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The one-loop self-energy of the neutral p meson is obtained for the effective pzz and pNN interaction at
finite temperature and density in the presence of a constant background magnetic field of arbitrary strength.
In our approach, the eB-dependent vacuum part of the self-energy is extracted by means of dimensional
regularization where the ultraviolet divergences corresponding to the pure-vacuum self-energy manifest as
the pole singularities of gamma as well as Hurwitz zeta functions. This improved regularization procedure
consistently reproduces the expected results in the vanishing magnetic field limit and can be used quite
generally in other self-energy calculations dealing with arbitrary magnetic field strength. In the presence of
the external magnetic field, the general Lorentz structure for the in-medium vector boson self-energy is
derived, which can also be implemented in the case of the gauge bosons such as photons and gluons. It has
been shown that with vanishing perpendicular momentum of the external particle essentially two form
factors are sufficient to describe the self-energy completely. Consequently, two distinct modes are observed
in the study of the effective mass, dispersion relations and the spectral function of p° where one of the
modes possesses twofold degeneracy. For large baryonic chemical potential, it is observed that the critical
magnetic field required to block the p® — z* 7z~ decay channel increases significantly with temperature.
However, in the case of smaller values reaching down to vanishing chemical potential, the critical field

follows the opposite trend.
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I. INTRODUCTION

In noncentral heavy-ion collisions (HIC) at the LHC, the
relative motion of the ions themselves can generate a strong
decaying magnetic pulse of the order eB~ 15m2
(B ~5x10" T) [1]. While some of the studies support
a rapid decrease in the magnitude [2,3], an adiabatic decay
is expected [4-6] due to the high conductivity of the
produced medium. In spite of the ambiguities, the intensity
of the produced magnetic field being much larger than the
typical QCD scale, the possibility of magnetic modifica-
tions of different properties of the produced extreme state of
matter can not be refuted completely. In general, high
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intensity magnetic fields can play a significant role in many
astrophysical and cosmological phenomena [7-10].
Moreover, the magnetic influence on the properties of
magnetars adds to the motivation of studying high density
matter in the presence of extreme magnetic fields [11-18].

The study of p meson properties like the effective mass
and dispersion relations are important in the context of
magnetic field induced vacuum superconductivity [19-26].
Using the Nambu-Jona-Lasinio model in the presence of
magnetic background, Liu er al. have shown that the
charged p condensation in vacuum occurs at critical
magnetic field eB, ~0.2 GeV? [25]. Generalization of
the study to finite temperature and density shows that
the condensation survives even in the presence of finite
temperature and density [27]. At vanishing chemical
potential, the corresponding critical magnetic field is
observed to lie in the range 0.2-0.6 GeV? for temperatures
in between 0.2 and 0.5 GeV. However, the neutral p meson
in vacuum, having no trivial Landau shifts in the energy
eigenvalue, shows a slow decrease in the effective mass
[28] in the weak magnetic field region. Thus, if neutral p
condensation is possible, extremely large magnetic field
values will be required to observe the condensation.
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It should be mentioned here that it has been shown using
the Nambu-Jona-Lasinio model that the effective mass of a
p° meson in fact increases at higher values of magnetic
fields, showing no possibility of condensation [25]. In this
scenario, p® — 777~ decay may serve as an important
probe to observe the influence of the magnetic field. As
argued in Ref. [19], even if a pointlike p° meson is
considered without any influence by magnetic field, there
exists a critical value of the external magnetic field for
which the p° to 727z~ decay stops due to the trivial
enhancement of the charged pion mass. Later, the magnetic
modification arising from the loop corrections is taken into
account at weak [28,29] as well as at strong field limits [30]
at zero temperature. An immediate generalization of the
previous works will be to incorporate the medium effects of
the p° meson, which may reflect in the modification of the
decay rate and the required critical magnetic field. It should
be noted here that, apart from being important in the study
of dense hadronic matter at extreme conditions usually
expected to be present within compact stars, the incorpo-
ration of the medium effects is also essential for the proper
estimation of pion production in noncentral heavy-ion
collisions.

In this work, we focus on the temperature and density
modifications of neutral p meson properties in the presence
of a static homogeneous magnetic background. The one-
loop self-energy of a p meson is calculated for the effective
prr and pNN interaction with magnetically modified pion
and nucleon propagators corresponding to general field
strength. After decomposing the self-energy in terms of the
form factors, the decay width for the p° — 7+ 7z~ channel is
obtained. It should be mentioned here that the spectral
properties of the p meson in the presence of finite temper-
ature and magnetic field were studied in our earlier work
[31]. However, unlike the previous case, the dimensional
regularization technique is used here to extract the ultra-
violet divergence as pole singularities of gamma and
Hurwitz zeta functions [32]. Also, instead of considering
only the spin-averaged thermal self-energy contribution,
the general Lorentz structure has been addressed in detail.

Apart from the technical differences, the density depend-
ence arising from the charged nucleon loop serves as the
most important extension of the previous study. Its impor-
tance can be understood as follows. It is well known that the
general expression of decay width is related to the
imaginary part of the self-energy. Now, as far as the p* —
atn~ decay is concerned, the invariant mass regime of
interest does not allow the nucleon loop to directly
contribute to the imaginary part as the unitary cut threshold
of the NN loop begins at a much higher value. However, it
should be noted that in the rest frame of the decaying
particle the decay width depends on its effective mass. The
contribution from the nucleon loop incorporates significant
modification in the effective mass of p°, which in turn
influences the decay. As we shall see, the critical field

required to stabilize the neutral p against the ™z~ decay
has a nontrivial dependence on the baryonic chemical
potential.

The article is organized as follows. In Sec. II, the vacuum
self-energy of p is discussed, followed by evaluation of the
in-medium p self-energy at zero magnetic field in Sec. III.
Next, in Sec. 1V, the in-medium self-energy at nonzero
external magnetic field is presented. Section V is devoted to
the discussion of the general Lorentz structure of the in-
medium self-energy function in the presence of a constant
background magnetic field. After addressing the Lorentz
structure of the interacting p propagator in Sec. VI, the
analytic structure of the self-energy is discussed in Sec. VII.
Section VIII contains the numerical results. Finally, we
summarize and conclude in Sec. IX. Some of the relevant
calculational details are provided in the Appendix.

IL. p° SELF-ENERGY IN THE VACUUM

The effective Lagrangian for pzz and pNN interaction
is [33]

Line = =Gpun0,p, - ("7 x O'7)

N Kp v zZ.5
_gpNNT[y#_maﬂ ap:|7'-‘p;4lpv (1)

where ¥ = [7] is the nucleon isospin doublet, o** =£[y#,y],
and the components of 7 correspond to the Pauli isospin
matrices. It is understood that the derivative within the
square bracket in the above equation acts only on the p
field. The value of the coupling constants are given by
Gpnr = 20.72 GeV~2, g,ny =325, and k, = 6.1 with
my = 939 MeV as the mass of the nucleons. The metric
tensor in this work is taken as ¢* = diag(1,—-1,—-1,—1).
Using Eq. (1), the one-loop vacuum self-energy of p is
obtained as

H{;ﬁre—vac = (H/;fy)pure—vac + (Hﬁlﬂ)pure—vac ’ (2)

where (T17") pyrevae aNd (TI) pype vy are respectively the
contributions from the zz loop and NN loop, which are
given by (applying Feynman rules to Fig. 1)

(H/;’-D )pure-vac ( q)

o dk
:l/(zﬂ)4N7r (C],k)AFUC,m,,)AF(p:q+k’m”) (3)

(HIIiID)pure—vac(Q)
Ak
=i / ST @S, (=g k) ()8, (k.my)
+I%(q)Sa(p=q+k,my)T¥(—q)S, (k.my)], (4)

where
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Arlhme) = o T e

(5)

is the vacuum Feynman propagator for the charged pion. S,
and S, are respectively the vacuum Feynman propagators
for proton and neutron and are given by

Sp(k,my) = Sy(k,my) = (K + my)Ap(k,my). (6)
The second rank tensor N'%”(g, k) and the vector I'*(g) in

Egs. (3) and (4) contain the factors coming from the
interaction vertices:

N (q. k) = Pualad* kK + (q - k)*q" ¢

- ¢*(q- k) (q"k + q"k*)] (7)
™(q) = gonn {r" —i ZZN 6"”%} : (8)

The evaluations of the momentum integrals in Egs. (3) and
(4) are briefly sketched in Appendix B, and the final results
can be read off from Eqs. (B10) and (B11),

(HII;U ) pure—vac (q)
= (4°¢" - 4"¢") <—_g'% ””q2>

3272
1 1 A
dxA,_ |- — 1-1 z 9
<Jaselpmrerrom(GO)]| o
(HI;ID ) pure-vac (q)
g2NN
— 2 UV YV P
(¢ qq)<2ﬂ2>
1 K2 K2
x/o dx[{zx(l—x)+xp+5p—ﬁAN}
1 Ay K2
——yp—1 -2 A , 10
om0

where A, and Ay are defined in Egs. (B6) and (B7). As can
be seen from the above equations, the vacuum self-energy is
divergent and scale dependent, which renormalizes the bare
p° mass to its physical mass after adding proper vacuum
counterterms in the Lagrangian. The particular Lorentz
structure in the above equations renders the self-energy
transverse to the p” momentum, i.e., ¢,ITpire-vac = 0.

III. p° SELF-ENERGY IN THE MEDIUM

In order to calculate the p° self-energy at finite temper-
ature and density, we employ the real time formalism (RTF)
of finite temperature field theory where all the two point
correlation functions such as the propagator and the self-
energy become 2 x 2 matrices in the thermal space [34,35].

However, they can be put in a diagonal form where the
diagonal elements can be obtained from any one compo-
nent (say the 11-component) of the mentioned 2 x 2
matrix. The 11-components of real time thermal pion
and nucleon propagators are

D" (k) = AF(k’ mn’) + ’I(k ’ M)[AF(k’ mir) - A*F(kﬂ mﬂ)]
(11)
Splyln(k) = Sp,n (k’ mN)
= 7i(k - u)[Spn (k. my) = 7Sk my)y°). (12)

where  7(x) = O(x)f(x) + O(—x)f(—=x) and 7(x) =
O(x)f " (x) + ©(=x)f~(=x) in which f(x) and f*(x)
are respectively the Bose-Einstein and Fermi-Dirac distri-
bution functions corresponding to pions and nucleons:

FO) = [T =17 fE(x) = [T/ p 17 (13)
Here, ©(x) is the unit step function, and #* is the medium

four-velocity; T and pp are respectively the temperature
and baryon chemical potential of the medium. In the local

rest frame (LRF) of the medium, u . = (1,0).

