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The one-loop self-energy of the neutral ρmeson is obtained for the effective ρππ and ρNN interaction at
finite temperature and density in the presence of a constant background magnetic field of arbitrary strength.
In our approach, the eB-dependent vacuum part of the self-energy is extracted by means of dimensional
regularization where the ultraviolet divergences corresponding to the pure-vacuum self-energy manifest as
the pole singularities of gamma as well as Hurwitz zeta functions. This improved regularization procedure
consistently reproduces the expected results in the vanishing magnetic field limit and can be used quite
generally in other self-energy calculations dealing with arbitrary magnetic field strength. In the presence of
the external magnetic field, the general Lorentz structure for the in-medium vector boson self-energy is
derived, which can also be implemented in the case of the gauge bosons such as photons and gluons. It has
been shown that with vanishing perpendicular momentum of the external particle essentially two form
factors are sufficient to describe the self-energy completely. Consequently, two distinct modes are observed
in the study of the effective mass, dispersion relations and the spectral function of ρ0 where one of the
modes possesses twofold degeneracy. For large baryonic chemical potential, it is observed that the critical
magnetic field required to block the ρ0 → πþπ− decay channel increases significantly with temperature.
However, in the case of smaller values reaching down to vanishing chemical potential, the critical field
follows the opposite trend.
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I. INTRODUCTION

In noncentral heavy-ion collisions (HIC) at the LHC, the
relative motion of the ions themselves can generate a strong
decaying magnetic pulse of the order eB ∼ 15m2

π

(B ∼ 5 × 1015 T) [1]. While some of the studies support
a rapid decrease in the magnitude [2,3], an adiabatic decay
is expected [4–6] due to the high conductivity of the
produced medium. In spite of the ambiguities, the intensity
of the produced magnetic field being much larger than the
typical QCD scale, the possibility of magnetic modifica-
tions of different properties of the produced extreme state of
matter can not be refuted completely. In general, high

intensity magnetic fields can play a significant role in many
astrophysical and cosmological phenomena [7–10].
Moreover, the magnetic influence on the properties of
magnetars adds to the motivation of studying high density
matter in the presence of extreme magnetic fields [11–18].
The study of ρ meson properties like the effective mass

and dispersion relations are important in the context of
magnetic field induced vacuum superconductivity [19–26].
Using the Nambu-Jona-Lasinio model in the presence of
magnetic background, Liu et al. have shown that the
charged ρ condensation in vacuum occurs at critical
magnetic field eBc ∼ 0.2 GeV2 [25]. Generalization of
the study to finite temperature and density shows that
the condensation survives even in the presence of finite
temperature and density [27]. At vanishing chemical
potential, the corresponding critical magnetic field is
observed to lie in the range 0.2–0.6 GeV2 for temperatures
in between 0.2 and 0.5 GeV. However, the neutral ρ meson
in vacuum, having no trivial Landau shifts in the energy
eigenvalue, shows a slow decrease in the effective mass
[28] in the weak magnetic field region. Thus, if neutral ρ
condensation is possible, extremely large magnetic field
values will be required to observe the condensation.
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It should be mentioned here that it has been shown using
the Nambu-Jona-Lasinio model that the effective mass of a
ρ0 meson in fact increases at higher values of magnetic
fields, showing no possibility of condensation [25]. In this
scenario, ρ0 → πþπ− decay may serve as an important
probe to observe the influence of the magnetic field. As
argued in Ref. [19], even if a pointlike ρ0 meson is
considered without any influence by magnetic field, there
exists a critical value of the external magnetic field for
which the ρ0 to πþπ− decay stops due to the trivial
enhancement of the charged pion mass. Later, the magnetic
modification arising from the loop corrections is taken into
account at weak [28,29] as well as at strong field limits [30]
at zero temperature. An immediate generalization of the
previous works will be to incorporate the medium effects of
the ρ0 meson, which may reflect in the modification of the
decay rate and the required critical magnetic field. It should
be noted here that, apart from being important in the study
of dense hadronic matter at extreme conditions usually
expected to be present within compact stars, the incorpo-
ration of the medium effects is also essential for the proper
estimation of pion production in noncentral heavy-ion
collisions.
In this work, we focus on the temperature and density

modifications of neutral ρ meson properties in the presence
of a static homogeneous magnetic background. The one-
loop self-energy of a ρ meson is calculated for the effective
ρππ and ρNN interaction with magnetically modified pion
and nucleon propagators corresponding to general field
strength. After decomposing the self-energy in terms of the
form factors, the decay width for the ρ0 → πþπ− channel is
obtained. It should be mentioned here that the spectral
properties of the ρ meson in the presence of finite temper-
ature and magnetic field were studied in our earlier work
[31]. However, unlike the previous case, the dimensional
regularization technique is used here to extract the ultra-
violet divergence as pole singularities of gamma and
Hurwitz zeta functions [32]. Also, instead of considering
only the spin-averaged thermal self-energy contribution,
the general Lorentz structure has been addressed in detail.
Apart from the technical differences, the density depend-

ence arising from the charged nucleon loop serves as the
most important extension of the previous study. Its impor-
tance can be understood as follows. It is well known that the
general expression of decay width is related to the
imaginary part of the self-energy. Now, as far as the ρ0 →
πþπ− decay is concerned, the invariant mass regime of
interest does not allow the nucleon loop to directly
contribute to the imaginary part as the unitary cut threshold
of the NN loop begins at a much higher value. However, it
should be noted that in the rest frame of the decaying
particle the decay width depends on its effective mass. The
contribution from the nucleon loop incorporates significant
modification in the effective mass of ρ0, which in turn
influences the decay. As we shall see, the critical field

required to stabilize the neutral ρ against the πþπ− decay
has a nontrivial dependence on the baryonic chemical
potential.
The article is organized as follows. In Sec. II, the vacuum

self-energy of ρ is discussed, followed by evaluation of the
in-medium ρ self-energy at zero magnetic field in Sec. III.
Next, in Sec. IV, the in-medium self-energy at nonzero
external magnetic field is presented. Section V is devoted to
the discussion of the general Lorentz structure of the in-
medium self-energy function in the presence of a constant
background magnetic field. After addressing the Lorentz
structure of the interacting ρ propagator in Sec. VI, the
analytic structure of the self-energy is discussed in Sec. VII.
Section VIII contains the numerical results. Finally, we
summarize and conclude in Sec. IX. Some of the relevant
calculational details are provided in the Appendix.

II. ρ0 SELF-ENERGY IN THE VACUUM

The effective Lagrangian for ρππ and ρNN interaction
is [33]

Lint ¼ −gρππ∂μρ⃗ν · ð∂μπ⃗ × ∂νπ⃗Þ

− gρNNΨ̄
�
γμ −

κρ
2mN

σμν∂ν

�
⃗τ · ρ⃗μΨ; ð1Þ

whereΨ ¼ ½pn� is the nucleon isospin doublet, σμν¼ i
2
½γμ;γν�,

and the components of ⃗τ correspond to the Pauli isospin
matrices. It is understood that the derivative within the
square bracket in the above equation acts only on the ρ
field. The value of the coupling constants are given by
gρππ ¼ 20.72 GeV−2, gρNN ¼ 3.25, and κρ ¼ 6.1 with
mN ¼ 939 MeV as the mass of the nucleons. The metric
tensor in this work is taken as gμν ¼ diagð1;−1;−1;−1Þ.
Using Eq. (1), the one-loop vacuum self-energy of ρ0 is
obtained as

Πμν
pure-vac ¼ ðΠμν

π Þpure-vac þ ðΠμν
N Þpure-vac; ð2Þ

where ðΠμν
π Þpure-vac and ðΠμν

N Þpure-vac are respectively the
contributions from the ππ loop and NN loop, which are
given by (applying Feynman rules to Fig. 1)

ðΠμν
π Þpure-vacðqÞ

¼ i
Z

d4k
ð2πÞ4N

μν
π ðq;kÞΔFðk;mπÞΔFðp¼ qþk;mπÞ ð3Þ

ðΠμν
N Þpure-vacðqÞ

¼−i
Z

d4k
ð2πÞ4Tr½Γ

νðqÞSpðp¼qþk;mNÞΓμð−qÞSpðk;mNÞ

þΓνðqÞSnðp¼qþk;mNÞΓμð−qÞSnðk;mNÞ�; ð4Þ

where
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ΔFðk;mπÞ ¼
−1

k2 −m2
π þ iϵ

ð5Þ

is the vacuum Feynman propagator for the charged pion. Sp
and Sn are respectively the vacuum Feynman propagators
for proton and neutron and are given by

Spðk;mNÞ ¼ Snðk;mNÞ ¼ ð=kþmNÞΔFðk;mNÞ: ð6Þ

The second rank tensor N μν
π ðq; kÞ and the vector ΓμðqÞ in

Eqs. (3) and (4) contain the factors coming from the
interaction vertices:

N μν
π ðq; kÞ ¼ g2ρππ½q4kμkν þ ðq · kÞ2qμqν

− q2ðq · kÞðqμkν þ qνkμÞ� ð7Þ

ΓμðqÞ ¼ gρNN

�
γμ − i

κρ
2mN

σμνqν

�
: ð8Þ

The evaluations of the momentum integrals in Eqs. (3) and
(4) are briefly sketched in Appendix B, and the final results
can be read off from Eqs. (B10) and (B11),

ðΠμν
π Þpure-vacðqÞ

¼ ðq2gμν − qμqνÞ
�
−g2ρππq2

32π2

�

×
Z

1

0

dxΔπ

�
1

ε
− γE þ 1 − ln

�
Δπ

4πΛπ

������
ε→0

ð9Þ

ðΠμν
N Þpure-vacðqÞ

¼ ðq2gμν − qμqνÞ
�
g2ρNN

2π2

�

×
Z

1

0

dx

��
2xð1 − xÞ þ κρ þ

κ2ρ
2
−

κ2ρ
4m2

N
ΔN

�

×

�
1

ε
− γE − ln

�
ΔN

4πΛN

��
−

κ2ρ
4m2

N
ΔN

�����
ε→0

; ð10Þ

whereΔπ and ΔN are defined in Eqs. (B6) and (B7). As can
be seen from the above equations, the vacuum self-energy is
divergent and scale dependent, which renormalizes the bare
ρ0 mass to its physical mass after adding proper vacuum
counterterms in the Lagrangian. The particular Lorentz
structure in the above equations renders the self-energy
transverse to the ρ0 momentum, i.e., qμΠ

μν
pure-vac ¼ 0.

III. ρ0 SELF-ENERGY IN THE MEDIUM

In order to calculate the ρ0 self-energy at finite temper-
ature and density, we employ the real time formalism (RTF)
of finite temperature field theory where all the two point
correlation functions such as the propagator and the self-
energy become 2 × 2matrices in the thermal space [34,35].

However, they can be put in a diagonal form where the
diagonal elements can be obtained from any one compo-
nent (say the 11-component) of the mentioned 2 × 2
matrix. The 11-components of real time thermal pion
and nucleon propagators are

D11ðkÞ ¼ ΔFðk;mπÞ þ ηðk · uÞ½ΔFðk;mπÞ − Δ�
Fðk;mπÞ�

ð11Þ

S11p;nðkÞ ¼ Sp;nðk;mNÞ
− η̃ðk · uÞ½Sp;nðk;mNÞ − γ0S†p;nðk;mNÞγ0�; ð12Þ

where ηðxÞ ¼ ΘðxÞfðxÞ þ Θð−xÞfð−xÞ and η̃ðxÞ ¼
ΘðxÞfþðxÞ þ Θð−xÞf−ð−xÞ in which fðxÞ and f�ðxÞ
are respectively the Bose-Einstein and Fermi-Dirac distri-
bution functions corresponding to pions and nucleons:

fðxÞ ¼ ½ex=T −1�−1; f�ðxÞ ¼ ½eðx∓μBÞ=T þ 1�−1: ð13Þ

Here, ΘðxÞ is the unit step function, and uμ is the medium
four-velocity; T and μB are respectively the temperature
and baryon chemical potential of the medium. In the local
rest frame (LRF) of the medium, uμLRF ≡ ð1; 0⃗Þ.
For the evaluation of the 11-component of the thermal

self-energy matrix, the vacuum pion and nucleon propa-
gators in Eqs. (3) and (4) are replaced by the respective 11-
components of the thermal propagators given in Eqs. (11)
and (12) as [35]

ðΠμν
π Þ11ðqÞ ¼ i

Z
d4k
ð2πÞ4N

μν
π ðq; kÞD11ðk;mπÞ

×D11ðp ¼ qþ k;mπÞ ð14Þ

ðΠμν
N Þ11ðqÞ ¼ −i

Z
d4k
ð2πÞ4 Tr½Γ

νðqÞS11p ðk;mNÞΓμð−qÞ

× S11p ðp ¼ qþ k;mNÞ
þ ΓνðqÞS11n ðk;mNÞΓμð−qÞ
× S11n ðp ¼ qþ k;mNÞ�: ð15Þ

The analytic thermal self-energy function of ρ0 denoted by
a bar ReΠ̄μνðq0; q⃗Þ ¼ ReΠ̄μν

π ðq0; q⃗Þ þ ReΠ̄μν
N ðq0; q⃗Þ is

related to the above quantities by the relations [35]

ReΠ̄μν
π;Nðq0; q⃗Þ ¼ ðReΠμν

π;NÞ11ðq0; q⃗Þ ð16Þ

ImΠ̄μν
π;Nðq0; q⃗Þ ¼ signðq0Þ tanh

�
q0

2T

�
ðImΠμν

π;NÞ11ðq0; q⃗Þ;

ð17Þ

where signðxÞ ¼ ΘðxÞ − Θð−xÞ. Rewriting Eqs. (11) and
(12) as
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D11ðkÞ ¼ ΔFðk;mπÞ þ 2πiηðk · uÞδðk2 −m2
πÞ ð18Þ

S11p;nðkÞ ¼ ð=kþmNÞ½ΔFðk;mNÞ − 2πiη̃ðk · uÞδðk2 −m2
NÞ�
ð19Þ

and substituting into Eqs. (14) and (15) and performing
the dk0 integration (using the Dirac delta functions)
followed by using Eqs. (16) and (17), we get the real
parts as

ReΠ̄μν
π ðq0; q⃗Þ ¼ ReðΠμν

π Þpure-vacðqÞ þ
Z

d3k
ð2πÞ3 P

�
fðωkÞ
2ωk

�
N μν

π ðk0 ¼ −ωkÞ
ðq0 − ωkÞ2 − ðωpÞ2

þ N μν
π ðk0 ¼ ωkÞ

ðq0 þ ωkÞ2 − ðωpÞ2
�

þ fðωpÞ
2ωp

�
N μν

π ðk0 ¼ −q0 − ωpÞ
ðq0 þ ωpÞ2 − ðωkÞ2

þN μν
π ðk0 ¼ −q0 þ ωpÞ

ðq0 − ωpÞ2 − ðωkÞ2
��

ð20Þ

ReΠ̄μν
N ðq0; q⃗Þ ¼ ReðΠμν

N Þpure-vacðqÞ −
Z

d3k
ð2πÞ3 P

�
1

2Ωk

�
f−ðΩkÞN μν

N ðk0 ¼ −ΩkÞ
ðq0 −ΩkÞ2 − ðΩpÞ2

þ fþðΩkÞN μν
N ðk0 ¼ ΩkÞ

ðq0 þ ΩkÞ2 − ðΩpÞ2
�

þ 1

2Ωp

�
f−ðΩpÞN μν

N ðk0 ¼ −q0 −ΩpÞ
ðq0 þ ΩpÞ2 − ðΩkÞ2

þ fþðΩpÞN μν
N ðk0 ¼ −q0 þ ΩpÞ

ðq0 − ΩpÞ2 − ðΩkÞ2
��

ð21Þ

and the imaginary parts as

ImΠ̄μν
π ðq0; q⃗Þ ¼ −signðq0Þ tanh

�
βq0

2

�
π

Z
d3k
ð2πÞ3

1

4ωkωp
½f1þ fðωkÞ þ fðωpÞ þ 2fðωkÞfðωpÞg

fN μν
π ðk0 ¼ −ωkÞδðq0 −ωk −ωpÞ þN μν

π ðk0 ¼ ωkÞδðq0 þωk þωpÞg þ ffðωkÞ þ fðωpÞ þ 2fðωkÞfðωpÞg
fN μν

π ðk0 ¼ −ωkÞδðq0 −ωk þωpÞ þN μν
π ðk0 ¼ ωkÞδðq0 þωk −ωpÞg� ð22Þ

ImΠ̄μν
N ðq0; q⃗Þ ¼ −signðq0Þ tanh

�
βq0

2

�
π

Z
d3k
ð2πÞ3

1

4ΩkΩp

× ½f1 − f−ðΩkÞ − fþðΩpÞ þ 2f−ðΩkÞfþðΩpÞgN μν
N ðk0 ¼ −ΩkÞδðq0 − Ωk −ΩpÞ

þ f1 − fþðΩkÞ − f−ðΩpÞ þ 2fþðΩkÞf−ðΩpÞgN μν
N ðk0 ¼ ΩkÞδðq0 þΩk þ ΩpÞ

þ f−f−ðΩkÞ − f−ðΩpÞ þ 2f−ðΩkÞf−ðΩpÞgN μν
N ðk0 ¼ −ωkÞδðq0 − Ωk þ ΩpÞ

þ f−fþðΩkÞ − fþðΩpÞ þ 2fþðΩkÞfþðΩpÞgN μν
N ðk0 ¼ ΩkÞδðq0 þ Ωk −ΩpÞ�; ð23Þ

where P denotes the Cauchy principal value integration,

ωk¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþ k⃗2
q

,Ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ k⃗2
q

, andN Nðq; kÞ is defined
in Eq. (B3).

