di0 −iγiγ5 iγiγ5γl −αi − 1
2
γiγ5σlj iγi γiγl γ5αi 1

2 γ
iγ5σ0μ

gi00 − i
2
αi − i

2
αiγl − i

2
γiγ5 − 1

4
αiσlj 1

2 α
iγ5 − i

2α
iγ5γl − i

2α
iγ0 − i

4α
iσ0μ

d00 −γ0γ5 γ5αl −1 1
2 γ5γ0σ

lj −iγ0 −αl −γ5 − 1
2
σ0μγ0γ5

e0 −1 −γl −γ5γ0 − 1
2 σ

lj −iγ5 −γ5γl −γ0 − 1
2
σ0μ

ci0 γi γiγl γ5αi 1
2 γ

iσlj iγiγ5 −iγiγ5γl −αi 1
2
γiσ0μ

gik0 − 1
2σ

ik − 1
2 σ

ikγl 1
2σ

ikγ0γ5 − 1
4 σ

ikσlj − i
2
σikγ5 − 1

2
σikγ5γl − 1

2
σikγ0 − 1

4
σijσ0μ
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on, we shall call the quantities in bold font new terms and
the quantities that are not in bold font old terms.
To understand how the Hamiltonian can be obtained,

directly from Table I, let us present a simple example. The
rule is based on the product of the line terms by the terms in
the rows. We shall consider, for instance, the first line times
the first row: γ0 × 1 ×m ¼ γ0m. We get, in this case, the
free Dirac equation term, which is the most trivial one.
Let us consider another example. The product of the

sixth line by the first row. The terms inside Table I must
also be taken into account. Such multiplication gives two
terms:

d00 × ð−γ0γ5Þ ×m ¼ −md00γ0γ5 and

d00 × ð−γ0γ5Þ × P�
νeν ¼ −md00γ0γ5P�

νeν: ð3Þ

Observe that both of them break C, P, PT, and CT [2,39].
It is remarkable to say that the study of this kind of terms,
with EFWT considerations, depends on the correct choice
of the involution operator, such that relation (1) is
contemplated.
The general form of the involution operator [24,40] has

the structure

Ĵ ¼ M × F̂; ð4Þ

where M and F̂ are operators. They act on the matrices and
functions space, respectively. In particular, the choices
M ¼ iγ5γ0 and F̂ ¼ 1̂ corresponds to the usual operator
used in previous works [25,36]. However, as already
mentioned above, the new terms in Table I do not satisfy
the anticommutation relation (1) for such a choice. The
main point here is the following: the choice of an
appropriate involution operator, for a specific term of
Table I, involves the knowledge of exactly what symmetry
is being broken (for each term of Table I).
An interesting case is the vectorial part of the torsion

field, bl. As one can check [2,39], this term breaks T, CT,
PT, and CPT. In the Hamiltonian, the torsion field is
founded by the product of line 0 by row 6. It gives blγ0γ5γl.
It has been shown that M ¼ iγ5γ0 and F̂ ¼ T represents a
specific choice for the involution operator, such that the
anticommutation relation is obeyed [36]. However, it is not
the only possible choice. In particular, F̂ ¼ CT, F̂ ¼ PT,
and F̂ ¼ CPT would work equally well.
To perform the EFWT for all the terms in Table I, we

present in the next section a proposal of a new involution
operator that anticommutes with all the terms of Table I.