For the evaluation of the 11-component of the thermal
self-energy matrix, the vacuum pion and nucleon propa-
gators in Eqgs. (3) and (4) are replaced by the respective 11-
components of the thermal propagators given in Egs. (11)
and (12) as [35]

4
()1 (q) = i / (§”§4NﬁU(q,k)Dll(k, m,)
x D" (p = q+k,my) (14)

Y [ d*k

(M) (a) = =i [ ST @S} (k)P (0

x Spl(p = q+k.my)

+1(q)Sa! (k,my )T (—q)

xSl (p = q+k.my)]. (15)
The analytic thermal self-energy function of p° denoted by
a bar Rell*(¢°, q) = Rell?’(¢°, §) + Rell (¢°, ¢) is
related to the above quantities by the relations [35]

Rell¥y(¢°, ) = (Relly'y),,(¢". 4) (16)
ImIT,’y (%, ) = sign(q°) tanh (g) (ImITy),, (4% 4).
(17)

where sign(x) = ©(x) — ©(—x). Rewriting Eqgs. (11) and
(12) as
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DY (k) = Ap(k,m,) + 2zmin(k - u)s(k* — m2) (18)

Spn(k) = (K + my)[Ap(k, my) = 2zifi(k - u)5(k* = m3,)]
(19)
|

and substituting into Eqgs. (14) and (15) and performing
the dk® integration (using the Dirac delta functions)
followed by using Eqs. (16) and (17), we get the real
parts as

NI]‘TI/(kO = U)k)

RelT2 (. 7) = Re(IT )y e () + / (2n)°

3
dkp[f

2Cl)k

) { N (K = —ay)

(@ — o) = (@,)* (8" + o) - (wp)z}

N = —¢° + w))

+f(wp) {Nﬁy(ko = _qo - wp)

26‘)/1 (qo =+ a)p)z - (wk)2

_ &’k 1
Rell?“(4°. Re(IT? — Pl—
elin (t] ’ CI) e( N )pure-vac(q) / (271.)3 |:2'Q'k {

[ QUNY (K = —Qy)

= =

(qO - Qk)z - (Qp)2

JHQONY (K = Qk)}
(4" +Qu)* - (Qp)*

I [ QNK (K =—-¢"-Q,)
291) { (qo + Qp)z - (Qk>2

and the imaginary parts as

fHQINR (K = —¢° + QP)H

(-0, — (@) @)

ImIT;’ (¢°, §) = —sign(¢°) tanh <ﬂq0)ﬂ/ﬁ# {1+ flog) + flw,) +2f (k) f(@,) }

2
{Nl;ry(ko = —Cl)k)5

(2r)3 4o,

(
{NZ (K = —0)8(q° — oy + @) + N7 (k°

- 0 &Pk 1
ImHl“/ 0 = g 1 0 t h ﬂi /——
N (q ’ q) Slgn(q ) an ( 2 T (27[)3 4Qka

" —wp—w,) + N (K = 0)8(¢° + o + w,)} + {f(wp) + fw,) + 2f (wy) f(w,)}
= 0)8(q° + o — )} (22)

X [{1 = f7() = fH(Q,) + 27 (Qu)f () VT (K = —9,)8(¢° — @ — Q)

{1 = () = F7(Q,) + 2T (Qu)f (@) INT (K = Q)6(q° + Q4 + Q)

H{=f7( Q) = £7(Q,) + 27 () (Q,) NN (K = —)8(q° — @ + Q)

{1 (Q) = Q) +2f () FH(Q,) N (K = ©4)8(¢° + @ — Q)] (23)

where P denotes the Cauchy principal value integration,

wpy=\/m2+k*, Q = \/m3 + k>, and N'x(q. k) is defined

in Eq. (B3).

IV. p° SELF-ENERGY IN THE
MAGNETIZED MEDIUM

In the presence of the external magnetic field B = Bs,
the propagations of the charged pion and proton are
modified. One of the possible ways to incorporate the
effect of external magnetic field is the Schwinger proper
time formalism in which the 11-components of charged
pion and proton propagators respectively become [36,37]

DE(") = AB(k’ mﬂ) + ’Y(k ’ u) [AB(kv mn) - Az(kv mn)]
(24)

|

and

Sk (k) = Sp(k,my) —i(k-u)[Sp(k,my) —}’Osg(k’mN)Yo]»
(25)

where Ag(k,m,) and Sg(k,my) denote the momentum

space vacuum (zero temperature) Schwinger proper time
propagators for the charged pion and proton respectively [36]:

tan(eBs)

Ap(k)=i [ dsexp|is{ k3 + 2%
5(k) 1/0 sexp[ls{ Tha B

Sp(k) = i/owdsexp {z’s{k2 +tane(%fs)ki - mjzv}]
X [(§ +my){1 —7'y*tan(eBs)} + K, sec*(eBs)].
(27)

G-m}] eo
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In the above equations, e = |e| is the charge of the proton;
the four-vector k is decomposed into k = (k| + k) where

g” “k, and k| = ¢"k,, corresponding to the decom-
pos1t10n of the metric tensor ¢ = (g)" + ¢/|") with g} =
diag(1,0,0,—1) and ¢|" = diag(0,—1,—1,0). The above
decomposition can be done in a Lorentz covariant way by
introducing another four-vector,

1
b = EG’”’MU, (28)
where G* = $e#F ; is the dual of the electromagnetic
field tensor F**. In the local rest frame of the medium,
bz = (0,0,0, 1), which is the direction of the external
magnetic field. Using b*, we can write
gﬁ” = and ¢ = (¢"

(uu” — b*bY) v —utub + bHbY).

(29)

It is important to note that the coordinate space
Schwinger propagator contains a gauge-dependent trans-
lationally noninvariant phase factor. However, for the one-
loop graphs containing equally charged particles in the
loop, the phase factor gets canceled, and the momentum
space propagator is sufficient for the calculation of the self-
energy. The proper time integral in Egs. (26) and (27) can
be performed in order to express the propagators as a sum
over discrete Landau levels as

& (=D)L (2a)
Ag(k) = Zkﬁ —m2— (20 + 1)e£ + ie (30)
© Ne D, (k
Sp(k) = —ZL; mzzv —ZZelI; —i)- ie]’ e

where

Dy(k) = (Jy + my)[(1 + ir'y*)Li(2ay)
= (1 =iy )Ly 2a)] = 4L L), (2a) (32)
with a; = —k% /eB. Here, L¢(z) denotes the generalized

Laguerre polynomial with L%, (z) = 0 and L;(z) = LY(z).

We now rewrite Eqgs. (24) and (25) using Egs. (30)
and (31) as
DY (k)=> 2(-1)le™*L;(2ey)
=0
-1 5
X W—F%xm(k u)5(k? i—mp)|  (33)
)= S

=0

-1
X e
[kZ—M;‘He

” —2aif(k- u)5(k? Mz)} (34)

where we have defined the Landau level-dependent
“dimensionally reduced effective masses” (as a conse-
quence of dimensional reduction) of the pion and proton as

=/m2+(2[+1)eB and M;=/m% +2leB. (35)

We now replace the 11-component of the charged
pion and proton propagators in Egs. (14) and (15) as
D'' —» Dl Sit — S}l ie., by the respective magnetized
ones given in Eqgs. (33) and (34), and then perform the dk°
integrations (using the Dirac delta functions). Following
Egs. (16) and (17), we get the thermal self-energy functions
under external magnetic field which we will denote by a
double bar to distinguish them from the thermal self-energy
functions in the absence of magnetic field. Their explicit
expressions are given by

>\ ke &k f(wl) ”(kO_—w)
_ZZ/(2E)3P{2Q)Z {<q0_lw§()2_(wr]f)2+

ﬂnl(ko = o}) }

(q +wk) _(wp)

1=0 n=0 p
) (N2(K = =" —ah) k= —¢" + o), w
S e R - Wl ]+ et (0
=2 — 1 UV — o f (ch) nl( = _Ql) f+ (Q;{) nl( Ql)
Relly (‘]0761>=§R6HN (QO’Q)_;HZ/ Lgl { ("-Q p) (Qn) (q° +Q£)) (Qn)z }
1 f ( ) n (k _Q;) (Q’ ) n (ko = +Qn) uv
ol (o 91@2— @y - E =@y J] rremaen 0
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v ﬁq 2 & d3k " Y
i (4. 7) = sien(a’ o (535 [ S5 10 0] 4 10 210l )
e 71') 4o
{N e (K = wi)fs(qo—wi—wp) + N (K = 0)8(¢° + @ + o) } + {f (@) + (@) + 2f (0))f (@}) }
{ n'nl( = 0)2)5(6]0 _a)k +C()17) + n'nl(ko = a)k)é(q +CU _wp)}] (38)
1
Iml'[””( ,q) = =ImIIY (¢°, ¢) — sign(q )tanh( ) / 3 -
2 — =) (27) 4Q’Q
x [{1=f7 (@) - fH(Qp) + 2f‘(95<)f*( PN o (K = —Q5)8(q" — Q4 — Q)
+ {1 = Q) = f7(Qp) + 2 T (Q)f () IN (K0 = @)8(q° + 2 + Q)
+{=f7(Q) = (@) + 21 () f ()N (K = —a)8(q° — @ + Q)
{1 — Q) + 2f Q) Q)N (K = 4)5(q° + Q) — ), (39)
|
where It is important to note that the above quantities respec-
tively contain the divergent pure-vacuum contributions
(@ k) = a(=1)"*emwma L2y )L, (2a, )N (q. k) (T1%") pure-vac(q) and %(Hﬁ,”)pure_vac(q) in a nontrivial way
(40) (as the above equations seem to appear nonperturbative in
eB). In contrast, for the case of weak magnetic field
gfnl( g.k) = - QZNN(—I)”” %0, expansion of the Schwinger propagator, the pure-vacuum

x Tr[[*(q)Dy(g + T (=q)Di(k)]  (41)

wh=y/Rtmi =\t (24 1)eB  (42)

Ql = \/k§ + M2 = \/kf + m3, + 2leB. (43)

The first terms on the rhs of Eqgs. (37) and (39) are the
contributions from the neutron-neutron loop which are not
affected by the external magnetic field. The last terms on
the rhs of Egs. (36) and (37) are the contributions from 7z
and proton-proton loop which depend on the external
magnetic field but are independent of temperature. Their
explicit forms are given by

Re(T1%"),..(¢. eB)

vac(

_Rezz / &'k N””IAF(k”,ml)AF(q” +kH’ m,)

I=0 n=
(44)

(45)

contribution to the self-energy trivially decouples from the
magnetic field-dependent terms. Since we are working
with the full propagator including all the Landau levels, we
have to properly regularize the above expressions in order
to extract the pure-vacuum contributions from these
quantities. We use dimensional regularization in which
the ultraviolet divergence appears as the pole of Gamma
and Hurwitz zeta function, the details of which are
provided in the Appendixes C and D. Here, we take the
transverse momentum of p° to be zero, i.e., g, = 0, which
makes substantial simplifications of the analytic calcula-
tions. The final result can be read off from Egs. (C8) and
(D8) as

(H” )vac(qH €B> (H%D)pure—vac<qn) + (Hﬁl/)eB—vac(QH’ eB)

(46)

1 v w
(Hﬂ )vac(qH’ eB) D) (H,lil )pure—vac (qH) + (Hi’ )eB—vac(qII’ eB)’

(47)

where the scale-dependent divergent pure-vacuum parts
are completely decoupled as the first term on the rhs of
the above equation; the scale-independent and finite
“eB-dependent vacuum contributions” to the real part of
the self-energy functions are
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2 2
v ~Yprrd 1 A”(q = 0) y v
(Hﬁ )eB—vac(QH7eB> = 3242 H /O dx|:{1n< ZJC;B -1 AH(QL = O)(qﬁgﬂ - q/|/|lLIH)
1
- (qﬁgj"‘” - q”qf)ZeB{lnF(z,, + 5) —In \/27:}

+ Qﬁglf{An(QL =0) +?_%AE(QL = 0){1//(1” +%) +w<zﬂ +X+%> }}] (48)

m B g/)NN d 1 AN q1 = ) 2%(1 — K_2 /) A -0 T )
( P)eB-vac(qH’e ) X |1n 2¢B x( )+K/,—|— ) N( ) (CIHQM qu”)

4m
—2x(1 —x) (1// ) qu” qu” +2eBg’i{< ) (zy +x) + 2w
+lnF(z+x)—ln\/ﬂ}—Kp{(qﬁgﬁ q”q)< (2w )+2 )-l—qﬁg‘il//(z—f—x)}

2

Ky 2
i 208 (- )| -

2

X (W(ZN) + %) + %m(z]v) +InT(zy) —In \/ﬂ}

eB
Kg v H v
i { ( )W(ZN +x)+Ay(gL = 0)} + m(qﬁg" —qy4))Av(q1L = 0)} : (49)