IV. ρ0 SELF-ENERGY IN THE
MAGNETIZED MEDIUM

In the presence of the external magnetic field B⃗ ¼ Bẑ,
the propagations of the charged pion and proton are
modified. One of the possible ways to incorporate the
effect of external magnetic field is the Schwinger proper
time formalism in which the 11-components of charged
pion and proton propagators respectively become [36,37]

D11
B ðkÞ ¼ ΔBðk;mπÞ þ ηðk · uÞ½ΔBðk;mπÞ − Δ�

Bðk;mπÞ�
ð24Þ

and

S11B ðkÞ¼ SBðk;mNÞ− η̃ðk ·uÞ½SBðk;mNÞ− γ0S†Bðk;mNÞγ0�;
ð25Þ

where ΔBðk;mπÞ and SBðk;mNÞ denote the momentum
space vacuum (zero temperature) Schwinger proper time
propagators for the charged pionandproton respectively [36]:

ΔBðkÞ¼ i
Z

∞

0

dsexp

�
is

�
k2k þ

tanðeBsÞ
eBs

k2⊥−m2
N

��
ð26Þ

SBðkÞ ¼ i
Z

∞

0

ds exp

�
is

�
k2k þ

tanðeBsÞ
eBs

k2⊥ −m2
N

��

× ½ð=kk þmNÞf1− γ1γ2 tanðeBsÞgþ=k⊥sec2ðeBsÞ�:
ð27Þ
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In the above equations, e ¼ jej is the charge of the proton;
the four-vector k is decomposed into k ¼ ðkk þ k⊥Þ where
kμk ¼ gμνk kν and kμ⊥ ¼ gμν⊥ kν, corresponding to the decom-

position of the metric tensor gμν ¼ ðgμνk þ gμν⊥ Þ with gμνk ¼
diagð1; 0; 0;−1Þ and gμν⊥ ¼ diagð0;−1;−1; 0Þ. The above
decomposition can be done in a Lorentz covariant way by
introducing another four-vector,

bμ ¼ 1

B
Gμνuν; ð28Þ

where Gμν ¼ 1
2
ϵμναβFαβ is the dual of the electromagnetic

field tensor Fμν. In the local rest frame of the medium,
bμLRF ≡ ð0; 0; 0; 1Þ, which is the direction of the external
magnetic field. Using bμ, we can write

gμνk ¼ ðuμuν − bμbνÞ and gμν⊥ ¼ ðgμν − uμuν þ bμbνÞ:
ð29Þ

It is important to note that the coordinate space
Schwinger propagator contains a gauge-dependent trans-
lationally noninvariant phase factor. However, for the one-
loop graphs containing equally charged particles in the
loop, the phase factor gets canceled, and the momentum
space propagator is sufficient for the calculation of the self-
energy. The proper time integral in Eqs. (26) and (27) can
be performed in order to express the propagators as a sum
over discrete Landau levels as

ΔBðkÞ ¼ −
X∞
l¼0

2ð−1Þle−αkLlð2αkÞ
k2k −m2

π − ð2lþ 1ÞeBþ iϵ
ð30Þ

SBðkÞ ¼ −
X∞
l¼0

� ð−1Þle−αkDlðkÞ
k2k −m2

N − 2leBþ iϵ

�
; ð31Þ

where

DlðkÞ ¼ ð=kk þmNÞ½ð1þ iγ1γ2ÞLlð2αkÞ
− ð1 − iγ1γ2ÞLl−1ð2αkÞ� − 4=k⊥L1

l−1ð2αkÞ ð32Þ

with αk ¼ −k2⊥=eB. Here, La
l ðzÞ denotes the generalized

Laguerre polynomial with La
−1ðzÞ ¼ 0 and LlðzÞ ¼ L0

l ðzÞ.
We now rewrite Eqs. (24) and (25) using Eqs. (30)
and (31) as

D11
B ðkÞ¼

X∞
l¼0

2ð−1Þle−αkLlð2αkÞ

×

�
−1

k2k−m2
l þ iϵ

þ2πiηðk ·uÞδðk2k−m2
l Þ
�

ð33Þ

S11B ðkÞ ¼
X∞
l¼0

ð−1Þle−αkDlðkÞ

×

�
−1

k2k−M2
l þ iϵ

−2πiη̃ðk ·uÞδðk2k−M2
l Þ
�
; ð34Þ

where we have defined the Landau level–dependent
“dimensionally reduced effective masses” (as a conse-
quence of dimensional reduction) of the pion and proton as

ml ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþð2lþ1ÞeB
q

and Ml¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ2leB
q

: ð35Þ

We now replace the 11-component of the charged
pion and proton propagators in Eqs. (14) and (15) as
D11 → D11

B ; S11p → S11B , i.e., by the respective magnetized
ones given in Eqs. (33) and (34), and then perform the dk0

integrations (using the Dirac delta functions). Following
Eqs. (16) and (17), we get the thermal self-energy functions
under external magnetic field which we will denote by a
double bar to distinguish them from the thermal self-energy
functions in the absence of magnetic field. Their explicit
expressions are given by

Re ¯̄Πμν
π ðq0; q⃗Þ ¼

X∞
l¼0

X∞
n¼0

Z
d3k
ð2πÞ3 P

�
fðωl

kÞ
2ωl

k

�
N μν

π;nlðk0 ¼ −ωl
kÞ

ðq0 − ωl
kÞ2 − ðωn

pÞ2
þ N μν

π;nlðk0 ¼ ωl
kÞ

ðq0 þ ωl
kÞ2 − ðωn

pÞ2
�

þ fðωn
pÞ

2ωn
p

�
N μν

π;nlðk0 ¼ −q0 − ωn
pÞ

ðq0 þ ωn
pÞ2 − ðωl

kÞ2
þN μν

π;nlðk0 ¼ −q0 þ ωn
pÞ

ðq0 − ωn
pÞ2 − ðωl

kÞ2
��

þ ReðΠμν
π Þvacðq; eBÞ ð36Þ

Re ¯̄Πμν
N ðq0; q⃗Þ¼ 1

2
ReΠ̄μν

N ðq0; q⃗Þ−
X∞
l¼0

X∞
n¼0

Z
d3k
ð2πÞ3P

�
1

2Ωl
k

�
f−ðΩl

kÞN μν
p;nlðk0 ¼−Ωl

kÞ
ðq0−Ωl

kÞ2− ðΩn
pÞ2

þfþðΩl
kÞN μν

p;nlðk0¼Ωl
kÞ

ðq0þΩl
kÞ2− ðΩn

pÞ2
�

þ 1

2Ωn
p

�
f−ðΩn

pÞN μν
p;nlðk0¼−q0−Ωn

pÞ
ðq0þΩn

pÞ2− ðΩl
kÞ2

þfþðΩn
pÞN μν

p;nlðk0 ¼−q0þΩn
pÞ

ðq0−Ωn
pÞ2− ðΩl

kÞ2
��

þReðΠμν
p Þvacðq;eBÞ ð37Þ
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Im ¯̄Πμν
π ðq0; q⃗Þ ¼−signðq0Þ tanh

�
βq0

2

�
π
X∞
l¼0

X∞
n¼0

Z
d3k
ð2πÞ3

1

4ωl
kω

n
p
½f1þfðωl

kÞþfðωn
pÞþ 2fðωl

kÞfðωn
pÞg

fN μν
π;nlðk0 ¼−ωl

kÞδðq0 −ωl
k−ωn

pÞþN μν
π;nlðk0 ¼ωl

kÞδðq0þωl
kþωn

pÞgþffðωl
kÞþfðωn

pÞþ 2fðωl
kÞfðωn

pÞg
fN μν

π;nlðk0 ¼−ωl
kÞδðq0 −ωl

kþωn
pÞþN μν

π;nlðk0 ¼ωl
kÞδðq0þωl

k−ωn
pÞg� ð38Þ

Im ¯̄Πμν
N ðq0; q⃗Þ ¼ 1

2
ImΠ̄μν

N ðq0; q⃗Þ − signðq0Þ tanh
�
βq0

2

�
π
X∞
l¼0

X∞
n¼0

Z
d3k
ð2πÞ3

1

4Ωl
kΩn

p

× ½f1 − f−ðΩl
kÞ − fþðΩn

pÞ þ 2f−ðΩl
kÞfþðΩn

pÞgN μν
p;nlðk0 ¼ −Ωl

kÞδðq0 −Ωl
k −Ωn

pÞ
þ f1 − fþðΩl

kÞ − f−ðΩn
pÞ þ 2fþðΩl

kÞf−ðΩn
pÞgN μν

p;nlðk0 ¼ Ωl
kÞδðq0 þ Ωl

k þΩn
pÞ

þ f−f−ðΩl
kÞ − f−ðΩn

pÞ þ 2f−ðΩl
kÞf−ðΩn

pÞgN μν
p;nlðk0 ¼ −ωl

kÞδðq0 −Ωl
k þ Ωn

pÞ
þ f−fþðΩl

kÞ − fþðΩn
pÞ þ 2fþðΩl

kÞfþðΩn
pÞgN μν

p;nlðk0 ¼ Ωl
kÞδðq0 þΩl

k − Ωn
pÞ�; ð39Þ

where

N μν
π;nlðq; kÞ ¼ 4ð−1Þnþle−αk−αpLlð2αkÞLnð2αpÞN μν

π ðq; kÞ
ð40Þ

N μν
p;nlðq; kÞ ¼ −g2ρNNð−1Þnþle−αk−αp

× Tr½ΓνðqÞDnðqþ kÞΓμð−qÞDlðkÞ� ð41Þ

ωl
k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2zþm2

l

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2zþm2

πþð2lþ1ÞeB
q

ð42Þ

Ωl
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þM2

l

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þm2

N þ 2leB
q

: ð43Þ

The first terms on the rhs of Eqs. (37) and (39) are the
contributions from the neutron-neutron loop which are not
affected by the external magnetic field. The last terms on
the rhs of Eqs. (36) and (37) are the contributions from ππ
and proton-proton loop which depend on the external
magnetic field but are independent of temperature. Their
explicit forms are given by

ReðΠμν
π Þvacðq;eBÞ

¼ Re
X∞
l¼0

X∞
n¼0

i
Z

d4k
ð2πÞ4N

μν
π;nlΔFðkk;mlÞΔFðqk þ kk;mnÞ

ð44Þ
ReðΠμν

p Þvacðq;eBÞ

¼Re
X∞
l¼0

X∞
n¼0

i
Z

d4k
ð2πÞ4N

μν
p;nlΔFðkk;MlÞΔFðqk þkk;MnÞ:

ð45Þ

It is important to note that the above quantities respec-
tively contain the divergent pure-vacuum contributions
ðΠμν

π Þpure-vacðqÞ and 1
2
ðΠμν

N Þpure-vacðqÞ in a nontrivial way
(as the above equations seem to appear nonperturbative in
eB). In contrast, for the case of weak magnetic field
expansion of the Schwinger propagator, the pure-vacuum
contribution to the self-energy trivially decouples from the
magnetic field–dependent terms. Since we are working
with the full propagator including all the Landau levels, we
have to properly regularize the above expressions in order
to extract the pure-vacuum contributions from these
quantities. We use dimensional regularization in which
the ultraviolet divergence appears as the pole of Gamma
and Hurwitz zeta function, the details of which are
provided in the Appendixes C and D. Here, we take the
transverse momentum of ρ0 to be zero, i.e., q⊥ ¼ 0, which
makes substantial simplifications of the analytic calcula-
tions. The final result can be read off from Eqs. (C8) and
(D8) as

ðΠμν
π Þvacðqk; eBÞ ¼ ðΠμν

π Þpure-vacðqkÞ þ ðΠμν
π ÞeB-vacðqk; eBÞ

ð46Þ

ðΠμν
p Þvacðqk;eBÞ¼

1

2
ðΠμν

N Þpure-vacðqkÞþðΠμν
p ÞeB-vacðqk;eBÞ;

ð47Þ

where the scale-dependent divergent pure-vacuum parts
are completely decoupled as the first term on the rhs of
the above equation; the scale-independent and finite
“eB-dependent vacuum contributions” to the real part of
the self-energy functions are

GHOSH, MUKHERJEE, ROY, and SARKAR PHYS. REV. D 99, 096004 (2019)

096004-6



ðΠμν
π ÞeB-vacðqk; eBÞ ¼

−g2ρππq2k
32π2

Z
1

0

dx
��

ln
�
Δπðq⊥ ¼ 0Þ

2eB

�
− 1

�
Δπðq⊥ ¼ 0Þðq2kgμν − qμkq

ν
kÞ

− ðq2kgμνk − qμkq
ν
kÞ2eB

�
lnΓ

�
zπ þ

1

2

�
− ln

ffiffiffiffiffiffi
2π

p �

þ q2kg
μν
⊥
�
Δπðq⊥ ¼ 0Þ þ eB

2
−
1

2
Δπðq⊥ ¼ 0Þ

�
ψ

�
zπ þ

1

2

�
þ ψ

�
zπ þ xþ 1

2

����
ð48Þ

ðΠμν
p ÞeB-vacðqk; eBÞ ¼

g2ρNN

4π2

Z
1

0

dx

�
ln

�
ΔNðq⊥ ¼ 0Þ

2eB

��
2xð1 − xÞ þ κρ þ

κ2ρ
2
−

κ2ρ
4m2

N
ΔNðq⊥ ¼ 0Þ

�
ðq2kgμν − qμkq

ν
kÞ

− 2xð1 − xÞ
�
ψðzNÞ þ

1

2zN

�
ðq2kgμνk − qμkq

ν
kÞ þ 2eBgμν⊥

��
zN −

m2
N

eB

�
ψðzN þ xÞ þ zN

þ lnΓðzþ xÞ − ln
ffiffiffiffiffiffi
2π

p �
− κρ

�
ðq2kgμνk − qμkq

ν
kÞ
�
ψðzNÞ þ

1

2zN

�
þ q2kg

μν
⊥ ψðzþ xÞ

�

þ κ2ρ
4m2

N
2eB

�
ðq2kgμνk − qμkq

ν
kÞ
�
−
m2

N

eB

�
ψðzNÞ þ

1

2zN

�
þ 1

2
lnðzNÞ þ lnΓðzNÞ − ln

ffiffiffiffiffiffi
2π

p �

− q2kg
μν
⊥
��

m2
N

eB
− zN

�
ψðzN þ xÞ þ ΔNðq⊥ ¼ 0Þ

�
þ κ2ρ
4m2

N
ðq2kgμν − qμkq

ν
kÞΔNðq⊥ ¼ 0Þ

�
: ð49Þ

Equations (46) and (47) imply that the vacuum counterterms are sufficient to renormalize the theory and thus the external
magnetic field does not create additional divergences. For q⊥ ¼ 0, the d2k⊥ integrals in Eqs. (36)–(39) can be analytically
performed (see Appendix E), and we finally get

Re ¯̄Πμν
π ðq0; qzÞ ¼ ReðΠμν

π Þpure-vacðqkÞ þ
X∞
n¼0

Xðnþ1Þ

l¼ðn−1Þ

Z
∞

−∞

dkz
2π

P
�
fðωl

kÞ
2ωl

k

�
Ñ μν

π;nlðk0 ¼ −ωl
kÞ

ðq0 − ωl
kÞ2 − ðωn

pÞ2
þ Ñ μν

π;nlðk0 ¼ ωl
kÞ

ðq0 þ ωl
kÞ2 − ðωn

pÞ2
�

þ fðωn
pÞ

2ωn
p

�
Ñ μν

π;nlðk0 ¼ −q0 − ωn
pÞ

ðq0 þ ωn
pÞ2 − ðωl

kÞ2
þ Ñ μν

π;nlðk0 ¼ −q0 þ ωn
pÞ

ðq0 − ωn
pÞ2 − ðωl

kÞ2
��

þ ReðΠμν
π ÞeB-vacðqk; eBÞ ð50Þ

Re ¯̄Πμν
N ðq0;qzÞ¼ReΠ̄μν

N ðq0;qzÞ−
X∞
n¼0

Xðnþ1Þ

l¼ðn−1Þ

Z
∞

−∞

dkz
2π

P
�

1

2Ωl
k

�
f−ðΩl

kÞÑ μν
p;nlðk0¼−Ωl

kÞ
ðq0−Ωl

kÞ2− ðΩn
pÞ2

þfþðΩl
kÞÑ μν

p;nlðk0 ¼Ωl
kÞ

ðq0þΩl
kÞ2− ðΩn

pÞ2
�

þ 1

2Ωn
p

�
f−ðΩn

pÞÑ μν
p;nlðk0¼−q0−Ωn

pÞ
ðq0þΩn

pÞ2− ðΩl
kÞ2

þfþðΩn
pÞÑ μν

p;nlðk0 ¼−q0þΩn
pÞ

ðq0−Ωn
pÞ2− ðΩl

kÞ2
��

þReðΠμν
p ÞeB-vacðqk;eBÞ ð51Þ

Im ¯̄Πμν
π ðq0;qzÞ ¼−signðq0Þ tanh

�
βq0

2

�
π
X∞
n¼0

Xðnþ1Þ

l¼ðn−1Þ

Z
∞

−∞

dkz
2π

1

4ωl
kω

n
p
½f1þfðωl

kÞþfðωn
pÞþ2fðωl

kÞfðωn
pÞg

fÑ μν
π;nlðk0 ¼−ωl

kÞδðq0−ωl
k−ωn

pÞþ Ñ μν
π;nlðk0 ¼ωl

kÞδðq0þωl
kþωn

pÞgþffðωl
kÞþfðωn

pÞþ2fðωl
kÞfðωn

pÞg
fÑ μν

π;nlðk0 ¼−ωl
kÞδðq0−ωl

kþωn
pÞþ Ñ μν

π;nlðk0 ¼ωl
kÞδðq0þωl

k−ωn
pÞg� ð52Þ

Im ¯̄Πμν
N ðq0; qzÞ ¼

1

2
ImΠ̄μν

N ðq0; qzÞ − signðq0Þ tanh
�
βq0

2

�
π
X∞
n¼0

Xðnþ1Þ

l¼ðn−1Þ

Z
∞

−∞

dkz
2π

1

4Ωl
kΩn

p

× ½f1 − f−ðΩl
kÞ − fþðΩn

pÞ þ 2f−ðΩl
kÞfþðΩn

pÞgÑ μν
p;nlðk0 ¼ −Ωl

kÞδðq0 − Ωl
k −Ωn

pÞ
þ f1 − fþðΩl

kÞ − f−ðΩn
pÞ þ 2fþðΩl

kÞf−ðΩn
pÞgÑ μν

p;nlðk0 ¼ Ωl
kÞδðq0 þΩl

k þ Ωn
pÞ

þ f−f−ðΩl
kÞ − f−ðΩn

pÞ þ 2f−ðΩl
kÞf−ðΩn

pÞgÑ μν
p;nlðk0 ¼ −ωl

kÞδðq0 −Ωl
k þ Ωn

pÞ
þ f−fþðΩl

kÞ − fþðΩn
pÞ þ 2fþðΩl

kÞfþðΩn
pÞgÑ μν

p;nlðk0 ¼ Ωl
kÞδðq0 þ Ωl

k −Ωn
pÞ�; ð53Þ
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where Ñ μν
π;nlðqk; kkÞ and Ñ μν

p;nlðqk; kkÞ can be read off
from Eqs. (E5) and (E8). The presence of Kronecker
delta functions in the expressions of Ñ μν

π;nlðqk; kkÞ and

Ñ μν
p;nlðqk; kkÞ has eliminated one of the double sums, or in

other words, the sum over index l now runs from (n − 1) to
(nþ 1).

