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We consider the higher-derivative Lorentz-breaking extension of QED, where the new terms are the
Myers-Pospelov-like ones in gauge and spinor sectors, and the higher–derivative Carroll-Field-Jackiw
term. For this theory, we study its tree-level dynamics, discuss the dispersion relation, and present one more
scheme for its perturbative generation, including the finite-temperature case. Also, we develop a method to
study perturbative unitarity based on consistent rotation of the theory to Euclidean space. We use this
method to verify explicitly that for special choices of the Lorentz-breaking vector the unitarity is preserved
at the one-loop level, even in the presence of higher time derivatives.
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I. INTRODUCTION

Formulation of the Lorentz-breaking extension of the
standard model called attention to studies of Lorentz-
breaking extensions for many field theory models and, first
of all, for QED [1]. Conclusions obtained by treating
different aspects of various extensions of QED in dozens
of papers became paradigmatic results for Lorentz-breaking
theories in general. Among the most important directions of
their study, one can emphasize searches of exact solutions,
canonical quantization, and calculations of quantum cor-
rections. These studies have allowed us to put strong bounds
on Lorentz-violating quantum field theory models [2].
Within this context, an important role is naturally played
by higher-derivative Lorentz-breaking extensions of QED.
Indeed, it is well known that an effective action is nonlocal
and can be represented in the form of the derivative
expansion. Moreover, the higher-derivative terms naturally
emerge within the string context [3]. Therefore, one
naturally faces a problem of studying different issues related
to higher-derivative Lorentz-breaking extensions of QED.
The first step in such a study has been carried out in Ref. [4],
in which the so-called Myers-Pospelov (MP) term, that is,

the first higher-derivative Lorentz-breaking term in QED,
has been proposed. This term has attracted great interest due
to the fact that a special choice of the Lorentz-breaking
vector allows us to rule out the higher time derivatives from
this term, thus avoiding unitarity breaking, which is known
to be the main problem of higher-derivative theories.
A number of studies of unitarity issues for QED with the
additive MP term have been performed in Ref. [5]. Some
other tree-level results for this theory can be found in
Ref. [6], and its phenomenological applications can be
found in Ref. [7]. Further, the higher-derivative terms were
shown to arise as quantum corrections, first for the case in
which the Lorentz symmetry breaking is introduced through
the third-rank constant tensor [8] (which for a certain choice
of this tensor yields the higher-derivative Carroll-Field-
Jackiw (CFJ)-like term discussed in Refs. [9,10]) and,
second, for the case in which the Lorentz symmetry
breaking is introduced through a constant vector, with
the nonminimal coupling present [11]. It was shown that
in these cases the resulting higher-derivative terms are finite.
Therefore, one can naturally establish the questions, first
about other possible schemes allowing us to generate the
higher-derivative Lorentz-breaking terms and, second,
about the tree-level behavior of the QED with additive
higher-derivative Lorentz-breaking terms, which clearly
would modify propagators and ultraviolet behavior of the
theory. In this paper, we address namely these questions. To
be more precise, in this paper, we introduce the higher-
derivative terms in the gauge sector and discuss the impacts
of higher derivatives for the propagator and unitarity.
The structure of this paper is as follows. In Sec. II, we

introduce the classical action of the gauge sector of the
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Lorentz-breaking extended QEDwith higher derivatives. In
Sec. III, we carry out the one-loop calculation of the higher-
derivative Lorentz-breaking terms in the gauge sector with
the use of the new coupling, both at zero and finite
temperatures. In Sec. IV, we discuss the related unitarity
issues and explicitly demonstrate that, even in the presence
of the higher time derivatives, unitarity is preserved.
Finally, in Sec. V, we summarize our results.

II. CLASSICAL ACTION AND
DISPERSION RELATIONS

Let us consider the higher-derivative (HD) extension of
QED looking like

LHD ¼ −
1

4
FμνFμν −

1

M
ϵβμνλuβAμðc1ðu · ∂Þ2 − c2u2□ÞFνλ:

ð1Þ

Here, uμ is a dimensionless vector;M is a mass scale, which
is typically suggested to be of the order of the Planck mass
[4]; and c1 and c2 are some dimensionless numbers. The
number c1 accompanies the Myers-Pospelov term [4], and
the number c2 accompanies the higher-derivative CFJ term
[10]. We note that within many schemes of calculating the
loop corrections both these terms arise, see, for example,
Ref. [11]. We note that both these terms are CPT odd, and
they represent themselves as specific particular examples of
higher-derivative Lorentz-breaking extensions of the gauge
sector discussed in details in Ref. [12].
Since this theory is gauge invariant, we can impose the

usual Feynman gauge, which does not affect the higher-
derivative terms. The resulting quadratic Lagrangian for the
essentially transversal Aμ will be given by the expression

L ¼ 1

2
AμΔμνAν; ð2Þ

with

Δμλ ¼ □ημλ þ 4

M
Σϵβμνλuβ∂ν; ð3Þ

where we introduced the notation Σ ¼ c2u2□ − c1ðu · ∂Þ2.
As a result, one will have just the propagator, the explicit
form of which is

Gνλðx − x0Þ ¼ ½A1ηνλ þ A2uνuλ þ A3uν∂λ þ A4uλ∂ν

þ A5∂ν∂λ þ A6ϵνλρσuσ∂ρ�δ4ðx − x0Þ: ð4Þ

Defining

D ¼ u2□ − ðu · ∂Þ2; Q ¼ □2 −
16Σ2

M2
D; ð5Þ

we get

A1 ¼
□

Q
; A2 ¼ −

16Σ2

M2Q
;

A3 ¼ A4 ¼
16Σ2ðu · ∂Þ
M2Q□

;

A5 ¼
4ΣA6u2

M□
¼ −

16Σ2u2

M2Q□
; A6 ¼ −

4Σ
MQ

: ð6Þ

Throughout this paper, we are using the definition of the
Levi-Civita tensor ϵ0123 ¼ −ϵ0123 ¼ 1.
In momentum space, we write

GνλðpÞ¼
1

QðpÞ
�
−p2ηνλ−a2

�
uνuλ−

ðu ·pÞ
p2

ðuνpλþuλpνÞ

þ u2

p2
pνpλ

�
þaiϵνλρσuσpρ

�
; ð7Þ

where

a ¼ 4ΣðpÞ
M

ð8Þ

and QðpÞ and ΣðpÞ are just the momentum space counter-
parts of the same expressions. That is,

QðpÞ ¼ ðp2Þ2 − a2DðpÞ; ð9Þ

with

DðpÞ ¼ ðu · pÞ2 − u2p2: ð10Þ

We note that this propagator involves the contributions
asymptotically behaving like 1

□
, which indicates that the

UV behavior is the same as in usual theories without higher
derivatives (for example, the term A1ηνλ asymptotically
behaves as 1

k2), and renormalization properties will not be
improved compared with the usual QED. The similar
situation occurs in three-dimensional QED with higher-
derivative CFJ term κϵμνλAμ∂ν□Aλ, where one has

½□ðημν þ κϵμνλ∂λÞ�−1 ¼
ηνρ

□ð1þ κ2□Þ þ
κ2∂ν∂ρ

□ð1þ κ2□Þ

−
κϵνρσ∂σ

□ð1þ κ2□Þ :

Here, the term proportional to ∂ν∂ρ asymptotically behaves
as k−2; thus, the UV asymptotics is the same as in the
usual case.
To find the dispersion relations, one should consider the

denominators of (6) and carry out the Fourier transform, so
from the denominator Q, one finds the unusual dispersion
relation (in which u2 ¼ u20 − u⃗2 is the usual square of the
vector uμ in Minkowski space), some aspects of which have
been earlier studied also in Ref. [13]:
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ðE2 − p⃗2Þ2 þ 16

M2
ðc2u2ðE2 − p⃗2Þ

− c1ðu0E − u⃗ · p⃗Þ2Þ2ðu2ðE2 − p⃗2Þ
− ðu0E − u⃗ · p⃗Þ2Þ ¼ 0: ð11Þ

This dispersion relation in general cannot be simplified
since there is no fundamental reason to impose the relation
c1 ¼ c2 forever. Here, we emphasize some typical
situations:
(1) The vector uμ is lightlike, uμuμ ¼ 0. In this case, the

CFJ-like term vanishes (the same situation is ob-
served if c2 ¼ 0), and we have the simplified
dispersion relation:

ðE2 − p⃗2Þ2 − 16c21
M2

ðu0E − u⃗ · p⃗Þ6 ¼ 0: ð12Þ

(2) For c1 ¼ c2, we have the following simplification of
the dispersion relation:

ðE2 − p⃗2Þ2 þ 16c21
M2

ðu2ðE2 − p⃗2Þ
− ðu0E − u⃗ · p⃗Þ2Þ3 ¼ 0: ð13Þ

(3) The vector uμ is spacelike, with u0 ¼ 0 and c2 ¼ 0
(no CFJ-like term). In this case, we can avoid the
presence of higher time derivatives (so, the theory
does not involve ghosts, being hence most likely
unitary), and

ðE2 − p⃗2Þ2 − 16c21
M2

ðu⃗ · p⃗Þ4ðu⃗2ðE2 − p⃗2Þ
þ ðu⃗ · p⃗Þ2Þ ¼ 0: ð14Þ

(4) If uμ is timelike and has only a u0 nonzero
component, with ui ¼ 0, we also have the absence
of higher time derivatives (so, unitarity is again most
likely achieved).