Equations (46) and (47) imply that the vacuum counterterms are sufficient to renormalize the theory and thus the external
magnetic field does not create additional divergences. For ¢, = 0, the d?k | integrals in Eqgs. (36)—(39) can be analytically
performed (see Appendix E), and we finally get

o (n+1) I 0 _ © o
= o dk, _[f(wh) w (K= —alh) N* (K0 = ol)
RellY(¢°, q.) = Re(I1%") yreovac (911) + / 173{ k { mn n .
Z ==l 2.2 Do e b o i e

f( ) {Nﬁynl(ko = _q - COZ) NI;;Unl< - _qO + Cl)g

20n \ - T ¢ -l =@y
: o (1 @A™ (10—l QDA™ (10— al)
w0 /41/ pn p.n

Relly (4", 4.) = Relli (¢". ) ZZ/ [zszf{ P —@F T Pear- @ }

L[ @pNE (K== =) fH Q)N (K =—g"+Q}) w
29;{ ( fQZ)Z_(Qi)Z + ( 0_ = p)2_(Q§€) }:| +Re(HP )eB—Vac(qH’eB) (51)

}] +Re(IT) 5 yoc (4 €B) (50)

it 0. = -senieyann ()3 Z [ St e o+ 2rtwhron)

n=0[=

0
(N2 (0 = =} )8(q" —wi—wZH ﬁi”n;(koZwi)5(flo+wi+w}3)}+{f(wi)+f(w§i)+2f(wi)f(w$)}

(AP (K0 =~ )3(q° = o+ ) +- A% (K = 0l)6(q0 + ol — 02))] (52)
o (ntl)
Imﬁ’&”(qo’qz) = %Imﬁlﬁ(qo,qz) —sign(q° tanh( >”n§_% Z /:6;]:49292
X ({1 = f7(Q0) = F(Q) + 2~ (QfH (@)D (K = —@1)3(¢° — @} — )
{1 = Q) = (@) + 2 () F (@) IV (K = @)8(q° + @ + @)
+{=f7(Q) = (@) + 2 (@ (Q)IND, (K = —0)3(¢° - @ + )
=/ (Q) = £ (@) + 2 Q) (@) N (K = @))8(q” + @ - ), (53)
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where A" (q).k)) and ./ng’nl(qu,ku) can be read off

mnl

from Egs. (E5) and (E8). The presence of Kronecker
delta functions in the expressions of N’ (¢,.k|) and

N ’];f’n,(qH . k) has eliminated one of the double sums, or in

other words, the sum over index / now runs from (n — 1) to
(n+1).

V. LORENTZ STRUCTURE OF THE
VECTOR BOSON SELF-ENERGY
IN MAGNETIZED MEDIUM

In this section, we will derive the tensorial decomposi-
tion of the massive vector boson self-energy. We note that
the self-energy I1**(g), being a second rank tensor, has 16
components which will mix among themselves with the
change of frame. It is useful to use linearly independent
basis tensors (constructed with the available vectors and
tensors) to express I1#/(q) so that the form factors (cor-
responding to each basis) remain Lorentz invariant. This
will also enable one to solve the Dyson-Schwinger equa-
tion in order to obtain the complete interacting vector boson
propagator. In order to proceed, we first note that the vector
boson self-energy satisfies the following constraint:

["(q) =11"(q) and ¢, I1"(q) =0.  (54)

Let us first consider the pure-vacuum case, i.e., for zero
temperature and zero external magnetic field. In this case,
the only available vector is the momentum ¢* along with
the metric tensor ¢"* so that I1**(q) is a linear combination
of g"q" and ¢, i.e., 11" (q) = (¢ + a»¢"q"). Imposing
the constrains of Eq. (54), we get a; +aqg®> =0,
which makes the only possible Lorentz structure of the
self-energy as

Y
™ = a, <g”” - qq;’ ) (55)

where the Lorentz invariant form factor a; = a; (¢*) =311¥,,.
Note that, with ¢ and ¢**, the only possible Lorentz scalar
that can be formed by contracting with IT*(g) is the
quantity g, 11" = II*,, implying the existence of only one
form factor.

We now consider the case with finite temperature but
zero magnetic field. In this case, we have an additional
four-vector #* (medium four-velocity) along with ¢* and
g*. This makes I[T"* be a linear combination of ¢**, ¢*¢",
utu”, g'u”, and ¢*u*, i.e.,

[1"(q) = (1 ¢ + 0q"q" + azu'u” + auq'u” + asq’q").
(56)

However, imposing the constrains in Eq. (54), we find the
relationship among the coefficients

a5 =y (57)
a +ag* +ay(qg-u) =0 (58)
a3(q - u) + ayq* =0, (59)

which makes only two of the coefficients independent.
Choosing a; and a, as independent, we get

2
q 1
) g =o |g*+ utu? — Hub + ”u"]
q* 7’
+a [q"q”+(q.u)zu"u”—(q,u)(q”u”+q”u”)],
(60)

where the Lorentz invariant form factors a; = a,(q%, q - u)
and @, = a,(g>, q - u) can be obtained by contracting both
sides of the above equations with g, and u,u, so that the
form factors will become functions of the Lorentz scalars
g I =T1¥,, and u,u,I1". Note that, with ¢*, u*, and ¢"*,
only two possible Lorentz scalars that can be formed by
contracting with II*(g) are the quantities I1*, and
u,u, 11", implying the existence of only two form factors.
Unlike the pure-vacuum case given in Eq. (55), here, the
decomposition of I[T* in Eq. (60) is not unique. As already
mentioned, it is useful to construct linearly independent
(and mutually orthogonal) basis tensors [note that the basis
tensors within square brackets in Eq. (60) are not mutually
orthogonal]. One such choice of orthogonal tensor basis
could be

q"q" _uu
P = g — _
1 <g q2 ﬁz

where

i =yt — (qq.zu) q", (62)

which is constructed from u* by subtracting out its
projection along g*. It is easy to check that Pi* and P%”
satisfy all the properties of projection tensors, i.e.,

g(lﬁp/ilapey = 5P’W

;P and g,,/,»gWPf’an” =5;. (63)
Therefore, IT"Y can be written as

" (q) =10,(q% g - u)P{* + T (¢*, q - u)Py*,  (64)

where the form factors are
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1 1
,(q* q-u) = 5 <H/‘ﬂ - Euﬂuuﬂf‘”> and
1
(g% q-u) = <~_2 ”ﬂuvnﬂy)- (65)
i

Care should be taken when considering the special case like
g = 0[35]. To see this, let us consider g’ = |g|n’ so that the

spatial components of the projectors at g = 0 become (in
the LRF)

PY =gl 4 nin/ and PY = —ninl. (66)

This implies that the spatial components of self-energy at
vanishing three-momentum

M(¢°.§ =0) =g/ +n'n/ (T, ~Th)  (67)

depend on the direction of g even at |g| =0. This
ambiguity is eliminated by setting an additional constraint
on the form factors as IT,(¢°, § = 0) = I1,(¢°, g = 0).

Following the same strategy, we now construct a suitable
orthogonal tensor basis for the vector boson self-energy at
finite temperature under external magnetic field. In this
case, we have an additional four-vector b* (corresponding
to the magnetic field direction) along with ¢*, u*, and ¢**.
This makes the symmetric I[T* be a linear combination of
seven tensors as

" (q) = a1 0" + axq" ¢* + azutu” + a,b*b*
+ as(q'u’ + ¢*u*) + ag(g"b* + q*b*)
+ o7 (u'b* + u*b). (68)

However, imposing the constrains in Eq. (54), we find the
following relationship among the coefficients,

ay+aq* +as(q-u) +ag(q-b) =0 (69)
a3+ asq® + az(q-b) =0 (70)
ay(q-b) + asq> + (g -u) =0, (71)

which makes only (7 -3 =4) four of the coefficients
independent. The Lorentz invariant form factors a; =
a;(¢*>.q-u,q-b) with i =1,2,...,7 can be obtained by
contracting both sides of the above equations separately
with g, u,u,, b,b,, and u, b, so that the form factors will
become functions of the Lorentz scalars 11, wu,u, 11",
b,b, 1", and u, b, 11", Note that, with ¢*, u*, b*, and ¢,
only four possible Lorentz scalars that can be formed by
contracting with TI**(g) are the quantities T1,,, u,u,IT",
b,b, 11", and u,b, 11", implying the existence of only four
form factors. Like the finite temperature case, here, the
decomposition of I1* is also not unique. One convenient
choice of tensor basis could be

P — ( o q:’]g” _ u’b‘t ”_ 5;’3”) (72)
- (2) ™
P (5;’;9”) (74)
o = W(ﬁ"l}” + @b, (75)
where @#* is defined in Eq. (62) and b* is defined as
E”zb”—@q”—%ﬁ”. (76)

The basis tensors in Eqgs. (72)—(75) satisty the following
relations:

ga/}g;wp ’,'MP fy = 5ij (77)
ap9u Pi* QP =0 (78)
Jap9u Q1O =2 (79)
gaﬁ’PIimPfD = 5ijpliw (80)
9apQ"* Q" = PY + P (81)
gaﬁpﬁmQﬂ” = gaﬁQ’mva =0 (82)
Gop P Q¥ = g QP = b,, (8)

NI_/’“M

HO Ay p_ U
gaﬁP3 Q/D - ga/jQ”"’Pz - 17[252 .

(84)

Using the basis given in Egs. (72)—(75), the self-energy at
finite temperature under external magnetic field can be
written as

" (q) = 1, PY" + Py + 1L P5Y + T1;0M, (85)

where the form factors are obtained as

1

Hﬁ = ﬁuﬂul,l_[”” (86)
1 b ir)? b
I, = 7 | bb P + CAR P AL I
u u
(87)

096004-9



GHOSH, MUKHERIEE, ROY, and SARKAR

PHYS. REV. D 99, 096004 (2019)

1 , (b-) )
I; = T u, b, I — = wu, u, I (88)
M, = (¥, —TI, —11,). (89)

Analogous to the case of only finite temperature, care
should be taken while considering the special case g; = 0.
To see this, let us consider ¢/, = |§, |n’ with i = 1,2 so that
the following components of self-energy at vanishing ¢ |
become (in the LRF)

IL;(¢% q1 = 0.q,) = N,g;; + nin; (11, — I1,) (90)

0
q
Hi3(‘107 q, =0, (]z) = —zninév (91)
9]

which depend on the direction of g, even at ¢g; = 0. This
ambiguity is eliminated by setting additional constraints on
the form factors as

Ha(qo’ q1 = 0, qz) = Hy(qo» q1 = 0, qZ) and
H5(q0, q. =0,q9.)=0. (92)

VI. INTERACTING p MESON PROPAGATOR
AND ITS LORENTZ STRUCTURE

Let us first consider the zero temperature and zero
magnetic field case for which the complete interacting p
propagator D is obtained by solving the Dyson-Schwinger
equation

D" = A" — AFeT],,DP, (93)
where
5 . 4"q
A = (—gﬂ n Z)Am,m,,) (94)
m
P

is the free vacuum Feynman propagator and IT* is the one-
loop self-energy of the p meson which has the Lorentz
structure given in Eq. (55) as

H U
= <g’”’ - _qqf >n, (95)

with the form factor I1 = %H” - In order to solve Eq. (93),
we rewrite it as

(D#)~h = (Am)~ 4TI, (96)
where (A*)™! = (¢* — m})¢" — ¢*q*, which satisfies

AP (A,)"! = ¢#,. Substituting " from Eq. (95) in the
above equation, we get the inverse of the complete

propagator, which can be inverted using the relation
D*(D,,)~! = ¢, to obtain the complete propagator as

vy o, 94 -1 3
DM@_( 7 q2><q2—m%+ﬂ>

We now consider the case of finite temperature and zero
magnetic field. As already mentioned in Sec. III, in RTF of
finite temperature field theory, all the two point correlation
functions become 2 x 2 matrices in thermal space. In this
case, the Dyson-Schwinger equation also becomes a matrix
equation [35],

"q"
2...2°
q-m;

97)

D = A — AF[T P, (98)

Each term of the above equation can be diagonalized in
terms of the respective analytic functions (denoted by a bar)
so that the above equation becomes an algebraic one,

