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We consider the higher-derivative Lorentz-breaking extension of QED, where the new terms are the
Myers-Pospelov-like ones in gauge and spinor sectors, and the higher—derivative Carroll-Field-Jackiw
term. For this theory, we study its tree-level dynamics, discuss the dispersion relation, and present one more
scheme for its perturbative generation, including the finite-temperature case. Also, we develop a method to
study perturbative unitarity based on consistent rotation of the theory to Euclidean space. We use this
method to verify explicitly that for special choices of the Lorentz-breaking vector the unitarity is preserved
at the one-loop level, even in the presence of higher time derivatives.
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I. INTRODUCTION

Formulation of the Lorentz-breaking extension of the
standard model called attention to studies of Lorentz-
breaking extensions for many field theory models and, first
of all, for QED [1]. Conclusions obtained by treating
different aspects of various extensions of QED in dozens
of papers became paradigmatic results for Lorentz-breaking
theories in general. Among the most important directions of
their study, one can emphasize searches of exact solutions,
canonical quantization, and calculations of quantum cor-
rections. These studies have allowed us to put strong bounds
on Lorentz-violating quantum field theory models [2].
Within this context, an important role is naturally played
by higher-derivative Lorentz-breaking extensions of QED.
Indeed, it is well known that an effective action is nonlocal
and can be represented in the form of the derivative
expansion. Moreover, the higher-derivative terms naturally
emerge within the string context [3]. Therefore, one
naturally faces a problem of studying different issues related
to higher-derivative Lorentz-breaking extensions of QED.
The first step in such a study has been carried out in Ref. [4],
in which the so-called Myers-Pospelov (MP) term, that is,
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the first higher-derivative Lorentz-breaking term in QED,
has been proposed. This term has attracted great interest due
to the fact that a special choice of the Lorentz-breaking
vector allows us to rule out the higher time derivatives from
this term, thus avoiding unitarity breaking, which is known
to be the main problem of higher-derivative theories.
A number of studies of unitarity issues for QED with the
additive MP term have been performed in Ref. [5]. Some
other tree-level results for this theory can be found in
Ref. [6], and its phenomenological applications can be
found in Ref. [7]. Further, the higher-derivative terms were
shown to arise as quantum corrections, first for the case in
which the Lorentz symmetry breaking is introduced through
the third-rank constant tensor [8] (which for a certain choice
of this tensor yields the higher-derivative Carroll-Field-
Jackiw (CFJ)-like term discussed in Refs. [9,10]) and,
second, for the case in which the Lorentz symmetry
breaking is introduced through a constant vector, with
the nonminimal coupling present [11]. It was shown that
in these cases the resulting higher-derivative terms are finite.
Therefore, one can naturally establish the questions, first
about other possible schemes allowing us to generate the
higher-derivative Lorentz-breaking terms and, second,
about the tree-level behavior of the QED with additive
higher-derivative Lorentz-breaking terms, which clearly
would modify propagators and ultraviolet behavior of the
theory. In this paper, we address namely these questions. To
be more precise, in this paper, we introduce the higher-
derivative terms in the gauge sector and discuss the impacts
of higher derivatives for the propagator and unitarity.

The structure of this paper is as follows. In Sec. II, we
introduce the classical action of the gauge sector of the
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Lorentz-breaking extended QED with higher derivatives. In
Sec. III, we carry out the one-loop calculation of the higher-
derivative Lorentz-breaking terms in the gauge sector with
the use of the new coupling, both at zero and finite
temperatures. In Sec. IV, we discuss the related unitarity
issues and explicitly demonstrate that, even in the presence
of the higher time derivatives, unitarity is preserved.
Finally, in Sec. V, we summarize our results.

II. CLASSICAL ACTION AND
DISPERSION RELATIONS

Let us consider the higher-derivative (HD) extension of
QED looking like

1 1
LHD = ——F FH — Mé‘ﬂ#wluﬂAﬂ(Cl (M . 8)2 - CZM2D)FI//1'

47
(1)

Here, u, is a dimensionless vector; M is a mass scale, which
is typically suggested to be of the order of the Planck mass
[4]; and ¢; and ¢, are some dimensionless numbers. The
number ¢; accompanies the Myers-Pospelov term [4], and
the number ¢, accompanies the higher-derivative CFJ term
[10]. We note that within many schemes of calculating the
loop corrections both these terms arise, see, for example,
Ref. [11]. We note that both these terms are CPT odd, and
they represent themselves as specific particular examples of
higher-derivative Lorentz-breaking extensions of the gauge
sector discussed in details in Ref. [12].

Since this theory is gauge invariant, we can impose the
usual Feynman gauge, which does not affect the higher-
derivative terms. The resulting quadratic Lagrangian for the
essentially transversal A, will be given by the expression

1
L=SAM"A, 2)

with
A = Ot 4 oy 3
=Ll +M € Uug0,, (3)

where we introduced the notation X = ¢,u*] — ¢;(u - 9)°.
As a result, one will have just the propagator, the explicit
form of which is

G (x = x') = [Ay, + Aquyu; + Azu, 0 + Aqu;0,
+ A58va/l + A6€Mp5u68p]54 (x - x/)' (4)

Defining

1632

D =u’0 - (u-0), o

0 =¥

D, (5)

we get

(| 1632
Al = —, A2 — _T’
0 o
1622(u - 9)
A=Ay = — 7
3 4 MZQD
4T Au? 16Z%u? 4%
As = = - Ag = ———.
ST MO M*o0’ N V75) (6)

Throughout this paper, we are using the definition of the
Levi-Civita tensor €123 = —¢;;,3 = 1.
In momentum space, we write

1 u-p
G,(p)= o) [—pzm -a? <um —(p—z)(uym +up,)
u? .
+?pupﬂ> + alevl/)o'uapp] ’ (7)

where

and Q(p) and Z(p) are just the momentum space counter-
parts of the same expressions. That is,

O(p) = (p*)* — a*D(p). )
with
D(p) = (u-p)* —u’p*. (10)

We note that this propagator involves the contributions
asymptotically behaving like é, which indicates that the
UV behavior is the same as in usual theories without higher
derivatives (for example, the term A;#x,, asymptotically
behaves as kiz), and renormalization properties will not be
improved compared with the usual QED. The similar
situation occurs in three-dimensional QED with higher-
derivative CFJ term Kef‘”Aﬂay[lA 2. where one has

2
Ny k“0,0,
(v ;wﬂa -1 _ vp vVp
(B0 + xe*0,)] O(1 +<0) ' O(1 + £0)
K€, 0°
O(1 +«*00)

Here, the term proportional to 9,0, asymptotically behaves
as k~2; thus, the UV asymptotics is the same as in the
usual case.