To study unitarity in our theory, we must determine the
physical degrees of freedom (d.o.f.) of the gauge field and
the correct iϵ prescription in order to perform a consistent
Wick rotation to Euclidean space, as we explain in Sec. IV.
Let us begin to study the extra conditions on the gauge

field, arising through contracting ∂μ and uμ with Δμλ in
Eq. (3). We obtain ð∂ · AÞ ¼ ðu · AÞ ¼ 0, which indicates
that we must express the gauge field in terms of polari-
zation vectors perpendicular to p and u. The strategy to
obtain these polarization vectors is to start with two real

transverse vectors eðaÞμ , with a ¼ 1, 2, and then change to

transverse complex ones εðλÞμ , with λ ¼ �.
Let us consider two linear polarization vectors eðaÞμ ,

satisfying the relation

eμν ¼ −
X
a¼1;2

eðaÞμ eðbÞν ; ð15Þ

and

ημνeðaÞμ eðbÞν ¼ −δab: ð16Þ

Now, we introduce the projector PðλÞ
μν ,

PðλÞ
μν ¼ 1

2
ðeμν þ iλϵμνÞ; ð17Þ

which projects any 4-vector vμ onto the hyperplane
orthogonal to uν and pλ vectors, with

eμν ¼ ημν −
ðu · pÞ
D

ðuμpν þ uνpμÞ þ p2

D
uμuν þ u2

D
pμpν;

ð18Þ

ϵμν ¼ ϵμλρνuλpρffiffiffiffi
D

p : ð19Þ

Indeed, one can show that these tensors are orthogonal to p
and u, i.e.,

eμνuν ¼ eμνpν ¼ 0;

ϵμνuν ¼ ϵμνpν ¼ 0: ð20Þ

They also satisfy the relations

eμνeνβ ¼ eμβ;

eμνϵνβ ¼ ϵμνeνβ ¼ ϵμβ;

ϵμνϵν
β ¼ −eμβ: ð21Þ

Using these properties, one can show that these tensors
diagonalize the equation of motion or Δμν in Eq. (3), since

PðλÞ
μν ηναP

ðλ0Þ
αβ ¼ δλλ

0
PðλÞ
μβ ; ð22Þ

PðλÞ
μν ϵναP

ðλ0Þ
αβ ¼ ð−iλÞδλλ0PðλÞ

μβ : ð23Þ

We can define the analogs to the circular polarization
vectors

εðþÞ
μ ¼ 1

2
ðeð1Þμ þ ieð2Þμ Þ;

εð−Þν ¼ 1

2
ðeð1Þν þ ieð2Þν Þ; ð24Þ

such that

PðλÞ
μν ¼ −εðλÞμ ðpÞε�ðλÞν ðpÞ: ð25Þ
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The transverse propagator is

iGT
μνðpÞ ¼

X
λ¼�

�
PðλÞ
μν

p2 þ λa
ffiffiffiffi
D

p
�

p2→p2þiϵ

; ð26Þ

with

a ¼ 4ðc1ðu · pÞ2 − c2u2p2Þ
M

; ð27Þ

where we have included the usual prescription p2 → p2 þ
iϵ to fix the position of the poles in the complex energy
plane. This prescription gives the correct position of the
poles in the second and fourth quadrants when considering
the case u purely spacelike or taking the limitM → ∞. We
use this propagator in the Sec. IV.

III. PERTURBATIVE GENERATION

Let us consider the perturbative generation of the Myers-
Pospelov term. One scheme, based on the magnetic
coupling, has been developed in Ref. [11], in which it
was shown to yield the finite corrections. Here, we deal
with another one. Let us consider the fermionic Lagrangian
[4], representing itself as an example of a family of
Lorentz-breaking higher-derivative fermionic Lagrangians
considered in Ref. [14],

Lf ¼ ψ̄

�
iD −mþ η2

M
γ5=vðv ·DÞ2

�
ψ ; ð28Þ

where Dμ ¼ ∂μ − ieAμ, vμ is a dimensionless vector, M is
the Planck mass (as above), and η2 is some dimensionless
number. So, we have the following explicit form of the
Lagrangian:

Lf ¼ ψ̄

�
i∂ −mþ η2

M
γ5=vðv · ∂Þ2 þ e=A

þ η2
M

γ5=vvμvνð−ieðAμ∂ν þ Aν∂μÞ

− ieð∂μAνÞ − e2AμAνÞ
�
ψ : ð29Þ

We note that the similar coupling, but including third
derivatives, has been used in Ref. [15].
One can easily observe that the one-loop effective action

of second order in A, in lower order in η2, is given by two
contributions graphically represented by Fig. 1. The first of
them involves only usual (minimal) vertices proportional to
ewhich do not involve any vμ vector, and η2 arises from the
expansion of the propagator and is given by graphs a and b
of Fig. 1. It looks like

Sð2Þeff ¼
ie2

2

Z
d4xΠμν

v AμAν; ð30Þ

where

Πμν
v ¼

Z
d4p
ð2πÞ4 trGvðpÞγμGvðp − kÞγν ð31Þ

with

GvðpÞ ¼
1

p −m − η2
M γ5=vðv · pÞ2

: ð32Þ

Now, by applying the expansion

GvðpÞ ¼ SðpÞ þ SðpÞ η2
M

γ5=vðv · pÞ2SðpÞ þ � � � ; ð33Þ

with SðpÞ ¼ ðp −mÞ−1, we can easily single out the terms
of first order in η2, by writing

Πμν
1MPðkÞ ¼

η2
M

μ4−D
Z

dDp
ð2πÞD tr½SðpÞγ5=vðv · pÞ2

× SðpÞγμSðp − kÞγν þ SðpÞγμSðp − kÞγ5
× =vðv · p − v · kÞ2Sðp − kÞγν�; ð34Þ

where we have promoted the integral to the D-dimensional
spacetime, so that d4p=ð2πÞ4 is replaced by to
μ4−DdDp=ð2πÞD, with μ being a renormalization scale.
To calculate the above integrals, we will use the

Feynman parametrization, so Eq. (34) is rewritten as

Πμν
1MPðkÞ ¼

η2
M

μ4−D
Z

1

0

dx
Z

dDp
ð2πÞD

1

ðp2 −M2
xÞ3

× tr½2ð1 − xÞðqþmÞγ5=vðv · qÞ2ðqþmÞ
× γμðq1 þmÞγν þ 2xðqþmÞγμðq1 þmÞ
× γ5=vðv · q1Þ2ðq1 þmÞγν�; ð35Þ

where M2
x ¼ m2 − ð1 − xÞxk2, qμ ¼ pμ þ xkμ, and

qμ1 ¼ qμ − kμ. Then, after the calculating the trace, we
obtain

(a) (b)

(c) (d)

FIG. 1. The contributions to the two-point function of Aμ with
triple vertices.
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Πμν
1MPðkÞ ¼

η2
M

μ4−D
Z

1

0

dx
Z

dDp
ð2πÞD

1

ðp2 −M2
xÞ3

X4
i¼1

Iμνi ; ð36Þ

with

Iμν1 ¼ −16ϵμαβγqαvβkγ½ð1 − xÞqνðv · qÞ2 þ xqν1ðv · q1Þ2�;
Iμν2 ¼ −16ϵανβγqαvβkγ½ð1 − xÞqμðv · qÞ2 þ xqμ1ðv · q1Þ2�;
Iμν3 ¼ 8ϵμνβγvβkγ½ð1 − xÞðv · qÞ2ðq2 −m2Þ þ 2xðv · q1Þ2ðq · q1 −m2Þ�;
Iμν4 ¼ 8ϵμναβqαvβ½ð1 − xÞðv · qÞ2ðq2 þm2 − 2q · q1Þ − xðv · q1Þ2ðq21 þm2 − 2q · q1Þ�: ð37Þ

In the following, after we integrate over dDp and expand the result around D ¼ 4, we have

Πμν
1MP ¼ −

i
4π

η2
M

ϵμνβγvβkγ

Z
1

0

dx

�
1

ϵ
− ln

Mx

μ0

�
½ð10ð1 − xÞ2x2k2 þ ð1 − 6ð1 − xÞxÞm2Þv2

−4ð1 − xÞð2 − 5ð1 − xÞxÞxðv · kÞ2� − i
8π

η2
M

ϵμνβγvβkγ

Z
1

0

dx

×
1

M2
x
½ð1 − 6ð1 − xÞxÞM4

xv2 − 2ð1 − xÞ2x2k2ð3 − 4ð1 − xÞxÞðv · kÞ2�; ð38Þ

where ϵ ¼ 4 −D and μ02 ¼ 4πμ2e−γ . We note that, as
R
1
0 dxð1 − 6ð1 − xÞxÞ ¼ 0, the divergent contribution does not

depend on the mass m.
Finally, after we integrate over the parameter x, we obtain