D = A — Awef] D, (99)
where A* = A*. The above equation can be rewritten as

(D)~ = (Am)~! + T, (100)
In this case, the Lorentz structure of the thermal self-energy
function is given in Eq. (64) as
(q) =1 (g% q - w)PY" + I (q*.q - u)Py".  (101)
where the projection tensors and form factors are respec-
tively defined in Eqgs. (61) and (65). Substituting the above
equation in Eq. (100), we get the inverse of the complete
propagator. In order to obtain the complete propagator, we
write
D' = AP + AP + Eqtq (102)
and use the relation D**(D,,)~" = ¢, to extract A;, A,,

and ¢£. The final form of the complete interacting thermal
propagator is obtained as

_ P P
D =

2 02 II

q mp + 1

_q9"q
¢ —my+1,  g*m}

(103)

Finally, we consider the case with both finite temperature
and external magnetic field. In this case, we need to solve
the Dyson-Schwinger equation

(D")™ = (&)~ 11", (104)
where a double bar is used to denote the thermal self-energy

function and complete propagator under external magnetic
field as discussed in Sec. IV. In this case, the Lorentz
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structure of the thermal self-energy function is given in
Eq. (85) as

[ (q) = P + T,PY + 1, PY 4+ 11,0, (105)
where the basis tensors and form factors are given in
Egs. (72)—(75) and (86)—(89). Substituting the above
equation in Eq. (104), we get the inverse of the complete

propagator. In order to obtain the complete propagator, we
write

D" = AP + AgPy + APY + AQ" + Eq'q" (106)
and use the relation D" "(Eav)_l = ¢*, to extract the
coefficients as
A, = ! (107)
g -mi T,
Ap =7 2 qz_mz/2)+riy 2 (108)
(6] —m, +H},)(6] —m, +Hﬂ) _Hri
A = g —m +1 (109)
T(@ = my+ 1) (g = my + 1) — T
—I;,
Ay = (110)
(q* = m3 +T13)(g* — m3 +11,) — T13
-1
&= ol (111)
P

VII. ANALYTIC STRUCTURE
OF THE SELF ENERGY

In this work, we have considered the transverse momen-
tum of the p meson to be zero, i.e., ¢; = 0. As shown in
Eq. (92), for the special case ¢, =0, the additional
constraints to be imposed on the form factors are

Ha(qo’ q, = 0, qz) = H;/(qo’ q1 = 0, qZ) and
5(¢°, g, =0, q:) = 0. (112)
Using the above constraints, we get from Egs. (86)—(89)

1 1

Ha:Hy:§<_”ﬂ—$uﬂu,,ﬁ’w> (113)
1 SUY
I, = 0, (115)

which imply that we need to calculate only the two
quantities [T, and u,u, [T = 1%, These are obtained from

Egs. (50)—~(53) by contracting them with g, and u,u,. This
essentially means replacing N/** for all the loops with N# , or

N an explicit list for which has been provided in
Appendix F.

Let us now discuss the analytic structure of the self-
energy functions. We first consider the zero magnetic field
case. Each imaginary part of the self-energy function for zz
and NN loops as given in Eqgs. (22) and (23) contains four
Dirac delta functions. These delta functions represent
energy-momentum conservation, and they are nonvanish-
ing in a certain kinematic domain. They are termed the
unitary-I, unitary-II, Landau-Il, and Landau-I cuts as
they appear in those equations. The kinematic regions
for the unitary-I and unitary-II cuts are given by [35]
VE+4m? <¢® <o and —o0 < ¢° < —\/G* + 4m3,
whereas the same for the two Landau cuts are |¢°| < |§],
where m; is the mass of the loop particle, i.e., m; = m, or
my. These cuts correspond to different physical processes
such as decay or scattering. For example, unitary cuts
correspond to the decay of p° into a z* 7~ or NN pair, and
the Landau cuts correspond to the scattering of a p° with a
pion or nucleon producing the same in the final state along
with their time reversed processes. If we restrict ourselves
to the physical timelike kinematic regions defined in terms
of ¢° > 0 and ¢*> > 0, then only the unitary-I cut contrib-
utes. It is important to note that a nontrivial Landau cut
appears in the physical timelike region only if the loop
particles have different masses and lie in the kinematic

domain |g| < ¢° < \/q* + Am*> where Am is the mass
difference of the loop particles.

Let us now consider the case of both finite temperature
and nonzero external magnetic field. In this case, the
imaginary parts of the self-energy as given in Egs. (52)
and (53) also contain four Dirac delta functions corre-
sponding to the unitary and Landau cuts. It is important to
note that the arguments of the delta functions contain only
the longitudinal dynamics (because of dimensional reduc-
tion), which implies that the analytic structure of the self-
energy functions will only depend on the longitudinal
momentum of p. On the other hand, the transverse
dynamics has appeared as Landau level-dependent dimen-
sionally reduced effective mass to the loop particles as
given in Eq. (35). Therefore, even if the loop particles have
the same masses, a nontrivial Landau cut may appear in the
physical timelike kinematic domain if the two loop par-
ticles reside in different Landau levels. Physically, this
means that p° can get absorbed in a scattering with a pion or
a proton in a lower Landau level, producing another pion or
proton in a higher Landau level as the final state. Detailed
discussions on the analytic structure in the presence of
external magnetic field can be found in Refs. [31,38]. The
unitary-I and unitary-II terms for the zz loop are non-

vanishing in the kinematic domains /g2 + 4(m2 + eB) <
q" < o0 and —c0 < ¢° < —\/q? + 4(m2 + eB), whereas
the kinematic domain for both the Landau cuts is
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l°| < \/q§ + (\/m,2,+eB— \/m,2,+3e3)2. (116)

The corresponding kinematic domains for the NN loop are

\/m<qo<oo and —oo<q0<—\/m

for the unitary-I and unitary-II cuts respectively and

l4°] < \/qf + (my —/my +2eB)*  (117)

for the Landau cuts. Note that the threshold of the Landau
cuts appears when the dimensionally reduced effective
mass difference between the loop particles is the maximum.
As can be seen from Egs. (52) and (53), for a particular
|

value of the index n, the sum over the index / runs only for
three values (n — 1), n, and (n + 1), which implies that the
Landau level difference between the loop particles can be at
most 1. Thus, the maximum difference in their dimension-
ally reduced effective mass appears when one of them is at
the lowest Landau level and the other one is at the first
Landau level, which in turn defines the Landau cut
threshold in Eqgs. (116) and (117).

We now simplify the expressions of the imaginary parts
given in Egs. (22), (23), (52), and (53) by evaluating one of
the integrals using the Dirac delta functions. For the
imaginary parts at zero magnetic field, we evaluate the
d(cos @) integrals and get (after imposing the kinematic
restrictions discussed above)

= 0 1 @
Il (¢°, ) = —sign(¢°) tanh <2q—T> 16al3] { / d(wg, Q) (UTN) (cos 6 = cos eg»N)@(qO —\/3+ 4m,2,N)
’ 7| LJw_ ’

+ /_ - dmk(U;"N)"”(cosH = cos 96”’N)®(—q0 —\/q + 4m,2r’N>

" / day (LTNY" (cos § = cos 0)0(=1¢"| +1q])

where
ﬁ [4°q> £1G|A"/*(q>.m2,m2)]  for zxloop
w4 = . ,
2]7 [4°q% & |g|4'/* (g%, m%,m3)]  for NNloop
(119)

(U = {1+ flox) + flw,) + 2f (@) f(@,) }

x N (KO = —ap), (120)
(U = {1+ flan) + flw,) + 2f (0i) f(@,)}
x N¥(K0 = ay), (121)

(LI = {f(ox) + f@p) + 2f (01) f(0,) INZ (K = @),
(122)

(L3) ={f (@) + f (@) +2f (@) f(w,) INZ (K = —wy.),
(123)

(U ={1= () = £1(Q,) + 2 (Q)f(2,)}
X NE(KO = =), (124)

+ / do (L5N)* (cos @ = cos 95™)O(—|¢°| + |Z]'|)]

(118)

[
(O = {1 = fH () = [(Q,) + 211 () (2,)}
x N (K = Q). (125)

(LYY = {=f"(Q) = fH(Q,) + 21 Q) (Q,)}

X NE (KO = ), (126)

(L) =A{=f7(Q) = F7(Q,) +2f7(Q)f™(2,)}

x N (KO = —). (127)
-2 0 2
cos 0 = <7q i)kj— 1 ) (128)
2|q||k]
2 0 2
cos 8" = (W), (129)
2|q][k]
-2 OQ 2
cos O = (M) (130)
2|q||]
and
24°Q 2
cosOp = <q+i—q> (131)
2|q |||
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with A(x,y,z) = x*> + y*> + 72 — 2xy — 2yz — 2zx being the Killén function.
For the imaginary parts at finite magnetic field, we evaluate the dk, integrals in Eqs. (52) and (53) using the Dirac delta
functions. The imaginary part due to the zz loop simplifies to

o (n+1)
Il (", = —sign(q”) anh (1) > Z i qH s 3 [0k = R)0(4 = 2+ -+, 2)
n= b k.€k:

+ (08, (k. = £)0(=" = \ /a2 + (m; + m, )
+ (Lf ) (k, = k,)O(¢° — min(q.. E£+))0(-¢" + max(q.. E))
(L5, (k. = K)O(=¢ = min(q.. E+))0(q" + max(qz. E1))] (132)

where

(U5, = {1+ £64) + £(@) + 24 (@) F(@R)} (U = U @)+ J05) + 2 (@7 05)

x N* (kK0 = —@!), 136
% N;;[unl(k _wi) (133) nnl( wk) ( )
(OF )" = {1+ f(@)) + (@) +2f (@) f (@)} with k5 = 5 [=vq: = |¢°4"2(gf. mbomi)).y =
X Nl:zunz(k = @}), (134) (qﬁ +m? —m3), wk—\/kz—l-m,, and E, =
- my=m, 2

(T = @) + F(@) + 27 @) f(y)} ] V02 (m £ m,)*

cur 10 m The corresponding expression of the imaginary part due
X Ny (K7 = @), (135) (o the NN loop reads

- 1 ~ o (n+1)
Vi 0 _ Vi 0
ImIT (¢°, q.) —EImH’IiI (¢°.q.) —sign(q tanh<2T> g E 4/11/2 qH,Mlz,MZ)

n=0 [=

< 3 [@, z=h>®(q°—¢q§+<M,+Mn>2)

k.ek*

(O (k= E)0(~g D= \Jai+ M+ M)
+ (L], )" (k, = k,)©(g° — min(q,. E',))®(—¢" + max(q,. E.,))
+ (L5, (k, = k,)©(—¢° — min(q.. E.,))O(q° + max(qz’Eit))}’ (137)

where
(TR 0 = {=f () = f(S) + 2£ () F ()}

N x N* (k0 = —-Ql), 141
(k() _ _Qg{), (138) pnl( k) ( )

(OF ) = {1 = () = f(&) + 21~ () (Q5)}

Hv
prn,

(O}, = {1 = fHQ) = £ () + 21 Q) f (%)} with KT =3 2 (Y- £ 14 A2 (g M. M), Y =

x N (k0 =€), (139) (qﬁ +M?-M2%), Ql=\/KZ+M?, —and E, =
|M,iM I V@2 + (M, + M,)?. The first term on the rths of
(O], )7 = {=F(QL) = FH () + 2£(Q) £(Q1)} Eq. (137) is the contribution from the neutron-neutron loop
’ cuv (10 _ Al (which is not affected by the external magnetic field) of
x N2 (kY = ), (140) . o L .
p.nl k which the simplified form is given in Eq. (118).
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n, N

w, N

FIG. 1. Feynman diagram for the one-loop self-energy of the
neutral p meson.

