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We study electron-positron pair production by the combination of a strong, constant electric field and a
thermal background. We show that this process is similar to dynamically assisted Schwinger pair
production, where the strong field is instead assisted by another coherent field, which is weaker but faster.
We treat the interaction with the photons from the thermal background perturbatively, while the interaction
with the electric field is nonperturbative (i.e., a Furry picture expansion in α). At Oðα2Þ we have ordinary
perturbative Breit-Wheeler pair production assisted nonperturbatively by the electric field. Already at this
order we recover the same exponential part of the probability as previous studies, which did not expand
in α. This means that we do not have to consider higher orders, so our approach allows us to calculate the
preexponential part of the probability, which has not been obtained before in this regime. Although the
prefactor is in general subdominant compared to the exponential part, in this case it can be important
because it scales as α2 ≪ 1 and is therefore much smaller than the prefactor atOðα0Þ (pure Schwinger pair
production). We show that, because of the exponential enhancement, Oðα2Þ still gives the dominant
contribution for temperatures above a certain threshold, but, because of the small prefactor, the threshold is
higher than what the exponential alone would suggest.
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I. INTRODUCTION

Pure Schwinger pair production [1–3] by a constant
electric field alone is unlikely to be observed any time soon,
but there are nonspontaneous processes which have similar
nonperturbative features and could occur at much lower
intensities. One example is trident pair production e− →
2e− þ eþ [4–12]. This requires much lower intensities
because in the rest frame of a high-energy electron the
field strength is much higher, and in the semiclassical
regime this process has a similar nonperturbative expo-
nential behavior as the Schwinger mechanism [4–6,10]. If
one prefers to keep the initial state massless, one can
instead significantly enhance the probability by sending a
high-energy photon through the electric field [13]. Another
way to enhance the probability is to add a second coherent
field, which is weaker but faster [14]. The latter is referred
to as dynamically assisted Schwinger pair production
and has been studied in many papers in the past decade,
see e.g., [14–22].

Another interesting question is how Schwinger pair
production (and the effective action) is affected by a
nonzero temperature, see e.g., [23–48]. It is fair to say
that thermal pair production is a somewhat controversial
topic with many papers that disagree with each other. In this
paper we are interested in regimes where the thermal
background leads to an exponential increase in the prob-
ability as in [41,43]. In this paper we only consider thermal
photons. One might expect that effects from thermal
fermions are suppressed at low temperatures, or one could
imagine somehow filtering out the fermions [48], as we are
only interested in the thermal distribution right before the
field is applied. In any case, this is enough to study the
exponential enhancement in [41,43], which we will show is
very similar to dynamical assistance, by comparing with
the approach in [19,20,22].
Since Schwinger pair production is nonperturbative in

the field strength and since the additional weak field in
dynamical assistance is also coherent, it might not have
been obvious how the probability in dynamical assistance
depends on the weak field. Even if not a nonperturbative
dependence, one might have thought that one would in
general have to calculate too many orders for an expansion
in the field strength of the weak field to be useful. However,
we have showed that it is in many cases useful to study
dynamical assistance by such a power series expansion
[19,20,22]. For the purpose of this paper, this is best
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illustrated with a weak field in the shape of a Sauter
pulse. So, consider an electric field given by EzðtÞ ¼
Eðf0ðtÞ þ εfðtÞÞ, where E ≪ 1

1 and f0 ¼ 1 are the field
strength and field shape of the strong and approximately
constant field, and ε ≪ 1 is the relative field strength
of the weaker field. For a Sauter pulse we have fðtÞ ¼
1= cosh2ðωtÞ. By treating both the strong and the weak field
together with worldline instanton or WKB methods one
finds a probability with the following exponential part [14]:

P ∼ exp

�
−
2

E

� ffiffiffiffiffiffiffiffiffiffiffiffi
γ2� − 1

p
γ2�

þ arcsin
1

γ�

��
; ð1Þ

where γ� ¼ γ=γcrit, γ ¼ ω=E is the Keldysh parameter and
γcrit ¼ π=2. For γ� > 1 this gives an exponential enhance-
ment of the probability. Note that in those approaches this
exponent is obtained from an expression that initially
includes the field strength of the weak field, but the final
result (1) is independent of ε. In [19] we showed that the
exponent in (1) can also be obtainedby treating theweak field
perturbatively. In fact, we find this exponent already at the
first order, i.e., from the absorption of a single photon from
theweak field.We also showed that all the higher orders have
the same exponential. Since the higher orders have higher
powers of ε ≪ 1 this means that the first order gives the
dominant contribution for this field. The reason that this
happens for a Sauter pulse can be understood from its Fourier
transform, which at large Fourier frequencies scales as

fðω1Þ ∼ e−
jω1 j
ω� ð2Þ

for jω1j ≫ ω� where ω� ¼ 2ω=π. This exponential decay is
a slow decay, i.e., the Fourier transform iswide,whichmeans
that the suppression of the Fourier transform at large Fourier
frequencies is less important than the suppression due to
higher powers of theperturbative expansionparameter, so the
first order gives the dominant contribution. The fact that we
do not have to calculate higher orders of course makes the
calculations simpler andwehave found very good agreement
with the exact numerical result [19]. From an experimental
point of view it is important to notice that even if the
characteristic frequency is well below the electron mass,
ω ≪ 1, the Fourier frequencies that give the dominant
contribution are on the order of the electron mass,

ωdom
1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

γ2�

s
¼ Oð1Þ: ð3Þ

While a Sauter pulse might not be the most realistic field
shape, it is, as noted in [22], an example of a field which

leads to the closest connection to thermally assisted pair
production. In [41,43] the exponential part of the proba-
bility of pair production by a constant electric field at
temperature T was obtained, and the result has exactly the
same functional form as in (1) for dynamical assistance, but
with γ� ¼ 2T=E. In this paper we will show that this close
similarity means that we can study thermal assistance with
essentially the same methods as the ones we used in
[19,20,22] for dynamical assistance. Here it is the usual
fine-structure constant α ¼ e2=ð4πÞ that is the perturbative
expansion parameter, so this is basically a Furry-picture
expansion where the electric field is taken into account
nonperturbatively. The first three terms are shown in Fig. 1.
The zeroth order gives the usual Schwinger mechanism
without any enhancement [27,31,32],2 and the higher
orders lead to exponential enhancement due to the absorp-
tion of thermal photons. In comparison with previous
studies of the effective action, see e.g., [32], note that
the nth order corresponds to (nþ 1)-loop diagrams. Note
also that the thermal background describes the content of
photons in the initial state, before the electric field is
switched on.
The rest of this paper is organized as follows. In

Secs. II–IV we calculate OðαÞ, Oðα2Þ and higher orders,
respectively. For OðαÞ and Oðα2Þ we calculate both the
exponential and the prefactor part of the probability. In
Sec. IV we show that the higher orders have the same
exponential as Oðα2Þ, which means that we do not have to
calculate the prefactor at higher orders.

II. FIRST ORDER

At first order we have pair production assisted by a single
thermal photon, illustrated by the second diagram in Fig. 1.
In dynamical assistance the exponent in (1) is generated by
off-shell photons with zero spatial momentum. So, it seems
already clear that a single on-shell thermal photon will not
give (1). It is easy to check that it indeed gives something
different. We start with the result in [13] for pair production
by a single on-shell photon in a constant electric field,
which is given by

Pω ∼ � � � exp
�
−
2

E

�
ð1þ p2Þ arctan 1

p
− p

��
; ð4Þ

FIG. 1. The first three terms in the Furry picture expansion.
Double lines represent fermions dressed by the electric background
field. Wiggly lines are photons from the thermal background.

1Throughout this paper we use units with c¼ ℏ¼me ¼ kB ¼ 1
and we rescale the field strength eE → E, where me and e are the
electron mass and charge.

2However, if one takes into account thermal fermions then the
Pauli principle leads to a reduction ofOðα0Þ [24,33,35,36,40,47].
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where p ¼ jsin θjω=2, ω is the frequency of the photon, θ is
the angle between the field and the direction in which the
photon travels, and the ellipses denote the prefactor which
can be found in [13]. As in [39], the probability of pair
production by a single thermal photon is given by

P1 ¼
X
pol:

Z
d3k
ð2πÞ3

1

eω=T − 1
Pω; ð5Þ

where k is the photon momentum and 1=ðeω=T − 1Þ is the
photon density. We need high frequencies for significant
enhancement and we are interested in not too high temper-
ature T ≪ 1, so we can approximate 1=ðeω=T − 1Þ ≈ e−ω=T

and perform the momentum integral with the saddle-point
method. The exponent is maximized at θ ¼ π=2 and a
frequency that is determined by a transcendental saddle-
point equation [cf. Eq. (7) in [20]],