Πμν
1MP ¼ −

1

12π2ϵ0
η2
M

½k2v2 − 2ðv · kÞ2�ϵμνλρnλkρ þ
1

72π2
η2
M

�
5k2 þ 12m2 þ 6ðk4 − 2k2m2 − 8m4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ð4m2 − k2Þ
p csc−1

�
2mffiffiffiffiffi
k2

p
��

v2ϵμνλρvλkρ

−
1

18π2
η2
M

�
1−

3m2

k2
þ 3ðk4 − 2k2m2 þ 4m4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k6ð4m2 − k2Þ
p csc−1

�
2mffiffiffiffiffi
k2

p
��

ðv · kÞ2ϵμνλρvλkρ; ð39Þ

with 1
ϵ0 ¼ 1

ϵ − ln m
μ0. Here, we can consider the limits k2 ≪ m2 (m ≠ 0) and k2 ≫ m2 (m ¼ 0) so that we get

Πμν
1MP ¼ −

1

12π2ϵ0
η2
M

½k2v2 − 2ðv · kÞ2�ϵμνλρvλkρ þO
�
k2

m2

�
ð40Þ

and

Πμν
1MP ¼ −

1

12π2ϵ00
η2
M

½k2v2 − 2ðv · kÞ2�ϵμνλρvλkρ þ
1

72π2
η2
M

½5k2v2 − 4ðv · kÞ2�ϵμνλρvλkρ þO
�
m2

k2

�
; ð41Þ

respectively, where we have also defined 1
ϵ00 ¼ 1

ϵ − ln k
μ0, with k ¼

ffiffiffiffiffi
k2

p
.

Therefore, for the induced bosonic Myers-Pospelov term from the contribution (40), which corresponds to the nonzero
mass, we have

S1MP ¼ e2

12π2ϵ0
η2
M

Z
d4x½v2vβϵβμνλAμ□Fνλ − 2vαFαμðv · ∂ÞvβϵβμνλFνλ�: ð42Þ

This enforces the fact that the above higher-derivative terms should be introduced from the very beginning (1) so that we
have a consistent subtraction of the divergences.
Then, the quartic vertex (corresponding Feynman diagram is given by Fig. 2) evidently should give a zero contribution.

Indeed, this diagram can yield only the Proca-like term ðv · AÞ2 with no derivatives, since there are no derivatives of Aμ in
the classical action, and the only relevant graph is a tadpole, so the integration over the internal momentum cannot yield a
contribution depending on the external momentum, and this term is inconsistent with the gauge symmetry (its vanishing can
be shown explicitly, as well).
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To find the remaining first-order contribution in η2
presented by graphs c and d of Fig. 1, we should consider
the contraction of two vertices: the first of them is the usual
eψ̄=Aψ , and the second one is −ieψ̄ η2

M γ5=vvμvνððAμ∂νþ
Aν∂μÞ þ ð∂μAνÞÞψ , where the propagator is the free one
[indeed, expanding (32), we will get only the higher-order
contributions]. Its explicit form is

S2MP ¼ ie2
η2
M

vνvμAμð−kÞAλðkÞ
Z

d4p
ð2πÞ4 ð2pν þ kνÞ

× tr
�
γ5=v

1

p −m
γλ

1

pþ =k −m

�
: ð43Þ

Here, the factor 2pν þ kν originates from the nonminimal
vertex given by the expression −ieψ̄ η2

M γ5=vvμvνððAμ∂ν þ
Aν∂μÞ þ ð∂μAνÞÞψ (the moment p is for the spinor propa-
gator, and the moment k is for external gauge field). It
remains to expand this expression up to the third order in
external k (actually, the first order in k disappears, so it
remains to deal only with the third order). Indeed, the trace
in (43) can be calculated before of any expansion of the
propagator in series in k:

S2MP ¼ −4e2
η2
M

vνvμAμð−kÞAλðkÞϵαβλρ

×
Z

d4p
ð2πÞ4 ð2pν þ kνÞvαpβkρ

×
1

ðp2 −m2Þ½ðpþ kÞ2 −m2� : ð44Þ

Now, this expression can be expanded into power series in
external momenta, where only the third order should be
taken into account (the first and second orders evidently
vanish; for the first order, one evidently will have the
contraction of the Levi-Civita symbol with two Lorentz-
breaking vectors, which immediately vanishes, and for the
second order, the corresponding scalar simply does
not exist).
However, to study it, we can first present it as

S2MP ¼ Aμð−kÞΠμλ
2MPAλðkÞ; ð45Þ

where

Πμλ
2MP ¼ −4e2

η2
M

vνvμϵαβλρkρvαQνβ; ð46Þ

with

Qνβ ¼
Z

d4p
ð2πÞ4 ð2pν þ kνÞpβ

1

ðp2 −m2Þ½ðpþ kÞ2 −m2� :

ð47Þ
It is clear that, up to the second order in the external p (the
highest relevant order), the tensor Qνβ must look like

Qνβ ¼ Q1ηνβ þQ2kνkβ: ð48Þ
Indeed, there are no other possible tensor structures. Here,
Q1 and Q2 are two (divergent) constants. Substituting this
structure into the contribution (46), we find that it iden-
tically vanishes. Hence, this “mixed” contribution is zero,
and the only nontrivial result for the Myers-Pospelov term
is given by (42). The divergent nature of this result
immediately shows that for consistency of the theory
one should have the higher-derivative CFJ-like and
Myers-Pospelov term presented in the classical action from
the very beginning.
Now, we can discuss the renormalization. Actually,

our theory is nonrenormalizable (indeed, our coupling is
α
M, and it has a negative mass dimension; we note that the
models considered in Refs. [11,16] allowing for arising
the higher-derivative Lorentz-breaking terms are also non-
renormalizable). As is well known, the nonrenormalizable
theories are treated as effective ones (see a detailed
discussion of the concept of effective field theories in
Ref. [17]). They typically arise after integrating over
some fields, usually the heavy ones with the characteristic
mass Mchar of which the role is played in our theory by M,
in some fundamental, renormalizable theory. As a result,
the action of an effective theory represents itself as a power
series in 1

Mchar
; hence, the coupling constants, being propor-

tional to different positive degrees of 1
Mchar

, have negative
mass dimension, and the theory turns out to be non-
renormalizable. However, the linearly and quadratically
divergent contributions in the effective theories are propor-
tional to positive degrees of the cutoff scale μ, and if
μ ≪ Mchar, these contributions turn out to be strongly
suppressed being proportional to ð μ

Mchar
Þn, with n ≥ 1.

Since μ
Mchar

≪ 1, it is sufficient to restrict the expansion

in 1
Mchar

by the first order. This is just the case of our theory,
where Mchar ¼ M is of the order of the Planck scale, while
μ is naturally estimated to be of the order of 1 TeV; see, for
example, Ref. [18]. So, we can restrict ourselves by the
contributions of the first order in 1

M.
It is not difficult to show that, in the one-loop approxi-

mation, for external Aμ, the superficial degree of divergence
looks like

ω ¼ 4 − V1 − 2V0a − 2V0b − 2V2 − Nd; ð49Þ

where V1 is the number of vertices ψ̄γ5=vvμvνAμ∂νψ , V2 is
the number of vertices ψ̄γ5=vðv · AÞ2ψ , V0a is the number of

FIG. 2. The contributions to the two-point function of Aμ with
the quartic vertex.
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standard vertices ψ̄=Aψ , V0b is the number of vertices
ψ̄γ5=vvμvνð∂μAνÞψ , and Nd is the number of derivatives
acting to external legs (except those ones in V0b). We note
that only V0a vertices are not 1

M suppressed. It is clear then
that, first, the number of externalAμ legs cannot be less than 2
(hence, 2V2 þ V0a þ V0b þ V1 ≥ 2) and that for gauge
symmetry reasons theremust be at least one derivative acting
to gauge legs (to get the CFJ term) or two derivatives (to
get the Maxwell or aether terms). Also, it is evident that the
potentially divergent Feynman diagrams with V2 ¼ 1, 2
will be not gauge invariant since they will yield the
contributions proportional to ðv · AÞ2 or ðv · AÞ4, and they
should vanish in some regularization. Hence, in divergent
diagrams one should have V2 ¼ 0. Then, the diagram with
V0a ¼ 2 has been studied above (42), and the contribution
with V0a ¼ 1 and V0b þ V1 ¼ 1 is just that one given by
(44), and its contribution is zero. In principle, we can also
have divergences in contributions to the two-point function

formed by only V1 and V0b vertices; however, they are
strongly suppressed, being proportional to 1