To find the dispersion relations, one should consider the
denominators of (6) and carry out the Fourier transform, so
from the denominator Q, one finds the unusual dispersion
relation (in which u? = u} — ? is the usual square of the
vector #* in Minkowski space), some aspects of which have
been earlier studied also in Ref. [13]:
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- 16 -
(B> = ) + o (e (B = 7°)
- (o = i+ PP (B - )
— (woE — 7+ ) = 0.

(11)
This dispersion relation in general cannot be simplified
since there is no fundamental reason to impose the relation
¢y = ¢, forever. Here, we emphasize some typical
situations:

(1) The vector u* is lightlike, u,u* = 0. In this case, the
CFJ-like term vanishes (the same situation is ob-
served if ¢, =0), and we have the simplified
dispersion relation:

(2) For c¢; = c,, we have the following simplification of
the dispersion relation:

. 16¢2 R
(E? - p2)* + 721 (u*(E* - p?)
— (upE —ii- p)*)* = 0. (13)

(3) The vector u is spacelike, with uy = 0 and ¢, =0
(no CFJ-like term). In this case, we can avoid the
presence of higher time derivatives (so, the theory
does not involve ghosts, being hence most likely

unitary), and
SOV R (.15 D G
(E* = p*)° = o (- P)* (0™ (E* = p7)
+ (- p)?) =0. (14)

(4) If w* is timelike and has only a u; nonzero
component, with u; = 0, we also have the absence
of higher time derivatives (so, unitarity is again most
likely achieved).

To study unitarity in our theory, we must determine the
physical degrees of freedom (d.o.f.) of the gauge field and
the correct ie prescription in order to perform a consistent
Wick rotation to Euclidean space, as we explain in Sec. I'V.

Let us begin to study the extra conditions on the gauge
field, arising through contracting 0, and u, with AF* in
Eq. (3). We obtain (0-A) = (u-A) = 0, which indicates
that we must express the gauge field in terms of polari-
zation vectors perpendicular to p and u. The strategy to
obtain these polarization vectors is to start with two real

transverse vectors e,(,”), with ¢ = 1, 2, and then change to

transverse complex ones e,(f), with 1 = £. @
a

Let us consider two linear polarization vectors e, ’,
satisfying the relation

€ = — z e/(la)ez(/b), (15)
a=1,2
and
n””e,(,a)e,(,b) = -5, (16)
Now, we introduce the projector P,(,’,l,),
p ! i 17
wo— E(e/u/ +1 €;w)’ ( )

which projects any 4-vector »* onto the hyperplane
orthogonal to u* and p* vectors, with

. 2 2
e — ,7/41/ _ <qu) (uﬂpl/ + u”p") +%uﬂuv _i_%pltpu’
(18)
6/4/1/)uu
e :Tl;pﬂ (19)

Indeed, one can show that these tensors are orthogonal to p
and u, i.e.,

eu, =e"p, =0,
eu, =ep,=0. (20)
They also satisfy the relations
e’“’e,/f — euﬁ,
eﬂ”gy/" = eﬂveyﬁ =P,

el = —eth. (21)

Using these properties, one can show that these tensors
diagonalize the equation of motion or A, in Eq. (3), since

Ppepl) = 54 P, (22)
Pile ) = (=in)s PL). (23)

We can define the analogs to the circular polarization
vectors

) = e+ el

el —%(ef,l) +iel?), (24)
such that

P = —& (p)el” (p). (25)
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The transverse propagator is

(4)

P

iGL(p) = (*) . (206)
g A==+ p* +4avD propitie

with

a = 4(6‘1(1/! i p)2 - C2u2p2) (27)
M s

where we have included the usual prescription p> — p? +
ie to fix the position of the poles in the complex energy
plane. This prescription gives the correct position of the
poles in the second and fourth quadrants when considering
the case u purely spacelike or taking the limit M — o0. We
use this propagator in the Sec. IV.

III. PERTURBATIVE GENERATION

Let us consider the perturbative generation of the Myers-
Pospelov term. One scheme, based on the magnetic
coupling, has been developed in Ref. [11], in which it
was shown to yield the finite corrections. Here, we deal
with another one. Let us consider the fermionic Lagrangian
[4], representing itself as an example of a family of
Lorentz-breaking higher-derivative fermionic Lagrangians
considered in Ref. [14],

cp=w(io-m+ Lrsdo- D o 28)

where D,, = 8,, — ieA,,, vy is a dimensionless vector, M is
the Planck mass (as above), and 7, is some dimensionless
number. So, we have the following explicit form of the
Lagrangian:

Ly= (18 m—i——}’s?f(v-@)z—i-eﬁ
+ M2y5 ot vt (—ie(A,D, + A,0,)

—ie(0,A,) — ezAﬂAy))w. (29)

We note that the similar coupling, but including third
derivatives, has been used in Ref. [15].

One can easily observe that the one-loop effective action
of second order in A, in lower order in #,, is given by two
contributions graphically represented by Fig. 1. The first of
them involves only usual (minimal) vertices proportional to
e which do not involve any ¢* vector, and #, arises from the
expansion of the propagator and is given by graphs a and b
of Fig. 1. It looks like

2
s@) — 7 dXTEALA,, (30)

(@ (b)
(©
FIG. 1. The contributions to the two-point function of A* with
triple vertices.

(@

where
ma d4p v
It = 2) trG,(p)y"*G,(p — k)y (31)
with
1
G, p) = (32
( p—m—="Tysp(v-p)* )
Now, by applying the expansion
n
Gu(p) = S(p) + S(p) 3 rsh(v- p)S(p) +++-. (33)
with S(p) = (p — m)~!, we can easily single out the terms

of first order in #,, by writing

s [ Dulsprsh(oe o

x S(p)r*S(p = k)y" + S(p)r'S(p — k)rs

xp(v-p—v-k)*S(p—k)y], (34)
where we have promoted the integral to the D-dimensional
spacetime, so that d*p/(2z)* is replaced by to
u*PdPp/(2x)P, with u being a renormalization scale.

To calculate the above integrals, we will use the
Feynman parametrization, so Eq. (34) is rewritten as

v ’72
Hﬂ _ 4 D d /
e / * M2)

X tr[z(l —x)(q+ m))/s%(v - q)* (g + m)

X y*(q1 + m)y” + 2x(q + m)y* (41 + m)

X ysP(v-qi)* (g1 +m)r], (35)
where M2 =m?— (1 —x)xk?, g¢*=p"+xk*, and

¢} = q* — k*. Then, after the calculating the trace, we
obtain

MMyp(K) =
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v ’/I v
I, (k) 2 put D/ / M2 3 Zlﬂ (36)

with

I = =16 qaupk, [(1 = x)q" (v - ¢)* + xq% (v - q1)°],

1y = =167 q,v5k, [(1 = x)g* (v - q)* + xq{ (v - q1)7],

15 = 8e"Prugk,[(1 = x)(v - q)*(¢* = m*) +2x(v - q1)*(q - g1 — m?)],

I = 8e P quup[(1 = x)(v - q)*(¢* +m* =2q - q1) = x(v- q1)* (g +m* = 2q - q1)]. (37)