1 − p arctan
1

p
¼ 1

γ
; ð6Þ

which we solve numerically and substitute in

P1 ¼ V4

αðγEÞ2
8π

pð1þ 3p2Þffiffiffiffiffiffiffiffiffiffi
γ − 1

p ðγ − 1 − p2Þ e
− 2
Epð1−1−p2

γ Þ: ð7Þ

As shown in Fig. 2 this leads to a smaller exponential
compared to (1), so its contribution to the probability is
much smaller for E ≪ 1. In the limit γ ≫ 1 we find

P1 → V4

ffiffiffi
3

p
αT2

4π
exp

�
−

8

E
ffiffiffiffiffi
3γ

p
�
; ð8Þ

which vanishes in the limit E → 0. [The exponential part of
(8) has the same form as Eq. (9) in [20], but with γcrit ¼ 1].
Note that (8) is always nonperturbative in E, in contrast to

the γ ≫ 1 limit of (1), which scales as e−2=T . Thus, the
exponential scaling of P1 is significantly different from (1).

III. SECOND ORDER

At second order we have ordinary perturbative Breit-
Wheeler pair production by two thermal photons assisted
nonperturbatively by the electric field, illustrated by the
third diagram in Fig. 1. Perturbative Breit-Wheeler at zero
field was studied in [48]3 and the exponential part in the
zero-temperature case was studied in [49]. As far as we are
aware, this is the first time that the combination of both is
studied. Here two photons are absorbed from the thermal
background. While both are on shell their combined
momentum can be off shell with zero spatial momentum,
and this gives the dominant contribution. In [22] we
showed how to calculate dynamical assistance at second
order and higher. Here we can use essentially the same
methods. This perturbative approach may in fact be even
more useful here, because, while one in dynamical assis-
tance can obtain the exact [Oðα0Þ] result by numerically
solving the Dirac equation in both the strong and the weak
field, see e.g., [18,21], there is no corresponding exact
numerical approach for thermal assistance.

A. Derivation

The probability is given by (cf. [48,50] for the corre-
sponding thermal sum in the purely perturbative case)

P2 ¼
1

2

X
pol:

Z
d3k1

ð2πÞ3
d3k2

ð2πÞ3
1

eω1=T − 1

1

eω2=T − 1

×
X
spin

Z
d3p
ð2πÞ3

d3p0

ð2πÞ3 jM2j2; ð9Þ

where the factor of 1=2 prevents double counting of
identical particles, k1 and k2 are the momenta of the
two photons, and p and p0 are the momenta of the produced
electron and positron, respectively. The amplitude can be
written as

M2 ¼
ð−ieÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω12ω2

p
Z

d4x1d4x2ūs;pðtÞeipjx
j
1=ϵ1e−ik1x1

× iGðx1;x2Þ=ϵ2e−ik2x2vs0;p0 ðt0Þeip0
jx

j
2 þð1↔ 2Þ; ð10Þ

where ϵμðkÞ denotes a polarization vector, ð1 ↔ 2Þ is
obtained from the first term by swapping place of the two
photons, and the electric field enters via the electron and
positron spinors, u and v, and the propagator G. The exact
propagator is given by [3,51,52]

FIG. 2. Pair production probability P∼efðγÞ=E, where γ¼2T=E.
The orange curve shows the exponent in (7) and the blue curve
shows (1).

3They also studied the thermal-field combination, but with a
different method.
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Gðx; x0Þ ¼ −e−iE
2
ðz−z0Þðtþt0Þ

Z
d4q
ð2πÞ4 e

−iqðx−x0Þ
Z

∞

0

ds

× exp
�
−sm2⊥ þ ðq20 − q23Þ

tanðEsÞ
E

�

× ½qþmþ iðγ0q3 þ γ3q0Þ tanðEsÞ�
× ½1 − iγ0γ3 tanðEsÞ�; ð11Þ

where m⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2⊥

p
and q⊥ ¼ fq1; q2g. The spinors

can of course also be obtained exactly in a constant electric
field, but here we only need the corresponding WKB
approximations, which are given by (see e.g., [19,53,54])