M2. We conclude
our discussion with the statement that up to the order M−1

our results are exact, and the only nontrivial divergent
contribution is given by (42).
Therefore, we find that the higher-derivative action

given by the sum of (1) and (28) is consistent in the one-
loop order. We note that, as usual, if we suggest the gauge
field to be a purely external one, the one-loop result is exact.
Now, let us introduce finite temperature. To do it,

we apply the Matsubara formalism; i.e., in the integrals
over momenta above, Eqs. (34) and (46), we suggest
that the zero component of the internal momentum is
discrete, p0 ¼ 2πTðlþ 1

2
Þ, with l being an integer,

and, afterward, we integrate over spatial components
of the internal momentum and sum over l. As a result, at
the finite temperature, our self-energy tensor, given by
Πμν

MP ¼ Πμν
1MP þ Πμν

2MP, turns out to look like

Πμν
MP¼AðξÞ½k2v2−2ðv ·kÞ2�ϵμνλρvλkρþBðξÞk2ðv · tÞ2ϵμνλρvλkρ

−
1

2
BðξÞk2v2ðtμtαϵανλρþ tνtαϵμαλρÞvλkρ−2BðξÞðk ·vÞðk · tÞðv · tÞϵμνλρvλkρþBðξÞðv ·kÞ2ðtμtαϵανλρþ tνtαϵμαλρÞvλkρ

−BðξÞðk ·vÞðk · tÞðvμtαϵανλρþvνtαϵμαλρÞvλkρþ2BðξÞðv ·kÞðv · tÞðkμtαϵανλρþkνtαϵμαλρÞvλkρ
−
1

2
BðξÞk2v2ðk · tÞϵμνλρvλtρþ2BðξÞk2ðk ·vÞðv · tÞϵμνλρvλtρþCðξÞk2ðv · tÞ2ðtμtαϵανλρþ tνtαϵμαλρÞvλkρ

−2CðξÞðk · tÞ2v2ðtμtαϵανλρþ tνtαϵμαλρÞvλkρ−2CðξÞðk · tÞ3v2ϵμνλρvλtρþCðξÞk2ðk · tÞðv · tÞ2ϵμνλρvλtρ
þDðξÞðk · tÞ2ðv · tÞ2ðtμtαϵανλρþ tνtαϵμαλρÞvλkρþDðξÞðk · tÞ3ðv · tÞ2ϵμνλρvλtρþO

�
k2

m2

�
; ð50Þ

where

AðξÞ ¼ −
1

12π2ϵ0
η2
M

−
1

12π2
η2
M

Z
∞

jξj
dz

ðtanhðπzÞ − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz − ξÞðξþ zÞp ; ð51Þ

BðξÞ ¼ −
1

6

η2
M

Z
∞

jξj
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − ξÞðξþ zÞ

p
tanhðπzÞsech2ðπzÞ; ð52Þ

CðξÞ ¼ 1

12

η2
M

Z
∞

jξj
dz

ðξ2 − 2z2Þ tanhðπzÞsech2ðπzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz − ξÞðξþ zÞp ; ð53Þ

DðξÞ ¼ 1

3

η2
M

Z
∞

jξj
dz

tanhðπzÞsech4ðπzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz − ξÞðξþ zÞp ð−5π2ξ4 þ ξ2 þ ð5π2ξ2 − 2Þz2þðπ2ξ4 þ ξ2 − ðπ2ξ2 þ 2Þz2Þ coshð2πzÞÞ; ð54Þ

with ξ ¼ m
2πT. Above, we have split the internal momen-

tum as pμ ¼ p⃗μ þ p0tμ, with p⃗μ ¼ ð0; p⃗Þ and tμ ¼
ð1; 0; 0; 0Þ being a constant vector along the time axis.
We note that these functions of the temperature emerged
as well in Ref. [19], in which the finite-temperature
extension of results obtained in Ref. [11] for another
Lorentz-breaking extension of the QED, involving the
magnetic coupling and the coupling of ψ to the constant

axial vector bμ, was carried out. It was shown there that
in the high-temperature limit all these functions vanish.
The result (50) is clearly gauge invariant.
Besides the two-point function of the gauge field, it is

important also to consider the two-point function of the
spinor field.
Let us calculate this two-point function of the spinor in

the first order in 1
M. We start with the action given by the
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sum of Lorentz-breaking classical actions (2) and (28),
allowing us to obtain the propagators of gauge and spinor
fields, respectively. The two-point function of the spinor
field is generated by two contributions with external spinor
legs: the first one involves two triple vertices, and the
second one involves one quartic vertex. To do the calcu-
lation, we proceed in the same manner as with the
two-point function of the gauge field; that is, we note that
the result can be represented in the form of the expansion
in 1

M and will find the first order in this expansion, just
as we have done above. The Lorentz-breaking insertions
into the Feynman diagrams below are denoted by the ×
symbol.

We see that, since the quartic vertex is proportional
to 1

M, we can keep in the propagator of the gauge field
only the zero-order terms in 1

M, so we have

hAμð−kÞAνðkÞi ¼ iημν

k2 . Hence, the contribution of the dia-
gram with quartic vertex given by Fig. 3 is proportional toR

d4k
ð2πÞ4

1
k2 ¼ 0. As a result, we are left with triple vertices

only. They look like

Ltriple ¼ −eψ̄
�
−=Aþ i

η2
M

γ5=vvμvνðAμ∂ν þ Aν∂μ þ ð∂μAνÞÞ
�
ψ : ð55Þ

The explicit form of the vertices, in the momentum space, is

V0ðl1; l2; l3Þ ¼ eψ̄ðl1Þγκψðl2ÞAκðl3Þð2πÞ4δðl1 þ l2 þ l3Þ;
V1ðk1; k2; k3Þ ¼ −

eη2
M

vμvνψ̄ðk1Þγ5=vψðk2ÞAλðk3Þ½δλμk2ν − δλνk1μ�ð2πÞ4δðk1 þ k2 þ k3Þ: ð56Þ

So, we have the graphs given by Fig. 4. In the two upper graphs of Fig. 4, we consider usual propagators and modified
vertices (i.e., one usual vertex V0 and one new vertex V1). The result is, respectively,

T1ðkÞ ¼ − e2η2
M

vμvν
Z

d4p
ð2πÞ4 ψ̄ðkÞγ

κðp −mÞγ5=vψðkÞηλκ½δλμkν − δλνpμ�
1

ðp2 þm2Þðk − pÞ2 ;

T2ðkÞ ¼ − e2η2
M

vμvν
Z

d4p
ð2πÞ4 ψ̄ðkÞγ5=vðp −mÞγκψðkÞηλκ½δλνkμ − δλμpν�

1

ðp2 þm2Þðk − pÞ2 : ð57Þ

In the two lower graphs of Fig. 4, we have insertions into the propagators. The graph with an insertion into the gauge
propagator, with ΣðkÞ ¼ −c2u2k2 þ c1ðu · kÞ2, is

T3ðkÞ ¼
4e2η2
M

Z
d4p
ð2πÞ4 ψ̄ð−kÞγ

μðpþmÞγνψðkÞ ηναημβ
ðkþ pÞ4 ϵ

αβρσuρðpσ þ kσÞ
Σðkþ pÞ
ðp2 −m2Þ : ð58Þ

And the graph with an insertion into the spinor propagator is

T4ðkÞ ¼
e2η2
M

Z
d4p
ð2πÞ4 ψ̄ð−kÞγ

μðpþmÞγ5=vðv · pÞ2ðpþmÞγνψðkÞ ημν
ðkþ pÞ2

1

ðp2 −m2Þ2 : ð59Þ

Within the calculation, we expand these contributions up to the second order in the external kμ. It remains to simplify these
expressions. Again, we use the dimensional regularization with ϵ ¼ 4 −D. We take into account only terms up to the
second order in external momenta because the higher orders do not contribute to one-loop divergences.
It is instructive here to give some intermediate steps of the calculation. First of all, the structures of T1 and T2 are rather

similar, so that can be summed, and T4 can be simplified with the use of the identities γμγνγμ ¼ −2γν and γμ½γα; γβ�γμ ¼ 0.
Then, we have

FIG. 3. The contributions to the two-point function of ψ with
the quartic vertex.