III. INVOLUTION OPERATOR,
AN APPROPRIATE CHOICE

We begin with an appropriate representation of the
Hamiltonian with CPT-Lorentz breaking terms:

H ¼ ϕA
1HABϕ

B
2 : ð5Þ

Throughout this paper, the quantities with latin indices
A and B are only associated with possible positions in
Table I. We would like to emphasize that these indices are
not space-time indices. The possible values for A are
running horizontally in Table I, from 0 to 8. In the case
of B, the possible values are running vertically, from 0 to 9.
In addition, the quantities ϕA

1 and ϕB
2 are the fields that

appear in the top row and in the left column of Table I,
respectively, and the quantity HAB represents the terms
contained in the cells of Table I.
As shall be better understood in the next section, the

EFWTworks if, and only if, one can write the Hamiltonian
in the form of Eq. (5). It may seem cumbersome, at first
sight, but it is not. Let us consider an example. The choice
A ¼ 0 and B ¼ 6 (first column and the seventh row,
respectively) leads us to ϕ0

1 ¼ mþ P�
νeν, ϕ6

2 ¼ d00, and
H0;6 ¼ −γ0γ5. It gives exactly the two terms described
in Eq. (3).
Taking into account these considerations, we present, as

a next step, an involution operator that anticommutes with
the complete set of terms of the Hamiltonian (5),

Ĵ ¼ ðiγ5γ0Þ × ðCO0
ABPO00

ABTO000
ABÞθIK ; ð6Þ

where C, P, and T are the known charge, parity, and time
operators, respectively [2,39]. Observe that Eq. (6) obeys
the structure of Eq. (4), with the M and F̂ choice

M ¼ iγ5γ0 and F̂ ¼ ðCO0
ABPO00

ABTO000
ABÞθIK ; ð7Þ

where we define

I ¼ A − 5 and K ¼ B − 6: ð8Þ

The quantity θIK is defined in order to assume the value 0
or 1. If I × K > 0, θIK ¼ 0. On the other hand, if
I × K < 0, θIK ¼ 1. Actually, the product between I and
K tells us if we are dealing with the new or old terms of
Table I. The quantities OAB also assume the 0 or 1 value.
They are determined by the previous knowledge of which
symmetry is being broken.
Let us consider an example, by setting A ¼ 6 and B ¼ 0.

Then, ϕ6
1 ¼ bl þ P�

νdln, ϕ0
2 ¼ γ0, and H6;0 ¼ γ5γl.

According to Eq. (5), the Hamiltonian for this case is
given by

H ¼ γ0γ5γlðbl þ P�
νdlnÞ: ð9Þ

The next step is the choice of the OAB quantities. In
Refs. [2,39], there is a table with the properties of operators
for Lorentz violation in QED. According to this table,
one can consider that O00

AB ¼ 0 and O0
AB ¼ O000

AB ¼ 1.
Observe that from Eq. (8) I ¼ 1,K ¼ −6, and I × K ¼ −6;
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for this reason, we have θ6;0 ¼ 1. With these consider-
ations, the corresponding involution operator is

Ĵ ¼ iγ5γ0PT: ð10Þ

As one can check, the anticommutation relation is obeyed
when the quantities H and Ĵ are described by the relations
(9) and (10), respectively.
One can see that for the old terms of Table I the product

between I and K is always positive and the quantity θ in
Eq. (6) is equal to zero. Consequently, in what concerns the
old part of Table I, we shall have, as expected, M ¼ iγ5γ0

and F̂ ¼ 1̂.

IV. EXACT TRANSFORMATION WITH CPT

We present in this section the EFWT of the Hamiltonian
for a free spin-1=2 Dirac fermion Ψ of mass m in the
standard model extension [3,20]. Let us begin with the
following Hamiltonian:

H ¼ m

�
γ0 − γ0c00 − e0 − dj0γ5γj þ

1

2
gik0σik

�

þ Pk

�
−αk þ 2d0kγ5 − cjkαj þ c00αk þ ifkγ5γ0

− 2g0jkγ0σ0j − 2c0k þ djkγ5αj − d00γ5αk

− ekγ0 þ
1

2
γ0σijgijk − igi00γkαi

�
þ ajαj

− b0γ5 þ iH0jγ
j − bjγ5αj −

1

2
γ0σijHij: ð11Þ

This Hamiltonian can be constructed directly from Table I
presented in the last section. However, it is not the most
complete Hamiltonian that one can extract from Table I.
The main point of this work is the development of the
operator described in (7). As it is being used for the first
time, it is worthwhile to deal with a Hamiltonian which we
could know at least the qualitative diagonalized result. On
the other hand, it would be very interesting from the
physical point of view if the new EFWT generates
unexpected terms in comparison with the usual trans-
formation for the same action. We decide to pick just
the terms represented in Eq. (11) because in Ref. [20] the
authors perform the usual FWT, taking into account this
Hamiltonian. Performing the transformation for it, we
could validate our algorithm and also search for physical
quantities mixed in a new form. The transformed
Hamiltonian (with usual FWT) is the [41]