Urðt;qÞ ¼ ðγ0π0 þ γiπi þ 1ÞGþðt;qÞRr

Vrðt;−qÞ ¼ ð−γ0π0 þ γiπi þ 1ÞG−ðt;qÞRr; ð12Þ

where π⊥ ¼ q⊥, π3ðtÞ ¼ q3 − AðtÞ, π0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ π23ðtÞ

p
,

r ¼ 1, 2, γ0γ3Rs ¼ Rs and

G�ðt;qÞ ¼ ½2π0ðπ0 � π3Þ�−1
2 exp

�
∓i

Z
t

0

dt0π0ðt0Þ
�
; ð13Þ

where the lower integration limit is arbitrary, and for a
constant field we have

Z
t

0

π0 ¼ −
m2⊥
2E

�
ϕ

�
p3 − Et
m⊥

�
− ϕ

�
p3

m⊥

��
; ð14Þ

where

ϕðuÞ ¼ u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
þ arcsinh u: ð15Þ

We start by performing the trivial spatial integrals. These
give the overall momentum conservation ð2πÞ2δ3ðpþ p0 −
k1 − k2Þ and another delta function which we use to
perform the q integrals in the propagator. The square of
the overall momentum delta function gives a spatial volume
factor V3 ¼ ð2πÞ3δ3ð0Þ and a delta function which we use
to perform the p0 integrals. The s integral in the propagator
receives the dominant contribution at s ¼ OðE0Þ, so apart
from the e−

iE
2
ðz−z0Þðtþt0Þ factor the propagator reduces

to the field-free one. We can again approximate
1=ðeω=T − 1Þ ≈ e−ω=T . At the amplitude level we now have
an exponential given by

e−
ω1þω2

2T þi
R

t1
0

π0ðpÞ−iω1t1−iq0ðt1−t2Þ−iω2t2þi
R

t2
0

π0ð−p0Þ: ð16Þ

We change variables t1 → ðm⊥τ1 þ p3Þ=E and t2 →
ðm0⊥τ2 − p0

3Þ=E, where m0⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p02⊥

p
, and to Σ ¼

ðk2 þ k1Þ=2 and Δ ¼ k2 − k1. We perform the τi, q0,
p⊥, K and jΔj integrals with the saddle-point method. We
have a saddle point at τi ¼ i=γ, q0 ¼ 0, p⊥ ¼ 0, Σ ¼ 0 and

jΔj ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
1 − 1

γ2

q
, where γ ¼ 2T=E. This means that we are

considering the region close to the point where the pair is
produced without a heavier effective mass (m⊥ ¼ m0⊥ ¼ 1)
by two photons colliding head on (k2 ¼ −k1), and because
the photons are assisted by the field, they have energies

below the mass gap (ω1 ¼ ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − 1

γ2

q
< 1), but still

close to it (ω1 ¼ ω2 ∼ 1). The perturbation around this
point contributes to the prefactor. To calculate the spinor
part of the prefactor we have used an explicit basis for γμ

and Rr as in [19,22]. The summation over photon polari-
zation can be done either by choosing explicit vectors ϵμ or
as in the standard free-field case. In spherical coordinates
for Δ we find that the integral over the angle between
Δ and the electric field is elementary and the other angular
integral is trivial. The integrand does not depend on p3 so,
as is well known, it then gives a temporal volume factorR
dp3 ¼ EV0.
As mentioned, for thermal assistance there are no

exact numerical methods to compare with. However, in
[19,20,22] we have showed that the corresponding (e.g.,
saddle-point) approximations for dynamical assistance
agree well with the exact numerical result in the regimes
that we are interested in here, and, because of the close
similarity, those comparisons also give us a sense of the
accuracy of the approximations presented here.
Another way to derive the same result is to use unitarity

to obtain the pair production probability from loops with
four photon vertices. Let M be the amplitude for two
photons with k1, ϵ1 and k2, ϵ2 to scatter into two photons
with k3, ϵ3 and k4, ϵ4. The zeroth order is given by
M0 ¼ δ13δ24 þ δ14δ23. The probability for this state to
decay into a pair is given by