×
>

×
>

×

> × >

FIG. 4. The contributions to the two-point function of ψ with
triple vertices.
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T1ðkÞ þ T2ðkÞ ¼ − 2e2η2
M

Z
d4p
ð2πÞ4 ψ̄ðkÞ=vp=vγ5ψðkÞ

v · ðpþ kÞ
ðp2 þm2Þðk − pÞ2 ;

T4ðkÞ ¼
2e2η2
M

Z
d4p
ð2πÞ4 ψ̄ð−kÞ½2ðv · pÞp − =vðp2 þm2Þ�γ5ψðkÞ

ðv · pÞ2
ðkþ pÞ2

1

ðp2 −m2Þ2 : ð60Þ

Integrating over momenta, we arrive at the following pole parts of these contributions up to the second order in the external
kμ, either in the massive case, in which one can use expansion in k2

m2,

T1ðkÞ þ T2ðkÞ ¼
ie2η2

48π2ϵ0M
ψ̄ð−kÞ½ðv2ðk2 − 3m2Þ − 20ðk · vÞ2Þ=vþ 10v2ðk · vÞ=k�γ5ψðkÞ

− ie2η2
576π2M

ψ̄ð−kÞð−5k2v2=v − 98v2ðk · vÞ=kþ 196ðk · vÞ2=vÞγ5ψðkÞ þ
3ie2η2
64π2M

ψ̄ð−kÞm2v2=vγ5ψðkÞ

þO
�
k2

m2

�
; ð61Þ

or in the massless limit, in which one uses expansion in m2

k2 ,

T1ðkÞ þ T2ðkÞ ¼
ie2η2

48π2ϵ00M
ψ̄ð−kÞ½ðv2k2 − 20ðk · vÞ2Þ=vγ5 þ 10v2ðk · vÞ=kγ5�ψðkÞ

þ ie2η2
288π2k6M

ψ̄ð−kÞ½62k6v2ðk · vÞ=kγ5 þ =vγ5ð8k8v2 − 124k6ðk · vÞ2Þ�ψðkÞ −O
�
m2

k2

�
: ð62Þ

For T4, in the massive and massless cases, respectively, we have

T4ðkÞ¼−
ie2η2

96π2ϵ0M
ψ̄ð−kÞ½v2ððk2−6m2Þ=v−6=kðk ·vÞÞþ2ðk ·vÞ2=v�γ5ψðkÞ

−
ie2η2

2304π2M
ψ̄ð−kÞðk2v2=v−78v2=kðk ·vÞþ98ðk ·vÞ2=vÞγ5ψðkÞþ

7ie2η2
192π2M

ψ̄ð−kÞm2v2=vγ5ψðkÞþO
�
k2

m2

�
ð63Þ

or

T4ðkÞ¼−
ie2η2

96π2ϵ00M
ψ̄ð−kÞ½v2ðk2=v−6=kðk ·vÞÞþ2ðk ·vÞ2=v�γ5ψðkÞ

−
ie2η2

1152π2k10M
ψ̄ð−kÞ½k2v2ð16k10=v−60k8=kðk ·vÞÞþ2ðk ·vÞ2ð22k10=v−−36k8=kðk ·vÞÞ�γ5ψðkÞþO

�
m2

k2

�
: ð64Þ

The T3 has a structure different from T1, T2, T4, being proportional to the Levi-Civita symbol. After the integrations over
momenta, we find for massive and massless cases, respectively,

T3ðkÞ ¼ −
ie2η2

96π2ϵ0M
uκϵκλμνψ̄ð−kÞ½−γμγνγλðu2ðc1ð2m2 − k2Þ þ 4c2ðk2 − 3m2ÞÞ þ 2c1ðk · uÞ2Þ

þð2u2ððc1 − 4c2Þ=kþ 2ðc1 − 6c2ÞmÞ þ 4c1ðk · uÞ=uÞkλγμγν�ψðkÞ

−
ie2η2

2304π2M
ψ̄ð−kÞγμγνγλψðkÞð−40c2k2u2 þ 13c1k2u2 − 14c1ðk · uÞ2Þuκϵκλμν

−
ie2η2

1152π2M
ð13c1 − 40c2Þu2uκkλϵκλμνψ̄ð−kÞ=kγμγνψðkÞ þ

7ic1e2η2
576π2M

ðk · uÞuκkλϵκλμνψ̄ð−kÞ=uγμγνψðkÞ

−
ie2η2

288π2M
ð5c1 − 18c2Þmu2ψ̄ð−kÞγμγνψðkÞuκkλϵκλμν

þ ie2η2
576π2M

ð11c1 − 54c2Þm2u2ψ̄ð−kÞγμγνγλψðkÞuκϵκλμν þO
�
k2

m2

�
ð65Þ

or
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T3ðkÞ ¼ −
ie2η2

96π2ϵ0M
uκϵκλμνψ̄ð−kÞ½−γμγνγλðu2ð−c1 þ 4c2Þk2 þ 2c1ðk · uÞ2Þ

þkλð2u2ðc1 − 4c2Þ=kþ 4c1ðk · uÞ=uÞγμγν�ψðkÞ

−
ie2η2

576π2k10M
uκkλϵκλμνðk2u2ð10c1k8 − 40c2k8Þ þ 12c1k8ðk · uÞ2Þψ̄ð−kÞ=kγμγνψðkÞ

þ ie2η2
1152π2k8M

ψ̄ð−kÞγμγνγλψðkÞuκϵκλμνðk2u2ð−16c1k8 þ 64c2k8Þ þ 20c1k8ðk · uÞ2Þ

þ 5ic1e2η2
144π2M

ðk · uÞuκkλϵκλμνψ̄ð−kÞ=uγμγνψðkÞ þO
�
m2

k2

�
: ð66Þ

However, the form of T3 can be presented in the manner similar to T1, T2, T4, with the use of the identities,

σμνγ5 ¼
i
2
ϵμναβσαβ; ϵκλμνγ

μγν ¼ −2σκλγ5; ϵκλμνγ
λγμγν ¼ −6iγ5γκ; ð67Þ

which implies, at m ≠ 0,

T3ðkÞ¼−
e2η2

96π2ϵ0M
ψ̄ð−kÞ½6γ5=uðu2ðc1ð2m2−k2Þþ4c2ðk2−3m2ÞÞþ2c1ðk ·uÞ2Þ

−2i½2u2ððc1−4c2Þ=kþ2ðc1−6c2ÞmÞþ4c1ðk ·uÞ=u�uκkλσκλγ5�ψðkÞ

−
e2η2

384π2M
ψ̄ð−kÞγ5=uψðkÞðð13c1−40c2Þk2u2−14c1ðk ·uÞ2Þ

þ i
e2η2

576π2M
ð13c1−40c2Þu2uκkλψ̄ð−kÞ=kσκλγ5ψðkÞ−

7ic1e2η2
288π2M

ðk ·uÞuκkλψ̄ð−kÞ=uσκλγ5ψðkÞ

þ ie2η2
144π2M

ð5c1−18c2Þmu2ψ̄ð−kÞσκλγ5ψðkÞuκkλþ
e2η2

96π2M
ð11c1−54c2Þm2u2ψ̄ð−kÞγ5=uψðkÞþO

�
k2

m2

�
ð68Þ

and, at m → 0,

T3ðkÞ ¼ −
e2η2

96π2ϵ0M
ψ̄ð−kÞ½6γ5=uðu2ð−c1 þ 4c2Þk2 þ 2c1ðk · uÞ2Þ

−4iuκkλðu2ððc1 − 4c2Þ=kÞ þ 4c1ðk · uÞ=uÞσκλγ5�ψðkÞ

þ ie2η2
288π2k10M

uκkλðk2u2ð10c1k8 − 40c2k8Þ þ 12c1k8ðk · uÞ2Þψ̄ð−kÞ=kσκλγ5ψðkÞ

−
e2η2

192π2k8M
ψ̄ð−kÞÞ=uγ5ψðkÞðk2u2ð−16c1k8 þ 64c2k8Þ þ 20c1k8ðk · uÞ2Þ

−
5ic1e2η2
72π2M

ðk · uÞuκkλψ̄ð−kÞ=uσκλγ5ψðkÞ þO
�
m2

k2

�
: ð69Þ

More simplifications are possible in terms involving σνλ matrices, due to symmetrization by the rules like =k=k ¼ k2, =v=v ¼ v2,
and then, uκkλ=kσκλ ¼ i½ðu · kÞ=k − =uk2�, and uκkλ=uσκλ ¼ i½u2=k − =uðu · kÞ�. Thus, we find
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T3ðkÞ¼−
e2η2

96π2ϵ0M
ψ̄ð−kÞ½6=uðu2ðc1ð2m2−k2Þþ4c2ðk2−3m2ÞÞþ2c1ðk ·uÞ2Þ

þ4u2ððc1−4c2Þ½ðu ·kÞ=k−=uk2�þ2iðc1−6c2ÞmuκkλσκλÞþ4c1ðk ·uÞ½u2=k−=uðu ·kÞ��γ5ψðkÞ

−
e2η2

384π2M
ψ̄ð−kÞγ5=uψðkÞðð13c1−40c2Þk2u2−14c1ðk ·uÞ2Þ−

e2η2
576π2M

ð13c1−40c2Þu2ψ̄ð−kÞ½ðu ·kÞ=k−=uk2�γ5ψðkÞ

þ 7c1e2η2
288π2M

ðk ·uÞψ̄ð−kÞ½u2=k−=uðu ·kÞ�γ5ψðkÞþ
ie2η2

144π2M
ð5c1−18c2Þmu2ψ̄ð−kÞσκλγ5ψðkÞuκkλ

þ e2η2
96π2M

ð11c1−54c2Þm2u2ψ̄ð−kÞγ5=uψðkÞþO
�
k2

m2

�
ð70Þ

and, at m → 0,

T3ðkÞ¼−
e2η2

96π2ϵ0M
ψ̄ð−kÞ½6=uðu2ð−c1þ4c2Þk2þ2c1ðk ·uÞ2Þþ4u2ðc1−4c2Þ½ðu ·kÞ=k−=uk2�

þ4c1ðk ·uÞ½u2=k−=uðu ·kÞ��γ5ψðkÞ−
e2η2

288π2k2M
ðk2u2ð10c1−40c2Þþ12c1ðk ·uÞ2Þψ̄ð−kÞ½ðu ·kÞ=k−=uk2�γ5ψðkÞ

−
e2η2

192π2M
ψ̄ð−kÞÞ=uγ5ψðkÞðk2u2ð−16c1þ64c2Þþ20c1ðk ·uÞ2Þ

þ5c1e2η2
72π2M

ðk ·uÞψ̄ð−kÞ½u2=k−=uðu ·kÞ�γ5ψðkÞþO
�
m2

k2

�
: ð71Þ

Taking all together, we find that, to achieve multiplicative renormalizability, in the m ≠ 0 case, the total free Lorentz-
breaking Lagrangian of the spinor, corresponding to pole parts of T1, T2, T3, T4 together plus the classical action, must be