In the following, after we integrate over d” p and expand the result around D = 4, we have

Ity = _im BTy gk /l dx l—1 % [(10(1 — x)2x%k* + (1 = 6(1 — x)x)m?)v?
IMP A M 4 o ﬂ

€

j I
—4(1 = x)(2=5(1 —x)x)x(v - k)*] - SL% ””Mv/;ky/ dx
T 0

1
Xop [(1=6(1 —x)x)Mtv* —2(1 —x)>°x*k*(3 — 4(1 — x)x)(v - k)?], (38)
where € =4 — D and p? = 4zp’e™. We note that, as [} dx(1 —6(1 —x)x) =0, the divergent contribution does not

depend on the mass m.
Finally, after we integrate over the parameter x, we obtain

1 1 6(k* — 2K2m? — 8m*) 2m
Hl”/ k2 2 —2v-k UVAp k 5 k2 12m 2 -1 2 Juvip k
P = 127;26’M[ (0 kY miky + 55 ZM{ R =T o B W=7 | R
1 n 3m? 3k =2k°m? +4m*) [ 2m .,
“wem|' TR TSmO V)| ek, (39)

with 3 =1—1n 4. Here, we can consider the limits k> < m? (m # 0) and k> > m? (m = 0) so that we get

w 1 ) k2
MMy = = fore 2 000 =200 KPle s, + 0 1) (40)
and
I L m [K2v? —2(v - k) ]e””’lf’v,lk +— [5k2 2 —4(v- k)Y vk, + O m_2 , (41)
mMp = 1271'2 //M 27 2M 4 k2

respectively, where we have also defined & =1 —1In f with k = Vi2.

Therefore, for the induced bosonic Myers-Pospelov term from the contribution (40), which corresponds to the nonzero
mass, we have
e 4 102 Buvd a Buvh
SIMP :mﬂ d )C[U Uﬁ(:' AMDFU}L—QJ) F{m(?}‘a)’ljﬂ(f FM}' (42)
This enforces the fact that the above higher-derivative terms should be introduced from the very beginning (1) so that we
have a consistent subtraction of the divergences.

Then, the quartic vertex (corresponding Feynman diagram is given by Fig. 2) evidently should give a zero contribution.
Indeed, this diagram can yield only the Proca-like term (v - A)? with no derivatives, since there are no derivatives of A I
the classical action, and the only relevant graph is a tadpole, so the integration over the internal momentum cannot yield a
contribution depending on the external momentum, and this term is inconsistent with the gauge symmetry (its vanishing can
be shown explicitly, as well).
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FIG. 2. The contributions to the two-point function of A* with
the quartic vertex.

To find the remaining first-order contribution in #,
presented by graphs ¢ and d of Fig. 1, we should consider
the contraction of two vertices: the first of them is the usual
ewAy, and the second one is —iey Zyspv*v¥((A,0,+
A,0,) + (9,A,))w, where the propagator is the free one
[indeed, expanding (32), we will get only the higher-order
contributions]. Its explicit form is

Sonp = i€ 2 vt A (—k)A, (k) / fl—”(@ +k)
m Qu)? P T
o,
X tr ysﬁﬁ_my ﬁ+k—m]' (43)

Here, the factor 2p, + k, originates from the nonminimal
vertex given by the expression —iey 2 yspv*v*((A,0, +
A,0,) +(9,A,))y (the moment p is for the spinor propa-
gator, and the moment k is for external gauge field). It
remains to expand this expression up to the third order in
external k (actually, the first order in k disappears, so it
remains to deal only with the third order). Indeed, the trace
in (43) can be calculated before of any expansion of the
propagator in series in k:

Soup = —4e> LV VA (<KR)A, (k)

d*p
X/W(zpv+ku)vapﬁkp
1

=+ 0 -] “
Now, this expression can be expanded into power series in
external momenta, where only the third order should be
taken into account (the first and second orders evidently
vanish; for the first order, one evidently will have the
contraction of the Levi-Civita symbol with two Lorentz-
breaking vectors, which immediately vanishes, and for the
second order, the corresponding scalar simply does
not exist).

However, to study it, we can first present it as

Somp = Au(_k)H%/IPAA(k)v (45)
where
I, = —4 ezz_/zl VR Pk 0,0, (46)

with

[ 1
0= | G e W8 =

(47)

It is clear that, up to the second order in the external p (the
highest relevant order), the tensor Q,; must look like

Oup = Qinyp + Qak, ky. (48)

Indeed, there are no other possible tensor structures. Here,
Q; and Q, are two (divergent) constants. Substituting this
structure into the contribution (46), we find that it iden-
tically vanishes. Hence, this “mixed” contribution is zero,
and the only nontrivial result for the Myers-Pospelov term
is given by (42). The divergent nature of this result
immediately shows that for consistency of the theory
one should have the higher-derivative CFJ-like and
Myers-Pospelov term presented in the classical action from
the very beginning.

Now, we can discuss the renormalization. Actually,
our theory is nonrenormalizable (indeed, our coupling is
3> and it has a negative mass dimension; we note that the
models considered in Refs. [11,16] allowing for arising
the higher-derivative Lorentz-breaking terms are also non-
renormalizable). As is well known, the nonrenormalizable
theories are treated as effective ones (see a detailed
discussion of the concept of effective field theories in
Ref. [17]). They typically arise after integrating over
some fields, usually the heavy ones with the characteristic
mass M ., of which the role is played in our theory by M,
in some fundamental, renormalizable theory. As a result,
the action of an effective theory represents itself as a power

1

series in g7 —; hence, the coupling constants, being propor-

tional to different positive degrees of ML, have negative
char

mass dimension, and the theory turns out to be non-
renormalizable. However, the linearly and quadratically
divergent contributions in the effective theories are propor-
tional to positive degrees of the cutoff scale u, and if
U <K M., these contributions turn out to be strongly
suppressed being proportional to (A,,’:—ha)” with n > 1.
Since ﬁ < 1, it is sufficient to restrict the expansion
in ﬁ by the first order. This is just the case of our theory,
where M ., = M is of the order of the Planck scale, while
u is naturally estimated to be of the order of 1 TeV; see, for
example, Ref. [18]. So, we can restrict ourselves by the
contributions of the first order in .