1 −
1

2

X
3;4

ðjM0j2 þ 2ReM�
0M4Þ ¼ −2ReM4; ð17Þ

where M4 is illustrated Fig. 3. There is another overall
factor of 2 that comes from the diagrams where the fermion
loop goes in the opposite direction. In this approach the
field dependence is expressed entirely in terms of the
propagator (11), so we do not need the wave functions. Let
si be the four s integration variables as shown in Fig. 3. The
s1 and s3 integrals can be expanded around s1 ¼ s3 ¼ 0, as
in the first approach. We rescale the remaining s variables
s2;4 → s2;4=E, and then, before performing the k1 and k2

integrals, we have a saddle point at s2¼s4¼arccos
Σkffiffiffiffiffiffiffiffiffi
1þΣ2⊥

p ,

where Σμ ¼ ðk1 þ k2Þμ=2 and Σk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ2
0 − Σ2

3

p
. Let δs2;4

be the perturbation around these saddle points. With δsþ ¼
ðδs2 þ δs1Þ=2 and δs− ¼ δs2 − δs1 we have

exp

�
1

E

�
−

Σffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p δs2−
2

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p

Σ
δs2þ

��
: ð18Þ
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The contour for the δsþ integral starts along the real axis up
to the saddle point, after which it turns into the imaginary
direction. Since only the second half contributes to ReM4,
we have a factor of 1=2 compared to a full Gaussian integral
(cf. [22,55]).
If we in Fig. 3 connect the photon line with −kμi to the

one with kμi , i ¼ 1, 2, we find the same diagrams as if one
replaces the free photon propagator with a thermal one
which is obtained by adding an on-shell part (cf. e.g., [25]).
This can help to relate our results to calculations of the
effective action.

B. Results

Collecting everything we find

P2 ¼ V4

α2ðγEÞ3
16π2

exp

�
−
2

E

� ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
γ2

þ arccscγ

��

×

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
ð3γ2 − 2Þ þ ð5γ2 − 2γ4 − 2Þarccscγ

γðγ2 − 1Þ2arccsc2γ ; ð19Þ

where V4 is a four-dimensional volume factor. The expo-
nential part of (19) is exactly the same as the one found in
[41,43] without expanding in α.4 The exponential has the
form in (19) for what [48] refers to as intermediate
temperatures. As noted in [48], the prefactor in this regime
had not been calculated before, so the prefactor in (19) is
new. In deriving (19) we have assumed γ > 1 and, while the
exponent has the expected limit as γ → 1, i.e., e−π=E, the
saddle-point approximation of the prefactor breaks down in
that limit. This is not a problem because P2 is anyway small
compared to P0 for γ ≤ 1, and as far as we are aware there
are anyway no results for P2 with γ < 1 that we could have
compared with; the two-loop results in [32] correspond to
P1. The prefactor in a different parameter regime has been
calculated in [46], but it has a nontrivial dependence on α
and is therefore not something we can directly com-
pare with.
However, there is a limit in which we can check the

prefactor. For γ ≫ 1 we expect, e.g., from comparing with
similar results for dynamical assistance [19], to find a field

independent result that agrees with what one finds by
setting E ¼ 0 from the start. This is indeed what we find,

P2ðγ ≫ 1Þ ¼ V4

α2T3

2π2
e−

2
T; ð20Þ

which agrees with Eq. (8) in [48], see also [39], for ordinary
perturbative Breit-Wheeler pair production summed over
photons from a thermal background. On the one hand, it is
quite natural that we recover the perturbative result,
because γ ≫ 1 can be obtained by keeping T fixed while
taking E → 0, and the exact P2 should of course converge
to the perturbative result as the field vanishes. On the other
hand, the approximation of the integrals that leads to (19) is
quite different from the way one would perform the
corresponding integrals if E ¼ 0 from the start, so this
agreement is still an interesting and nontrivial check.
Equation (19) should be compared with the zeroth order,

pure Schwinger result

P0 ¼ V4

E2

4π3
e−

π
E: ð21Þ

The exponent in P2 gives an exponential enhancement as
soon as γ > 1. However, P2 has a much smaller prefactor
because