Ltotal ¼ ψ̄ði∂ −mÞψ þ 1

M
ψ̄ðC1v2=v□þ C2ðv · ∂Þ2=vþ C3v2ðv · ∂Þ∂ þ C4m2v2=vþ C5mv2σλρvλ∂ρÞγ5ψ

þ ðCi → C0
i; v

μ → uμÞ; ð72Þ

where C1…C5, C0
1…C0

5 are dimensionless constants, and
each term of the given dependence in vμ has its analog
where vμ is replaced by the uμ. In our case, the last term
proportional to C0

5 emerges only with the uμ vector, arising
from T3, and there is no term proportional to C5. We note
that, as frequently occurs, the Lorentz-breaking vectors are
lightlike, and some terms in quantum corrections simply
vanish, so the structure of quantum corrections simplifies
drastically (for example, a similar situation takes place in
Ref. [11]). Namely, if both v2 ¼ 0 and u2 ¼ 0, this
Lagrangian exactly matches the kinetic part of the
Lagrangian (28), which we used as a starting point. We
note that, for dimensional and symmetry reasons, it is easy
to conclude that the same quantum corrections (72) will
emerge if, instead of (28), we used the gauge extension of
(72). Also, the new terms proportional to m

M u2ψ̄γ5ðu · ∂Þψ
or its analog in which uμ is replaced by vμ, can arise in
these cases.
We note that, in principle, the explicit results of

integration over momenta can be obtained as well in
general case, without imposing any of these limits; how-
ever, they are extremely cumbersome. It is interesting to

observe that if the Lorentz-breaking vectors uμ and vμ are
lightlike the zero and first orders in external momenta in
these contributions vanish.
The whole contribution to the two-point function of the

spinor is given by the sum of T1, T2, T3, and T4: in the
massive case, one finds a sum of (61), (70), (63), and in the
massless case, one finds the sum of (62), (71), (64). We
close the section with the conclusion that we found the two-
point functions in both the gauge and matter sectors of our
extension of the QED.

IV. UNITARITY ASPECTS IN THE
EXTENDED QED

It is well known that the presence of higher time
derivatives in quantum field theory can lead to an indefinite
metric in Hilbert space. The sector with a negative metric of
the theory produces negative norm states or ghosts, which
introduce several conceptual issues in connection with the
conservation of probability or unitarity. However, in the
subclass of higher time derivative theories called Lee-Wick
theories, in which the additional d.o.f. arise in complex
conjugate poles, perturbative unitarity has been well
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established [20]. The idea is that, since the structure of
poles determines the discontinuities in phase space, under
some assumptions, both contributions of complex conju-
gate modes cancel each other order by order in the
perturbative series [21]. The issue of analyticity in the
complex energy plane and the resulting cutting equations
have been intensively studied over the past years (for the
general discussion of ghost states, see, for example,
Ref. [22]). The Lee-Wick prescription of removing the
negative metric particles from the asymptotic space has
been shown to be an efficient tool in providing a unitary
theory together with the expected convergence property.
In general, to study unitarity in higher time derivatives

theories, one is confronted with the problem of analyticity
of amplitude diagrams. The direct application of the iϵ
prescription in the propagators seems to fail to preserve
unitarity in many cases; therefore, it is necessary to analyze
the configuration of poles case by case. Moreover, the
presence of Lorentz symmetry breaking makes the study of
analyticity of integrals be more involved. In many cases,
there can be an arbitrary number of extra poles associated to
negative-metric states, which marks a departure with
respect to the pole structure of a Lee-Wick theory that
one uses to prove unitarity. It is also difficult to consider the
perturbative solutions which can become complex under
certain conditions, and the corresponding dispersion rela-
tion can be extremely difficult to solve [23]. An early
approach to deal with analytic properties of phase space
integrals in the presence of Lorentz violation, based on the
Euclidean space or Wick rotation, is presented in Ref. [24].
Recently, a new formulation for Lee-Wick theories
as nonanalytical Euclidean theories was proposed in
Refs. [25,26]. We follow similar lines to deal with unitarity
in our higher time derivative Lorentz-violating model. The
strategy we pursue to compute the relevant contributions of
discontinuities is to consider the Euclidean theory from the
beginning and perform the Wick rotation together with
rotation of the preferred 4-vector and to apply the Lee-Wick
prescription in cut integrals [20]. In this way, we arrive at
the simplified integral with simplified poles.
The processes we study are the Bhabha scattering at tree

level (we note that some earlier studies of Bhabha scatter-
ing in a Lorentz-breaking extension of QED were carried
out in Ref. [27], in which, however, no higher-derivative
terms were studied) and Compton scattering at the one-loop
level. In the first case, we let the preferred 4-vector to be the
most general one, allowing additional d.o.f. and the
negative metric to arise, and in the second one, we choose
a purely timelike preferred 4-vector without ghosts in the
theory. For both cases, we consider the forward scattering
of two particles with incoming momenta p ¼ k and p0
related as

pþ p0 → pþ p0: ð73Þ

A. Bhabha scattering at tree level in the ghost sector

We consider a generic preferred 4-vector uμ so that, in
general, ghosts can arise. We also consider the Bhabha
scattering process at tree level given by Fig. 5.
The amplitude in the transverse gauge is given by

iM ¼ ð−ieÞVμðp; p0Þ ×
X
λ

−iPðλÞ
μν ðqÞ

ΛðλÞðqÞ

����
q¼p−p0

× ð−ieÞV�νðp; p0Þ; ð74Þ
where ΛðλÞðqÞ ¼ q2 þ λa

ffiffiffiffiffiffiffiffiffiffiffi
DðqÞp

, with DðqÞ and a given
by (10) and (27), respectively, and

Vμðp; p0Þ ¼ ūðpÞγμvðp0Þ;
V�νðp; p0Þ ¼ v̄ðp0ÞγνuðpÞ:

The standard way to compute the imaginary part of the
amplitude in Eq. (74) is to fix the 4-vector uμ, solve the
dispersion relation, and, afterward, analyze discontinuities
of MðsÞ, which is an analytic function of the complex
variable s. However, in our model with modified photons,
the dispersion relation is a very complicated expression,
and the solutions can be difficult to find. So, we introduce a
novel method to deal with unitarity.
The strategy is to start with a theory in Minkowski space,

which is defined as the one obtained from the Wick rotation
in the Euclidean theory, perhaps nonanalytically, as in
Refs. [25,26]. This starting point ensures a well-defined
Wick rotation to the Euclidean space warranted by the
position of positive and negative poles in the fourth and
second quadrants of the energy plane, respectively. Hence,
we perform the Wick rotation, changing external momenta
s4 ¼ is0 so that the dispersion relation decouples into usual
and ghost solutions. This last step simplifies the calculation
considerably. The rotated energy integral will still depend
on the iϵ prescription, which allows us to compute the
discontinuity. Finally, we perform the polarization sum and
conveniently evaluate with the delta function in some parts
of the integral. Only at the final step, we remove the iϵ
prescription performing the limit ϵ → 0.