V. LORENTZ STRUCTURE OF THE
VECTOR BOSON SELF-ENERGY

IN MAGNETIZED MEDIUM

In this section, we will derive the tensorial decomposi-
tion of the massive vector boson self-energy. We note that
the self-energy ΠμνðqÞ, being a second rank tensor, has 16
components which will mix among themselves with the
change of frame. It is useful to use linearly independent
basis tensors (constructed with the available vectors and
tensors) to express ΠμνðqÞ so that the form factors (cor-
responding to each basis) remain Lorentz invariant. This
will also enable one to solve the Dyson-Schwinger equa-
tion in order to obtain the complete interacting vector boson
propagator. In order to proceed, we first note that the vector
boson self-energy satisfies the following constraint:

ΠμνðqÞ ¼ ΠνμðqÞ and qμΠμνðqÞ ¼ 0: ð54Þ

Let us first consider the pure-vacuum case, i.e., for zero
temperature and zero external magnetic field. In this case,
the only available vector is the momentum qμ along with
the metric tensor gμν so that ΠμνðqÞ is a linear combination
of qμqν and gμν, i.e.,ΠμνðqÞ ¼ ðα1gμν þ α2qμqνÞ. Imposing
the constrains of Eq. (54), we get α1 þ α2q2 ¼ 0,
which makes the only possible Lorentz structure of the
self-energy as

Πμν ¼ α1

�
gμν −

qμqν

q2

�
; ð55Þ

where the Lorentz invariant form factor α1¼α1ðq2Þ¼ 1
3
Πμ

μ.
Note that, with qμ and gμν, the only possible Lorentz scalar
that can be formed by contracting with ΠμνðqÞ is the
quantity gμνΠμν ¼ Πμ

μ, implying the existence of only one
form factor.
We now consider the case with finite temperature but

zero magnetic field. In this case, we have an additional
four-vector uμ (medium four-velocity) along with qμ and
gμν. This makes Πμν be a linear combination of gμν, qμqν,
uμuν, qμuν, and qνuμ, i.e.,

ΠμνðqÞ ¼ ðα1gμν þ α2qμqν þ α3uμuν þ α4qμuν þ α5qνqμÞ:
ð56Þ

However, imposing the constrains in Eq. (54), we find the
relationship among the coefficients

α5 ¼ α4 ð57Þ

α1 þ α2q2 þ α4ðq · uÞ ¼ 0 ð58Þ

α3ðq · uÞ þ α4q2 ¼ 0; ð59Þ

which makes only two of the coefficients independent.
Choosing α1 and α2 as independent, we get

ΠμνðqÞ¼ α1

�
gμνþ q2

ðq ·uÞu
μuν−

1

ðq ·uÞðq
μuνþqνuμÞ

�

þα2

�
qμqνþ q4

ðq ·uÞ2u
μuν−

q2

ðq ·uÞðq
μuνþqνuμÞ

�
;

ð60Þ

where the Lorentz invariant form factors α1 ¼ α1ðq2; q · uÞ
and α2 ¼ α2ðq2; q · uÞ can be obtained by contracting both
sides of the above equations with gμν and uμuν so that the
form factors will become functions of the Lorentz scalars
gμνΠμν ¼ Πμ

μ and uμuνΠμν. Note that, with qμ, uμ, and gμν,
only two possible Lorentz scalars that can be formed by
contracting with ΠμνðqÞ are the quantities Πμ

μ and
uμuνΠμν, implying the existence of only two form factors.
Unlike the pure-vacuum case given in Eq. (55), here, the
decomposition of Πμν in Eq. (60) is not unique. As already
mentioned, it is useful to construct linearly independent
(and mutually orthogonal) basis tensors [note that the basis
tensors within square brackets in Eq. (60) are not mutually
orthogonal]. One such choice of orthogonal tensor basis
could be

Pμν
1 ¼

�
gμν−

qμqν

q2
−
ũμũν

ũ2

�
and Pμν

2 ¼
�
ũμũν

ũ2

�
; ð61Þ

where

ũμ ¼ uμ −
ðq · uÞ
q2

qμ; ð62Þ

which is constructed from uμ by subtracting out its
projection along qμ. It is easy to check that Pμν

1 and Pμν
2

satisfy all the properties of projection tensors, i.e.,

gαβP
μα
i Pβν

j ¼ δijP
μν
i and gαβgμνP

μα
i Pβν

j ¼ δij: ð63Þ

Therefore, Πμν can be written as

ΠμνðqÞ ¼ Π1ðq2; q · uÞPμν
1 þ Π2ðq2; q · uÞPμν

2 ; ð64Þ

where the form factors are
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Π1ðq2; q · uÞ ¼ 1

2

�
Πμ

μ −
1

ũ2
uμuνΠμν

�
and

Π2ðq2; q · uÞ ¼
�
1

ũ2
uμuνΠμν

�
: ð65Þ

Care should be taken when considering the special case like
q⃗ ¼ 0⃗ [35]. To see this, let us consider qi ¼ jq⃗jni so that the
spatial components of the projectors at q⃗ ¼ 0⃗ become (in
the LRF)

Pij
1 ¼ gij þ ninj and Pij

2 ¼ −ninj: ð66Þ
This implies that the spatial components of self-energy at
vanishing three-momentum

Πijðq0; q⃗ ¼ 0⃗Þ ¼ Π1gij þ ninjðΠ1 − Π2Þ ð67Þ

depend on the direction of q⃗ even at jq⃗j ¼ 0. This
ambiguity is eliminated by setting an additional constraint
on the form factors as Π1ðq0; q⃗ ¼ 0⃗Þ ¼ Π2ðq0; q⃗ ¼ 0⃗Þ.
Following the same strategy, we now construct a suitable

orthogonal tensor basis for the vector boson self-energy at
finite temperature under external magnetic field. In this
case, we have an additional four-vector bμ (corresponding
to the magnetic field direction) along with qμ, uμ, and gμν.
This makes the symmetric Πμν be a linear combination of
seven tensors as

ΠμνðqÞ ¼ α1gμν þ α2qμqν þ α3uμuν þ α4bμbν

þ α5ðqμuν þ qνuμÞ þ α6ðqμbν þ qνbμÞ
þ α7ðuμbν þ uνbμÞ: ð68Þ

However, imposing the constrains in Eq. (54), we find the
following relationship among the coefficients,

α1 þ α2q2 þ α5ðq · uÞ þ α6ðq · bÞ ¼ 0 ð69Þ

α3 þ α5q2 þ α7ðq · bÞ ¼ 0 ð70Þ

α4ðq · bÞ þ α6q2 þ α7ðq · uÞ ¼ 0; ð71Þ

which makes only (7 − 3 ¼ 4) four of the coefficients
independent. The Lorentz invariant form factors αi ¼
αiðq2; q · u; q · bÞ with i ¼ 1; 2;…; 7 can be obtained by
contracting both sides of the above equations separately
with gμν, uμuν, bμbν, and uμbν so that the form factors will
become functions of the Lorentz scalars Πμ

μ, uμuνΠμν,
bμbνΠμν, and uμbνΠμν. Note that, with qμ, uμ, bμ, and gμν,
only four possible Lorentz scalars that can be formed by
contracting with ΠμνðqÞ are the quantities Πμ

μ, uμuνΠμν,
bμbνΠμν, and uμbνΠμν, implying the existence of only four
form factors. Like the finite temperature case, here, the
decomposition of Πμν is also not unique. One convenient
choice of tensor basis could be

Pμν
1 ¼

�
gμν −

qμqν

q2
−
ũμũν

ũ2
−
b̃μb̃ν

b̃2

�
ð72Þ

Pμν
2 ¼

�
ũμũν

ũ2

�
ð73Þ

Pμν
3 ¼

�
b̃μb̃ν

b̃2

�
ð74Þ

Qμν ¼ 1ffiffiffiffiffiffiffiffiffiffi
ũ2b̃2

p ðũμb̃ν þ ũνb̃μÞ; ð75Þ

where ũμ is defined in Eq. (62) and b̃μ is defined as

b̃μ ¼ bμ −
ðq · bÞ
q2

qμ −
b · ũ
ũ2

ũμ: ð76Þ

The basis tensors in Eqs. (72)–(75) satisfy the following
relations:

gαβgμνP
μα
i Pβν

j ¼ δij ð77Þ

gαβgμνP
μα
i Qβν ¼ 0 ð78Þ

gαβgμνQμαQβν ¼ 2 ð79Þ

gαβP
μα
i Pβν

j ¼ δijP
μν
i ð80Þ

gαβQμαQβν ¼ Pμν
2 þ Pμν

3 ð81Þ

gαβP
μα
1 Qβν ¼ gαβQμαPβν

1 ¼ 0 ð82Þ

gαβP
μα
2 Qβν ¼ gαβQμαPβν

3 ¼ ũμb̃νffiffiffiffiffiffiffiffiffiffi
ũ2b̃2

p ð83Þ

gαβP
μα
3 Qβν ¼ gαβQμαPβν

2 ¼ ũνb̃μffiffiffiffiffiffiffiffiffiffi
ũ2b̃2

p : ð84Þ

Using the basis given in Eqs. (72)–(75), the self-energy at
finite temperature under external magnetic field can be
written as

ΠμνðqÞ ¼ ΠαP
μν
1 þ ΠβP

μν
2 þ ΠγP

μν
3 þ ΠδQμν; ð85Þ

where the form factors are obtained as

Πβ ¼
1

ũ2
uμuνΠμν ð86Þ

Πγ ¼
1

b̃2

�
bμbνΠμν þ ðb · ũÞ2

ũ4
uμuνΠμν − 2

ðb · ũÞ
ũ2

uμbνΠμν

�

ð87Þ
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Πδ ¼
1ffiffiffiffiffiffiffiffiffiffi
ũ2b̃2

p
�
uμbνΠμν −

ðb · ũÞ
ũ2

uμuνΠμν

�
ð88Þ

Πα ¼ ðΠμ
μ − Πβ − ΠγÞ: ð89Þ

Analogous to the case of only finite temperature, care
should be taken while considering the special case q⊥ ¼ 0.
To see this, let us consider qi⊥ ¼ jq⃗⊥jni with i ¼ 1, 2 so that
the following components of self-energy at vanishing q⊥
become (in the LRF)

Πijðq0; q⊥ ¼ 0; qzÞ ¼ Παgij þ ninjðΠα − ΠγÞ ð90Þ

Πi3ðq0; q⊥ ¼ 0; qzÞ ¼
q0ffiffiffiffiffi
q2k

q niΠδ; ð91Þ

which depend on the direction of q⃗⊥ even at q⊥ ¼ 0. This
ambiguity is eliminated by setting additional constraints on
the form factors as

Παðq0; q⊥ ¼ 0; qzÞ ¼ Πγðq0; q⊥ ¼ 0; qzÞ and

Πδðq0; q⊥ ¼ 0; qzÞ ¼ 0: ð92Þ

VI. INTERACTING ρ MESON PROPAGATOR
AND ITS LORENTZ STRUCTURE

Let us first consider the zero temperature and zero
magnetic field case for which the complete interacting ρ
propagatorDμν is obtained by solving the Dyson-Schwinger
equation

Dμν ¼ Δμν − ΔμαΠαβDβν; ð93Þ

where

Δμν ¼
�
−gμν þ qμqν

m2
ρ

�
ΔFðq;mρÞ ð94Þ

is the free vacuum Feynman propagator and Πμν is the one-
loop self-energy of the ρ meson which has the Lorentz
structure given in Eq. (55) as

Πμν ¼
�
gμν −

qμqν

q2

�
Π; ð95Þ

with the form factor Π ¼ 1
3
Πμ

μ. In order to solve Eq. (93),
we rewrite it as

ðDμνÞ−1 ¼ ðΔμνÞ−1 þ Πμν; ð96Þ

where ðΔμνÞ−1 ¼ ðq2 −m2
ρÞgμν − qμqν, which satisfies

ΔμαðΔανÞ−1 ¼ gμν. Substituting Πμν from Eq. (95) in the
above equation, we get the inverse of the complete

propagator, which can be inverted using the relation
DμαðDανÞ−1 ¼ gμν to obtain the complete propagator as

DμνðqÞ ¼
�
−gμν þ qμqν

q2

��
−1

q2 −m2
ρ þ Π

�
−

qμqν

q2m2
ρ
: ð97Þ

We now consider the case of finite temperature and zero
magnetic field. As already mentioned in Sec. III, in RTF of
finite temperature field theory, all the two point correlation
functions become 2 × 2 matrices in thermal space. In this
case, the Dyson-Schwinger equation also becomes a matrix
equation [35],

Dμν ¼ Δμν − ΔμαΠαβDβν: ð98Þ

Each term of the above equation can be diagonalized in
terms of the respective analytic functions (denoted by a bar)
so that the above equation becomes an algebraic one,

D̄μν ¼ Δ̄μν − Δ̄μαΠ̄αβD̄βν; ð99Þ

where Δ̄μν ¼ Δμν. The above equation can be rewritten as

ðD̄μνÞ−1 ¼ ðΔ̄μνÞ−1 þ Π̄μν: ð100Þ

In this case, the Lorentz structure of the thermal self-energy
function is given in Eq. (64) as

Π̄μνðqÞ ¼ Π1ðq2; q · uÞPμν
1 þ Π2ðq2; q · uÞPμν

2 ; ð101Þ

where the projection tensors and form factors are respec-
tively defined in Eqs. (61) and (65). Substituting the above
equation in Eq. (100), we get the inverse of the complete
propagator. In order to obtain the complete propagator, we
write

D̄μν ¼ A1P
μν
1 þ A2P

μν
2 þ ξqμqν ð102Þ

and use the relation D̄μαðD̄ανÞ−1 ¼ gμν to extract A1, A2,
and ξ. The final form of the complete interacting thermal
propagator is obtained as

D̄μν ¼ Pμν
1

q2 −m2
ρ þ Π1

þ Pμν
2

q2 −m2
ρ þ Π2

−
qμqν

q2m2
ρ
: ð103Þ

Finally, we consider the case with both finite temperature
and external magnetic field. In this case, we need to solve
the Dyson-Schwinger equation

ð ¯̄DμνÞ−1 ¼ ðΔ̄μνÞ−1 þ ¯̄Πμν; ð104Þ

where a double bar is used to denote the thermal self-energy
function and complete propagator under external magnetic
field as discussed in Sec. IV. In this case, the Lorentz
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structure of the thermal self-energy function is given in
Eq. (85) as

¯̄ΠμνðqÞ ¼ ΠαP
μν
1 þ ΠβP

μν
2 þ ΠγP

μν
3 þ ΠδQμν; ð105Þ

where the basis tensors and form factors are given in
Eqs. (72)–(75) and (86)–(89). Substituting the above
equation in Eq. (104), we get the inverse of the complete
propagator. In order to obtain the complete propagator, we
write