α2E3

16π2

�
E2

4π3

�−1
∼ 4 × 10−5E < 10−5; ð22Þ

so γ has to be sufficiently far above the threshold suggested
by the exponent alone, so that the exponential enhancement
can overcome the smaller prefactor to give something that
is not just on the same order as P0, but something
significantly larger. On the other hand, P2 quite quickly
converges to its perturbative limit (20), so, if one wants
something that is significantly different from perturbative
Breit-Wheeler, γ cannot be too large. Figure 4 shows one
example of this “window of significant difference,” where
P2 is much larger than P0 as well as its perturbative limit. In
this example P1 never gives the dominant contribution,
because just above the threshold the exponential enhance-
ment is not enough to compensate for the prefactor
suppression compared to P0, and for larger γ its exponent
grows slower than P2. These approximations suggest that if
we let E be sufficiently large then P1 could become
important. However, it is not clear if our approximations
are good for such a large E.
Another important point is that our perturbative approach

allows us to see that the photons that give the dominant
contribution have frequencies on the order of ωdom ¼ffiffiffiffiffiffiffiffiffiffiffi
1 − 1

γ2

q
≲ 1, i.e., on the order of the electron mass, even

though the temperature is low, T ¼ Eγ=2 ≪ 1. So, in this
context, the distribution 1=ðeω=T − 1Þ is good if it accu-
rately describes the content of photons with energies on the

FIG. 3. The real part of these loops gives via unitarity the pair
production probability.

4Compare though with the WKB treatment in [41].
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order of the electron mass. If the distribution instead falls
off faster than e−ω=T , then one can expect a significant
difference, as shown in [19,22] for dynamical assistance,
where the dominant contribution can come from higher
orders.

IV. HIGHER ORDERS

We showed in [19,22] for dynamical assistance that the
dominant contribution can in general come from higher
orders, but for a Sauter pulse all higher orders have the
same exponential, namely the one in (1), which means that
the first order gives the dominant contribution. In the case
of thermal assistance we have just showed that the second
order dominates over the first order for sufficiently weak
fields. However, this is because here we are dealing with
on-shell photons and the second order is the first order at
which the total absorbed momentum can have zero spatial
part, and it is the first order which is nonzero even without
the electric field. At higher orders we can also haveP

N
i¼1 ki ¼ 0 and then the comparison with dynamical

assistance suggests that higher orders should have the
same exponential as P2. To show this we use the approach
in [22]. The starting point is

Mn ¼ ð2πÞ3δ3
�
pþ p0 −

Xn
i¼1

ki

�
enAn

∼
Z

d4x1 � � � d4xnūðt1Þeipjx
j
1=ϵ1e−ik1x1Gðx1; x2Þ

× =ϵ2e−ik2x2Gðx2; x3Þ � � �=ϵn−1e−ikn−1xn−1
×Gðxn−1; xnÞ=ϵne−iknxnvðtnÞeip

0
jx

j
n : ð23Þ

For
P

N
i¼1 ki ¼ 0 and p⊥ ¼ p0⊥ ¼ 0 we can obtain the

exponential part by following the same steps as in [22]: We
first perform the xk integrals, which give delta functions,
and we change variables tk → ðτk þ p3Þ=E. We expand all

the sk integrals around sk ∼ 0. We perform the integral over

τ1 and then the one over qð1Þ1 [momentum variable for
Gðx1; x2Þ], both with the saddle-point method. Then we

perform the integrals over τ2 and q
ð2Þ
0 , and so on. This gives

jMnj2 ∼ exp

�
−
2

E
ðarccosΣ − Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p
Þ
�
; ð24Þ

where Σ ¼ 1
2

P
n
i¼1 ωn. The Boltzmann factor also only

depends on this sum to leading order,

Yn
i¼1

1

eωn=T − 1
≈ e−2Σ=T: ð25Þ

Compare this with the WKB treatment in [41]. So, we can
estimate the remaining integrals with the saddle point for

this sum, Σs ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − 1

γ2

q
, and then we find

Pn ∼ αn exp
�
−
2

E

� ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
γ2

þ arccscγ
��

: ð26Þ

Thus, all higher orders have the same exponential as P2.
This means that P2 gives the dominant contribution
because the higher orders are suppressed by higher powers
of α. Higher orders could be important if one has a thermal
distribution that decays faster than the Boltzmann/expo-
nential scaling, like for example a Gaussian decay. In some
sense we are fortunate that the usual thermal distribution
has this exponential decay, because it means that we only
have to calculate the second order, and the exponential is
exactly the same as the one previously obtained with
different methods, which gives us a clear check.