FIG. 5. The Bhabha scattering diagram at tree level.
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From Eq. (74), we can write

MðsÞ ¼ e2VμV�ν
Z

d4q
ð2πÞ4

�X
λ

eμν þ iλϵμν
2ΛðλÞðqÞ

�
q2→q2þiϵ

δð4Þðq − sÞ;

ð75Þ

where we have defined s ¼ p − p0, included the iϵ prescription, and used PðλÞ
μν ¼ 1

2
ðeμν þ iλϵμνÞ. Using the expressions

1

ΛðþÞ þ
1

Λð−Þ ¼
2q2

ðq2Þ2 − a2D
;

1

ΛðþÞ −
1

Λð−Þ ¼ −
2a

ffiffiffiffi
D

p

ðq2Þ2 − a2D
; ð76Þ

and (18) and (19), we can write

MðsÞ ¼ e2VμV�ν ×
Z

d4q
ð2πÞ4

�
1

ðq2Þ2 − a2D

�
−q2ημν −

ðq2Þ2
D

uμuν þ aiϵμαβνuαqβ
��

q2→q2þiϵ
δð4Þðq − sÞ; ð77Þ

where the terms in (75) proportional to q ¼ p − p0 vanish due to the external on-shell spinors.
TheWick rotation has to be done carefully, since the direct analytical extension of the momentum variable in the delta can

lead to inconsistencies. The best way to proceed for our integral is to perform the analytic extension in the original
expression (74) and then go back with the integral in Eq. (75). However, for an intermediate step, we will extend the delta to
complex variables [26]. Before doing this, however, we should mention that solutions in Euclidean space may differ from
those in Lorentzian space, so the equivalence of both methods holds with respect to the type of solutions, which eventually
propagate through the cuts. Along these steps, by performing the analytic extension with the rule s0 ¼ −is4 and momenta
sE ¼ ðs⃗; s4Þ, we arrive at

MðsEÞ¼ e2VμV�ν×
Z

d4qE
ð2πÞ4

�
1

q2Eð1þβ2γq2EÞ
�
ημνþ

1

γ
uEμuEν þβiϵμαβνuαEq

β
E

��
q2E→q2E−iϵ

δð3Þðq⃗− p⃗− p⃗0Þδðq4− s4Þ; ð78Þ

with

DE ¼ −γq2E; aE ¼ βq2E; γ ¼ u2Esin
2θ; β ¼ 4u2Eðc1cos2θ − c2Þ

M
; ð79Þ

where θ is the angle between the two Euclidean 4-vectors uE and qE. Now, in terms of εðλÞEν , which is a function of q4, we can
write Eq. (78) as

MðsEÞ ¼ e2VμV�ν ×
Z

d4qE
ð2πÞ4

�X
λ

ðεðλÞEμε
�ðλÞ
Eν ð−1þ iλβ

ffiffiffiffiffiffiffiffi
γq2E

p
ÞÞ

q4¼s4
δðq4 − s4Þ

ðq2E − iϵÞð1þ β2γq2E − iϵÞ
�
δð3Þðq⃗ − p⃗ − p⃗0Þ: ð80Þ

Also, let us write the denominator in (80) as

m2
Λ

ðq2E − iϵÞðm2
Λ þ q2E − iϵÞ ¼

1

ðq2E − iϵÞ −
1

ðq2E þm2
Λ − iϵÞ ; ð81Þ

where ðβ2γÞ−1 ¼ m2
Λ. We identify two solutions

ω ¼ jq⃗j; W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq⃗j2 þm2

Λ

q
; ð82Þ

where the first solution is for the standard photon, and the second one, which arising at a higher scale mΛ ∼M, is for a
massive ghost.
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To compute the discontinuities in terms of s4, we focus
on the element

Fðs4Þ ¼
1

ðq2E − iϵÞ −
1

ðq2E þm2
Λ − iϵÞ ð83Þ

and rewrite it as

Fðs4Þ ¼
1

ðs24 þ ω2 − iϵÞ −
1

ðs24 þW2 − iϵÞ : ð84Þ

Now, we decompose each term as

1

ðs24þx2− iϵÞ¼
1

2ix

�
1

ðs4− ix− ϵÞ−
1

ðs4þ ixþ ϵÞ
�

¼ 1

2x

�
1

ðis4þx− iϵÞ−
1

ðis4−xþ iϵÞ
�
; ð85Þ

where some ϵ terms have been neglected in the numerator.
Next, we introduce the extended delta to complex variables

lim
ϵ→0

�
1

z − iϵ
−

1

zþ iϵ

�
¼ 2iπδ̃ðzÞ; ð86Þ

meaning that it vanishes everywhere except at some value
at the real axis, where it reduces to the standard delta
function [26]. Applied to our case, we arrive at

Disc½Fðs4Þ� ¼
2iπðδ̃ðis4 þ ωÞ þ δ̃ðis4 − ωÞÞ

2ω

−
2iπðδ̃ðis4 þWÞ þ δ̃ðis4 −WÞÞ

2W
: ð87Þ

Since at effective energies the external momenta are always
much less than the high-energy scale defined by M, we set
the two last delta functions to zero. From the expression
(87), one has

Disc½Fðs4Þ� ¼
2iπðδ̃ðis4 þ ωÞ þ δ̃ðis4 − ωÞÞ

2ω
: ð88Þ

Substituting this expression into Eq. (80), we find

Disc½MðsEÞ� ¼ e2VμV�ν ×
Z

d4qE
ð2πÞ4

�X
λ

ðεðλÞEμε
�ðλÞ
Eν ð−1þ iλβ

ffiffiffiffiffiffiffiffi
γq2E

p
ÞÞ

q4¼s4

β2γ
×
ð−2iπÞðδ̃ðis4 þ ωÞ þ δ̃ðis4 − ωÞÞ

2ωðω −WÞðωþWÞ
�

× δðq4 − s4Þδð3Þðq⃗ − p⃗ − p⃗0Þ: ð89Þ

Now, evaluating conveniently the delta functions, we write

Disc½MðsEÞ� ¼ −e2VμV�ν ×
Z

d4qE
ð2πÞ4

X
λ

ðεðλÞEμε
�ðλÞ
Eν Þ

q4¼s4
ð2πÞδðq4 − s4Þδð3Þðq⃗ − p⃗ − p⃗0Þ

×

�
δ̃ðiq4 þ ωÞð−1þ iλβ

ffiffiffiffiffiffiffiffi
γq2E

p
Þq4¼iω

β2γðq4 þ iωÞðq4 − iWÞðq4 þ iWÞ þ
δ̃ðiq4 − ωÞð−1þ iλβ

ffiffiffiffiffiffiffiffi
γq2E

p
Þq4¼−iω

β2γð−q4 þ iωÞðq4 − iWÞðq4 þ iWÞ
�
: ð90Þ

We can obtain this expression in an equivalent way by introducing a physical delta function δ̃ allowing to select only
asymptotic degrees of freedom in Hilbert space. In Ref. [28], such delta function has been used to test unitarity in a higher-
order Lorentz-violating scalar theory.
The square brackets above can be written as

½θðis4Þ þ θð−is4Þ�δ̄ð−q2E − aE
ffiffiffiffiffiffiffi
DE

p
Þ ¼ θðis4Þð−1þ iλβ

ffiffiffiffiffiffiffiffi
γq2E

p
Þq4¼iωδ̃ðiq4 þ ωÞ

β2γðq4 þ iωÞðq4 − iWÞðq4 þ iWÞ

þ θð−is4Þð−1þ iλβ
ffiffiffiffiffiffiffiffi
γq2E

p
Þq4¼−iωδ̃ðiq4 − ωÞ

β2γð−q4 þ iωÞðq4 − iWÞðq4 þ iWÞ ; ð91Þ

where one has to restrict to purely imaginary values of s4, which is precisely the case we seek to perform the inverse
transformation of time variable. This allows us to write

Disc½MðsEÞ� ¼ −e2
Z

d4qE
ð2πÞ4

X
λ

ðVμεðλÞEμÞðV�νε�ðλÞEν Þ½θðis4Þ þ θð−is4Þ�ð2πÞδ̄ð−q2E − aE
ffiffiffiffiffiffiffi
DE

p
Þδð4ÞðqE − pE − p0

EÞ: ð92Þ

Now, we integrate and consider the inverse transformation of external momenta in terms of s0 and use Disc½M� ¼ 2iImM,
to arrive at
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2ImMðsÞ ¼
Z

d4q
ð2πÞ4

X
λ

jMλj2½θðq0Þ þ θð−q0Þ�

× ð2πÞδ̄ðq2 − a
ffiffiffiffi
D

p
Þδð4Þðq − p − p0Þ; ð93Þ

where

Mλ ¼ ð−ieÞVμεðλÞμ : ð94Þ

We see that it is equivalent to considering the denominators
on shell in the original expression or replacing the
propagator with the physical delta function. Therefore,
the constraint given by unitarity is satisfied.

B. Compton scattering at the one-loop level

Now, we consider the Compton scattering process at the
one-loop level. It is presented by Fig. 6. We set uμ ¼
ð1; 0; 0; 0Þ so that no ghosts appear. In this case, the
dispersion relation turns out to be

ðq2Þ2 − 16

M2
ðq20ðc1 − c2Þ þ c2jq⃗j2Þ2jq⃗j2 ¼ 0: ð95Þ

Solving, we find the positive solutions

ωλ0 ¼
jq⃗j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ0gc2jq⃗j
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ0gðc1 − c2Þjq⃗j

p ; ð96Þ

where g ¼ 4=M and λ0 ¼ �1.