¯̄Dμν ¼ AαP
μν
1 þ AβP

μν
2 þ AγP

μν
3 þ AδQμν þ ξqμqν ð106Þ

and use the relation ¯̄Dμαð ¯̄DανÞ−1 ¼ gμν to extract the
coefficients as

Aα ¼
1

q2 −m2
ρ þ Πα

ð107Þ

Aβ ¼
q2 −m2

ρ þ Πγ

ðq2 −m2
ρ þ ΠγÞðq2 −m2

ρ þ ΠβÞ − Π2
δ

ð108Þ

Aγ ¼
q2 −m2

ρ þ Πβ

ðq2 −m2
ρ þ ΠβÞðq2 −m2

ρ þ ΠγÞ − Π2
δ

ð109Þ

Aδ ¼
−Πδ

ðq2 −m2
ρ þ ΠβÞðq2 −m2

ρ þ ΠγÞ − Π2
δ

ð110Þ

ξ ¼ −1
q2m2

ρ
: ð111Þ

VII. ANALYTIC STRUCTURE
OF THE SELF ENERGY

In this work, we have considered the transverse momen-
tum of the ρ meson to be zero, i.e., q⊥ ¼ 0. As shown in
Eq. (92), for the special case q⊥ ¼ 0, the additional
constraints to be imposed on the form factors are

Παðq0; q⊥ ¼ 0; qzÞ ¼ Πγðq0; q⊥ ¼ 0; qzÞ and

Πδðq0; q⊥ ¼ 0; qzÞ ¼ 0: ð112Þ

Using the above constraints, we get from Eqs. (86)–(89)

Πα ¼ Πγ ¼
1

2

�
¯̄Πμ

μ −
1

ũ2
uμuν

¯̄Πμν
�

ð113Þ

Πβ ¼
1

ũ2
uμuν

¯̄Πμν ð114Þ

Πδ ¼ 0; ð115Þ

which imply that we need to calculate only the two
quantities ¯̄Πμ

μ and uμuν
¯̄Πμν ¼ ¯̄Π00. These are obtained from

Eqs. (50)–(53) by contracting them with gμν and uμuν. This
essentiallymeans replacingN μν for all the loopswithN μ

μ or
N 00, an explicit list for which has been provided in
Appendix F.
Let us now discuss the analytic structure of the self-

energy functions. We first consider the zero magnetic field
case. Each imaginary part of the self-energy function for ππ
and NN loops as given in Eqs. (22) and (23) contains four
Dirac delta functions. These delta functions represent
energy-momentum conservation, and they are nonvanish-
ing in a certain kinematic domain. They are termed the
unitary-I, unitary-II, Landau-II, and Landau-I cuts as
they appear in those equations. The kinematic regions
for the unitary-I and unitary-II cuts are given by [35]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þ 4m2

L

p
< q0 < ∞ and −∞ < q0 < −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þ 4m2

L

p
,

whereas the same for the two Landau cuts are jq0j < jq⃗j,
where mL is the mass of the loop particle, i.e., mL ¼ mπ or
mN . These cuts correspond to different physical processes
such as decay or scattering. For example, unitary cuts
correspond to the decay of ρ0 into a πþπ− or NN̄ pair, and
the Landau cuts correspond to the scattering of a ρ0 with a
pion or nucleon producing the same in the final state along
with their time reversed processes. If we restrict ourselves
to the physical timelike kinematic regions defined in terms
of q0 > 0 and q2 > 0, then only the unitary-I cut contrib-
utes. It is important to note that a nontrivial Landau cut
appears in the physical timelike region only if the loop
particles have different masses and lie in the kinematic
domain jq⃗j < q0 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þ Δm2

p
where Δm is the mass

difference of the loop particles.
Let us now consider the case of both finite temperature

and nonzero external magnetic field. In this case, the
imaginary parts of the self-energy as given in Eqs. (52)
and (53) also contain four Dirac delta functions corre-
sponding to the unitary and Landau cuts. It is important to
note that the arguments of the delta functions contain only
the longitudinal dynamics (because of dimensional reduc-
tion), which implies that the analytic structure of the self-
energy functions will only depend on the longitudinal
momentum of ρ. On the other hand, the transverse
dynamics has appeared as Landau level–dependent dimen-
sionally reduced effective mass to the loop particles as
given in Eq. (35). Therefore, even if the loop particles have
the same masses, a nontrivial Landau cut may appear in the
physical timelike kinematic domain if the two loop par-
ticles reside in different Landau levels. Physically, this
means that ρ0 can get absorbed in a scattering with a pion or
a proton in a lower Landau level, producing another pion or
proton in a higher Landau level as the final state. Detailed
discussions on the analytic structure in the presence of
external magnetic field can be found in Refs. [31,38]. The
unitary-I and unitary-II terms for the ππ loop are non-
vanishing in the kinematic domains

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ 4ðm2

π þ eBÞ
p

<
q0 < ∞ and −∞ < q0 < −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ 4ðm2

π þ eBÞ
p

, whereas
the kinematic domain for both the Landau cuts is
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jq0j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eB
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ 3eB
q

Þ2
r

: ð116Þ

The corresponding kinematic domains for the NN loop areffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ 4m2

N

p
< q0 < ∞ and −∞ < q0 < −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ 4m2

N

p
for the unitary-I and unitary-II cuts respectively and

jq0j <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ ðmN −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ 2eB
q

Þ2
r

ð117Þ

for the Landau cuts. Note that the threshold of the Landau
cuts appears when the dimensionally reduced effective
mass difference between the loop particles is the maximum.
As can be seen from Eqs. (52) and (53), for a particular

value of the index n, the sum over the index l runs only for
three values (n − 1), n, and (nþ 1), which implies that the
Landau level difference between the loop particles can be at
most 1. Thus, the maximum difference in their dimension-
ally reduced effective mass appears when one of them is at
the lowest Landau level and the other one is at the first
Landau level, which in turn defines the Landau cut
threshold in Eqs. (116) and (117).
We now simplify the expressions of the imaginary parts

given in Eqs. (22), (23), (52), and (53) by evaluating one of
the integrals using the Dirac delta functions. For the
imaginary parts at zero magnetic field, we evaluate the
dðcos θÞ integrals and get (after imposing the kinematic
restrictions discussed above)

ImΠ̄μν
π;Nðq0; q⃗Þ ¼ −signðq0Þ tanh

�
q0

2T

�
1

16πjq⃗j
�Z

ωþ

ω−

dðωk;ΩkÞðUπ;N
1 Þμνðcos θ ¼ cos θπ;N0 ÞΘ



q0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þ 4m2

π;N

q �

þ
Z

−ω−

−ωþ
dωkðUπ;N

2 Þμνðcos θ ¼ cos θ00
π;NÞΘ



−q0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q⃗2 þ 4m2

π;N

q �

þ
Z

∞

−ωþ
dωkðLπ;N

1 Þμνðcos θ ¼ cos θ00
π;NÞΘð−jq0j þ jq⃗jÞ

þ
Z

∞

ω−

dωkðLπ;N
2 Þμνðcos θ ¼ cos θπ;N0 ÞΘð−jq0j þ jq⃗jÞ

�
; ð118Þ

where

ω� ¼
8<
:

1
2q2 ½q0q2 � jq⃗jλ1=2ðq2;m2

π;m2
πÞ� for ππ loop

1
2q2 ½q0q2 � jq⃗jλ1=2ðq2;m2

N;m
2
NÞ� for NN loop

;

ð119Þ

ðUπ
1Þμν ¼ f1þ fðωkÞ þ fðωpÞ þ 2fðωkÞfðωpÞg

× Nμν
π ðk0 ¼ −ωkÞ; ð120Þ

ðUπ
2Þμν ¼ f1þ fðωkÞ þ fðωpÞ þ 2fðωkÞfðωpÞg

× Nμν
π ðk0 ¼ ωkÞ; ð121Þ

ðLπ
1Þμν ¼ ffðωkÞ þ fðωpÞ þ 2fðωkÞfðωpÞgNμν

π ðk0 ¼ ωkÞ;
ð122Þ

ðLπ
2Þμν ¼ffðωkÞþfðωpÞþ2fðωkÞfðωpÞgNμν

π ðk0 ¼−ωkÞ;
ð123Þ

ðUN
1 Þμν ¼ f1 − f−ðΩkÞ − fþðΩpÞ þ 2f−ðΩkÞfþðΩpÞg

× Nμν
N ðk0 ¼ −ΩkÞ; ð124Þ

ðUN
2 Þμν ¼ f1 − fþðΩkÞ − f−ðΩpÞ þ 2fþðΩkÞf−ðΩpÞg

× Nμν
N ðk0 ¼ ΩkÞ; ð125Þ

ðLN
1 Þμν ¼ f−fþðΩkÞ − fþðΩpÞ þ 2fþðΩkÞfþðΩpÞg

× Nμν
N ðk0 ¼ ΩkÞ; ð126Þ

ðLN
2 Þμν ¼ f−f−ðΩkÞ − f−ðΩpÞ þ 2f−ðΩkÞf−ðΩpÞg

× Nμν
N ðk0 ¼ −ΩkÞ; ð127Þ

cos θπ0 ¼
�
−2q0ωk þ q2

2jq⃗jjk⃗j

�
; ð128Þ

cos θ00
π ¼

�
2q0ωk þ q2

2jq⃗jjk⃗j

�
; ð129Þ

cos θN0 ¼
�
−2q0Ωk þ q2

2jq⃗jjk⃗j

�
ð130Þ

and

cos θ0N0 ¼
�
2q0Ωk þ q2

2jq⃗jjk⃗j

�
; ð131Þ
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with λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2yz − 2zx being the Källén function.
For the imaginary parts at finite magnetic field, we evaluate the dkz integrals in Eqs. (52) and (53) using the Dirac delta

functions. The imaginary part due to the ππ loop simplifies to

Im ¯̄Πμν
π ðq0; qzÞ ¼ −signðq0Þ tanh

�
q0

2T

�X∞
n¼0

Xðnþ1Þ

l¼ðn−1Þ

1

4λ1=2ðq2k; m2
l ; m

2
nÞ

X
k̃z∈k̃�z

h
ðŨπ

1;nlÞμνðkz ¼ k̃zÞΘ


q0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ ðml þmnÞ2

q �

þ ðŨπ
2;nlÞμνðkz ¼ k̃zÞΘ



−q0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ ðml þmnÞ2

q �

þ ðL̃π
1;nlÞμνðkz ¼ k̃zÞΘðq0 −minðqz; E�ÞÞΘð−q0 þmaxðqz; E�ÞÞ

þ ðL̃π
2;nlÞμνðkz ¼ k̃zÞΘð−q0 −minðqz; E�ÞÞΘðq0 þmaxðqz; E�ÞÞ

i
; ð132Þ

where

ðŨπ
1;nlÞμν ¼ f1þ fðω̃l

kÞ þ fðω̃n
pÞ þ 2fðω̃l

kÞfðω̃n
pÞg

× Ñμν
π;nlðk0 ¼ −ω̃l

kÞ; ð133Þ

ðŨπ
1;nlÞμν ¼ f1þ fðω̃l

kÞ þ fðω̃n
pÞ þ 2fðω̃l

kÞfðω̃n
pÞg

× Ñμν
π;nlðk0 ¼ ω̃l

kÞ; ð134Þ

ðŨπ
1;nlÞμν ¼ ffðω̃l

kÞ þ fðω̃n
pÞ þ 2fðω̃l

kÞfðω̃n
pÞg

× Ñμν
π;nlðk0 ¼ ω̃l

kÞ; ð135Þ

ðŨπ
1;nlÞμν ¼ ffðω̃l

kÞ þ fðω̃n
pÞ þ 2fðω̃l

kÞfðω̃n
pÞg

× Ñμν
π;nlðk0 ¼ −ω̃l

kÞ; ð136Þ

with k̃�z ¼ 1
2q2k

½−yqz � jq0jλ1=2ðq2k; m2
l ; m

2
nÞ�, y ¼

ðq2k þ m2
l − m2

nÞ, ω̃l
k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̃2zþm2

l

q
, and E� ¼

ml−mn
jml�mnj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ ðml �mnÞ2

p
.

The corresponding expression of the imaginary part due
to the NN loop reads

Im ¯̄Πμν
N ðq0; qzÞ ¼

1

2
ImΠ̄μν

N ðq0; qzÞ − signðq0Þ tanh
�
q0

2T

�X∞
n¼0

Xðnþ1Þ

l¼ðn−1Þ

1

4λ1=2ðq2k;M2
l ;M

2
nÞ

×
X
k̃z∈K̃�

z

h
ðŨp

1;nlÞμνðkz ¼ k̃zÞΘ


q0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ ðMl þMnÞ2

q �

þ ðŨp
2;nlÞμνðkz ¼ k̃zÞΘ



−q0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ ðMl þMnÞ2

q �

þ ðL̃p
1;nlÞμνðkz ¼ k̃zÞΘðq0 −minðqz; E0

�ÞÞΘð−q0 þmaxðqz; E0
�ÞÞ

þ ðL̃p
2;nlÞμνðkz ¼ k̃zÞΘð−q0 −minðqz; E0

�ÞÞΘðq0 þmaxðqz; E0
�ÞÞ

i
; ð137Þ

where

ðŨp
1;nlÞμν ¼ f1 − f−ðΩ̃l

kÞ − fþðΩ̃n
pÞ þ 2f−ðΩ̃l

kÞfþðΩ̃n
pÞg

× Ñμν
p;nlðk0 ¼ −Ω̃l

kÞ; ð138Þ

ðŨp
1;nlÞμν ¼ f1 − fþðΩ̃l

kÞ − f−ðΩ̃n
pÞ þ 2fþðΩ̃l

kÞf−ðΩ̃n
pÞg

× Ñμν
p;nlðk0 ¼ Ω̃l

kÞ; ð139Þ

ðŨp
1;nlÞμν ¼ f−fþðΩ̃l

kÞ − fþðΩ̃n
pÞ þ 2fðΩ̃l

kÞfðΩ̃n
pÞg

× Ñμν
p;nlðk0 ¼ Ω̃l

kÞ; ð140Þ

ðŨp
1;nlÞμν ¼ f−f−ðΩ̃l

kÞ − f−ðΩ̃n
pÞ þ 2fðΩ̃l

kÞfðΩ̃n
pÞg

× Ñμν
p;nlðk0 ¼ −Ω̃l

kÞ; ð141Þ

with K̃�
z ¼ 1

2q2k
½−Yqz � jq0jλ1=2ðq2k;M2

l ;M
2
nÞ�, Y ¼

ðq2k þM2
l −M2

nÞ, Ω̃l
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K̃2

z þM2
l

q
, and E0

� ¼
Ml−Mn
jMl�Mnj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ ðMl �MnÞ2

p
. The first term on the rhs of

Eq. (137) is the contribution from the neutron-neutron loop
(which is not affected by the external magnetic field) of
which the simplified form is given in Eq. (118).
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VIII. NUMERICAL RESULTS

We begin this section by presenting the real and
imaginary parts of the in-medium self-energy functions
of ρ0. As can be seen from Eqs. (89)–(115), we have only
two nonzero form factors for the self-energy, which are Πα

and Πβ for q⊥ ¼ 0. Let us first consider the zero magnetic
field case for which the imaginary and real parts of Πα and
Πβ are depicted in Figs. 2 and 3 respectively. In Fig. 2(a),
ImΠα and ImΠβ due to the ππ loop are plotted as a function

of invariant mass (
ffiffiffiffiffi
q2

p
) of ρ0 for vacuum as well as for

medium (T ¼ 160 MeV and μB ¼ 400 MeV) with
qz ¼ 250 MeV. It is to be understood that in the case of
vacuum the two form factors are equal. In this case, the
only contribution comes from the unitary-I cut, which starts
at 2mπ in the invariant mass axis. With the increase in
temperature, the degeneracy between the form factor gets
lifted as well as their magnitudes are enhanced with respect
to the vacuum. This is due to the enhancement of the
thermal factor in Eq. (120), which increases the available
phase space with the increase in temperature. The corre-
sponding results for the NN loop is shown in Fig. 2(b) for
which the threshold of the unitary-I cut is 2mN . In this case,
with the increase in temperature and density, the imaginary
part decreases slightly with respect to the vacuum, which

can be understood from Eq. (124), where, because of the
negative signs in front of the thermal distribution functions
of the nucleons, the thermal factor reduces with the increase
in temperature, thus showing opposite behavior as com-
pared to the ππ loop.
In Fig. 3, ReΠα and ReΠβ are shown as a function of ρ0

invariant mass at zero external magnetic field with ρ0

longitudinal momentum qz ¼ 250 MeV at temperature
T ¼ 130 MeV. For the ππ loop, the real part is positive
at low invariant mass and becomes negative in the high
invariant mass region in contrast to the NN loop for which
the contribution to the real part is always negative. The real
part due to the NN loop is shown for two different values
of baryon chemical potential, μB ¼ 200 and 400 MeV.