It is not difficult to show that, in the one-loop approxi-
mation, for external A, the superficial degree of divergence
looks like

w:4—V1—2VQa—2VOb_2V2_Nd’ (49)

where V| is the number of vertices yysgv*v"A, 0y, V, is
the number of vertices ys§(v - A)%y, Vo, is the number of
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standard vertices WAy, Vi, is the number of vertices
wysyv*v(0,A,)y, and N, is the number of derivatives
acting to external legs (except those ones in V). We note
that only V,, vertices are not ﬁ suppressed. It is clear then
that, first, the number of external A, legs cannot be less than 2
(hence, 2V, + Vo, + Vo, + V1 > 2) and that for gauge
symmetry reasons there must be at least one derivative acting
to gauge legs (to get the CFJ term) or two derivatives (to
get the Maxwell or aether terms). Also, it is evident that the
potentially divergent Feynman diagrams with V, =1, 2
will be not gauge invariant since they will yield the
contributions proportional to (v - A)? or (v - A)*, and they
should vanish in some regularization. Hence, in divergent
diagrams one should have V, = 0. Then, the diagram with
V. = 2 has been studied above (42), and the contribution
with Vo, =1 and Vi, + V| =1 is just that one given by
(44), and its contribution is zero. In principle, we can also
have divergences in contributions to the two-point function

Iy p = A(E)[K*0? = 2(v- k)] vk, + B(E)k* (v-1)*e" ¥ vk,

formed by only V; and V, vertices; however, they are
strongly suppressed, being proportional to # We conclude

our discussion with the statement that up to the order M~!
our results are exact, and the only nontrivial divergent
contribution is given by (42).

Therefore, we find that the higher-derivative action
given by the sum of (1) and (28) is consistent in the one-
loop order. We note that, as usual, if we suggest the gauge
field to be a purely external one, the one-loop result is exact.

Now, let us introduce finite temperature. To do it,
we apply the Matsubara formalism; i.e., in the integrals
over momenta above, Eqs. (34) and (46), we suggest
that the zero component of the internal momentum is
discrete, po = 2aT(l+3), with [ being an integer,
and, afterward, we integrate over spatial components
of the internal momentum and sum over /. As a result, at
the finite temperature, our self-energy tensor, given by
I, = I}, » + 15, p, turns out to look like

1
- EB(cf)kzvz(t”taea’”l/’ + 1,0k, —2B(E) (k- v)(k-1)(v-1)e" vk, + B(E) (v k)*(##1,6™% + 11,6 ) vk,

—B(&) (k- ) (k- 1) (' 1,6 4+ 0 1,6 v,k , +2B(E) (v- k) (v - 1) (K 1, + K 1,4 ) vk,

1
- 53(5)]{27)2(1( 1)1, + 2B(E)K (k- v) (v- 1)1, + C(E)K* (v 1)? (1,6 + 11,6 ) vk,

—2C(&)(k-1)2v*(t#1 ™% + t”tae""’ﬂ”)v,lkp =2C(&)(k- t)31j2€"”’1/’v,1tp +C(E)K* (k-t)(v- t)zeﬂ”’lpvltp

k2
+D(&)(k-1)*(v-1)2 (1™ + 1,6/ vk, + D(E) (k- 1)* (v-1)*e"* v1,+ O <ﬁ> , (50)
where
1 1 oo tanh -1
A(f)__ﬁ@_—z@ ZM, (51)
LreM  122°M Jig /(2= &) (E+72)
1 o
B(¢) = — EWMZ dz+/(z — &)(é + z) tanh(zz)sech?(zz), (52)
€|
cle) = Ly [ (&2 — 272) tanh(nz)sech?(nz) (53)
12M Jj (z=8(E+2)
Lny [ tanh(rz)sech(x2) <, Lok o
=—-=-= z (=52E + & + (5728 = 2) 2+ (n?E + & — (228 + 2)2%) cosh(2n7)),  (54)
3M g (z=&)(E+2)
[
with & = zj'r—’T Above, we have split the internal momen- axial vector bﬂ, was carried out. It was shown there that

tum as p* = p* + por*, with p* =(0,p) and =
(1,0,0,0) being a constant vector along the time axis.
We note that these functions of the temperature emerged
as well in Ref. [19], in which the finite-temperature
extension of results obtained in Ref. [11] for another
Lorentz-breaking extension of the QED, involving the
magnetic coupling and the coupling of y to the constant

in the high-temperature limit all these functions vanish.
The result (50) is clearly gauge invariant.

Besides the two-point function of the gauge field, it is
important also to consider the two-point function of the
spinor field.

Let us calculate this two-point function of the spinor in
the first order in i We start with the action given by the
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FIG. 3. The contributions to the two-point function of y with
the quartic vertex.

sum of Lorentz-breaking classical actions (2) and (28),
allowing us to obtain the propagators of gauge and spinor
fields, respectively. The two-point function of the spinor
field is generated by two contributions with external spinor
legs: the first one involves two triple vertices, and the
second one involves one quartic vertex. To do the calcu-
lation, we proceed in the same manner as with the
two-point function of the gauge field; that is, we note that
the result can be represented in the form of the expansion
in ﬁ and will find the first order in this expansion, just
as we have done above. The Lorentz-breaking insertions
into the Feynman diagrams below are denoted by the x
symbol.

FIG. 4. The contributions to the two-point function of y with
triple vertices.

We see that, since the quartic vertex is proportional
to ﬁ we can keep in the propagator of the gauge field
only the zero-order terms in 5, so we have
(AH(=k)A* (k)) = ’Z;D. Hence, the contribution of the dia-
gram with quartic vertex given by Fig. 3 is proportional to

f (g;’)ik—lz = 0. As a result, we are left with triple vertices

only. They look like

_ N B
‘Ctriple = —ey (_A + ZMZYS?h}MU (A/taz/ + Allaﬂ =+ (aﬂAv)>>W (55)
The explicit form of the vertices, in the momentum space, is

Vol b, 13) = e (L) w (L) A1) 27)*8(1) + 1 + 1),
e
Vilk ko ka) = =<2 00k s (ka)As (ks 8 ka, = 86k, ) (2)*0(ky + ko + ). (56)

So, we have the graphs given by Fig. 4. In the two upper graphs of Fig. 4, we consider usual propagators and modified
vertices (i.e., one usual vertex V|, and one new vertex V). The result is, respectively,

2 4
i) = =St [ S = s ok, = 8] s
2 4
o) = =t [ SRR s = miry ok, = ) o . (57)

In the two lower graphs of Fig. 4, we have insertions into the propagators. The graph with an insertion into the gauge
propagator, with (k) = —c,u’k> + ¢ (u - k)?, is

462772 d4p Urdi s 2(k + p)
T5(k) = w(=k)r* (g + m)yy(k) — ey (p, + ky) —5—. 58
3( ) M (2”)4 ( ) ( ) ( ) (k + p)4 p( ) (P2 _ m2) ( )
And the graph with an insertion into the spinor propagator is
e’n d*p _ um 1
Ty(k) =— 2 w(=k)y'(p +m)ysp(v- p)* (& + m)yw(k) ——~ (59)

M J (2n)* (k+p)* (p* —=m?)*
Within the calculation, we expand these contributions up to the second order in the external k,,. It remains to simplify these
expressions. Again, we use the dimensional regularization with ¢ =4 — D. We take into account only terms up to the
second order in external momenta because the higher orders do not contribute to one-loop divergences.