The scattering amplitude, with the help of the propagator (26), is found to be

iM ¼ −
X
λ0
e4J�μðp0; k; pÞ

Z
d4q
ð2πÞ4

ðp − qþmÞεμðq; λ0Þε�νðq; λ0Þ
ððp − qÞ2 −m2 þ iϵÞðq2 þ λ0gðq20ðc1 − c2Þ þ c2jq⃗j2Þjq⃗j þ iϵÞ J

νðp0; k; pÞ; ð97Þ

with

Jνðp0; k; pÞ ¼ 1

ðp2 −m2Þ γ
νðpþmÞγαusðp0Þεαðk; λÞ; J�μðp0; k; pÞ ¼ 1

ðp2 −m2Þ ε
�
βðk; λÞūsðp0ÞγβðpþmÞγμ: ð98Þ

We focus on the integral

IμνðpÞ ¼
Z

d4q
ð2πÞ4

ðp − qþmÞεμðq; λ0Þε�νðq; λ0Þ
ððp − qÞ2 −m2 þ iϵÞðq2 þ λ0gðq20ðc1 − c2Þ þ c2jq⃗j2Þjq⃗j þ iϵÞ : ð99Þ

In terms of the poles from Eq. (96) and the fermion one, Eq−p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq⃗ − p⃗Þ2 −m2

p
, we write

IμνðpÞ¼
Z

d3qdq0
ð2πÞ4

Fμνðp−q;qÞ
ðq0−p0−Eq−pþ iϵÞðq0−p0þEq−p− iϵÞ

1

ð1þ λ0gðc1−c2Þjq⃗jÞðq0−ωλ0 þ iϵÞðq0þωλ0 − iϵÞ ; ð100Þ

where

Fμνðp − q; qÞ ¼ ðp − qþmÞεμðq; λ0Þε�νðq; λ0Þ: ð101Þ
We perform the q0 integral by closing the contour downward and using the residue theorem. Taking into account the
relevant poles in the fourth quadrant, we arrive at

IμνðpÞ ¼
Z

d3q
ð2πÞ4

ð−2πiÞ
ð1þ λ0gðc1 − c2Þjq⃗jÞ

� ½Fμνðp − q; qÞ�q0¼p0þEq−p−iϵ

2Eq−pðEq−p þ p0 − ωλ0 ÞðEq−p þ p0 þ ωλ0 − iϵÞ

−
½Fμνðp − q; qÞ�q0¼ωλ0−iϵ

2ωλ0 ðEq−p þ p0 − ωλ0 ÞðEq−p − p0 þ ωλ0 − iϵÞ
�
: ð102Þ

FIG. 6. The Compton scattering process at one-loop level.
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Using Eq. (86), the discontinuity of the integral turns out to be equal to

Disc½MðpÞ� ¼ i
X
λ0
Jμðp0; k; pÞQμνðpÞJνðp0; k; pÞ; ð103Þ

where QμνðpÞ ¼ Disc½IμνðpÞ�, such that

QμνðpÞ¼−
Z

d3q
ð2πÞ4

ð2πÞ2
ð1þλ0gðc1−c2Þjq⃗jÞ

�½Fμνðp−q;qÞ�q0¼p0þEq−p
δðEq−pþωλ0 þp0Þ

2Eq−pðEq−pþp0−ωλ0 Þ

−
½Fμνðp−q;qÞ�q0¼ωλ0

δðEq−pþωλ0 −p0Þ
2ωλ0 ðEq−pþp0−ωλ0 Þ

�
: ð104Þ

We have set ϵ ¼ 0 in the numerators, where the ϵ factors are not relevant. Using the delta function, we can simplify the
denominators more, i.e.

QμνðpÞ ¼
Z

d3q
ð2πÞ4

ð2πÞ2
ð1þ λ0gðc1 − c2Þjq⃗jÞ

�½Fμνðp − q; qÞ�q0¼p0þEq−p
δðEq−p þ ωλ0 þ p0Þ

ð2Eq−pÞð2ωλ0 Þ

þ ½Fμνðp − q; qÞ�q0¼ωλ0
δðEq−p þ ωλ0 − p0Þ

ð2Eq−pÞð2ωλ0 Þ
�
: ð105Þ

With the help of the identity
R
d3q ¼ R

d3kd3k0δð3Þðk⃗þ k⃗0 − p⃗Þ, and introducing two additional integrals in k0 and k00 and
with k0 ¼ p − q, k ¼ q, we can write

QμνðpÞ ¼
Z

d4kd4k0

ð2πÞ4
ð2πÞ2

ð1þ λ0gðc1 − c2Þjk⃗jÞ

�½Fμνðp − q; qÞ�q0¼p0−k00
δðk0 þ k00 − p0Þδðk0 þ ωλ0 ðkÞÞδðk00 þ Ek0 Þ
ð2Ek0 Þð2ωλ0 ðkÞÞ

þ ½Fμνðp − q; qÞ�q0¼k0δðk0 þ k00 − p0Þδðk0 − ωλ0 ðkÞÞδðk00 − Ek0 Þ
ð2Ek0 Þð2ωλ0 ðkÞÞ

�
δð3Þðk⃗þ k⃗0 − p⃗Þ: ð106Þ

Now, we use the fact that under the integral with the delta functions the Fμνðp − q; qÞ factors behave as

½Fμνðp − q; qÞ�q0¼p0−k00
¼ ½Fμνðp − q; qÞ�q0¼k0

¼ ð=k0 þmÞεμðk; λ0Þε�νðk; λ0Þ; ð107Þ

and together with the on-shell relation

ð=k0 þmÞ ¼
X
s0
us

0 ðk0Þūs0 ðk0Þ; ð108Þ

we can rewrite (106) as

QμνðpÞ ¼
X
s0

Z
d4k
ð2πÞ4

d4k0

ð2πÞ4 u
s0 ðk0Þūs0 ðk0Þεμðk; λ0Þε�νðk; λ0Þð2πÞδðk2 þ λ0gðk20ðc1 − c2Þ þ c2jk⃗j2Þjk⃗jÞ

× ð2πÞδðk02 −m2Þ½θðk0Þθðk00Þ þ θð−k0Þθð−k00Þ�ð2πÞ4δð4Þðkþ k0 − pÞ: ð109Þ

Considering Disc½MðpÞ� ¼ 2iIm½MðpÞ�, finally, one has

2Im½MðpÞ� ¼
X
λ0;s0

Z
d4k
ð2πÞ4

d4k0

ð2πÞ4 jM̃j2ðθðk0Þθðk00Þ þ θð−k0Þθð−k00ÞÞ

× ð2πÞ4δð4Þðkþ k0 − pÞð2πÞδðk2 þ λ0gðk20ðc1 − c2Þ þ c2jk⃗j2Þjk⃗jÞð2πÞδðk02 −m2Þ; ð110Þ

where M̃ is the diagram obtained by replacing the propagators by delta functions after the cutting, i.e.,
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M̃ ¼ −ie2
1

ðp2 −m2Þ ε
�
αðk; λ0Þūs0 ðp0ÞγαðpþmÞ

× γβusðp0Þεβðk; λÞ: ð111Þ

Hence, we conclude that the optical theorem is satisfied
both at the tree level and the one-loop level within this
scattering process. Since it is natural to expect that the
higher-loop situation does not differ too much, we conclude
that unitarity is maintained in our theory.

V. SUMMARY

We considered the higher-derivative Lorentz-breaking
extension of QED, which involves, first, additive terms,
that is, Myers-Pospelov and higher-derivative CFJ-like
terms, in the purely gauge sector and, second, a new,
nonrenormalizable spinor-vector coupling. For this
model, we discussed the dispersion relations and found
that, to achieve tree-level unitarity, either only one higher-
derivative term, that is, the MP term or the higher-derivative
CFJ term, can be present in the action, or the Lorentz-
breaking vector must be not simply timelike but directed
along the time axis. Apart from this, we carried out a study
of quantum corrections to two-point functions of gauge and
spinor fields and showed that for a consistent subtraction of
the divergences the corresponding higher-derivative terms
should be introduced from the very beginning, both in
gauge and spinor sectors, with the structure of quantum
corrections is simplified for the lightlike Lorentz-breaking
vectors. Nevertheless, it is very reasonable to treat this
theory as an effective one, aimed for studying of the low-
energy domain. Indeed, all higher-order divergent terms
will be very small since they are proportional to different

degrees of 1
M, with M assumed to be of the order of the

Planck mass; thus, they are strongly suppressed. One can
argue that a similar situation will occur in higher loops
where all dangerous divergences will be suppressed by
negative degrees ofM. We carried out a calculation of these
corrections in the finite-temperature case as well, and we
see that our result tends to zero in the high-temper-
ature limit.
We verified unitarity in our theory, both at the tree level

and at the one-loop level. We checked directly that the
optical theorem is satisfied in both cases; therefore, we
conclude that, even in the presence of higher time deriv-
atives, unitarity in our theory is preserved for the processes
we have considered, which raises the hope that other
situations and, in particular, other field theory models,
where higher time derivatives do not jeopardize unitarity,
are also possible. We conclude that this manner of
introducing the higher derivatives is compatible with
unitarity as well as the Horava-Lifshitz methodology in
which only higher spatial derivatives are present. However,
the advantage of our approach is that, unlike the Horava-
Lifshitz theories [29], in our case, the Lorentz symmetry
breaking continues to be small, which is much more
reasonable from the viewpoint of achieving the consistency
with experimental measurements, which, as is well known
[2], impose very strong upper boundaries on Lorentz-
breaking effects.
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