FIG. 1. Feynman diagram for the one-loop self-energy of the
neutral ρ meson.
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FIG. 2. Imaginary part of the self-energy of ρ0 as a function of invariant mass at zero magnetic field and at ρ0 three-momentum
jq⃗j ¼ 250 MeV. The vacuum self-energy for T ¼ μB ¼ 0 is compared with the in-medium one obtained at temperature T ¼ 160 MeV
and baryon chemical potential μB ¼ 400 MeV for the (a) ππ loop and (b) NN loop.
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FIG. 3. Real part of the self-energy of ρ0 as a function of
invariant mass at zero magnetic field and at temperature T ¼
130 MeV with ρ0 three-momentum jq⃗j ¼ 250 MeV. The con-
tributions from the NN (Nucleon-Nucleon) loop are shown for
two different values of baryon chemical potential (μB ¼ 200 and
400 MeV).
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For lowvalues ofμB, the contribution of theNN loop is almost
of the same order as the ππ loop; however, at high μB, the
contribution from the NN loop dominates over the ππ loop.
We now turn on the external magnetic field. For the

check of consistency of the calculation at nonzero magnetic
field, it is essential that eB → 0 limit of nonzero magnetic
field results reproduces the eB ¼ 0 one. In order to take the
eB → 0 limit numerically, we have considered up to 500
Landau levels for a convergent result. We have shown the
imaginary part of the self-energy as a function of invariant
mass of ρ0 with longitudinal momentum qz ¼ 250 MeV at
temperature T ¼ 130 MeV and at baryon chemical poten-
tial μB ¼ 300 MeV for the two cases: eB ¼ 0 and eB → 0
in Fig. 4 separately for the ππ and NN loops. Figure 4(a)
shows ImΠα for the ππ loop in which the eB → 0 graph has
a series of spikes infinitesimally separated from each other
all over the whole invariant mass region, whereas the eB ¼
0 graph is finite and well behaved. Interestingly, the eB →
0 graph does not miss the eB ¼ 0 curve, which implies that

when average is done the eB ¼ 0 line will be exactly
reproduced. The appearance of these spikes is due to the
“threshold singularities” [31,38,39] at each Landau level,
as can be understood from Eq. (132), where the Källén
function goes to zero at each threshold of the unitary and
Landau cuts defined in terms of the unit step functions
therein, which is a consequence of the dimensional reduc-
tion. In order to extract physical and finite results out of
these spikes, we have used Ehrenfest’s coarse-graining
(CG) [38,40,41]. In this method, the whole invariant mass
region has been discretized in small bins followed by bin

averages. In other words, the self-energy at a given
ffiffiffiffiffi
q2k

q
is

approximated by its average over the neighborhood around
that point. This in turn smears out the spikelike structures.
As can be seen in the figure, after CG, ImΠα exactly
matches with the analytic eB ¼ 0 graph. The correspond-
ing comparison of the eB → 0 and eB ¼ 0 result for ImΠβ

due to the ππ loop is shown in Fig. 4(b). In this case, the
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FIG. 4. The imaginary parts of the form factors as a function of the invariant mass at eB ¼ 0 have been compared with the imaginary
parts at nonzero magnetic field in the numerical limit eB → 0 at temperature T ¼ 130 MeV and at baryon chemical potential μB ¼
300 MeVwith ρ0 longitudinal momentum qz ¼ 250 MeV. The contribution due the ππ loop from the form factorsΠα andΠβ are shown
in panels (a) and (b) respectively. The corresponding contributions due the NN loop are shown in panels (c) and (d). The respective CG
quantities from the eB → 0 results are also shown in (a), (c), and (d).
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eB → 0 graph is finite and free from the threshold
singularities, and it exactly matches the eB ¼ 0 graph.
The absence of the threshold singularities in this case is due
to an overall factor of Källén functions coming from Ñ 00

π;nl

in Eq. (133), which cancels the Källén functions in the
denominator of Eq. (132). Thus, the ImΠβ due to the ππ
loop does not require being coarse grained.
The corresponding results for the NN loop is depicted in

Figs. 4(c) and 4(d). In this case, both the ImΠα and ImΠβ

suffer threshold singularities, as there is no overall Källén
functions coming from Ñ μν

p;nl. So, both the form factors
have to be coarse grained, after which they exactly
reproduce the eB ¼ 0 graphs.
We now turn our attention to the real part of the self-

energy at nonzero magnetic field and show how a numeri-
cal limit of eB → 0 agrees with the eB ¼ 0 results. This has
been shown in Fig. 5, where the real part of the form factors
is shown as a function of ρ0 invariant mass with longi-
tudinal momentum qz ¼ 250 MeV at temperature T ¼
130 MeV and at baryon chemical potential μB ¼
300 MeV for the two cases eB → 0 and eB ¼ 0. The
contributions from the ππ and NN loops are shown
separately. Figure 5(a) depicts ReΠα, whereas Fig. 5(b)
shows ReΠβ. As can be seen from the figure, the eB → 0

graphs exactly reproduce the eB ¼ 0 for the case of the NN
loop, whereas, for the ππ loop, eB → 0 is slightly deviated
from the eB ¼ 0 graph but with an excellent qualitative
agreement in their behavior with respect to the variation of
the invariant mass of ρ0. This small disagreement between
the eB → 0 and eB ¼ 0 graph is due to the inaccuracy in
the numerical principal value integration of Eqs. (20) and
(50) for which the two-particle bound state thresholdffiffiffiffiffi
q2k

q
> 2mπ ¼ 280 MeV is less than the ρ0 mass pole

mρ ¼ 0.770 (in contrast, for the NN loop, the two-particle

bound state threshold is at
ffiffiffiffiffi
q2k

q
> 2mN ¼ 1.878 GeV,

much higher than the range of the plot).
Having checked the consistency of the nonzero magnetic

field calculations, we now proceed to present the imaginary
part of the self-energy for nonzero values of the magnetic
field. In Fig. 6, the variation of ImΠα is shown as a function
of ρ0 invariant mass with longitudinal momentum qz ¼
250 MeV at temperature T ¼ 130 MeV and at baryon
chemical potential μB ¼ 300 MeV. We have plotted the

self-energy up to
ffiffiffiffiffi
q2k

q
¼ 1.5 GeV for which the unitary cut

of the NN loop does not contribute. Figure 6(a) depicts
ImΠα at magnetic field eB ¼ 0.05 GeV2, in which the
spikes get separated from each other by a finite value and
the form factor oscillates about the eB ¼ 0 graph. This is
more clearly visible in the CG points, which are used to
obtain a coarse-grained interpolated (CGI) graph. Figure 6
(b) shows the CGI imaginary parts at two different values of
the magnetic field (eB ¼ 0.05 and 0.10 GeV2); both of
them are found to oscillate about the eB ¼ 0 graph.
Moreover, with the increase in magnetic field, the oscil-
lation frequency decreases with an increase in the oscil-
lation amplitude. This behavior of the imaginary part with
increasing magnetic field is consistent with Fig. 4, where
for the eB → 0 case the oscillation frequency becomes
infinite and the amplitude becomes zero, thus reproducing
the eB ¼ 0 graph. Also, with the increase in magnetic field,
the threshold of the unitary cut moves toward the higher
invariant mass value, as discussed in Sec. VII. This has
been shown clearly in the inset plot.
The corresponding results for the ImΠβ due to the ππ

loop as a function of ρ0 invariant mass with longitudinal
momentum qz ¼ 250 MeV at temperature T ¼ 130 MeV
and at baryon chemical potential μB ¼ 300 MeV are shown
in Fig. 7 for the two different values of the magnetic field
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FIG. 5. The real part of the form factors as a function of the invariant mass at eB ¼ 0 have been compared with the real part at nonzero
magnetic field in the numerical limit eB → 0 at temperature T ¼ 130 MeV and at baryon chemical potential μB ¼ 300 with ρ0

longitudinal momentum qz ¼ 250 MeV. The contributions from the form factors (a) Πα and (b) Πβ are shown separately due to the ππ
and NN loops.
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eB ¼ 0.10 and 0.20 GeV2. Analogous to ImΠα, ImΠβ also
oscillates about the eB ¼ 0 curve, but in this case, the
oscillation frequency is much smaller as compared to
ImΠα. The threshold of the unitary cut moves toward
higher invariant mass with the increase in magnetic field as
clearly depicted in the inset plot.
As discussed in Sec. VII, a nontrivial Landau cut

contribution in the presence of external magnetic field
may appear even if the loop particles have the same mass.
In this case, we have observed Landau cut contribution only

in ImΠα, whereas the Landau cut does not appear in ImΠβ.
This can be understood from the expressions of the trace
and 00 component of Ñ μν

π;nl and Ñ μν
p;nl as given in

Appendix F. It can be noticed that, for both the ππ and
proton-proton loops, the expression for the trace (i.e., Ñ μ

μ)
contains two additional Kronecker delta functions δn�1

l
along with δnl , which is absent in the expressions for the 00

component (i.e., Ñ 00) [see Eqs. (F6)–(F9)]. This implies
that, for ImΠα, the loop particles can be in different Landau
levels, whereas for ImΠβ, the loop particles will always stay
in the same Landau levels. Thus, as discussed in Sec. VII,
the nontrivial Landau cuts will appear only in ImΠα and not
in ImΠβ. The contribution of the CGI Landau cuts to ImΠα

as a function of ρ0 invariant mass with longitudinal
momentum qz ¼ 250 MeV is shown in Fig. 8. It is to
be noted that the Landau cuts also contain the threshold
singularities and thus have to be coarse grained. Figure 8(a)
shows the variation of ImΠα at temperature T ¼ 130 MeV
and at baryon chemical potential μB ¼ 300 MeV for three
different values of the magnetic field (eB ¼ 0.05, 0.07, and
0.10 GeV2), whereas Fig. 8(b) shows the corresponding
variation at magnetic field (eB ¼ 0.10 GeV2) for two
different values of temperature (T ¼ 100 and 130 MeV).
The contributions due to the ππ loop and proton-proton
loops are shown separately and in Fig. 8(b); the contribu-
tion due to the proton-proton loop is shown for two
different values of baryon chemical potential (μB ¼ 200
and 300 MeV). As can be seen from the figures, the
threshold of the Landau cuts due to the ππ loop is different
(greater) than that of the proton-proton loop, which can be
understood from the discussions of Sec. VII. The threshold

for the ππ loop is
ffiffiffiffiffi
q2k

q
< ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eB
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ 3eB
p

Þ,
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FIG. 6. The contribution from the form factor ImΠα to the imaginary part of the ρ0 self-energy is shown as a function of invariant mass
at temperature T ¼ 130 MeV and at baryon chemical potential μB ¼ 300 with ρ0 longitudinal momentum qz ¼ 250 MeV for (a) two
different values of magnetic field (eB ¼ 0 and 0.05 GeV2) and (b) three different values of magnetic field (eB ¼ 0, 0.05, and
0.10 GeV2). The CG as well as CGI results are shown in (a), whereas (b) shows only the CGI results. The inset plot in (b) shows the
movement of the unitary cut threshold by focusing on a smaller range of invariant mass.
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FIG. 7. The contribution from the form factor ImΠβ to the
imaginary part of the ρ0 self-energy is shown as a function of
invariant mass at temperature T ¼ 130 MeV and at baryon
chemical potential μB ¼ 300 with ρ0 longitudinal momentum
qz ¼ 250 MeV for three different values of magnetic field
(eB ¼ 0, 0.05, and 0.10 GeV2). The inset plot shows the
movement of the unitary cut threshold by focusing on a smaller
range of invariant mass.
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whereas the same for the proton-proton loop is
ffiffiffiffiffi
q2k

q
<

ðmN −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ 2eB
p

Þ. The shift of the Landau cut threshold
toward the higher invariant mass values with the increase in
magnetic field can be clearly seen in Fig. 8(a). It is observed
that the magnitude of the Landau cut contribution due to the
proton-proton loop is much less than that of the ππ loop at
lower values of the magnetic field, and they become
comparable to each other only at eB≳ 0.10 GeV2. In
Fig. 8(a), we observe that with the increase in temperature
and density the Landau cut contribution increases without
changing its threshold in the invariant mass axis.
We now turn our attention to the real part of the self-

energy at finite temperature under external magnetic field.
In Fig. 9, we show the thermal contribution to the real part
of the self-energy as a function of invariant mass with ρ0

longitudinal momentum qz ¼ 250 MeV at temperature
T ¼ 130 MeV and at baryon chemical potential μB ¼
300 MeV for two different values of the magnetic field
(eB ¼ 0.05 and 0.10 GeV2). The contributions from the ππ
and NN loops are summed up in this figure. We notice that,
with the increase in magnetic field, the thermal contribution
to the real part of the self-energy oscillates about the eB ¼
0 curve. The oscillation frequency decreases and the
oscillation amplitude increases with the increase in mag-
netic field.
Next, in Fig. 10, the eB-dependent vacuum contribution

to the real part of the self-energy is shown as a function of
ρ0 invariant mass with longitudinal momentum qz ¼
250 MeV for two different values of magnetic field
(eB ¼ 0.10 and 0.20 GeV2). Figures 10(a) and 10(b) show
the contributions from Πα and Πβ respectively. The con-
tributions due to the ππ and proton-proton loops are shown

separately. First of all, we note that at eB ¼ 0 these term
will vanish. With the increase of the magnetic field, the eB-
dependent vacuum term also increases, and the contribution
of Πβ is more than Πα.
Having obtained the real and imaginary parts of the self-

energy, we now proceed to evaluate the in-medium spectral
functions of ρ0 under external magnetic field. We have from
Eq. (106) the complete ρ0 propagator as

¯̄Dμν ¼ AαP
μν
1 þ AβP

μν
2 þ AγP

μν
3 þ AδQμν þ ξqμqν; ð142Þ

where the coefficients are given in Eqs. (107)–(111) and the
basis tensors are provided in Eqs. (72)–(75). Since we will
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FIG. 8. The contribution from the form factor Πα to the Landau cut of the CG imaginary part of the ρ0 self-energy is shown as a
function of invariant mass with ρ0 longitudinal momentum qz ¼ 250 MeV (a) at temperature T ¼ 130 MeV and at baryon chemical
potential μB ¼ 300 for three different values of magnetic field (eB ¼ 0.05, 0.07 and 0.10 GeV2) and (b) at magnetic field eB ¼
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The contributions from the ππ and NN loops are shown separately, and the latter is scaled with different factors for the sake of
presentation.
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function of invariant mass at temperature T ¼ 130 MeV and at
baryon chemical potential μB ¼ 300 MeV with ρ0 longitudinal
momentum qz ¼ 250 MeV is shown for three different values of
magnetic field (0, 0.05, and 0.10 GeV2).
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be considering the special case q⊥ ¼ 0 for which Πα ¼ Πγ

and Πδ ¼ 0 as given in Eq. (112), the coefficients in the
above equation become

Aα ¼
�

1

q2k −m2
ρ þ Πα

�
ð143Þ

Aβ ¼
�

1

q2k −m2
ρ þ Πβ

�
ð144Þ

Aγ ¼
�

1

q2k −m2
ρ þ Πγ

�
ð145Þ

Aδ ¼ 0 ð146Þ

ξ ¼ −1
q2km

2
ρ

ð147Þ

so that the complete in-medium interacting propagator is
given by

¯̄Dμνðq0; qzÞ ¼
Pμν
1

ðq2k −m2
ρ þ ΠαÞ

þ Pμν
2

ðq2k −m2
ρ þ ΠβÞ

þ Pμν
3

ðq2k −m2
ρ þ ΠαÞ

−
qμkq

ν
k

q2km
2
ρ
: ð148Þ

It is clear from the above equation that there will be three
modes for the propagation of the ρ0 meson in the
magnetized medium for the vanishing transverse momen-
tum of ρ0. Of the three modes, two are found to be
degenerate (the first and third terms on the rhs of the
above equation), leaving two distinct modes for the
propagation of ρ0, which we denote as mode-A and
mode-B.

We now define the spectral function Sρ of ρ0 for the two
distinct modes as the imaginary part of the complete
propagator, which is obtained from Eq. (148) as

SðAÞρ ¼ Im

�
−1

q2k −m2
ρ þ Πα

�

¼ ImΠα

ðq2k −m2
ρ þ ReΠαÞ2 þ ðImΠαÞ2

ð149Þ

and

SðBÞρ ¼ Im

�
−1

q2k −m2
ρ þ Πβ

�

¼ ImΠβ

ðq2k −m2
ρ þ ReΠβÞ2 þ ðImΠβÞ2

: ð150Þ

In Fig. 11, the spectral function for the two modes at zero
magnetic field is shown as a function of ρ0 invariant mass
with ρ0 longitudinal momentum qz ¼ 250 MeV at baryon
chemical potential μB ¼ 300 MeV for three different val-
ues of temperature (T ¼ 100, 130, and 160 MeV). The
vacuum spectral function (which is the same for the two
modes) is also shown for comparison. We find that the
spectral functions have a nice Breit-Wigner shape around
the ρ0 mass pole with a width Oð150 MeVÞ corresponding
to the decay of ρ0 → πþπ−. With the increase in temper-
ature, the width of the spectral function increases, and the
peak decreases. Physically, it corresponds to the enhance-
ment of the decay process in the medium, implying that the
ρ0 become more unstable at a high temperature. It is
important to note that, for the invariant mass region shown
in the plot, the imaginary part of the self-energy that enters
in the calculation of the spectral function is completely due
to the unitary-I cut of the ππ loop. On the other hand, the
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real part of the self-energy that enters in the spectral
function calculation has contributions from both the ππ
and NN loops.
It can be noticed that, even at a higher temperature