H̃tr¼βmþ 1

2m
fð1þ ÃÞ½ðδijþ B̃ijÞP̄iþ C̃j�2þD̃g; ð12Þ

where

Ã ¼ −2c00γ0;

B̃ij ¼
1

2
½4ðd0i þ di0Þγ5γj − 4cijγ0

þ 4ϵlmjðgl0i þ gli0Þγ5γ0γm�;

C̃j ¼
1

2
½−4mðc0j þ cj0Þ þ 4mdijγ5γ0γi − 4md00γ5γ0γj

− 4mejγ0 þ 2mϵklmgkljγ5γm − 4mϵijlgi00γ5γl

þ 4ajγ0 − 4b0γ5γj þ 4ϵjklH0kγ
5γ0γl�;

D̃ ¼ −2m2c00γ0 − 2m2e0 − 2m2dj0γ5γj

−m2ϵiklgik0γ5γ0γl þ 2ma0

− 2mbjγ5γ0γj þmϵijlHijγ
5γl: ð13Þ

Besides that EWFT is more economic in algebra, it presents
more detailed information with respect to the nonrelativistic
approximation [42–45].
For a first step in performing the EFWT, we calculate the

squared Hamiltonian H2. To simplify the algebra, we shall
write this quantity as

H2 ¼ m2

�
1þ H̄2

m2

�
; ð14Þ

where H̄2 is given by

H̄2 ¼ ð1þ ĀÞ½ðδij þ B̄ijÞP̄i þ C̄j�2 þ D̄: ð15Þ

The quantities Ā, B̄ij, C̄j, and D̄ are written in the
form

Ā ¼ −2c00 − d00γ5 þ 2igi00γ0αi;

B̄ij ¼
1

2
½−8d0iγ5αj − 4cij þ 8g0liγ0ϵjlmΣm

þ 8c0iαj þ 4dijγ5 þ 4glmiϵ
lmjγ0γ5

þ 4igiljγ0γ5Σl þ 4igi00γ0αj�;

C̄j ¼
1

2
½−8mγ0c0j þ 4mdijγ0γ5αi − 4md00γ0γ5αj

− 4mej þ 2mgkljσkl − 4imgj00 − 4mgi00ϵijlΣl

þ 4me0αj þ 4imdk0γ0γ5ϵjklΣl − 2mgil0ϵiljγ5

þ 4aj þ 4b0γ5αj − 4H0kγ
0ϵjklΣl − 4a0αj

− 4bjγ5 − 4Hklϵ
kljγ0γ5 þ 4iHljγ

0γ5Σl�;
D̄ ¼ −2m2c00 − 2m2γ0e0 þ 2m2dj0γ5αj

þm2γ0σikgik0 þ 2mγ0a0 − 2mγ0γ5αjbj −mσijHij

þ ð1 − 2c00 þ 2d00γ5 − 2igi00γ0αiÞ
iℏe
mc

ΣkBk: ð16Þ
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There are, in the last equation, even and odd terms. In the
FW context, even and odd operators are written as

MðEVENÞ ¼
1

2
ðM þ γ0Mγ0Þ

MðODDÞ ¼
1

2
ðM − γ0Mγ0Þ: ð17Þ

In the situation in which there are many odd terms, one
must take into account the relation [36]