It is instructive here to give some intermediate steps of the calculation. First of all, the structures of 7'y and T, are rather
similar, so that can be summed, and 7'y can be simplified with the use of the identities y*y"y, = —2y* and y* [y, yﬂ]yﬂ =0.
Then, we have
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Ty (k) 4 T, (k) = —2;/1’12 éﬂl; w (k) ¢pyysw (k) 0 in(fza)&k_) E
B 2627’]2 d4p (1} . p)2 1

Ty(k) =

w(=k)2(v- p)p — #(p* + m*)]ysw(k) (60)

M ] (2n) (k+p)* (p* —m?)?*
Integrating over momenta, we arrive at the following pole parts of these contributions up to the second order in the external

. . . . . . . kZ
k. either in the massive case, in which one can use expansion in P

2
Ty (k) + T2(K) = 5o g (=R)[(03 (k2 = 3m%) = 20(k - v)2)¢ + 1002 (k - 0) s (K)
ie’n, 2,2 2 2 3ie’n, _ 2 9
o h (k) (=S = 983 (k- o)+ 196(k - 0P R)rsw (k) + = (—kymPo s (k)

+(’)<:1—22>, (61)

. . . . . . . 2
or in the massless limit, in which one uses expansion in ’Z—z,

)
Ty (k) + Ta(k) = g 5o (R0 = 20(k- 02 ) + 1002k - o) sy (k)
i, 6,2 5 8,2 6 2 m’
as2ieny P CRI62KC v (k- v)fy” + fys(8k° 0 — 124k°(k - v))]w (k) — o(ﬁ> (62)

For T,, in the massive and massless cases, respectively, we have

T4(k) = =2 [0k = 6m?) = 6Kk - )+ 2(k - 0 Hysw (k)

“o6r2em”
—%u‘/(—k)(k%% = T80 (k- ) +98(k-v)*F)ysy (k) + lgijjfjlw(—k)mzwysw(k) +0 (Z-i) (63)
or
() =~ 5 ()2 (2 — 64k ) + 20k (4
_M;;[%w(—k) (1202 (16k"0% — 60Kk (k- v)) +2(k - 1) (22k" 09— — 36K ¥ (k- v))]ysy (k) + o(’g) (64)

The T5 has a structure different from 7'y, T, T4, being proportional to the Levi-Civita symbol. After the integrations over
momenta, we find for massive and massless cases, respectively,

P52

ie _ )
T3(K) = — g e (R, (2m? = ) + s (02 = 3m2)) + 26, (k- )
+(2u*((cy = 4c)f +2(cy — 6¢2)m) + dey (k- u)h)kyry* Jy (k)
)
- Bé‘%lp(—k)yﬂy”y’lw(k)(—40c2k2u2 + 13¢1k2u? — 14cy (k- u)?)u e,
v
ie’n, p _ v Ticie*n, I - v
- m (13Cl - 4002)’42” k’lemﬂyw(—k)ky"y W(k) + 5767Z2M (k : M)l/t klé‘,d/wl//(—k)ﬂ}/”}’ W(k)
i€27]2 2.- v KA
- 28822 M (501 - 18C2)mu l//(—k)}/”}/ W(k)u k €t
ie’n 2,0~ v, A x k?
+ 5767[2M<1101 - 5462)’” u W<_k)7ﬂ7 4 W(k)u €/</1;w + O ﬁ (65)

or
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ie’n _
T;(k) = —mukewyw(—k) =77y (W (=cy +4cr)k? + 2¢ (k- u)?)

+k’1(2u2(cl - 4C2)k + 4c, (k . u)l’i)]/ﬂ]/b}l//(k)
ie’n ]
_ m uKkAGKAﬂu(kQMQ(IOc] kS — 40C2k8) +12¢, kS(k . ”)Z)V/(—k)ky"y”w(k)
ie’n B
Trsa2psgy P (P T w (Kt eg,, (R (<16 K + 64,k%) + 20¢ K5 (K - u)?)
2
) (66)

Sic,e*n, . _ ) m

+

However, the form of 7’5 can be presented in the manner similar to 74, T,, T4, with the use of the identities,

i .
Gﬂy},S = 5 eﬂy(l/}aaﬁ’ ek/lﬂvyﬂyy = _261d},5 s ekﬂﬂvyﬂyﬂ yy = _617/5 Vi (67)

which implies, at m # 0,

2
T3(K) = =5 oy P (R [6rsi(u (1 (2m? =) - des (= 3m)) + 261 (k- 1)?)

—2i[2”2((01 —4er)f+2(c; —6cy)m) +4cy (k- u)u] ”Kk/lo'm?sh//(k)
2 (—k)ysphyr () (13¢; —400,)k2u? — 14¢, (k- u)?)

 384n°M
. 627] B Tic 627’] _
+ > (13¢; =40, uPu* kA (—k) Ko, sy (k) —ﬁ(k ) u kA (—k) o,y sw (k)

'S762°M
ie’n 2= iy €M 2,2 K2
a2y 61~ 18e)mutyp(=K)oqr sy (ku k' +5 5 (1ey = Sdes)mup (=k)ysify (k) + O - 5 (68)

and, at m — 0,

62
~ et (K67 (—c) +4ex)l* + 2c (k- 1)?)
_4iw<k/1(u2((cl _ 4Cz)k) + 4cl(k . “)ﬂ)"xﬂ/s]l//(k)

T3(k) =

. 2

e )
+ m WK (K22 (10¢, K8 — 40c,k8) + 12¢, K8 (k - 1)) (—k) Koy s (K)

2

e -
— S5y (kD5 (k) (R (=160, kS 4 642k) + 200k (k - 1)?)

2
) )

5icie’n i .
~ o (K- WK (=K ogysw (k) +0<ﬁ .

More simplifications are possible in terms involving 6,, matrices, due to symmetrization by the rules like f§ = k?, ¢ = v?,
and then, u*k* o, = i[(u - k)} — yk?], and u*k*so,; = i[u*} — f(u - k)]. Thus, we find
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(k) = —%f%w—m [6H(1 (1 (2% = K2) 4 (k2 =3m2)) + 26 (k- u)?)
+4u? () —4er)[(u- k) [ = k*] 4-2i(c1 = 6¢2 ) muk o) +4cy (k-u) [ f = f(u- k)] Jy sy (k)
2 2
— s (K5t (0 (131 = 4062)k20? = Ve (k- 1)) =2 (136 =400, )P (=) (- k)= i s (K)
2 )
2 e () [ K (R) (5, = 18 (K)o (K)k
2 2
ey (11er —s4c2>m2u2w<—k>y5¢w<k>+0(% (70)
and, at m — 0,
T3 (k)= —%i:%l/_’(—k) [64( (—c1 +4cy)k> +2¢ (k- u)?) +4u?(c) —4ey)[(u- k) [ — k]
2
+dey (k- u) [u?f = sh(u-k)]]ysy (k) _288671%(]{2142(1001 —40cy) 4+ 12¢ (k- u)* )i (=) [(u - k) = ikl s (k)
2
— <o (= 5w (k) (s (=16¢, +64cy) +20¢, (k-u)?)
2
S e - Dl ()0 (). o