V. CONCLUSIONS

We have studied thermally assisted Schwinger pair
production by a Furry picture expansion in α. This has
allowed us to use the perturbative methods we have
developed in previous papers for dynamically assisted
Schwinger pair production [19,20,22]. Apart from the fact
that in thermal assistance one has an incoherent sum over
photon modes, while in dynamical assistance one has a
coherent sum, we have found that many aspects are very
similar, especially for the case where the weak field in
dynamical assistance is a time-dependent Sauter pulse, or
some other pulse with exponentially decaying Fourier
transform. The reason for this is that the Boltzmann
distribution also has an exponential decay. In this context
this is a wide distribution with a significant amount of high
frequency modes. This means that already the absorption of
one (in dynamical assistance) or two (in thermal assistance)
photons from the background provides enough energy to
give the dominant contribution. This is a good thing from a
computational point of view, because it means that we can

FIG. 4. Probability at E ¼ 0.08. The red curve shows Oðα0Þ
(21), the orange curve shows OðαÞ (7), the blue curve shows
Oðα2Þ (19) and the green curve shows its γ ≫ 1 limit (20).
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calculate the preexponential factor without considering
higher orders. The perturbative approach also shows that
the photons that give the dominant contribution has
energies on the order of the electron mass, even if the
temperature is low. If one instead has a distribution that
decays faster than an exponential, then the dominant
contribution could come from higher orders.
In this paper we have considered a constant electric

background field. We have found that Oðα2Þ gives the
dominant contribution above a certain threshold in γ. This
threshold is a bit higher than what the exponential part
alone would suggest, because the exponential enhancement
first has to compensate for the prefactor which is much
smaller than the one at Oðα0Þ. Oðα2Þ should of course be
larger than Oðα0Þ and OðαÞ for a sufficiently weak electric
field, because the first two orders vanish without the field.
The nontrivial conclusion is that Oðα2Þ also gives the
dominant contribution in a larger region with γ ≳ 1. It
would be interesting to see how these results generalize to
other field shapes, like for example a constant-crossed
plane wave [39] or even a pulsed plane wave.
Another extension would be to consider initial states

with thermal fermions in addition to thermal photons.
Then at Oðα0Þ one has the effect considered in
[24,33,35,36,40,47], which leads to a suppression (for
fermions) because of the Pauli principle. At Oðα2Þ we
would for example have thermal trident pair production,
where a thermal fermion interacts with the electromagnetic
background field and emits an intermediate photon which
subsequently decays into an electron-positron pair. In this
paper we have showed that the photons that give the
dominant contribution have energies close to the electron
mass, but their energies are still below the electron mass,
which suggests that they should be more important than
thermal fermions. However, the trident process can scale
quadratically rather than linearly in the volume (see
e.g., [4,5,9–11] for the zero-temperature constant-crossed
plane wave case), so it would be interesting to study how
large the trident contribution is compared to the Oðα2Þ
process considered here.
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APPENDIX: STARTING POINT

In this Appendix we collect some well-known formulas
(for textbooks see e.g., [56,57]), which one can use if one
wants to derive (5) and (9) from the incoherent sum over all
states weighted by the density matrix. In this paper we only
consider thermal photons. A complete set for these states is
given by

jfngi ≔
Y
i

ða†i Þniffiffiffiffiffiffi
ni!

p j0i; ðA1Þ

where i is an index for the momentum and polarization, ni
is the number of particles in the mode i, and the mode
operators obey ½ai; a†j � ¼ δij. The system is put in a spatial
volume V with periodic boundary conditions, which means
as usual

X
i

¼ V
X
pol:

Z
d3k
ð2πÞ3 : ðA2Þ

The density matrix for the thermal ensemble is given by

ρðfngÞ ¼ hfngjρ̂jfngi ¼
Y
i

e−niωi=T

Zi
; ðA3Þ

where the partition function is given by

Zi ¼
1

1 − e−ωi=T
: ðA4Þ

The photon field is given by

AμðxÞ ¼
X
i

1ffiffiffiffiffiffiffiffiffiffiffi
2ωiV

p ϵμi aie
−ikx þ c:c: ðA5Þ

The pair production probability is given by

P ¼
X
fng

ρðfngÞ
X
fn0g

X
e−eþ

jhfn0g; e−eþjSjfngij2

¼
X∞
n¼0

Pn; ðA6Þ

where Pn ∝ αn. At OðαÞ and Oðα2Þ this gives (5) and (9),
respectively.
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