(T ∼ 160 MeV), the peak of the spectral functions have
marginal shifts over the invariant mass axis which corre-
spond to a negligible mass shift of the ρmeson with respect
to its vacuum mass. This is in agreement with the fact that,
based on consideration of chiral symmetry alone, the mass
of the ρ meson does not change to OðT2Þ [42]. At and
above the critical temperature, chiral symmetry requires
that the vector and axial-vector spectral function are
identical [43] and is demonstrated in Ref. [44] using the
sum rule approach. However, scenarios of the ρ mass shift
proposed by Brown and Rho [45] are also not ruled out, and
the behavior of the ρ meson mass can only indirectly be
related to the chiral symmetry restoration. Though a
significant shift of the ρ mass has also been reported in
Ref [46] using the Walecka model, the underlying phe-
nomena behind this effect cannot be related to the partial
restoration of chiral symmetry of QCD. Moreover, a
majority of experiments does not find evidence for the
mass shift of the ρ meson in the medium, but rather a
broadening of the spectral function is reported [47].
We now turn on the external magnetic field and show the

spectral function of ρ0 as a function of its invariant mass for
the two modes in Fig. 12. The range of the invariant mass
axis is taken as 0.5–1.2 GeV, which is dominated by the
unitary cut contributions from the ππ loop. In Fig. 12(a),
the spectral function with ρ0 longitudinal momentum qz ¼
250 MeV at temperature T ¼ 130 MeV and at baryon
chemical potential μB ¼ 300 MeV is shown for three
different values of the magnetic field (eB ¼ 0.10, 0.15,

and 0.20 GeV2). It is observed that, with the increase in the
magnetic field, the two modes get well separated from each
other and the threshold of the spectral function moves
toward higher values of the invariant mass, corresponding
to the magnetic field–dependent unitary cut threshold of the
imaginary part of the self-energy. At sufficiently high
values of the magnetic field, the spectral function misses
the ρ0 mass pole (770 MeV) so that it loses its Breit-Wigner
shape, which may be termed as ρ0 “melting” in the presence
of magnetic field. The critical value of the magnetic field
for a given temperature and baryon chemical potential for
which the ρ0 will melt is discussed later.
In Fig. 12(b), the spectral function with ρ0 longitudinal

momentum qz ¼ 250 MeV at magnetic field eB ¼
0.10 GeV2 and at a baryon chemical potential μB ¼
300 MeV is shown for three different values of temperature
(T ¼ 100, 130, and 160MeV). In this case, the threshold of
the spectral function remains fixed, and for both the modes,
the spectral function becomes shorter and wider with the
increase in temperature with a marginal shift of its peak.
The shift of the peak is due to the modification in the real
part of the self-energy with the change in temperature.
Figure 12(c) depicts the spectral function with ρ0

longitudinal momentum qz ¼ 250 MeV at magnetic field
eB ¼ 0.10 GeV2 and at temperature T ¼ 160 MeV for
three different values of the baryon chemical potential
(μB ¼ 200, 300, and 400 MeV). Analogous to the previous
case, the threshold of the spectral function remains fixed for
both the modes. Since the baryon chemical potential only
affects the real part of the self-energy in the given kinematic
region, the peak of the spectral function changes its position
(keeping the width almost the same) with the change in
baryon chemical potential. It can be noticed that, in contrast
to Fig. 12(b), the peak position of the spectral function is
more sensitive to μB as compared to the temperature, which
is due to the dominant contribution coming from the
NN loop.
In Fig. 12(d), the spectral function at magnetic field

eB ¼ 0.10 GeV2 and at temperature T ¼ 130 MeV with
baryon chemical potential μB ¼ 300 MeV is shown for two
different values of ρ0 longitudinal momentum (qz ¼ 0 and
500 MeV). In this case, the threshold of the spectral
function remains the same, and the height of the spectral
function increases with the increase of the longitudinal
momentum.
We have already mentioned that a nontrivial Landau cut

in the physical kinematic region would appear in the
presence of the external magnetic field. In our case, the
nonzero contribution to the Landau cut comes only from
the form factor ImΠα, which is reflected in the spectral
function of mode-A. In Fig. 13, the spectral function as a
function of ρ0 invariant mass with ρ0 longitudinal momen-
tum qz ¼ 250 MeV is shown in the low invariant mass
region, which is dominated by the Landau cut contribution.
It can be observed that the magnitude of the spectral
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FIG. 11. The in-medium spectral function of ρ0 as a function of
invariant mass at zero magnetic field and at baryon chemical
potential μB ¼ 300 MeV with ρ0 longitudinal momentum qz ¼
250 MeV is shown for three different values of temperature
(T ¼ 100, 130, and 160 MeV) and for different modes. The
vacuum spectral function is also shown for comparison.

GHOSH, MUKHERJEE, ROY, and SARKAR PHYS. REV. D 99, 096004 (2019)

096004-20



function in this region is much lower as compared to the
unitary cut regions. Figure 13(a) shows the spectral
function at temperature T ¼ 130 MeV and at baryon
chemical potential μB ¼ 300 MeV for three different val-
ues of magnetic field (eB ¼ 0.10, 0.15, and 0.20 GeV2).
As can be seen in the graph, the threshold of the Landau
cut moves toward the higher values of invariant mass
with the increase in magnetic field as a consequence of
similar behavior of the Landau cut, as shown in Fig. 8.
Also, the height of the spectral function is enhanced with the
increase in eB. Figure 13(b) shows the corresponding plots
of the spectral function at magnetic field eB ¼ 0.10 GeV2

for four different combinations of temperature and baryon
chemical potential [(T¼100MeV, μB¼300MeV), (T ¼
130 MeV, μB ¼ 300 MeV), (T ¼ 160 MeV, μB ¼
300 MeV), and (T ¼ 160 MeV, μB ¼ 400 MeV)]. As
can be seen in the graph, the height of the spectral function

increases with the increase in temperature and density, owing
to an enhancement of the corresponding scattering processes
in the presence of external magnetic field.
We now proceed to obtain the effective mass and

dispersion relation of the ρ0 in a magnetized medium.
They follow from the pole of the complete ρ0 propagator
given in Eq. (148), which are obtained by solving the
following transcendental equations,

ω2 − q2z −m2
ρ þ ReΠαðq0 ¼ ω; qz; eB; T; μBÞ ¼ 0 ð151Þ

ω2 − q2z −m2
ρ þ ReΠβðq0 ¼ ω; qz; eB; T; μBÞ ¼ 0; ð152Þ

the numerical solutions ω ¼ ωðqz; eB; T; μBÞ of which
represent the dispersion relations for the mode-A and
mode-B corresponding to ρ0 propagation in the magnetized
medium. The effective mass m�

ρ of ρ0 is obtained from the
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FIG. 12. The in-medium spectral functions of ρ0 as a function of invariant mass are shown for different modes (a) at temperature
T ¼ 130 MeV and at baryon chemical potential μB ¼ 300 MeV with ρ0 longitudinal momentum qz ¼ 250 MeV for three different
values of magnetic field (eB ¼ 0.10, 0.15 and 0.20 GeV2), (b) at magnetic field eB ¼ 0.10 GeV2 and at baryon chemical potential
μB ¼ 300 MeVwith ρ0 longitudinal momentum qz ¼ 250 MeV for three different values of temperature (T ¼ 100, 130, and 160MeV),
(c) at magnetic field eB ¼ 0.10 GeV2 and at temperature T ¼ 160 MeV with ρ0 longitudinal momentum qz ¼ 250 MeV for three
different values of baryon chemical potential (μB ¼ 200, 300, and 400 MeV), and (d) at magnetic field eB ¼ 0.10 GeV2 and at
temperature T ¼ 130 MeV with baryon chemical potential μB ¼ 300 MeV for two different values of ρ0 longitudinal momentum
(qz ¼ 0 and 500 MeV). The vacuum spectral function is also shown for comparison.
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dispersion relation by setting qz ¼ 0, i.e., m�
ρðeB; T; μBÞ ¼

ωðqz ¼ 0; eB; T; μBÞ.
Figure 14(a) depicts the variation ofm�

ρ=mρ as a function
of magnetic field at temperature T ¼ 130 MeV and at
baryon chemical potential μB ¼ 300 MeV. The effective
mass for the two modes starts from the same value around
eB ¼ 0, and with the increase in magnetic field, they get
separated. For both modes, the effective ρ0 mass decreases
with the increase in the magnetic field, which is due to the
strong positive contribution coming from the dominating
eB-dependent vacuum part. The effect of the magnetic field
is found to be more in mode-B as compared to mode-A.
At a magnetic field value eB ¼ 0.20 GeV2, the effective
ρ0 mass in mode-A decreases by about 2%, whereas for
mode-B, it decreases by about 10%. Figure 14(b) depicts
the corresponding variation of effective mass with temper-
ature at magnetic field eB ¼ 0.10 GeV2 and at baryon
chemical potential μB ¼ 300 MeV. We find that, for both
modes, the effective mass of ρ0 gets enhanced by a small
amount with the increase in temperature. Even at
T¼160MeV, the change in effective mass is less than 2%.
In Fig. 14(c), the variation of the effective ρ0 mass is shown as
a function of baryon chemical potential at a magnetic field
eB¼0.10GeV2 and at temperatureT¼130MeV. In this case
also, we observe an enhancement of the effective mass for
both the modes with the increase in baryon density. Though
the effect of μB on effective mass is more at a higher value of
μB, the change in the effective mass remains less than 2%
even at μB ¼ 500 MeV.
Next, we present the dispersion curves of ρ0 propagation

in the magnetized medium for both the modes in Fig. 15.
We have plotted the energy ω of the ρ0 scaled with the
inverse of the vacuum ρmassmρ ¼ 770 MeV as a function

of the longitudinal momentum of ρ0. Figure 15(a) depicts
the dispersion curves at temperature T ¼ 130 MeV and
at baryon chemical potential μB ¼ 300 MeV for two
different values of magnetic field (eB ¼ 0.10 and
0.20 GeV2). Figure 15(b) shows the same at magnetic
field eB ¼ 0.10 GeV2 and baryon chemical potential μB ¼
300 MeV for two different temperatures (T ¼ 100 and
160 MeV). Finally, Fig. 15(c) shows the corresponding
graphs at magnetic field eB ¼ 0.10 GeV2 and at temper-
ature T ¼ 130 MeV for two different values of baryon
chemical potential (μB ¼ 200 and 400 MeV). In all the
cases, the dispersion curves are well separated from each
other at lower transverse momentum. With the increase in
qz, the loop correction becomes subleading with respect to
the kinetic energy of ρ0, and thus it approaches a lightlike
dispersion.
Finally, we calculate the decay width of ρ0 for the decay

into charged pions, which is defined for the two modes as

ΓðAÞðeB;T;μBÞ¼
ImΠαðq0 ¼m�

ρ;qz¼ 0;eB;T;μBÞ
m�

ρðeB;T;μBÞ
ð153Þ

ΓðBÞðeB;T;μBÞ¼
ImΠβðq0¼m�

ρ;qz¼0;eB;T;μBÞ
m�

ρðeB;T;μBÞ
: ð154Þ

In Fig. 16, the variation of the decay width Γ of ρ0 scaled
with the inverse of its vacuum width (Γ0 ¼ 156 MeV) for
the two modes is shown as a function of magnetic field.
Note that the vacuum decay width is obtained from the
imaginary part of the vacuum self-energy as
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Γ0 ¼
ImΠpure-vacðq0 ¼ mρ; q⃗ ¼ 0⃗Þ

mρ
¼ 156 MeV: ð155Þ

Results are presented for two different combinations of
temperature and baryon chemical potential [(T¼130MeV,
μB ¼ 300 MeV) and (T ¼ 160 MeV, μB ¼ 400 MeV)].
Because of the presence of threshold singularity in
ImΠα, ΓðAÞ also suffers from the presence of threshold
singularity for which it needs to be coarse grained.
However, ImΠβ and hence ΓðBÞ are finite and free from
the singularities. As can be seen from the figure, the ratio
Γ=Γ0 starts from a value greater than unity near eB ¼ 0,
which is due to the enhancement of the decay width over its
vacuum value due to the effect of finite temperature and
density. Also, for a particular value of magnetic field, the
larger decay width is observed at higher temperature and
density. Near eB ¼ 0, the two modes have almost the same
decay widths, which begin to differ from each other with
the increase in the magnetic field. An oscillatory behavior

of the decay width can be clearly seen throughout the
magnetic field range. One should also notice that, for both
modes, the oscillation amplitude increases, whereas oscil-
lation frequency decreases with eB. Finally, at a critical
value of the magnetic field, the decay width becomes zero.
This is because of fact that the eB-dependent unitary cut
threshold for the ππ loop has to satisfy

m�
ρðeBÞ > 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eB
q

ð156Þ

for a kinematically favorable decay of ρ0 → πþπ−. But
with the increase in magnetic field, the rhs of the above
equation increases, whereas m�

ρ on the lhs decreases so that
at some critical value of magnetic field the above inequality
is violated and the decay width becomes zero. Physically, it
means that ρ0 becomes stable against the decay into the
πþπ− pair. This critical value of the field may be considered
the critical value of the magnetic field required for the
melting of the spectral function of ρ0.
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In order to calculate the critical value of the magnetic
field eBc for a given temperature T and baryon chemical
potential μB, we need to solve the transcendental equation

m�
ρðeBc; T; μBÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eBc

q
: ð157Þ

The green dash-dotted curve in Fig. 14(a) corresponds to
m�

ρ=mρ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ eB
p

so that the intersection of this curve
with the m�

ρ ¼ m�
ρðeBÞ represents the solution of the above

equation. In Fig. 17, we show the variation of the critical
magnetic field eBc for the two decay modes. Figure 17(a)
depicts eBc as a function of temperature for two different
values of baryon chemical potential (μB ¼ 50 and
200 MeV), whereas Fig. 17(b) shows the corresponding
variation with baryon chemical potential at two different
values of temperature (T ¼ 100 and 160 MeV). Although
with fixed temperature the variation with respect to μB
shows a monotonically increasing trend, both plots suggest
nonmonotonic variations of the critical magnetic field with
respect to the temperature. More specifically, there exists a

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

T = 130 MeV , μB = 300 MeV

(a)

ω
 / 

m
ρ

qz (GeV)

Mode-(A) , eB = 0.10 GeV2

Mode-(A) , eB = 0.20 GeV2

Mode-(B) , eB = 0.10 GeV2

Mode-(B) , eB = 0.20 GeV2

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

-0.6 -0.4 -0.2  0  0.2  0.4  0.6
 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

eB = 0.10 GeV2, μB = 300 MeV

(b)

ω
 / 

m
ρ

qz (GeV)

Mode-(A) , T = 100 MeV
Mode-(A) , T = 160 MeV
Mode-(B) , T = 100 MeV
Mode-(B) , T = 160 MeV

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

eB = 0.10 GeV2,  T = 130 MeV

(c)

ω
 / 

m
ρ

qz (GeV)

Mode-(A) , μB = 200 MeV
Mode-(A) , μB = 400 MeV
Mode-(B) , μB = 200 MeV
Mode-(B) , μB = 400 MeV

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

FIG. 15. The dispersion relations of ρ0 for different modes: (a) At temperature T ¼ 130 MeV and at baryon chemical potential
μB ¼ 300 MeV for two different values of magnetic field (eB ¼ 0.10 and 0.20 GeV2), (b) at magnetic field eB ¼ 0.10 GeV2 and at
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different combinations of temperature and baryon chemical
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μB ¼ 400 MeV)]. Here, Γ0 ¼ 156 MeV.
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maximum value of chemical potential [see Fig. 17(b)]
below which the critical field decreases with the temper-
ature there by requiring a relatively weaker magnetic field
to completely stop the particular decay channel. However,
for even larger values of μB, a significant increase with
temperature can be observed for both of the decay modes.
A few comments on the magnitude of the external

magnetic field are in order. The analytical expressions
provided in this paper are valid for any arbitrary value of the
external magnetic field which is constant in space-time. In
presenting numerical results, we have considered magnetic
field values in the range 0 ≤ eB ≤ 0.20 GeV2. It is worth
noting that the magnetic field created in the HIC experi-
ments is expected to decay rapidly with time [48].
However, a nonzero electrical conductivity of the strongly
interacting fireball could possibly sustain the external
magnetic field a bit longer [49–51], implying a slowly
varying function of time during the entire lifetime of the
Quark-Gluon-Plasma. The magnitude of the external mag-
netic field at the time of chemical freeze-out (when the
hadronic degrees of freedom manifest) is expected to be
small because of the very small conductivity of the hadron
gas. The experimental estimation of the same is not
reported yet. In order to understand the plasma properties
from the experimental data, one solves the relativistic
magnetohydrodynamics equation usually with the
assumption of ideal Quark-Gluon-Plasma fluid in the
background electromagnetic field [52–54]. However, the
ideal fluidity assumption can only be validated after
knowing the transport coefficients at temperatures of
phenomenological interest which are not yet certain.
Despite these uncertainties, it should be mentioned here
that the complete blocking of the neutral ρ decay seems to
be quite unlikely in the recent energy regimes of the HIC
experiments. Although, one might expect a suppression in
the ρ0 → πþπ− channel. Being the only possible strong

decay channel of the ρ0 meson, its suppression is expected
to lead to the enhancement of dilepton and photon
productions from ρ0 decay. For example, the ρ0 → π0γ
channel is expected to possess a 64% branching ratio at the
critical magnetic field of the order 1015 T [55]. However,
recent measurement [56,57] shows almost no suppression
in the strong decay channel of ρ0 in peripheral Pb-Pb
collisions (case of nonzero external magnetic field) at LHC
energies. However, the observed suppression in the central
region (case of zero external magnetic field) is interpreted
as the rescattering mechanism in the hadronic medium.
Thus, this suggests that the magnetic effects on the neutral
ρ decay, if they exist, are negligibly small in the current
HIC scenario. On the other hand, such magnetic modifi-
cations of mesonic properties can occur in situations
present inside the high density compact objects with strong
magnetic field such as magnetars. The tools used in the
present work can be used to see the effects of the changes of
hadronic properties on the equation of state, symmetry
energy, mass-radius relationship, etc., after generalization
to models appropriate for the description of hadronic matter
at low temperature and at high density supposed to be
present in a magnetized neutron star or magnetar [58,59].