Taking all together, we find that, to achieve multiplicative renormalizability, in the m # O case, the total free Lorentz-
breaking Lagrangian of the spinor, corresponding to pole parts of T, T,, T3, T4 together plus the classical action, must be

1
Lo = (id —m)y + MV_/(CI PO+ Cy(v- 9)*p + C30%(v - 0)d + Cum?v*f + Csmv’e,,v* 0P )ysyr

+(C; = Cl v — u),

where C,...Cs, C}...C§ are dimensionless constants, and
each term of the given dependence in »* has its analog
where v is replaced by the #*. In our case, the last term
proportional to C emerges only with the u* vector, arising
from T, and there is no term proportional to Cs5. We note
that, as frequently occurs, the Lorentz-breaking vectors are
lightlike, and some terms in quantum corrections simply
vanish, so the structure of quantum corrections simplifies
drastically (for example, a similar situation takes place in
Ref. [11]). Namely, if both »> =0 and u?> =0, this
Lagrangian exactly matches the kinetic part of the
Lagrangian (28), which we used as a starting point. We
note that, for dimensional and symmetry reasons, it is easy
to conclude that the same quantum corrections (72) will
emerge if, instead of (28), we used the gauge extension of
(72). Also, the new terms proportional to % u?yrys(u - 9)y
or its analog in which u* is replaced by »*, can arise in
these cases.

We note that, in principle, the explicit results of
integration over momenta can be obtained as well in
general case, without imposing any of these limits; how-
ever, they are extremely cumbersome. It is interesting to

(72)

observe that if the Lorentz-breaking vectors #* and v* are
lightlike the zero and first orders in external momenta in
these contributions vanish.

The whole contribution to the two-point function of the
spinor is given by the sum of T4, T, T3, and T4: in the
massive case, one finds a sum of (61), (70), (63), and in the
massless case, one finds the sum of (62), (71), (64). We
close the section with the conclusion that we found the two-
point functions in both the gauge and matter sectors of our
extension of the QED.

IV. UNITARITY ASPECTS IN THE
EXTENDED QED

It is well known that the presence of higher time
derivatives in quantum field theory can lead to an indefinite
metric in Hilbert space. The sector with a negative metric of
the theory produces negative norm states or ghosts, which
introduce several conceptual issues in connection with the
conservation of probability or unitarity. However, in the
subclass of higher time derivative theories called Lee-Wick
theories, in which the additional d.o.f. arise in complex
conjugate poles, perturbative unitarity has been well
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established [20]. The idea is that, since the structure of
poles determines the discontinuities in phase space, under
some assumptions, both contributions of complex conju-
gate modes cancel each other order by order in the
perturbative series [21]. The issue of analyticity in the
complex energy plane and the resulting cutting equations
have been intensively studied over the past years (for the
general discussion of ghost states, see, for example,
Ref. [22]). The Lee-Wick prescription of removing the
negative metric particles from the asymptotic space has
been shown to be an efficient tool in providing a unitary
theory together with the expected convergence property.

In general, to study unitarity in higher time derivatives
theories, one is confronted with the problem of analyticity
of amplitude diagrams. The direct application of the ie
prescription in the propagators seems to fail to preserve
unitarity in many cases; therefore, it is necessary to analyze
the configuration of poles case by case. Moreover, the
presence of Lorentz symmetry breaking makes the study of
analyticity of integrals be more involved. In many cases,
there can be an arbitrary number of extra poles associated to
negative-metric states, which marks a departure with
respect to the pole structure of a Lee-Wick theory that
one uses to prove unitarity. It is also difficult to consider the
perturbative solutions which can become complex under
certain conditions, and the corresponding dispersion rela-
tion can be extremely difficult to solve [23]. An early
approach to deal with analytic properties of phase space
integrals in the presence of Lorentz violation, based on the
Euclidean space or Wick rotation, is presented in Ref. [24].
Recently, a new formulation for Lee-Wick theories
as nonanalytical Euclidean theories was proposed in
Refs. [25,26]. We follow similar lines to deal with unitarity
in our higher time derivative Lorentz-violating model. The
strategy we pursue to compute the relevant contributions of
discontinuities is to consider the Euclidean theory from the
beginning and perform the Wick rotation together with
rotation of the preferred 4-vector and to apply the Lee-Wick
prescription in cut integrals [20]. In this way, we arrive at
the simplified integral with simplified poles.

The processes we study are the Bhabha scattering at tree
level (we note that some earlier studies of Bhabha scatter-
ing in a Lorentz-breaking extension of QED were carried
out in Ref. [27], in which, however, no higher-derivative
terms were studied) and Compton scattering at the one-loop
level. In the first case, we let the preferred 4-vector to be the
most general one, allowing additional d.o.f. and the
negative metric to arise, and in the second one, we choose
a purely timelike preferred 4-vector without ghosts in the
theory. For both cases, we consider the forward scattering
of two particles with incoming momenta p = k and p’
related as

p+p —->p+p. (73)

p
q
/
p
FIG. 5. The Bhabha scattering diagram at tree level.

A. Bhabha scattering at tree level in the ghost sector

We consider a generic preferred 4-vector u, so that, in
general, ghosts can arise. We also consider the Bhabha
scattering process at tree level given by Fig. 5.

The amplitude in the transverse gauge is given by
-iP})(q)

AW (q)

x (=ie)V*(p,p'), (74)

where AW(q) = ¢*> + Aa\/D(q), with D(q) and a given
by (10) and (27), respectively, and

Vi (p,p') = u(p)r'*v(p’),
V¥(p,p') = o(p")r'u(p).

The standard way to compute the imaginary part of the
amplitude in Eq. (74) is to fix the 4-vector u*, solve the
dispersion relation, and, afterward, analyze discontinuities
of M(s), which is an analytic function of the complex
variable s. However, in our model with modified photons,
the dispersion relation is a very complicated expression,
and the solutions can be difficult to find. So, we introduce a
novel method to deal with unitarity.