VIII. NUMERICAL RESULTS

We begin this section by presenting the real and
imaginary parts of the in-medium self-energy functions
of p°. As can be seen from Egs. (89)—(115), we have only
two nonzero form factors for the self-energy, which are I1,,
and Il for g, = 0. Let us first consider the zero magnetic
field case for which the imaginary and real parts of I1, and
[, are depicted in Figs. 2 and 3 respectively. In Fig. 2(a),
ImlI, and ImII; due to the 7z loop are plotted as a function

of invariant mass (1/¢%) of p® for vacuum as well as for
medium (7 =160 MeV and pp =400 MeV) with
q, = 250 MeV. It is to be understood that in the case of
vacuum the two form factors are equal. In this case, the
only contribution comes from the unitary-I cut, which starts
at 2m, in the invariant mass axis. With the increase in
temperature, the degeneracy between the form factor gets
lifted as well as their magnitudes are enhanced with respect
to the vacuum. This is due to the enhancement of the
thermal factor in Eq. (120), which increases the available
phase space with the increase in temperature. The corre-
sponding results for the NN loop is shown in Fig. 2(b) for
which the threshold of the unitary-I cut is 2m . In this case,
with the increase in temperature and density, the imaginary
part decreases slightly with respect to the vacuum, which
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03 r ; ]
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FIG. 2.
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FIG. 3. Real part of the self-energy of p° as a function of

invariant mass at zero magnetic field and at temperature T =
130 MeV with p° three-momentum |g| = 250 MeV. The con-
tributions from the NN (Nucleon-Nucleon) loop are shown for
two different values of baryon chemical potential (uz = 200 and
400 MeV).

can be understood from Eq. (124), where, because of the
negative signs in front of the thermal distribution functions
of the nucleons, the thermal factor reduces with the increase
in temperature, thus showing opposite behavior as com-
pared to the zz loop.

In Fig. 3, Rell,, and Relly are shown as a function of p°
invariant mass at zero external magnetic field with p°
longitudinal momentum ¢, =250 MeV at temperature
T =130 MeV. For the zz loop, the real part is positive
at low invariant mass and becomes negative in the high
invariant mass region in contrast to the NN loop for which
the contribution to the real part is always negative. The real
part due to the NN loop is shown for two different values
of baryon chemical potential, yz =200 and 400 MeV.

200 T T T

Vacuum ——
T =160 MeV, ug =400 MeV - o -------
T =160 MeV, ug =400 MeV - -----
150

100

Im IT (GeV?)

50

b
0 ( ) 1 1 1
1.8 2 2.2 2.4

Invariant Mass (GeV)

Imaginary part of the self-energy of p® as a function of invariant mass at zero magnetic field and at p° three-momentum

|g| = 250 MeV. The vacuum self-energy for T = ugz = 0 is compared with the in-medium one obtained at temperature T = 160 MeV
and baryon chemical potential uz = 400 MeV for the (a) zz loop and (b) NN loop.
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For low values of 3, the contribution of the NN loop is almost
of the same order as the zz loop; however, at high pp, the
contribution from the NN loop dominates over the zz loop.

We now turn on the external magnetic field. For the
check of consistency of the calculation at nonzero magnetic
field, it is essential that eB — 0 limit of nonzero magnetic
field results reproduces the eB = 0 one. In order to take the
eB — 0 limit numerically, we have considered up to 500
Landau levels for a convergent result. We have shown the
imaginary part of the self-energy as a function of invariant
mass of p° with longitudinal momentum ¢, = 250 MeV at
temperature 7 = 130 MeV and at baryon chemical poten-
tial up = 300 MeV for the two cases: eB = 0 and eB — 0
in Fig. 4 separately for the zz and NN loops. Figure 4(a)
shows ImlI1,, for the zz loop in which the eB — 0 graph has
a series of spikes infinitesimally separated from each other
all over the whole invariant mass region, whereas the eB =
0 graph is finite and well behaved. Interestingly, the eB —
0 graph does not miss the eB = 0 curve, which implies that
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0.5 r 1
O \
5 04 | nn - Loop |
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= 100 f T =130 MeV, pg =300M -
= q, =250 MeV
50 1
(©)
0 AAAAA Ahdedhded b b A A Addhdh 1 1
1.6 1.8 2 22 2.4

Invariant Mass (GeV)

when average is done the eB =0 line will be exactly
reproduced. The appearance of these spikes is due to the
“threshold singularities” [31,38,39] at each Landau level,
as can be understood from Eq. (132), where the Kéllén
function goes to zero at each threshold of the unitary and
Landau cuts defined in terms of the unit step functions
therein, which is a consequence of the dimensional reduc-
tion. In order to extract physical and finite results out of
these spikes, we have used Ehrenfest’s coarse-graining
(CG) [38,40,41]. In this method, the whole invariant mass
region has been discretized in small bins followed by bin
qﬁ is
approximated by its average over the neighborhood around
that point. This in turn smears out the spikelike structures.
As can be seen in the figure, after CG, Imll, exactly
matches with the analytic eB = 0 graph. The correspond-
ing comparison of the eB — 0 and eB = 0 result for ImIly
due to the zz loop is shown in Fig. 4(b). In this case, the

averages. In other words, the self-energy at a given
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0.6
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02 r 1
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(b)
0 1 I 1 1
0 0.2 0.4 0.6 0.8 1
Invariant Mass (GeV)
200 T T T
eB>0 —
eB=0 ——
eB — 0 (Coarse-Grained) —4—
150 r 1
“—
= NN - Loop
Qo
;;L 100 | T=130MeV, pug =300 Me J
= q, =250 MeV
50 1
()
0 AAAAA b ddedoddd Toww\ 1 1
1.6 1.8 2 22 2.4

Invariant Mass (GeV)

FIG. 4. The imaginary parts of the form factors as a function of the invariant mass at eB = 0 have been compared with the imaginary
parts at nonzero magnetic field in the numerical limit eB — 0 at temperature 7 = 130 MeV and at baryon chemical potential pz =
300 MeV with p” longitudinal momentum g, = 250 MeV. The contribution due the 7z loop from the form factors I1,, and I1; are shown
in panels (a) and (b) respectively. The corresponding contributions due the NN loop are shown in panels (c) and (d). The respective CG
quantities from the eB — 0 results are also shown in (a), (c), and (d).
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eB — 0 graph is finite and free from the threshold
singularities, and it exactly matches the eB = 0 graph.

The absence of the threshold singularities in this case is due

to an overall factor of Kéllén functions coming from N (,)[?nl

in Eq. (133), which cancels the Killén functions in the
denominator of Eq. (132). Thus, the ImIl; due to the 7z
loop does not require being coarse grained.

The corresponding results for the NN loop is depicted in
Figs. 4(c) and 4(d). In this case, both the ImlII, and ImIl,
suffer threshold singularities, as there is no overall Kéllén
functions coming from A tu- So, both the form factors
have to be coarse grained, after which they exactly
reproduce the eB = 0 graphs.

We now turn our attention to the real part of the self-
energy at nonzero magnetic field and show how a numeri-
cal limit of eB — 0 agrees with the eB = 0 results. This has
been shown in Fig. 5, where the real part of the form factors
is shown as a function of p° invariant mass with longi-
tudinal momentum ¢, = 250 MeV at temperature T =
130 MeV and at baryon chemical potential up =
300 MeV for the two cases eB — 0 and e¢B = 0. The
contributions from the zz and NN loops are shown
separately. Figure 5(a) depicts Rell,, whereas Fig. 5(b)
shows Rell;. As can be seen from the figure, the eB — 0
graphs exactly reproduce the eB = 0 for the case of the NN
loop, whereas, for the zz loop, eB — 0 is slightly deviated
from the eB = 0 graph but with an excellent qualitative
agreement in their behavior with respect to the variation of
the invariant mass of p°. This small disagreement between
the eB — 0 and eB = 0 graph is due to the inaccuracy in
the numerical principal value integration of Egs. (20) and
(50) for which the two-particle bound state threshold

1/ qﬁ > 2m, = 280 MeV is less than the p° mass pole
m, = 0.770 (in contrast, for the NN loop, the two-particle

bound state threshold is at qﬁ > 2my = 1.878 GeV,

much higher than the range of the plot).

Having checked the consistency of the nonzero magnetic
field calculations, we now proceed to present the imaginary
part of the self-energy for nonzero values of the magnetic
field. In Fig. 6, the variation of ImI1, is shown as a function
of p° invariant mass with longitudinal momentum ¢, =
250 MeV at temperature 7 = 130 MeV and at baryon
chemical potential pz = 300 MeV. We have plotted the

self-energy up to qﬁ = 1.5 GeV for which the unitary cut

of the NN loop does not contribute. Figure 6(a) depicts
ImII, at magnetic field eB = 0.05 GeV?, in which the
spikes get separated from each other by a finite value and
the form factor oscillates about the eB = 0 graph. This is
more clearly visible in the CG points, which are used to
obtain a coarse-grained interpolated (CGI) graph. Figure 6
(b) shows the CGI imaginary parts at two different values of
the magnetic field (eB = 0.05 and 0.10 GeV?); both of
them are found to oscillate about the eB =0 graph.
Moreover, with the increase in magnetic field, the oscil-
lation frequency decreases with an increase in the oscil-
lation amplitude. This behavior of the imaginary part with
increasing magnetic field is consistent with Fig. 4, where
for the eB — 0 case the oscillation frequency becomes
infinite and the amplitude becomes zero, thus reproducing
the eB = 0 graph. Also, with the increase in magnetic field,
the threshold of the unitary cut moves toward the higher
invariant mass value, as discussed in Sec. VII. This has
been shown clearly in the inset plot.

The corresponding results for the Imll; due to the 7z
loop as a function of p° invariant mass with longitudinal
momentum ¢, = 250 MeV at temperature 7' = 130 MeV
and at baryon chemical potential up = 300 MeV are shown
in Fig. 7 for the two different values of the magnetic field
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FIG. 5. The real part of the form factors as a function of the invariant mass at eB = 0 have been compared with the real part at nonzero

magnetic field in the numerical limit eB — 0 at temperature T = 130 MeV and at baryon chemical potential ugz = 300 with p°
longitudinal momentum ¢, = 250 MeV. The contributions from the form factors (a) I1, and (b) I1; are shown separately due to the 7z

and NN loops.
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FIG. 6. The contribution from the form factor ImIT,, to the imaginary part of the p° self-energy is shown as a function of invariant mass
at temperature 7 = 130 MeV and at baryon chemical potential 5z = 300 with p° longitudinal momentum g, = 250 MeV for (a) two
different values of magnetic field (eB =0 and 0.05 GeV?) and (b) three different values of magnetic field (eB = 0, 0.05, and
0.10 GeV?). The CG as well as CGI results are shown in (a), whereas (b) shows only the CGI results. The inset plot in (b) shows the
movement of the unitary cut threshold by focusing on a smaller range of invariant mass.

eB = 0.10 and 0.20 GeV?. Analogous to ImIT,,, Imlly also
oscillates about the ¢B = 0 curve, but in this case, the
oscillation frequency is much smaller as compared to
ImIT,. The threshold of the unitary cut moves toward
higher invariant mass with the increase in magnetic field as
clearly depicted in the inset plot.