IX. SUMMARY AND CONCLUSIONS

In this work, the spectral properties of the neutral ρ
meson are studied at finite temperature and density in a
constant external magnetic field using the real time for-
malism of finite temperature field theory. The effective
ρππ and ρNN interactions are considered for the evaluation
of the one-loop self-energy of ρ0. Accordingly, the mag-
netically modified in-medium propagators for pions and
protons are used and contain an infinite sum over the
Landau levels, implying no constraint on the strength
of the external magnetic field. From the self-energy, the
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FIG. 17. The variation of the critical value of magnetic field for stopping the decay of ρ0 into the πþπ− pair for different modes as a
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potential at two different values of temperature (T ¼ 100 and 160 MeV).
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eB-dependent vacuum part is extracted by means of
dimensional regularization in which the ultraviolet diver-
gence corresponding to the pure-vacuum self-energy is
isolated as the pole of gamma and Hurwitz zeta functions. It
is shown that the external magnetic field does not create
additional divergences so that the vacuum counterterms
required in the absence of the background field remain
sufficient to renormalize the theory at nonzero magnetic
field.
The general Lorentz structure for the in-medium massive

vector boson self-energy in the presence of external
magnetic field has been constructed with four linearly
independent basis tensors, out of which three form a
mutually orthogonal set. Thus, the extraction of the form
factors from the self-energy becomes considerably simple.
Moreover, it is shown that, with vanishing perpendicular
momentum of the external particle, one can arrive at a new
set of constraint relations among the form factors. As a
result, there remain only two form factors to be determined
from the self-energy. As a consistency check, the numerical
B → 0 limit of the real as well as imaginary parts of the
form factors is shown to reproduce the zero field results.
Solving the Dyson-Schwinger equation with the one-loop
self-energy, the complete interacting ρ0 propagator is
obtained. Consequently, two distinct modes are observed
in the study of the effective mass, dispersion relations and
the spectral function of ρ0 where one of the modes (mode-
A) possesses twofold degeneracy. It is known [31,38] that
nontrivial Landau cuts appear in the presence of external
magnetic field along with finite temperature even if the loop
particles are of equal mass, which is completely a magnetic
field effect. However, in contrast to mode-A, the nontrivial
Landau cut is found to be absent in the case of mode-B.
Also, a sharper decrease in the effective mass is observed
for the latter, which essentially stems from the dominant
eB-dependent vacuum contribution in the real part of the
corresponding form factor.
Finally, the decay width for the ρ0 → πþπ− channel is

obtained for the two distinct modes and is found to become
zero at certain critical values of magnetic field depending
upon the temperature and baryon chemical potential. The
corresponding variation of the critical field with these
external parameters shows an increasing trend for large
baryonic chemical potential. However, it is observed that
both the distinct modes possess a maximum value of μB
below which the temperature dependence gets reversed.
Especially, at a given temperature (say T ¼ 160 MeV), eBc

attains the lowest values (123 MeV2 for mode-A and
116 MeV2 for mode-B) in case of zero chemical potential.
In Ref. [27], charged ρ meson condensation has been
studied at finite temperature and density. For charged ρ
mesons, the critical field for which the vector meson mass
vanishes is observed to lie in the range of 0.2–0.6 GeV2 at
zero density with temperature in the range 0.2–0.5 GeV.
However, in the case of ρ0, the absence of the trivial Landau

shift in the energy eigenvalue results in a much slower
decrease in the effective mass. As a consequence, unreal-
istically high magnetic field values are required to observe
neutral ρ condensation in the presence of temperature and
medium (see Fig. 14). In this scenario, the suppression in
the ρ0 → πþπ− channel can serve as an important alter-
native. Magnetic modification of ρ meson properties
studied in this work deals with effective hadronic inter-
actions. Thus, the observable modification can only occur if
the initial burst of magnetic field survives up to hadroniza-
tion, retaining an appreciable field strength. However, the
recent report [56,57] argued that the observed suppression
in the branching ratio of the ρ0 → πþπ− channel in the
central collisions (B ∼ 0) is due to the rescattering mecha-
nism in the hadronic medium, implying that the magnetic
field effects in the neutral ρ decay are negligible in HIC
experiments. On the other hand, the present study can be
relevant in situations present inside magnetars.
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APPENDIX A: USEFUL IDENTITIES

We have the following list of d-dimensional integrals in
Minkowski space [60]:

Z
ddk
ð2πÞd

1

ðk2−ΔÞn ¼
ið−1Þn
ð4πÞd=2

Γðn−d=2Þ
ΓðnÞ

�
1

Δ

�
n−d=2

ðA1Þ

Z
ddk
ð2πÞd

k2

ðk2−ΔÞn ¼
ið−1Þn−1
ð4πÞd=2

�
d
2

�

×
Γðn−1−d=2Þ

ΓðnÞ
�
1

Δ

�
n−1−d=2

ðA2Þ

Z
ddk
ð2πÞd

kμkν

ðk2−ΔÞn ¼
ið−1Þn−1
ð4πÞd=2

�
gμν

2

�

×
Γðn−1−d=2Þ

ΓðnÞ
�
1

Δ

�
n−1−d=2

: ðA3Þ

Using the orthogonality properties of the generalized
Laguerre polynomials, one can derive the following
identities,

Z
d2k⊥
ð2πÞ2 e

−2αkLlð2αkÞLnð2αkÞkμ⊥kν⊥

¼−gμν⊥
ðeBÞ2
32π

½ð2nþ 1Þδnl − ðnþ 1Þδnþ1
l −nδn−1l � ðA4Þ

Z
d2k⊥
ð2πÞ2 e

−2αkLlð2αkÞLnð2αkÞ ¼
eB
8π

δnl ðA5Þ
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Z
d2k⊥
ð2πÞ2 e

−2αkL1
l−1ð2αkÞL1

n−1ð2αkÞkμ⊥kν⊥¼−gμν⊥
ðeBÞ2
32π

nδn−1l−1

ðA6ÞZ
d2k⊥
ð2πÞ2 e

−2αkL1
l−1ð2αkÞL1

n−1ð2αkÞk2⊥ ¼ −
ðeBÞ2
16π

nδn−1l−1 ;

ðA7Þ
where αk ¼ −k2⊥=eB.

APPENDIX B: CALCULATION
OF VACUUM SELF-ENERGY

In order to evaluate the momentum integrals in Eqs. (3)
and (4), they are rewritten as

ðΠμν
π Þpure-vacðqÞ

¼ i
Z

d4k
ð2πÞ4

N μν
π ðq;kÞ

ðk2−m2
π þ iϵÞððqþ kÞ2−m2

π þ iϵÞ ðB1Þ

ðΠμν
N Þpure-vacðqÞ

¼ i
Z

d4k
ð2πÞ4

N μν
N ðq;kÞ

ðk2−m2
N þ iϵÞððqþkÞ2−m2

N þ iϵÞ ; ðB2Þ

where N μν
N ðq; kÞ contains the trace over Dirac matrices:

N μν
N ðq; kÞ ¼ −2g2ρNNTr½ΓνðqÞðqþ =kþmNÞΓμð−qÞð=kþmNÞ�

¼ −8g2ρNN

�
ðm2

N − k2 − k · qÞgμν þ 2kμkν þ ðqμkν þ qνkμÞ þ κρðq2gμν − qμqνÞ

þ κ2ρ
4m2

N
fðm2

N þ k2 − k · qÞðq2gμν − qμqνÞ − 2q2kμkν − 2ðk · qÞ2gμν þ 2ðk · qÞðqμkν þ qνkμÞg
�
: ðB3Þ

Applying standard Feynman paramerization, the denomi-
nators of Eqs. (B1) and (B2) are combined to get

ðΠμν
π Þpure-vacðqÞ

¼ i
Z

1

0

dx
Z

ddk
ð2πÞdΛ

2−d=2
π

N μν
π ðq;kÞ

½ðkþxqÞ2−Δπ�2
����
d→4

ðB4Þ

ðΠμν
N Þpure-vacðqÞ

¼ i
Z

1

0

dx
Z

ddk
ð2πÞdΛ

2−d=2
N

N μν
N ðq;kÞ

½ðkþxqÞ2−ΔN�2
����
d→4

; ðB5Þ

where

Δπ ¼ m2
π − xð1 − xÞq2 − iϵ ðB6Þ

ΔN ¼ m2
N − xð1 − xÞq2 − iϵ ðB7Þ

and the space-time dimension has been changed from 4 to d
in order to work with the dimensional regularization so that
the additional scale parameters Λπ and ΛN of dimension
GeV2 have been introduced to keep the overall dimension
of the self-energy the same. It is now straightforward to
perform the momentum integrals of the above equations
after a momentum shift k → ðk − xqÞ using the identities
provided in Appendix A, so that the vacuum self-energies
become

ðΠμν
π Þpure-vacðqÞ

¼ðq2gμν−qμqνÞ
�
g2ρππq2

32π2

�Z
1

0

dxΓðε−1Þ
�

Δπ

4πΛπ

�
−ε
����
ε→0

ðB8Þ
ðΠμν

N Þpure-vacðqÞ

¼ðq2gμν−qμqνÞ
�
g2ρNN

2π2

�Z
1

0

dx

��
2xð1−xÞþκρþ

κ2ρ
2

�
ΓðεÞ

þ κ2ρ
4m2

N
ΔNΓðε−1Þ

��
ΔN

4πΛN

�
−ε
����
ε→0

; ðB9Þ

where ε ¼ ð2 − d=2Þ. Expanding the above equations
about ε ¼ 0, we get

ðΠμν
π Þpure-vacðqÞ¼ ðq2gμν−qμqνÞ

�
−g2ρππq2

32π2

�Z
1

0

dxΔπ

×

�
1

ε
− γEþ1− ln

�
Δπ

4πΛπ

������
ε→0

ðB10Þ

ðΠμν
N Þpure-vacðqÞ¼ðq2gμν−qμqνÞ

�
g2ρNN

2π2

�

×
Z

1

0

dx

��
2xð1−xÞþκρþ

κ2ρ
2
−

κ2ρ
4m2

N
ΔN

�

×

�
1

ε
−γE− ln

�
ΔN

4πΛN

��
−

κ2ρ
4m2

N
ΔN

�����
ε→0

;

ðB11Þ
where γE is the Euler-Mascheroni constant.
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APPENDIX C: CALCULATION OF
eB-DEPENDENT VACUUM CONTRIBUTION

FOR ππ LOOP

In this Appendix, we sketch how to obtain Eqs. (46) and
(48). We rewrite Eq. (44) as

ðΠμν
π Þvacðq; eBÞ

¼ i
X∞
l¼0

X∞
n¼0

Z
d2kk
ð2πÞ2

×
Z

d2k⊥
ð2πÞ2

N μν
π;nlðq; kÞ

ðk2k −m2
l þ iϵÞððqk þ kkÞ2 −m2

n þ iϵÞ :

ðC1Þ

For the simplicity in analytic calculations, we take the
transverse momentum of the ρ0 to be zero, i.e., q⊥ ¼ 0.
This implies that the d2k⊥ integration can be performed
analytically using the orthogonality of the Laguerre poly-
nomial, the details of which can be obtained from
Appendix E, so that the self-energy becomes

ðΠμν
π Þvacðqk;eBÞ

¼ i
X∞
l¼0

X∞
n¼0

Z
d2kk
ð2πÞ2

Ñ μν
π;nlðqk;kkÞ

ðk2k−m2
l þ iϵÞððqk þkkÞ2−m2

nþ iϵÞ ;

ðC2Þ

where Ñ μν
π;nlðqk; kkÞ is given in Eq. (E5). Next, we use the

standard Feynman parametrization technique to combine
the denominators of Eq. (C2) and change the reduced
space-time dimension from 2 to d in order to apply the
dimensional regularization for which a scale parameter Λπ

of dimension GeV2 has to be introduced in order to keep

the overall dimension of the self-energy the same. This
leads to

ðΠμν
π Þvacðqk;eBÞ

¼ i
X∞
l¼0

X∞
n¼0

Z
1

0

dx
Z

ddkk
ð2πÞdΛ

1−d=2
π

Ñ μν
π;nlðqk;kkÞ

½ðkkþxqkÞ2−Δπ
nl�2

����
d→2

;

ðC3Þ

where

Δπ
nl ¼ Δπðq⊥ ¼ 0Þ þ 2eBflþ 1 − xðl − nÞg ðC4Þ

with Δπ defined in Eq. (B6). It is now trivial to perform the
ddkk integration after a shift of momentum kk→ðkk−xqkÞ
using the identities provided in Appendix A, so that the
self-energy becomes

ðΠμν
π Þvacðqk; eBÞ

¼
−g2ρππq2k
16π2

eB
Z

1

0

dx
X∞
n¼0

Xðnþ1Þ

l¼ðn−1Þ
ð−1Þnþlð4πΛπÞε

× ½−ðq2kgμνk − qμkq
ν
kÞδnl ΓðεÞðΔπ

nlÞ−ε

− q2kg
μν
⊥
eB
2
fð2nþ 1Þδnl − ðnþ 1Þδnþ1

l − nδn−1l g
× Γðεþ 1ÞðΔπ

nlÞ−ε−1�jε→0; ðC5Þ

where ε ¼ ð1 − d=2Þ and the presence of Kronecker delta
functions in Eq. (E5) has made the double sum into a single
one or, in other words, the sum over index l runs only from
(n − 1) to (nþ 1). The infinite sum in the above equations
can be expressed in terms of the Hurwitz zeta function so
that we get, after some simplifications,

ðΠμν
π Þvacðqk; eBÞ ¼

−g2ρππq2k
16π2

eB
Z

1

0

dx

�
4πΛπ

2eB

�
ε
�
−ðq2kgμνk − qμkq

ν
kÞΓðεÞζ

�
ε; zπ þ

1

2

�
−
q2k
2
gμν⊥ Γðεþ 1Þ

×

�
ζ

�
ε; zπ þ

1

2

�
þ ζ

�
ε; zπ þ xþ 1

2

�
− zπζ

�
εþ 1; zπ þ

1

2

�
− zπζ

�
εþ 1; zπ þ xþ 1

2

�������
ε→0

; ðC6Þ

where zπ ¼ Δπðq⊥¼0Þ
2eB . Expanding the above equation about ε ¼ 0, we get

ðΠμν
π Þvacðqk; eBÞ ¼

−g2ρππq2k
32π2

Z
1

0

dx

��
1

ε
− γE þ ln

�
4πΛπ

2eB

��
Δπðq⊥ ¼ 0Þðq2kgμν − qμkq

ν
kÞ

− ðq2kgμνk − qμkq
ν
kÞ2eB

�
lnΓ

�
zπ þ

1

2

�
− ln

ffiffiffiffiffiffi
2π

p �

þ q2kg
μν
⊥
�
Δπðq⊥ ¼ 0Þ þ eB

2
−
1

2
Δπðq⊥ ¼ 0Þ

�
ψ

�
zπ þ

1

2

�
þ ψ

�
zπ þ xþ 1

2

��������
ε→0

; ðC7Þ
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where ψðzÞ is the digamma function. It is now trivial to check that, in the limit eB → 0, the above equation exactly boils
down to the pure-vacuum contribution given in Eq. (9). Thus, extracting the pure-vacuum contribution from the above
equation, we get

ðΠμν
π Þvacðqk; eBÞ ¼ ðΠμν

π Þpure-vacðqkÞ þ ðΠμν
π ÞeB-vacðqk; eBÞ; ðC8Þ

where

ðΠμν
π ÞeB-vacðqk; eBÞ ¼

−g2ρππq2k
32π2

Z
1

0

dx

��
ln

�
Δπðq⊥ ¼ 0Þ

2eB

�
− 1

�
Δπðq⊥ ¼ 0Þðq2kgμν − qμkq

ν
kÞ

− ðq2kgμνk − qμkq
ν
kÞ2eB

�
lnΓ

�
zπ þ

1

2

�
− ln

ffiffiffiffiffiffi
2π

p �

þ q2kg
μν
⊥
�
Δπðq⊥ ¼ 0Þ þ eB

2
−
1

2
Δπðq⊥ ¼ 0Þ

�
ψ

�
zπ þ

1

2

�
þ ψ

�
zπ þ xþ 1

2

����
; ðC9Þ

which is finite and independent of scale.