The strategy is to start with a theory in Minkowski space,
which is defined as the one obtained from the Wick rotation
in the Euclidean theory, perhaps nonanalytically, as in
Refs. [25,26]. This starting point ensures a well-defined
Wick rotation to the Euclidean space warranted by the
position of positive and negative poles in the fourth and
second quadrants of the energy plane, respectively. Hence,
we perform the Wick rotation, changing external momenta
§4 = I8y so that the dispersion relation decouples into usual
and ghost solutions. This last step simplifies the calculation
considerably. The rotated energy integral will still depend
on the ie prescription, which allows us to compute the
discontinuity. Finally, we perform the polarization sum and
conveniently evaluate with the delta function in some parts
of the integral. Only at the final step, we remove the ie
prescription performing the limit € — O.

iM = (=ie)Vi(p.p) x 3
A

q=p=p'
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From Eq. (74), we can write

W (q-s),

M(s) = e2V/‘V*v/ d*q [ e + id€y,

(2m)* [ =+ 2A%(q) } G gPrie
(75)

where we have defined s = p — p’, included the ie prescription, and used P,(f,l,) = % (e, + ide,,). Using the expressions

A TAT T @D A AD (PP -aD’ (76)
and (18) and (19), we can write
d'q 1 (¢*)?
M(s) = 2VFV* x / [ <—q271 L — U, U, + Qi€ 05 u°q" 8@ (g —s), (77)
(2”)4 (q2)2 - azD g D g Hat =g +ie

where the terms in (75) proportional to g = p'— p’ vanish due to the external on-shell spinors.

The Wick rotation has to be done carefully, since the direct analytical extension of the momentum variable in the delta can
lead to inconsistencies. The best way to proceed for our integral is to perform the analytic extension in the original
expression (74) and then go back with the integral in Eq. (75). However, for an intermediate step, we will extend the delta to
complex variables [26]. Before doing this, however, we should mention that solutions in Euclidean space may differ from
those in Lorentzian space, so the equivalence of both methods holds with respect to the type of solutions, which eventually
propagate through the cuts. Along these steps, by performing the analytic extension with the rule s, = —is, and momenta
sg = (5, s4), we arrive at

d4qE |: 1
(27)* lgz(1+PPrag)

1 . a4
Misg) =vevex (nﬂy+;ufuf+ﬂzemﬁyu%q§)} 69 (G Fm )5(qs—ss). (78)

q3—qp—ie
with

4u%(c,c08%0 — ¢»)
M 9

Dp=-yqp.  ap=pqp. vy =ugsin’d,  f= (79)

where 0 is the angle between the two Euclidean 4-vectors uy and gz. Now, in terms of egg, which is a function of ¢4, we can

write Eq. (78) as

(4) () : 2
d*q (epep, (=1 +12B\/vqE)), _ 6(qs — s4)
M — 2v;4v*y / E ( q4=54 )5(3) G_D_3%) 30
w0) =V | Gy 2™ (@ ei+ Pt -0 S

Also, let us write the denominator in (80) as

m% 1 1

(81)

(q3 —ie)(m} + g3 —ie) (g% —ie) (g3 +m3] —ie)’

where (#*y)~! = m3. We identify two solutions

o=1ql.  W=/|gP+m}. (82)

where the first solution is for the standard photon, and the second one, which arising at a higher scale m, ~ M, is for a
massive ghost.
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To compute the discontinuities in terms of s4, we focus I 1 1 irs 26
on the element o T—ie ziiel ind(z), (86)
1 1 meaning that it vanishes everywhere except at some value
Flss) = ———- (83) o o b

at the real axis, where it reduces to the standard delta
function [26]. Applied to our case, we arrive at

(qf —ie)  (qp + m3 — ie)

and rewrite it as N N
2in(6(isy + w) + 6(isy — w))

| 1 Disc[F(s4)] = o
F(S4): B 2_ N (2 2 _ N\ (84) . . .
(53 +w° —ie) (s;+ W —ie) _ 2in(6(isq + W) + (isy = W)) (87)
2w ’

Now, we decompose each term as
Since at effective energies the external momenta are always
1 1 1 1 much less than the high-energy scale defined by M, we set
( 5421 T2 ic) :E [( i ix—¢) - (s4+ix+ e)] the two last delta functions to zero. From the expression
(87), one has

1 1 1
g (o= e 2in(3 5
x [(isg+x—ie) (isq—x+ie i i IS, —
4 4 DisclF(s4)] = im(6(isy +a)2) + 6(isy a))) (8)
w
where some ¢ terms have been neglected in the numerator.
Next, we introduce the extended delta to complex variables ~ Substituting this expression into Eq. (80), we find
|
%) ~ ~
4 (e, € ,, (=1 +iAB\/7q%)) i i i, —
Disc[M(sg)] = e*VFV* x / d QE4 <Z - E 2 ) — X (2200l 1) 0l a))))
27" \5 Py 20(w = W)(w + W)
% 8(q4 = 54)6(G = P~ P'). (89)
Now, evaluating conveniently the delta functions, we write
- _ oy [ e N0 00 G z_5_
Disc[M(sg)] = —e?VFV™ x (eguery ), —,,(2m)8(qs = 54)8° (G — P — P')
(2”)4 7 HTEV gu=s,
y L«j(iqﬁw —1+ B\ YGE) gy N 8(iqy — @) (=1 + iAp\/14%) g i 00)
*7(qq + i) (qs — iW)(qa + tW) Pr(—as + lw)(614 —iW)(qqs +iW)]

We can obtain this expression in an equivalent way by introducing a physical delta function & allowing to select only
asymptotic degrees of freedom in Hilbert space. In Ref. [28], such delta function has been used to test unitarity in a higher-
order Lorentz-violating scalar theory.

The square brackets above can be written as

O(isy) (=1 + iAB\/74E) 4, -i00(iqs + @)
Pr(qs + iw)(qs — iW)(qy + iW)
O(=isy) (=1 + iMB/10%) g, ——i00iqs — @)

PPr(=qs +iw)(qs — iW) (g4 + iW)

[0(is4) + 0(—iss)|6(—=q5 — ap\/Dg) =

o1

where one has to restrict to purely imaginary values of s4, which is precisely the case we seek to perform the inverse
transformation of time variable. This allows us to write

Dise[M(sz)] = —¢? / Al Dl (Veei) olisy) + 0(-isa))20)3(~a — agy/Pe)o gz~ pe = ). (92

Now, we integrate and consider the inverse transformation of external momenta in terms of s, and use Disc[M] = 2i{ImM,
to arrive at
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k

We see that it is equivalent to considering the denominators
on shell in the original expression or replacing the

propagator with the physical delta function. Therefore,
g’\/]/% the constraint given by unitarity is satisfied.

B. Compton scattering at the one-loop level

|

: Now, we consider the Compton scattering process at the

| one-loop level. It is presented by Fig. 6. We set u* =
/ (1,0,0,0) so that no ghosts appear. In this case, the

p dispersion relation turns out to be

FIG. 6. The Compton scattering process at one-loop level. 16
(¢°)" - W(Q%(Cl —¢) +alGP)*|gl> = 0. (95)
d*q
2mM(s) = [ 35S Pio(an) + O(=go)]
2

Solving, we find the positive solutions

x (21)8(q*> —avVD)sW(g—p - p').  (93)

G\ 1= 70l
wy = |q| gc2|Q‘_) , (96)
where V1+Vgle, —e)lq]
—(_; (4)
M; = (—ie)Vie.". 94)  where g=4/M and ' = %1.