As discussed in Sec. VII, a nontrivial Landau cut
contribution in the presence of external magnetic field
may appear even if the loop particles have the same mass.
In this case, we have observed Landau cut contribution only

8 T T T T T T
> ]
eB =0.10 GeV, ——=~ T =130 MeV, ug = 300 MeV  J
eB =0.20 GeV~ -
eB=0 —— q, =250 MeV /
6+ 0.6 &
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= 471 03 |
=
g 0.2
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2l i
0
0.6
0 . i fan 1 L
0.8 1 1.2 14
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FIG. 7. The contribution from the form factor Imll; to the
imaginary part of the p° self-energy is shown as a function of
invariant mass at temperature 7 = 130 MeV and at baryon
chemical potential up = 300 with p° longitudinal momentum
q, =250 MeV for three different values of magnetic field
(eB =0, 0.05, and 0.10 GeV?). The inset plot shows the
movement of the unitary cut threshold by focusing on a smaller
range of invariant mass.

in ImI1,, whereas the Landau cut does not appear in ImIT,.
This can be understood from the expressions of the trace
and 00 component of N7, and N7, as given in

Appendix F. It can be noticed that, for both the zz and
proton-proton loops, the expression for the trace (i.e., N Z)
contains two additional Kronecker delta functions &7+
along with 7, which is absent in the expressions for the 00
component (i.e., N OO) [see Egs. (F6)—(F9)]. This implies
that, for ImI1,, the loop particles can be in different Landau
levels, whereas for ImI1y, the loop particles will always stay
in the same Landau levels. Thus, as discussed in Sec. VII,
the nontrivial Landau cuts will appear only in ImII, and not
in ImlI1. The contribution of the CGI Landau cuts to ImII,
as a function of p° invariant mass with longitudinal
momentum ¢, = 250 MeV is shown in Fig. 8. It is to
be noted that the Landau cuts also contain the threshold
singularities and thus have to be coarse grained. Figure 8(a)
shows the variation of ImlI1, at temperature 7 = 130 MeV
and at baryon chemical potential yz = 300 MeV for three
different values of the magnetic field (eB = 0.05, 0.07, and
0.10 GeV?), whereas Fig. 8(b) shows the corresponding
variation at magnetic field (eB = 0.10 GeV?) for two
different values of temperature (7 = 100 and 130 MeV).
The contributions due to the zz loop and proton-proton
loops are shown separately and in Fig. 8(b); the contribu-
tion due to the proton-proton loop is shown for two
different values of baryon chemical potential (1 = 200
and 300 MeV). As can be seen from the figures, the
threshold of the Landau cuts due to the zz loop is different
(greater) than that of the proton-proton loop, which can be
understood from the discussions of Sec. VII. The threshold

for the 7z loop is /qﬁ < (\/m2 + eB — \/m% + 3¢B),
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FIG. 8.

The contribution from the form factor I, to the Landau cut of the CG imaginary part of the p° self-energy is shown as a

function of invariant mass with p° longitudinal momentum ¢, = 250 MeV (a) at temperature 7 = 130 MeV and at baryon chemical
potential uz = 300 for three different values of magnetic field (eB = 0.05, 0.07 and 0.10 GeV?) and (b) at magnetic field eB =
0.10 GeV? for two different values of temperature (7 = 100 and 130 MeV) and at baryon chemical potential (x5 = 200 and 300 MeV).
The contributions from the zz and NN loops are shown separately, and the latter is scaled with different factors for the sake of

presentation.

whereas the same for the proton-proton loop is qﬁ <

(my — \/m3 + 2eB). The shift of the Landau cut threshold
toward the higher invariant mass values with the increase in
magnetic field can be clearly seen in Fig. 8(a). It is observed
that the magnitude of the Landau cut contribution due to the
proton-proton loop is much less than that of the zz loop at
lower values of the magnetic field, and they become
comparable to each other only at eB > 0.10 GeVZ. In
Fig. 8(a), we observe that with the increase in temperature
and density the Landau cut contribution increases without
changing its threshold in the invariant mass axis.

We now turn our attention to the real part of the self-
energy at finite temperature under external magnetic field.
In Fig. 9, we show the thermal contribution to the real part
of the self-energy as a function of invariant mass with p°
longitudinal momentum ¢q, = 250 MeV at temperature
T =130 MeV and at baryon chemical potential pp =
300 MeV for two different values of the magnetic field
(eB = 0.05 and 0.10 GeV?). The contributions from the 7z
and NN loops are summed up in this figure. We notice that,
with the increase in magnetic field, the thermal contribution
to the real part of the self-energy oscillates about the eB =

0 curve. The oscillation frequency decreases and the
oscillation amplitude increases with the increase in mag-
netic field.

Next, in Fig. 10, the eB-dependent vacuum contribution
to the real part of the self-energy is shown as a function of
p° invariant mass with longitudinal momentum ¢, =
250 MeV for two different values of magnetic field
(eB = 0.10 and 0.20 GeV?). Figures 10(a) and 10(b) show
the contributions from II, and Il; respectively. The con-
tributions due to the zz and proton-proton loops are shown

separately. First of all, we note that at eB = 0 these term
will vanish. With the increase of the magnetic field, the eB-
dependent vacuum term also increases, and the contribution
of Il; is more than II,,.

Having obtained the real and imaginary parts of the self-
energy, we now proceed to evaluate the in-medium spectral
functions of p° under external magnetic field. We have from
Eq. (106) the complete p° propagator as

D™ = AP\ + ApPy + AP+ A;0" +Eq"q", (142)

where the coefficients are given in Eqs. (107)—(111) and the
basis tensors are provided in Egs. (72)—(75). Since we will
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FIG. 9. The real part of the thermal self-energy of p° as a
function of invariant mass at temperature 7 = 130 MeV and at
baryon chemical potential p; = 300 MeV with p® longitudinal
momentum g, = 250 MeV is shown for three different values of
magnetic field (0, 0.05, and 0.10 GeV?).
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FIG. 10. The eB-dependent vacuum contribution to the real part of the self-energy of p° as a function of invariant mass with p°
longitudinal momentum ¢, = 250 MeV is shown at two different values of magnetic field (eB = 0.05 and 0.10 Gev?) for the form
factors (a) I, and (b) Ilz. The contributions due to the zz and proton-proton loops are shown separately.

be considering the special case g, = 0 for which I1, =TI,

and I1; = 0 as given in Eq. (112), the coefficients in the
above equation become
= < ) (143)
q‘ - m +1I
= < ) (144)
q‘ - m + 1l
( ) (145)
q‘ - m +11I
As; =0 (146)
- (147)
qim;

so that the complete in-medium interacting propagator is
given by

P Py
(Qﬁ - m}+11,) (Clﬁ — mj +1lp)

D*(q°.q,) =

H v
N Py _ 99
(g7 —mp + 1) gqim)

(148)

It is clear from the above equation that there will be three
modes for the propagation of the p° meson in the
magnetized medium for the vanishing transverse momen-
tum of p°. Of the three modes, two are found to be
degenerate (the first and third terms on the rhs of the
above equation), leaving two distinct modes for the
propagation of p°, which we denote as mode-A and
mode-B.

We now define the spectral function S, of p° for the two
distinct modes as the imaginary part of the complete
propagator, which is obtained from Eq. (148) as

() _ —1
oo tm [Tm}
aj ="M T Ha

ImlII,

= 149
(qﬁ - m/21 + Rel—[(l)2 + (Imna)z ( )
and

B) _ -1 }

Sy =Im|——5——

’ {qﬁ - m% + 11,

ImII

5 (150)

N (qﬁ — m3 + Rellg)? 4 (ImIlg)*

In Fig. 11, the spectral function for the two modes at zero
magnetic field is shown as a function of p° invariant mass
with p° longitudinal momentum ¢, = 250 MeV at baryon
chemical potential uz = 300 MeV for three different val-
ues of temperature (7 = 100, 130, and 160 MeV). The
vacuum spectral function (which is the same for the two
modes) is also shown for comparison. We find that the
spectral functions have a nice Breit-Wigner shape around
the p° mass pole with a width O(150 MeV) corresponding
to the decay of p° — z* 7. With the increase in temper-
ature, the width of the spectral function increases, and the
peak decreases. Physically, it corresponds to the enhance-
ment of the decay process in the medium, implying that the

p° become more unstable at a high temperature. It is

important to note that, for the invariant mass region shown
in the plot, the imaginary part of the self-energy that enters
in the calculation of the spectral function is completely due
to the unitary-I cut of the zz loop. On the other hand, the
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FIG. 11. The in-medium spectral function of p° as a function of

invariant mass at zero magnetic field and at baryon chemical
potential yz = 300 MeV with p° longitudinal momentum g, =
250 MeV is shown for three different values of temperature
(T =100, 130, and 160 MeV) and for different modes. The
vacuum spectral function is also shown for comparison.

real part of the self-energy that enters in the spectral
function calculation has contributions from both the zz
and NN loops.

It can be noticed that, even at a higher temperature
(T ~ 160 MeV), the peak of the spectral functions have
marginal shifts over the invariant mass axis which corre-
spond to a negligible mass shift of the p meson with respect
to its vacuum mass. This is in agreement with the fact that,
based on consideration of chiral symmetry alone, the mass
of the p meson does not change to O(T?) [42]. At and
above the critical temperature, chiral symmetry requires
that the vector and axial-vector spectral function are
identical [43] and is demonstrated in Ref. [44] using the
sum rule approach. However, scenarios of the p mass shift
proposed by Brown and Rho [45] are also not ruled out, and
the behavior of the p meson mass can only indirectly be
related to the chiral symmetry restoration. Though a
significant shift of the p mass has also been reported in
Ref [46] using the Walecka model, the underlying phe-
nomena behind this effect cannot be related to the partial
restoration of chiral symmetry of QCD. Moreover, a
majority of experiments does not find evidence for the
mass shift of the p meson in the medium, but rather a
broadening of the spectral function is reported [47].

We now turn on the external magnetic field and show the
spectral function of p° as a function of its invariant mass for
the two modes in Fig. 12. The range of the invariant mass
axis is taken as 0.5-1.2 GeV, which is dominated by the
unitary cut contributions from the zz loop. In Fig. 12(a),
the spectral function with p° longitudinal momentum ¢, =
250 MeV at temperature 7 = 130 MeV and at baryon
chemical potential up = 300 MeV is shown for three
different values of the magnetic field (eB = 0.10, 0.15,

and 0.20 GeV?). It is observed that, with the increase in the
magnetic field, the two modes get well separated from each
other and the threshold of the spectral function moves
toward higher values of the invariant mass, corresponding
to the magnetic field—dependent unitary cut threshold of the
imaginary part of the self-energy. At sufficiently high
values of the magnetic field, the spectral function misses
the p° mass pole (770 MeV) so that it loses its Breit-Wigner
shape, which may be termed as p° “melting” in the presence
of magnetic field. The critical value of the magnetic field
for a given temperature and baryon chemical potential for
which the p® will melt is discussed later.

In Fig. 12(b), the spectral function with p° longitudinal
momentum ¢, = 250 MeV at magnetic field eB =
0.10 GeV? and at a baryon chemical potential up =
300 MeV is shown for three different values of temperature
(T = 100, 130, and 160 MeV). In this case, the threshold of
the spectral function remains fixed, and for both the modes,
the spectral function becomes shorter and wider with the
increase in temperature with a marginal shift of its peak.
The shift of the peak is due to the modification in the real
part of the self-energy with the change in temperature.

Figure 12(c) depicts the spectral function with p°
longitudinal momentum ¢, = 250 MeV at magnetic field
eB =0.10 GeV? and at temperature T = 160 MeV for
three different values of the baryon chemical potential
(up = 200, 300, and 400 MeV). Analogous to the previous
case, the threshold of the spectral function remains fixed for
both the modes. Since the baryon chemical potential only
affects the real part of the self-energy in the given kinematic
region, the peak of the spectral function changes its position
(keeping the width almost the same) with the change in
baryon chemical potential. It can be noticed that, in contrast
to Fig. 12(b), the peak position of the spectral function is
more sensitive to yp as compared to the temperature, which
is due to the dominant contribution coming from the
NN loop.

In Fig. 12(d), the spectral function at magnetic field
eB = 0.10 GeV? and at temperature 7 = 130 MeV with
baryon chemical potential 4z = 300 MeV is shown for two
different values of p® longitudinal momentum (g, = 0 and
500 MeV). In this case, the threshold of the spectral
function remains the same, and the height of the spectral
function increases with the increase of the longitudinal
momentum.