Htr ¼ Ĵ
1

2
ð

ffiffiffiffiffiffi
H2

p
− γ0

ffiffiffiffiffiffi
H2

p
γ0Þ þ γ0

1

2
ð

ffiffiffiffiffiffi
H2

p
þ γ0

ffiffiffiffiffiffi
H2

p
γ0Þ;
ð18Þ

where Ĵ is given by Eq. (6). The transformed Hamiltonian
is denoted by Htr, which presents only even terms. For this
reason,Htr does not mix spinor components. Naturally, the
calculation of

ffiffiffiffiffiffi
H2

p
should be performed, and the result

must be inserted in Eq. (18). Let us consider that m2 ≫ H̄2

in Eq. (14), such that

ffiffiffiffiffi
H

p
¼ m

�
1þ H̄2

2m2

�
: ð19Þ

After some algebra, the transformed Hamiltonian is given
by

Htr ¼ γ0mþ 1

2m
fð1þ AtrÞ½ðδij þ Btr

ijÞP̄i þ Ctr
j � þDtrg;

ð20Þ
where

Atr ¼ −2γ0c00 − 2iγ0d00 þ 2gi00Σi;

Btr
ij ¼

1

2
½8d0iγ0Σj − 4γ0cij − 8g0liϵjlmΣm − 8ic0iγ0Σj

þ 4iγ0dij þ 4iglmiϵ
lmj − 4giljΣl þ 4gi00Σi�;

Ctr
j ¼ 1

2
½8mc0j þ 4mdijΣi − 4md00Σj − 4mγ0ej

þ 2mgkljγ0ϵklmΣm − 4imgj00γ0 − 4mgi00γ0ϵijlΣl

− 4ime0γ0Σj − 4mdk0ϵjklΣl − 2imgil0ϵiljγ0

þ 4γ0aj − 4b0γ0Σj þ 4H0kϵ
jklΣl þ 4ia0γ0Σj

− 4ibjγ0 − 4iϵkljHkl − 4HljΣl�;
Dtr ¼ −2m2γ0c00 þ 2m2e0 − 2m2dj0γ0Σj

−m2gik0ϵiklΣl − 2ma0 − 2mbjΣj −mγ0ϵijlHijΣl

þ γ0ð1þ 2c00 þ 2id00 − 2gi00γ0ΣiÞ iℏe
mc

ΣkBk: ð21Þ

We have considered Eq. (11) as the starting point, in order
to obtain the transformed Hamiltonian (21). It is possible to
see that there are nine new terms in (21) when compared to
(13). The new terms are one in the quantity Ā related to the
coefficient d00; two in B̄ij related to the coefficients c0i and
dij; four in C̄j related to the coefficients a0, bj, e0, and gil0;
and two terms in D̄ related to the coefficients c00 and d00
with the magnetic field. Nevertheless, the exact process has
some advantages when compared to the usual one, as
commented above. For instance, the new terms that appear
in D are relevant when the bound state of the theory is
considered.

V. BOUND STATE OF THE THEORY

The determination of which kind of experimental tests,
like the Penning trap, clock-comparison, torsion pendulum,
and others (see Refs. [46–50], and references cited therein),
has a significant relevance in the scope of the standard
model extension (SME) [3]. To determine the kind of
experimental test that should be performed, considering the
CPT-Lorentz violation terms, presented in the Dirac
equation, one should derive the bound state of the theory.
In Ref. [2], the authors present a table with a set of many
possible bound states. It is expected that the bound
associated with transformed Hamiltonian (21) could be
found in such a table. Hence, with the knowledge of the
bound, in combination with its magnitude and the original
Hamiltonian, one can determine the kind of appropriate
experimental test should be performed (see Refs. [3,51–53]
for a theoretical framework about CPT-Lorentz break-
ing tests).
In this section, we derive the bound state of the

Hamiltonian (21). Let us begin by taking into account
the two-component spinor

ψ ¼
�
ϕ

χ

�
exp−imt : ð22Þ

From this point, one can write, after some algebra, the
Dirac equation in the Schrödinger form i∂tψ ¼ Hψ . With
these considerations, the Hamiltonian to ϕ is written as