The scattering amplitude, with the help of the propagator (26), is found to be

d'q (7 —q+m)e,(q.V)e;(q. )
iM==Y *J*"(p' k, / , £ - - JY(p k,p). (97
2D | G = P =+ W + Aatailer — o)+ P T R O
with
1 ; * 1 * =5
JUP' ki, p) = 1 (p + m)yut (pleg(k2),  TH(Pk, p) = s gj(k, )it (p')yP (7 + m)y. (98)
(p? —m?) (p* —m?)
We focus on the integral
I(p) = / d'q (7 —aq+me,(q. 2)es(q. ) (99)
- 2)* ((p = q)* = m* +ie)(q® + X g(g5(c1 = e2) + cal@)|q| + ie)
In terms of the poles from Eq. (96) and the fermion one, E,_, = /(g — p)* — m*, we write
- (27)* (qo=Po—Eq—p+ie)(qo—po+Eq,—ie) (1 +2g(ci —2)|q])(qo— @y +ie)(qo + @y —ie)’
where
Fﬂl/(p -4, q) = (ﬁ_q+ m)eﬂ(q,/l’)e,f(q,/i’). (101)

We perform the g, integral by closing the contour downward and using the residue theorem. Taking into account the
relevant poles in the fourth quadrant, we arrive at

1(p) = / dq (—27i) _ { [Fu(p - f]a‘])]qO:pO+Eq,,,—ie .
(2m)* (14 V(e — ¢2)|g]) [2E4—p(Eyep + po — @) (Ey_)y + po + @y — i€)
~ (Fu(P = a0 @) 40— —ic }
20y (Eq—p + po — 0y )(Eq_p — po + @y —i€)|

(102)
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Using Eq. (86), the discontinuity of the integral turns out to be equal to

Disc[M(p)] = i» _J*(p'.k. p)Qu(p)J*(P'. k. ). (103)
o

where 0, (p) = Disc|l,,(p)], such that
F

B dq (27)? [Fu(P=a-9)]g=py 1, ,0(Eq—p + @y + Po)
0ulP)= | G e =) { 2E, ) (Eyy o)
[Fu(P—4.9) 40, 5(Eq—p + @y — Do)
B 20y (E,_,+ po—wy) } .

(104)

We have set € = 0 in the numerators, where the e factors are not relevant. Using the delta function, we can simplify the
denominators more, i.e.

_ d3q (271')2 [F;w(p —-dq, Q)]qO:p0+Eq 175(Eq P +oy+ pO)
0wl = | G T =) [ CE,_,)(20;)
(Fru(P = 4. 9)] g0, 0(Eqp + @0y = Po)]
(2Eq—p)(2w/1’) ‘

(105)

With the help of the identity [d®q = [ d*kd*k's) (k + k' — p). and introducing two additional integrals in k, and k|, and
with ¥ = p — q, k = g, we can write

0. (p) = / d*kd*k' (2x)? [Fun(P = 4 @) gy=py - 6(ko + ko = po)d(ko + wy (k))d(ko + Ey)
)t (1 2gler - ) R) (2Ey) 2w, (K))
[F;w(p -9, q)]q[):koé(k() + k6 - Po)é(ko - wﬁ’(k))(s(ké) - Ek’) 3) Z L7 =
i (2Ep) 2wy (k)) SV (k+k = p). (106)

Now, we use the fact that under the integral with the delta functions the F,,(p — ¢. q) factors behave as

(Fu(p = - @)l gy=pyry, = Fuu(P = 4:9)] gyt = (K + m)e, (k. X)es (k. ), (107)

and together with the on-shell relation
(¥ + m) Zu (K (108)
we can rewrite (106) as
d4k d4k/ S (NS (1 JAPR] I 2 / 2 712\ %
Qu(p) = Z ut (K (K )e, (k. )&y (k, ') (2m)8(k* + X g(kg (1 = €2) + ca|k|*)[K])

x (2m)6 (k’2 —m )[ (ko)O(ky) + O(=ko)O(=ko)] (278 (k + K’ = p). (109)

Considering Disc[M(p)] = 2iIm[M(p)], finally, one has
d*k  d*k
2mM(p)} = 3 [ 555 e I 001006 + 0—k)o( )

x (2m)*4) (k + K = p)(2m)8(k + 2 g(k3(c1 = €2) + el k%) [k]) (2m)5(K2 = m?), (110)

where M is the diagram obtained by replacing the propagators by delta functions after the cutting, i.e.,
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L
(p? —m?)
x yPus(p')es(k. 2).

M= —ie? e (k. )" (p)r*(p + m)

(111)

Hence, we conclude that the optical theorem is satisfied
both at the tree level and the one-loop level within this
scattering process. Since it is natural to expect that the
higher-loop situation does not differ too much, we conclude
that unitarity is maintained in our theory.

V. SUMMARY

We considered the higher-derivative Lorentz-breaking
extension of QED, which involves, first, additive terms,
that is, Myers-Pospelov and higher-derivative CFJ-like
terms, in the purely gauge sector and, second, a new,
nonrenormalizable spinor-vector coupling. For this
model, we discussed the dispersion relations and found
that, to achieve tree-level unitarity, either only one higher-
derivative term, that is, the MP term or the higher-derivative
CFJ term, can be present in the action, or the Lorentz-
breaking vector must be not simply timelike but directed
along the time axis. Apart from this, we carried out a study
of quantum corrections to two-point functions of gauge and
spinor fields and showed that for a consistent subtraction of
the divergences the corresponding higher-derivative terms
should be introduced from the very beginning, both in
gauge and spinor sectors, with the structure of quantum
corrections is simplified for the lightlike Lorentz-breaking
vectors. Nevertheless, it is very reasonable to treat this
theory as an effective one, aimed for studying of the low-
energy domain. Indeed, all higher-order divergent terms
will be very small since they are proportional to different

degrees of -, with M assumed to be of the order of the
Planck mass; thus, they are strongly suppressed. One can
argue that a similar situation will occur in higher loops
where all dangerous divergences will be suppressed by
negative degrees of M. We carried out a calculation of these
corrections in the finite-temperature case as well, and we
see that our result tends to zero in the high-temper-
ature limit.

We verified unitarity in our theory, both at the tree level
and at the one-loop level. We checked directly that the
optical theorem is satisfied in both cases; therefore, we
conclude that, even in the presence of higher time deriv-
atives, unitarity in our theory is preserved for the processes
we have considered, which raises the hope that other
situations and, in particular, other field theory models,
where higher time derivatives do not jeopardize unitarity,
are also possible. We conclude that this manner of
introducing the higher derivatives is compatible with
unitarity as well as the Horava-Lifshitz methodology in
which only higher spatial derivatives are present. However,
the advantage of our approach is that, unlike the Horava-
Lifshitz theories [29], in our case, the Lorentz symmetry
breaking continues to be small, which is much more
reasonable from the viewpoint of achieving the consistency
with experimental measurements, which, as is well known
[2], impose very strong upper boundaries on Lorentz-
breaking effects.
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