APPENDIX D: CALCULATION OF
eB-DEPENDENT VACUUM CONTRIBUTION

FOR PROTON-PROTON LOOP

In this Appendix, we sketch how to obtain Eqs. (47) and
(49) We rewrite Eq. (45) as

ðΠμν
p Þvacðq;eBÞ ¼ i

X∞
l¼0

X∞
n¼0

Z
d2kk
ð2πÞ2

Z
d2k⊥
ð2πÞ2

×
N μν

p;nlðq;kÞ
ðk2k−M2

l þ iϵÞððqk þ kkÞ2−M2
nþ iϵÞ ;

ðD1Þ

where N μν
p;nlðq; kÞ is given in Eq. (42). For simplicity in

analytic calculations, we take the transverse momentum of
the ρ0 to be zero, i.e., q⊥ ¼ 0. This implies that the d2k⊥
integration can be performed analytically using the ortho-
gonality of the Laguerre polynomial, the details of which
can be obtained from Appendix E, so that the self-energy
becomes

ðΠμν
p Þvacðqk;eBÞ

¼ i
X∞
l¼0

X∞
n¼0

Z
d2kk
ð2πÞ2

Ñ μν
p;nlðqk;kkÞ

ðk2k−M2
l þ iϵÞððqkþkkÞ2−M2

nþ iϵÞ ;

ðD2Þ

where Ñ μν
p;nlðqk; kkÞ can be read off from Eq. (E8). Next, we

use the standard Feynman parametrization technique to
combine the denominators of Eq. (D2) and change the
reduced space-time dimension from 2 to d in order to apply
the dimensional regularization for which a scale parameter
ΛN of dimension GeV2 has to be introduced in order to
keep the overall dimension of the self-energy the same.
This leads to

ðΠμν
p Þvacðqk; eBÞ ¼ i

X∞
l¼0

X∞
n¼0

Z
1

0

dx
Z

ddkk
ð2πÞd Λ

1−d=2
N

×
Ñ μν

p;nlðqk; kkÞ
½ðkk þ xqkÞ2 − Δp

nl�2
����
d→2

; ðD3Þ

where

Δp
nl ¼ ΔNðq⊥ ¼ 0Þ þ 2eBfl − xðl − nÞg ðD4Þ

with ΔN defined in Eq. (B7). It is now trivial to perform the
ddkk integration after a shift of momentum kk → ðkk −
xqkÞ using the identities provided in Appendix A, so that
the self-energy becomes
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ðΠμν
p Þvacðqk; eBÞ ¼

g2ρNN

4π2
eB

Z
1

0

dx
X∞
n¼0

Xðnþ1Þ

l¼ðn−1Þ
ð−1Þnþlð4πΛπÞε

�
½4eBgμνk nδn−1l−1

þ fðm2
N þ xð1 − xÞq2kÞgμνk − 2xð1 − xÞqμkqνkgðδn−1l−1 þ δnl Þ − ðm2

N þ xð1 − xÞq2kÞgμν⊥ ðδnl−1 þ δn−1l Þ�
× Γðεþ 1ÞðΔp

nlÞ−ε−1 − fgμνk ðδn−1l−1 þ δnl Þεþ gμν⊥ ðδnl−1 þ δn−1l Þð−εþ 1ÞgΓðεÞðΔp
nlÞ−ε

þ κρfðq2kgμνk − qμkq
ν
kÞðδn−1l−1 þ δnl Þ − q2kg

μν
⊥ ðδnl−1 þ δn−1l ÞgΓðεþ 1ÞðΔp

nlÞ−ε−1

þ κ2ρ
4m2

N
½f−4eBnδn−1l−1 þ ðm2

N þ xð1 − xÞq2kÞðδn−1l−1 þ δnl Þgðq2kgμνk − qμkq
ν
kÞ

− q2kðm2
N þ xð1þ xÞq2kÞgμν⊥ ðδnl−1 þ δn−1l Þ�Γðεþ 1ÞðΔp

nlÞ−ε−1

−
κ2ρ
4m2

N
fðq2kgμνk − qμkq

ν
kÞð−ε − 1Þðδn−1l−1 þ δnl Þ þ q2kg

μν
⊥ ðδnl−1 þ δn−1l ÞεgΓðεÞðΔp

nlÞ−ε
�����

ε→0

; ðD5Þ

where ε ¼ ð1 − d=2Þ and the presence of Kronecker delta functions in Eq. (E8) has made the double sum into a single one
or, in other words, the sum over index l runs only from (n − 1) to (nþ 1). The infinite sum in the above equations can be
expressed in terms of the Hurwitz zeta function so that we get, after some simplifications,

ðΠμν
p Þvacðqk; eBÞ ¼

g2ρππ
4π2

Z
1

0

dx

�
4πΛN

2eB

�
ε
��

2eBgμνk fζðε; zNÞ − zNζðεþ 1; zNÞg

þ fðm2
N þ xð1 − xÞq2kÞgμνk − 2xð1 − xÞqμkqνkg

�
ζðεþ 1; zNÞ −

1

2
z−ε−1N

�

þ ðm2
N þ xð1 − xÞq2kÞgμν⊥ ζðεþ 1; zN þ xÞ

�
Γðεþ 1Þ − 2eB

�
gμνk ε

�
ζðε; zNÞ −

1

2
z−εN

�

þ gμν⊥ ðε − 1Þζðε; zN þ xÞ
�
ΓðεÞ þ κρ

�
ðq2kgμνk − qμkq

ν
kÞ
�
ζð1þ ε; zNÞ −

1

2
z−ε−1N

�

þ q2kg
μν
⊥ ζðεþ 1; zN þ xÞ

�
Γðεþ 1Þ þ κ2ρ

4m2
N

��
−2eB

�
ζðε; zNÞ − zNζðεþ 1; zNÞ

�

þ ðm2
N þ xð1 − xÞq2kÞ

�
ζðεþ 1; zNÞ −

1

2
z−ε−1N

��
ðq2kgμνk − qμkq

ν
kÞ

þ q2kg
μν
⊥ ðm2

N þ xð1 − xÞq2kÞζðεþ 1; zN þ xÞ
�
Γðεþ 1Þ þ κ2ρ

4m2
N
2eB

�
ðq2kgμνk − qμkq

ν
kÞðεþ 1Þ

×

�
ζðε; zNÞ −

1

2
z−εN

�
þ q2kg

μν
⊥ εζðε; zN þ xÞ

�
ΓðεÞ

�����
ε→0

; ðD6Þ

where zN ¼ ΔNðq⊥¼0Þ
2eB . Expanding the above equation about ε ¼ 0, we get

ðΠμν
p Þvacðqk; eBÞ ¼

g2ρNN

4π2

Z
1

0

dx

��
1

ε
− γE þ ln

�
4πΛN

2eB

���
2xð1 − xÞ þ κρ þ

κ2ρ
2
−

κ2ρ
4m2

N
ΔNðq⊥ ¼ 0Þ

�
ðq2kgμν − qμkq

ν
kÞ

− 2xð1 − xÞ
�
ψðzNÞ þ

1

2zN

�
ðq2kgμνk − qμkq

ν
kÞ þ 2eBgμν⊥

��
zN −

m2
N

eB

�
ψðzN þ xÞ þ zN

þ lnΓðzþ xÞ − ln
ffiffiffiffiffiffi
2π

p �
− κρ

�
ðq2kgμνk − qμkq

ν
kÞ
�
ψðzNÞ þ

1

2zN

�
þ q2kg

μν
⊥ ψðzþ xÞ

�

þ κ2ρ
4m2

N
2eB

�
ðq2kgμνk − qμkq

ν
kÞ
�
−
m2

N

eB

�
ψðzNÞ þ

1

2zN

�
þ 1

2
lnðzNÞ þ lnΓðzNÞ − ln

ffiffiffiffiffiffi
2π

p �

− q2kg
μν
⊥
��

m2
N

eB
− zN

�
ψðzN þ xÞ þ ΔNðq⊥ ¼ 0Þ

������
ε→0

: ðD7Þ
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It is now trivial to check that, in the limit eB → 0, the above equation exactly boils down to the 1
2
times pure-vacuum

contribution given in Eq. (10). Thus, extracting the pure-vacuum contribution from the above equation, we get

ðΠμν
p Þvacðqk; eBÞ ¼

1

2
ðΠμν

N Þpure-vacðqkÞ þ ðΠμν
p ÞeB-vacðqk; eBÞ; ðD8Þ

where

ðΠμν
p ÞeB-vacðqk; eBÞ ¼

g2ρNN

4π2

Z
1

0

dx

�
ln

�
ΔNðq⊥ ¼ 0Þ

2eB

��
2xð1 − xÞ þ κρ þ

κ2ρ
2
−

κ2ρ
4m2

N
ΔNðq⊥ ¼ 0Þ

�
ðq2kgμν − qμkq

ν
kÞ

− 2xð1 − xÞ
�
ψðzNÞ þ

1

2zN

�
ðq2kgμνk − qμkq

ν
kÞ þ 2eBgμν⊥

��
zN −

m2
N

eB

�
ψðzN þ xÞ þ zN

þ lnΓðzþ xÞ − ln
ffiffiffiffiffiffi
2π

p �
− κρ

�
ðq2kgμνk − qμkq

ν
kÞ
�
ψðzNÞ þ

1

2zN

�
þ q2kg

μν
⊥ ψðzþ xÞ

�

þ κ2ρ
4m2

N
2eB

�
ðq2kgμνk − qμkq

ν
kÞ
�
−
m2

N

eB

�
ψðzNÞ þ

1

2zN

�
þ 1

2
lnðzNÞ þ lnΓðzNÞ − ln

ffiffiffiffiffiffi
2π

p �

− q2kg
μν
⊥
��

m2
N

eB
− zN

�
ψðzN þ xÞ þ ΔNðq⊥ ¼ 0Þ

�
þ κ2ρ
4m2

N
ðq2kgμν − qμkq

ν
kÞΔNðq⊥ ¼ 0Þ

�
; ðD9Þ

which is finite and independent of scale.

APPENDIX E: ANALYTIC EVALUATION
OF d2k⊥ INTEGRAL FOR q⊥ = 0

In this Appendix, we will calculate the quantities

Ñ μν
π;nlðqk; kkÞ ¼

Z
d2k⊥
ð2πÞ2N

μν
π;nlðqk; q⊥ ¼ 0; kÞ ðE1Þ

Ñ μν
p;nlðqk; kkÞ ¼

Z
d2k⊥
ð2πÞ2N

μν
p;nlðqk; q⊥ ¼ 0; kÞ: ðE2Þ

We have the expression for N μν
π;nlðq; kÞ from Eqs. (40) and

(7) as

N μν
π;nlðq; kÞ ¼ 4g2ρππð−1Þnþle−αk−αpLlð2αkÞLnð2αpÞ

× ½q4kμkν þ ðq · kÞ2qμqν
− q2ðq · kÞðqμkν þ qνkμÞ�; ðE3Þ

which for q⊥ ¼ 0 becomes

N μν
π;nlðqk; kÞ ¼ 4g2ρππð−1Þnþle−2αkLlð2αkÞLnð2αkÞ

× ½q4kkμkν þ ðqk · kkÞ2qμkqνk
− q2kðqk · kkÞðqμkkν þ qνkk

μÞ�: ðE4Þ

We now perform the d2k⊥ integration using the orthogon-
ality of the Laguerre polynomial (identities provided in
Appendix A) to obtain

Ñ μν
π;nlðqk; kkÞ ¼ 4g2ρππð−1Þnþl eB

8π

�
fq4kkμkkνk þ ðqk · kkÞ2qμkqνk − q2kðqk · kkÞðqμkkνk þ qνkk

μ
kÞgδnl

− q4kg
μν
⊥
eB
4
fð2nþ 1Þδnl − ðnþ 1Þδnþ1

l − nδn−1l g
�
: ðE5Þ

Similarly, N μν
p;nlðq; kÞ is obtained from Eq. (41) as

N μν
p;nlðq; kÞ ¼ −g2ρNNð−1Þnþle−αk−αpTr½ΓνðqÞDnðqþ kÞΓμð−qÞDlðkÞ�: ðE6Þ

Evaluating the trace over the Dirac matrices in the above equation, we get for q⊥ ¼ 0 (considering the Lorentz symmetric
part since the self-energy should be symmetric in the two Lorentz indices)
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N μν
p;nlðqk; kÞ ¼ −8g2ρNNð−1Þnþle−2αk

�
8ð2kμ⊥kν⊥ − k2⊥gμνÞL1

l−1ð2αkÞL1
n−1ð2αkÞ

þ fðm2
N − k2k − kk · qkÞgμνk þ 2kμkk

ν
k þ ðqμkkνk þ qνkk

μ
kÞgfLl−1ð2αkÞLn−1ð2αkÞ þ Llð2αkÞLnð2αkÞg

− ðm2
N − k2k − kk · qkÞgμν⊥ fLlð2αkÞLn−1ð2αkÞ þ Ll−1ð2αkÞLnð2αkÞg

þ κρ½ðq2kgμνk − qμkq
ν
kÞfLl−1ð2αkÞLn−1ð2αkÞ þ Llð2αkÞLnð2αkÞg

− q2kg
μν
⊥ fLlð2αkÞLn−1ð2αkÞ þ Ll−1ð2αkÞLnð2αkÞg�

þ κ2ρ
4m2

N
½8fk2⊥ðq2kgμν − qμkq

ν
kÞ − q2kg

μν
⊥ fLlð2αkÞLn−1ð2αkÞ þ Ll−1ð2αkÞLnð2αkÞgg

− f2ðkk · qkÞ2gμνk þ 2q2kk
μ
kk

ν
k − 2ðkk · qkÞðqμkkνk þ qνkk

μ
kÞ − ðm2

N þ k2k − kk · qkÞðq2kgμνk − qμkq
ν
kÞg

× fLl−1ð2αkÞLn−1ð2αkÞ þ Llð2αkÞLnð2αkÞg − fq2kðm2
N þ k2k − kk · qkÞ − 2ðkk · qkÞ2ggμν⊥

× fLlð2αkÞLn−1ð2αkÞ þ Ll−1ð2αkÞLnð2αkÞg�
�
; ðE7Þ

where the terms involving odd powers of kμ⊥ are discarded as they will vanish while integrating over d2k⊥. We now perform
the d2k⊥ integration using the orthogonality of the Laguerre polynomial (identities provided in Appendix A) to obtain

Ñ μν
p;nlðqk; kkÞ ¼−g2ρNNð−1Þnþl eB

π

�
4eBgμνk nδn−1l−1 þfðm2

N − k2k− kk ·qkÞgμνk þ 2kμkk
ν
k þ ðqμkkνk þqνkk

μ
kÞgðδn−1l−1 þ δnl Þ

− ðm2
N − k2k− kk ·qkÞgμν⊥ ðδnl−1þ δn−1l Þþ κρ½ðq2kgμνk −qμkq

ν
kÞðδn−1l−1 þ δnl Þ−q2kg

μν
⊥ ðδnl−1þ δn−1l Þ�

þ κ2ρ
4m2

N
½−4eBðq2kgμνk −qμkq

ν
kÞnδn−1l−1 − f2ðkk ·qkÞ2gμνk þ 2q2kk

μ
kk

ν
k− 2ðkk ·qkÞðqμkkνk þqνkk

μ
kÞ

− ðm2
N þ k2k − kk ·qkÞðq2kgμνk −qμkq

ν
kÞgðδn−1l−1 þ δnl Þ− fq2kðm2

N þ k2k− kk ·qkÞ− 2ðkk ·qkÞ2ggμν⊥ ðδnl−1þ δn−1l Þ�
�
:

ðE8Þ

It is to be noted that a Kronecker delta with -ve index is
zero, which comes from our constraint on the Laguerre
polynomials La

−1 ¼ 0.

APPENDIX F: DETAILS OF N μ
μ AND N 00

FOR DIFFERENT LOOPS

In this Appendix, we list the explicit forms of N μ
μ and

N 00 for all the different loops. For the zero magnetic field
case, we have for the ππ loop

gμνN
μν
π ðq; kÞ ¼ g2ρππ½q4kμkν þ ðq · kÞ2q2 − q2ðq · kÞ2q · k�

ðF1Þ

N 00
π ðq;kÞ¼ g2ρππ½q4k20þðq ·kÞ2q20−q2ðq ·kÞ2q0k0� ðF2Þ

ðF3Þ

and for the NN loop

gμνN
μν
N ðq; kÞ ¼ −8g2ρNN

�
ðm2

N − k2 − k · qÞ4þ 2k2 þ q · kþ κρ3q2

þ κ2ρ
4m2

N
fðm2

N þ k2 − k · qÞ3q2 − 2q2k2 − 2ðk · qÞ24þ 4ðk · qÞ2g
�
: ðF4Þ

N 00
N ðq; kÞ ¼ −8g2ρNN

�
ðm2

N − k2 − k · qÞ þ 2k20 þ 2q0k0 − κρq⃗2

þ κ2ρ
4m2

N
f−ðm2

N þ k2 − k · qÞq⃗2 − 2q2k20 − 2ðk · qÞ2 þ 4ðk · qÞq0k0g
�
: ðF5Þ
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The corresponding expressions for the ππ loop for the finite magnetic field case are given by

gμνÑ
μν
π;nlðqk; kkÞ ¼ 4g2ρππð−1Þnþl eB

8π

�
fq4kk2k þ ðqk · kkÞ2q2k − q2kðqk · kkÞ2qk · kkgδnl

− q4k
eB
2
fð2nþ 1Þδnl − ðnþ 1Þδnþ1

l − nδn−1l g
�

ðF6Þ

Ñ 00
π;nlðqk; kkÞ ¼ 4g2ρππð−1Þnþl eB

8π
½q4kk20 þ ðqk · kkÞ2q20 − q2kðqk · kkÞ2q0k0�δnl ; ðF7Þ

whereas the same for the proton-proton loop are

gμνÑ
μν
p;nlðqk; kkÞ ¼ −g2ρNNð−1Þnþl eB

π

�
8eBnδn−1l−1 þ fðm2

N − k2k − kk · qkÞ2þ 2k2k þ 2qk · kkgðδn−1l−1 þ δnl Þ

− ðm2
N − k2k − kk · qkÞ2ðδnl−1 þ δn−1l Þ þ κρ½q2kðδn−1l−1 þ δnl Þ − q2k2ðδnl−1 þ δn−1l Þ�

þ κ2ρ
4m2

N
½−4eBq2knδn−1l−1 − f2ðkk · qkÞ22þ 2q2kk

2
k − 2ðkk · qkÞ2qk · kk

− ðm2
N þ k2k − kk · qkÞq2kgðδn−1l−1 þ δnl Þ − fq2kðm2

N þ k2k − kk · qkÞ − 2ðkk · qkÞ2g2ðδnl−1 þ δn−1l Þ�
�

ðF8Þ

Ñ 00
p;nlðqk; kkÞ ¼ −g2ρNNð−1Þnþl eB

π

�
4eBnδn−1l−1 þ fðm2

N − k2k − kk · qkÞ þ 2k20 þ 2q0k0gðδn−1l−1 þ δnl Þ

þ κρ½−q2zðδn−1l−1 þ δnl Þ� þ
κ2ρ
4m2

N
½4eBq2znδn−1l−1 − f2ðkk · qkÞ2 þ 2q2kk

2
0 − 2ðkk · qkÞ2q0k0

þ ðm2
N þ k2k − kk · qkÞq2zgðδn−1l−1 þ δnl Þ�

�
: ðF9Þ
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