H ¼ 1

2m
fð1þ AÞ½ðδij þ BijÞP̄i þ Cj�2 þDg; ð23Þ

where
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A ¼ −2c00 − 2id00 þ 2gi00σi;

Bij ¼ 4d0iσj − 2cij − 4g0liϵjlmσm − 4ic0iσj

þ 2idij þ 2iglmiϵ
lmj − 2giljσl þ 2gi00σi;

Cj ¼ 4mc0j þ 2mdijσi − 2md00σj − 2mej

þmgkljϵklmσm − 2imgj00 − 2mgi00ϵijlσl

− 2ime0σj − 2mdk0ϵjklσl − imgil0ϵilj

þ 2aj − 2b0σj þ 2H0kϵ
jklσl þ 2ia0σj

− 2ibj − 2iϵkljHkl − 2Hljσ
l;

D ¼ −2m2c00 þ 2m2e0 − 2m2dj0σj

−m2gik0ϵiklσl − 2ma0 − 2mbjσj −mϵijlHijσl

þ ½1þ 2c00 þ 2id00 − 2gi00σi�
iℏe
mc

σkBk: ð24Þ

The bound state of the Hamiltonian (21) can be calculated
by taking into account the Lorentz violating potential V,
which corresponds to the term D in the last equation.
Actually, this potential obeys the relation [47]

V ¼ −b̃jσj; ð25Þ

where σ represents the spin matrices. From this point, one
can calculate the bound state of the theory:

b̃j ¼ bj þ
1

2
ϵlmjHlm þmdj0 þ

1

2
mϵlmjglm0

− ½1þ 2c00 þ 2id00 − 2gi00σi�
iℏe
2m2c

Bj: ð26Þ

As was expected, this bound state is a specific combination
of two parts related to the SME coefficients. The first part
includes the coefficients bj, Hlm, dj0, and glm0, and the
bound is based on atomic clock and other nonrelativistic
experiments [54] that can involve a maser/magnetometer
(see, for example, Table VII in Ref. [2]). In the second part,
there is the presence of a magnetic field, which can be a
remarkable and very important result from the experimental
point of view. As is known, the external fields in the
Eq. (26) are very weak. However, the modulus of Bmay be
sufficiently high, in order to compensate the weakness of
the interactions c00, d00, and gi00. In another words, with a

strong enough magnetic field, one can have indications, in
principle, of the kind of motion generated by the external
field commented above. It is an indirect way of performing
measurements of such weak external fields.

VI. CONCLUSIONS AND DISCUSSIONS

The exact Foldy-Wouthuysen transformation was per-
formed in the context of a Dirac field interacting with many
possible external fields associated with CPT-Lorentz
violation.
The first result of the work is written in the form of

Table I, representing the Hamiltonian with the complete set
CPT-Lorentz violating terms in the Dirac equation. In the
table, the terms highlighted in bold font do not anticom-
mute with the usual involution operator (2).
Another result of the work is the appropriate involution

operator, given by Eq. (6), such that the anticommutation
relation with the Hamiltonian of the problem is achieved.
Actually, Eq. (6) introduces the new possibility of perform-
ing EFWT. From now on, a large class of Hamiltonians
may admit the exact transformation, since the new invo-
lution operator in Eq. (6) is used.
In Sec. IV, the usual EFWT algorithm was applied to the

initial Hamiltonian, and the exact transformation was
performed. As was expected, the EWFT approach pre-
sented a transformed Hamiltonian (13) with additional
terms, when compared to the Hamiltonian (21), in which
the usual FWT was used.
In the last section, we derived the bound state of the

theory, given by Eq. (26). It is worth mentioning that the
possibility of the weakness of CPT-Lorentz terms could be
compensated by the presence of a strong magnetic field.
Thus, one can understand the particle behavior due to the
interactions with external field; it gives the possibility to
measure the external fields in an indirect way.
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