We have already mentioned that a nontrivial Landau cut
in the physical kinematic region would appear in the
presence of the external magnetic field. In our case, the
nonzero contribution to the Landau cut comes only from
the form factor ImIl,, which is reflected in the spectral
function of mode-A. In Fig. 13, the spectral function as a
function of p® invariant mass with p° longitudinal momen-
tum g, = 250 MeV is shown in the low invariant mass
region, which is dominated by the Landau cut contribution.
It can be observed that the magnitude of the spectral
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FIG. 12. The in-medium spectral functions of p° as a function of invariant mass are shown for different modes (a) at temperature
T = 130 MeV and at baryon chemical potential 4z = 300 MeV with p° longitudinal momentum ¢, = 250 MeV for three different
values of magnetic field (eB = 0.10, 0.15 and 0.20 GeV?), (b) at magnetic field eB = 0.10 GeV? and at baryon chemical potential
ug = 300 MeV with p° longitudinal momentum g, = 250 MeV for three different values of temperature (7 = 100, 130, and 160 MeV),
(c) at magnetic field eB = 0.10 GeV? and at temperature T = 160 MeV with p° longitudinal momentum ¢, = 250 MeV for three
different values of baryon chemical potential (15 = 200, 300, and 400 MeV), and (d) at magnetic field eB = 0.10 GeV? and at
temperature T = 130 MeV with baryon chemical potential g = 300 MeV for two different values of p° longitudinal momentum
(¢, = 0 and 500 MeV). The vacuum spectral function is also shown for comparison.

function in this region is much lower as compared to the
unitary cut regions. Figure 13(a) shows the spectral
function at temperature 7 = 130 MeV and at baryon
chemical potential up = 300 MeV for three different val-
ues of magnetic field (eB = 0.10, 0.15, and 0.20 GeV?).
As can be seen in the graph, the threshold of the Landau
cut moves toward the higher values of invariant mass
with the increase in magnetic field as a consequence of
similar behavior of the Landau cut, as shown in Fig. 8.
Also, the height of the spectral function is enhanced with the
increase in eB. Figure 13(b) shows the corresponding plots
of the spectral function at magnetic field eB = 0.10 GeV?
for four different combinations of temperature and baryon
chemical potential [(T=100MeV, up=300MeV), (T =
130 MeV,  up =300 MeV), (T =160 MeV, pup=
300 MeV), and (T =160 MeV, up =400 MeV)]. As
can be seen in the graph, the height of the spectral function

increases with the increase in temperature and density, owing
to an enhancement of the corresponding scattering processes
in the presence of external magnetic field.

We now proceed to obtain the effective mass and
dispersion relation of the p° in a magnetized medium.
They follow from the pole of the complete p° propagator
given in Eq. (148), which are obtained by solving the
following transcendental equations,

w? — q% - m/2, + ReH(,(qO =w,q.,eB,T,ug) =0 (151)

w? —q* —m) +Relly(¢° = w,q,,eB, T, up) =0, (152)

the numerical solutions @ = w(q.,eB,T,up) of which
represent the dispersion relations for the mode-A and
mode-B corresponding to p° propagation in the magnetized
medium. The effective mass mj, of p" is obtained from the
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The in-medium spectral functions of p° for mode-A as a function of invariant mass is shown in the low invariant mass region

dominated by Landau cut contributions with p° longitudinal momentum g, = 250 MeV: (a) At temperature T = 130 MeV and at
baryon chemical potential g = 300 MeV for three different values of magnetic field (eB = 0.10, 0.15, and 0.20 GeV?) and (b) at
magnetic field eB = 0.10 GeV? for four different combinations of temperature and baryon chemical potential [(7T = 100 MeV,
up =300 MeV), (T = 130 MeV, ug =300 MeV), (T = 160 MeV, up = 300 MeV), and (T = 160 MeV, ug = 400 MeV)].

dispersion relation by setting ¢, = 0, i.e., m}(eB, T, ug) =
w(g. = 0.¢B.T.pp).

Figure 14(a) depicts the variation of m,/m,, as a function
of magnetic field at temperature 7 = 130 MeV and at
baryon chemical potential uz = 300 MeV. The effective
mass for the two modes starts from the same value around
eB =0, and with the increase in magnetic field, they get
separated. For both modes, the effective p° mass decreases
with the increase in the magnetic field, which is due to the
strong positive contribution coming from the dominating
eB-dependent vacuum part. The effect of the magnetic field
is found to be more in mode-B as compared to mode-A.
At a magnetic field value eB = 0.20 GeV?, the effective
p° mass in mode-A decreases by about 2%, whereas for
mode-B, it decreases by about 10%. Figure 14(b) depicts
the corresponding variation of effective mass with temper-
ature at magnetic field eB = 0.10 GeV? and at baryon
chemical potential g = 300 MeV. We find that, for both
modes, the effective mass of p° gets enhanced by a small
amount with the increase in temperature. Even at
T=160MeV, the change in effective mass is less than 2%.
In Fig. 14(c), the variation of the effective p° mass is shown as
a function of baryon chemical potential at a magnetic field
eB=0.10GeV? and at temperature 7= 130 MeV. In this case
also, we observe an enhancement of the effective mass for
both the modes with the increase in baryon density. Though
the effect of 5 on effective mass is more at a higher value of
Up, the change in the effective mass remains less than 2%
even at up = 500 MeV.

Next, we present the dispersion curves of p” propagation
in the magnetized medium for both the modes in Fig. 15.
We have plotted the energy @ of the p° scaled with the
inverse of the vacuum p mass m, = 770 MeV as a function

of the longitudinal momentum of p°. Figure 15(a) depicts
the dispersion curves at temperature 7 = 130 MeV and
at baryon chemical potential pp =300 MeV for two
different values of magnetic field (eB =0.10 and
0.20 GeV?). Figure 15(b) shows the same at magnetic
field eB = 0.10 GeV? and baryon chemical potential yp =
300 MeV for two different temperatures (7 = 100 and
160 MeV). Finally, Fig. 15(c) shows the corresponding
graphs at magnetic field eB = 0.10 GeV? and at temper-
ature 7 = 130 MeV for two different values of baryon
chemical potential (uz = 200 and 400 MeV). In all the
cases, the dispersion curves are well separated from each
other at lower transverse momentum. With the increase in
q,, the loop correction becomes subleading with respect to
the kinetic energy of p°, and thus it approaches a lightlike
dispersion.

Finally, we calculate the decay width of p° for the decay
into charged pions, which is defined for the two modes as

ImIl,(¢° =m}.q,=0,eB,T,ug)
m;,(eB.T.pp)

T (eB,T,pug) = (153)

ImHﬂ(qO =my,q,=0,eB,T,up)
my(eB. T, ug)

I')(eB, T ug) = (154)

In Fig. 16, the variation of the decay width T" of p° scaled
with the inverse of its vacuum width (I'y = 156 MeV) for
the two modes is shown as a function of magnetic field.
Note that the vacuum decay width is obtained from the
imaginary part of the vacuum self-energy as
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FIG. 14. The ratio of effective mass of p° to its vacuum mass for different modes (a) as a function of magnetic field at temperature
T = 130 MeV and at baryon chemical potential zz; = 300 MeV, (b) as a function of temperature at magnetic field eB = 0.10 GeV? and
at baryon chemical potential yz = 300 MeV, and (c) as a function of baryon chemical potential at temperature 7 = 130 MeV and at
magnetic field eB = 0.10 GeV2. The green dash-dotted curve in (a) corresponds to the unitary cut threshold for decay of p° — z+z~.

Here, m, = 770 MeV.

Imeure—vac(qo = mp,Ej = 6)

Ty = = 156 MeV.

(155)

n,

Results are presented for two different combinations of
temperature and baryon chemical potential [(T=130MeV,
up =300 MeV) and (T = 160 MeV, up =400 MeV)].
Because of the presence of threshold singularity in
ImIT,, T also suffers from the presence of threshold
singularity for which it needs to be coarse grained.
However, ImIl; and hence ') are finite and free from
the singularities. As can be seen from the figure, the ratio
I'/T starts from a value greater than unity near eB = 0,
which is due to the enhancement of the decay width over its
vacuum value due to the effect of finite temperature and
density. Also, for a particular value of magnetic field, the
larger decay width is observed at higher temperature and
density. Near eB = 0, the two modes have almost the same
decay widths, which begin to differ from each other with
the increase in the magnetic field. An oscillatory behavior

of the decay width can be clearly seen throughout the
magnetic field range. One should also notice that, for both
modes, the oscillation amplitude increases, whereas oscil-
lation frequency decreases with eB. Finally, at a critical
value of the magnetic field, the decay width becomes zero.
This is because of fact that the eB-dependent unitary cut
threshold for the zz loop has to satisfy

my(eB) > 24/ m% + eB

for a kinematically favorable decay of p° — z7z~. But
with the increase in magnetic field, the rhs of the above
equation increases, whereas m;, on the lhs decreases so that
at some critical value of magnetic field the above inequality
is violated and the decay width becomes zero. Physically, it
means that p° becomes stable against the decay into the
n" ™ pair. This critical value of the field may be considered
the critical value of the magnetic field required for the

melting of the spectral function of p°.

(156)
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The dispersion relations of p° for different modes: (a) At temperature 7 = 130 MeV and at baryon chemical potential

ug = 300 MeV for two different values of magnetic field (eB = 0.10 and 0.20 GeV?), (b) at magnetic field eB = 0.10 GeV? and at

baryon chemical potential up = 300 MeV for two different temperatures (7 = 100 and 160 MeV), and (c) at magnetic field eB =

0.10 GeV? and at temperature T = 130 MeV for two different values of baryon chemical potential (45 = 200 and 400 MeV).
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FIG. 16. The ratio of the decay width of p° to its vacuum width
as a function of magnetic field for different modes with two
different combinations of temperature and baryon chemical

potential [(T=130MeV, up = 300 MeV) and (T = 160 MeV,
ug =400 MeV)]. Here, I’y = 156 MeV.

In order to calculate the critical value of the magnetic
field eB, for a given temperature 7 and baryon chemical
potential up, we need to solve the transcendental equation

ms(eB,,T.up) = 21/ m% + eB... (157)

The green dash-dotted curve in Fig. 14(a) corresponds to
my/m, =2 m2 + eB so that the intersection of this curve
with the m, = m(eB) represents the solution of the above
equation. In Fig. 17, we show the variation of the critical
magnetic field eB,. for the two decay modes. Figure 17(a)
depicts eB,. as a function of temperature for two different
values of baryon chemical potential (uz =50 and
200 MeV), whereas Fig. 17(b) shows the corresponding
variation with baryon chemical potential at two different
values of temperature (7 = 100 and 160 MeV). Although
with fixed temperature the variation with respect to pup
shows a monotonically increasing trend, both plots suggest
nonmonotonic variations of the critical magnetic field with
respect to the temperature. More specifically, there exists a
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FIG. 17. The variation of the critical value of magnetic field for stopping the decay of p° into the z* 7~ pair for different modes as a
function of (a) temperature at two different values of baryon chemical potential (13 = 50 and 200 MeV) and (b) baryon chemical
potential at two different values of temperature (7= 100 and 160 MeV).

maximum value of chemical potential [see Fig. 17(b)]
below which the critical field decreases with the temper-
ature there by requiring a relatively weaker magnetic field
to completely stop the particular decay channel. However,
for even larger values of pup, a significant increase with
temperature can be observed for both of the decay modes.

A few comments on the magnitude of the external
magnetic field are in order. The analytical expressions
provided in this paper are valid for any arbitrary value of the
external magnetic field which is constant in space-time. In
presenting numerical results, we have considered magnetic
field values in the range 0 < eB < 0.20 GeVZ2. Tt is worth
noting that the magnetic field created in the HIC experi-
ments is expected to decay rapidly with time [48].
However, a nonzero electrical conductivity of the strongly
interacting fireball could possibly sustain the external
magnetic field a bit longer [49-51], implying a slowly
varying function of time during the entire lifetime of the
Quark-Gluon-Plasma. The magnitude of the external mag-
netic field at the time of chemical freeze-out (when the
hadronic degrees of freedom manifest) is expected to be
small because of the very small conductivity of the hadron
gas. The experimental estimation of the same is not
reported yet. In order to understand the plasma properties
from the experimental data, one solves the relativistic
magnetohydrodynamics equation usually with the
assumption of ideal Quark-Gluon-Plasma fluid in the
background electromagnetic field [52-54]. However, the
ideal fluidity assumption can only be validated after
knowing the transport coefficients at temperatures of
phenomenological interest which are not yet certain.
Despite these uncertainties, it should be mentioned here
that the complete blocking of the neutral p decay seems to
be quite unlikely in the recent energy regimes of the HIC
experiments. Although, one might expect a suppression in
the p° — z*7~ channel. Being the only possible strong

decay channel of the p° meson, its suppression is expected
to lead to the enhancement of dilepton and photon
productions from p° decay. For example, the p° — 7%
channel is expected to possess a 64% branching ratio at the
critical magnetic field of the order 10" T [55]. However,
recent measurement [56,57] shows almost no suppression
in the strong decay channel of p° in peripheral Pb-Pb
collisions (case of nonzero external magnetic field) at LHC
energies. However, the observed suppression in the central
region (case of zero external magnetic field) is interpreted
as the rescattering mechanism in the hadronic medium.
Thus, this suggests that the magnetic effects on the neutral
p decay, if they exist, are negligibly small in the current
HIC scenario. On the other hand, such magnetic modifi-
cations of mesonic properties can occur in situations
present inside the high density compact objects with strong
magnetic field such as magnetars. The tools used in the
present work can be used to see the effects of the changes of
hadronic properties on the equation of state, symmetry
energy, mass-radius relationship, etc., after generalization
to models appropriate for the description of hadronic matter
at low temperature and at high density supposed to be
present in a magnetized neutron star or magnetar [58,59].

IX. SUMMARY AND CONCLUSIONS

In this work, the spectral properties of the neutral p
meson are studied at finite temperature and density in a
constant external magnetic field using the real time for-
malism of finite temperature field theory. The effective
prr and pN N interactions are considered for the evaluation
of the one-loop self-energy of p°. Accordingly, the mag-
netically modified in-medium propagators for pions and
protons are used and contain an infinite sum over the
Landau levels, implying no constraint on the strength
of the external magnetic field. From the self-energy, the
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eB-dependent vacuum part is extracted by means of
dimensional regularization in which the ultraviolet diver-
gence corresponding to the pure-vacuum self-energy is
isolated as the pole of gamma and Hurwitz zeta functions. It
is shown that the external magnetic field does not create
additional divergences so that the vacuum counterterms
required in the absence of the background field remain
sufficient to renormalize the theory at nonzero magnetic
field.

The general Lorentz structure for the in-medium massive
vector boson self-energy in the presence of external
magnetic field has been constructed with four linearly
independent basis tensors, out of which three form a
mutually orthogonal set. Thus, the extraction of the form
factors from the self-energy becomes considerably simple.
Moreover, it is shown that, with vanishing perpendicular
momentum of the external particle, one can arrive at a new
set of constraint relations among the form factors. As a
result, there remain only two form factors to be determined
from the self-energy. As a consistency check, the numerical
B — 0 limit of the real as well as imaginary parts of the
form factors is shown to reproduce the zero field results.
Solving the Dyson-Schwinger equation with the one-loop
self-energy, the complete interacting p° propagator is
obtained. Consequently, two distinct modes are observed
in the study of the effective mass, dispersion relations and
the spectral function of p° where one of the modes (mode-
A) possesses twofold degeneracy. It is known [31,38] that
nontrivial Landau cuts appear in the presence of external
magnetic field along with finite temperature even if the loop
particles are of equal mass, which is completely a magnetic
field effect. However, in contrast to mode-A, the nontrivial
Landau cut is found to be absent in the case of mode-B.
Also, a sharper decrease in the effective mass is observed
for the latter, which essentially stems from the dominant
eB-dependent vacuum contribution in the real part of the
corresponding form factor.

Finally, the decay width for the p® — z*z~ channel is
obtained for the two distinct modes and is found to become
zero at certain critical values of magnetic field depending
upon the temperature and baryon chemical potential. The
corresponding variation of the critical field with these
external parameters shows an increasing trend for large
baryonic chemical potential. However, it is observed that
both the distinct modes possess a maximum value of up
below which the temperature dependence gets reversed.
Especially, at a given temperature (say 7 = 160 MeV), eB,
attains the lowest values (123 MeV? for mode-A and
116 MeV? for mode-B) in case of zero chemical potential.
In Ref. [27], charged p meson condensation has been
studied at finite temperature and density. For charged p
mesons, the critical field for which the vector meson mass
vanishes is observed to lie in the range of 0.2-0.6 GeV? at
zero density with temperature in the range 0.2-0.5 GeV.
However, in the case of pO, the absence of the trivial Landau

shift in the energy eigenvalue results in a much slower
decrease in the effective mass. As a consequence, unreal-
istically high magnetic field values are required to observe
neutral p condensation in the presence of temperature and
medium (see Fig. 14). In this scenario, the suppression in
the p® — 772~ channel can serve as an important alter-
native. Magnetic modification of p meson properties
studied in this work deals with effective hadronic inter-
actions. Thus, the observable modification can only occur if
the initial burst of magnetic field survives up to hadroniza-
tion, retaining an appreciable field strength. However, the
recent report [56,57] argued that the observed suppression
in the branching ratio of the p° — 7tz channel in the
central collisions (B ~ 0) is due to the rescattering mecha-
nism in the hadronic medium, implying that the magnetic
field effects in the neutral p decay are negligible in HIC
experiments. On the other hand, the present study can be
relevant in situations present inside magnetars.
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APPENDIX A: USEFUL IDENTITIES

We have the following list of d-dimensional integrals in
Minkowski space [60]:

dk 1 _i(=1)"T(n—d/2) (1)\n=d
/(2”)d(k2—A)"_(47t)d/2 [(n) (X) (AL)

/ éijz]){d % i)” - ig;;:/;l @

9

D(n—1-d/2) (1\n-1-d/2
Xil“(n) (K) . (A3)

Using the orthogonality properties of the generalized
Laguerre polynomials, one can derive the following
identities,

d*k
/ L =21 (2a) Ly (e KK

(27)?
B 2
— g (22; (20 4+ 1)8) — (n+ 15 —n5p~'] (A4)
d*k eB
/ﬁe‘zakLl@ak)LnQak) ES 55? (AS)
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ki, ) y(eB)* .
/We L)y Qey) Ly (2o )K K = ~d] 307 ndj~|
(A6)
dsz o (6B)2 i
/ e LI Q)L Q)i = =)
(A7)
where a; = —k? /eB.

APPENDIX B: CALCULATION
OF VACUUM SELF-ENERGY

In order to evaluate the momentum integrals in Egs. (3)
and (4), they are rewritten as
|

N (g.k) = 2@ T[T () (g + K + my)T# (=

= 8y | (M} — K> — k- @) + 2k +

%
+ o my + k=
4m,2V

Applying standard Feynman paramerization, the denomi-
nators of Eqs. (B1) and (B2) are combined to get

(Hﬂy)pure Vac
~if! dx/ e (B4)
k+xq) Aﬂ] d—4
v
(H )pure vac
¢ k (g, k
o dx/ g MRGH |
[(k+xq)" = An]*|4og
where
A, =m2—x(1-x)g*—ie (B6)
Ay = m3 —x(1 —x)g* —ie (B7)

and the space-time dimension has been changed from 4 to d
in order to work with the dimensional regularization so that
the additional scale parameters A, and Ay of dimension
GeV? have been introduced to keep the overall dimension
of the self-energy the same. It is now straightforward to
perform the momentum integrals of the above equations
after a momentum shift k - (k — xq) using the identities
provided in Appendix A, so that the vacuum self-energies
become

(H/;’-D )purC-Va.C (q>
d*k NZ(q,k)
(2m)* (k* = m2 +ie)((q + k)* — m2 + ie) (B1)
(Hllily)pure»vac(Q)
[ d% NN (g.k)
i | o RS (PR s S )

where A% (g, k) contains the trace over Dirac matrices:

q) (K +my)]

(¢"K + ¢“K*) + &, (4> — ¢"¢")

9)(@* 9" = q"q") = 2¢° k" k" = 2(k - q)* ¢ + 2(k - q)(q"k* + Q”k”)}} . (B3)
[
(Hﬁb)pure»vac(Q)
TN A RS
= (ngﬂ ql‘q ) ( 32]7:2 ) A dxr(e 1) (4”1\”) o
(B8)
(le)pure Vdc(q)

T )<g£ZN>Aldx[{2x(1—x)+xp+%%}r(e)

K> A —€
P AT (e—1 N
tamz N (e )} <4;;AN

where ¢ = (2—4d/2).
about ¢ = 0, we get

2 2
v v A [~ 9prnd !
(HII; )pure»vac(Q) = (ng” - qﬂq ) (ﬂﬂ) /0 dxA,,

F_”H_h’(f/\ ﬂ

v v o [ 9NN
(M) pure-vac (4) = (479 = 4" ¢") (”)

, (B9)

e—0

Expanding the above equations

27>

1 K'2

XA dx[{Zx(l x)+kK, +E_WAN}
1

x4¢——yg—In A
€ 4nAN 4mN

where yg is the Euler-Mascheroni constant.

(B11)
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APPENDIX C: CALCULATION OF the overall dimension of the self-energy the same. This
eB-DEPENDENT VACUUM CONTRIBUTION leads to
FOR 7nzx LOOP
In this Appendix, we sketch how to obtain Egs. (46) and (I )Vac(ql\ ,eB)
(48). We rewrite Eq. (44) as / / 44 k” N NI;I,/nl(qH’kH)
=1 ” 2_Am]2 ’
(I7)yac(q. €B) (2m)¢ [k +2xq)* = AT gz
Rt .
= =) (2n) where
% / d*ky ,J;Hnl(q’ k) .
(27)* (ki = mj + ie)((q) + k)* — mj + i€) A7, =A(q, =0)+2eB{I+1-x(I-n)} (C4)

(C1)  with A, defined in Eq. (B6). It is now trivial to perform the
dky| integration after a shift of momentum kj — (k—xq)

For the simplicity in analytic calculations, we take the  ysing the identities provided in Appendix A, so that the
transverse momentum of the p° to be zero, i.e., g, = 0. self-energy becomes

This implies that the d?k, integration can be performed
analytically using the orthogonality of the Laguerre poly- (It )vac (. €B)
nomial, the details of which can be obtained from

. [e%) (n+1)
- o 1

Appendix E, so that the self-energy becomes _ gp C]|| oB / I Z (=1)*(4zA, )
1671' 0 =0 I=(n-1)

(Hﬂ )vaC(QHveB) ZgW u ST A

~ X |— — v 7 T \—¢€
_ / d"‘ku A (ay. k) ~a i NPT ENAT)
i —mj +ie)((q) +ky)* —mj +ie)’ qu‘i 5 {(2n+ )8 = (n+ 1)} — nsp1}

(CZ) X F(S + 1)(AZZ)_ ]|s—>0’ (CS)

where N7° (). k) is given in Eq. (ES). Next, we use the  where & = (1 — d/2) and the presence of Kronecker delta
standard Feynman parametrization technique to combine  functions in Eq. (ES) has made the double sum into a single
the denominators of Eq. (C2) and change the reduced  one or, in other words, the sum over index / runs only from
space-time dimension from 2 to d in order to apply the  (n — 1) to (n + 1). The infinite sum in the above equations
dimensional regularization for which a scale parameter A, can be expressed in terms of the Hurwitz zeta function so
of dimension GeV? has to be introduced in order to keep  that we get, after some simplifications,

|

(02 laye8) ~ 22 [ o) |-t - e (e 5) -5 eries)

1 1 1 1
X C g’Z”+_ +C €,Z”+X+— _Zﬂz: 8+1’Zﬂ+_ _an.: €+1’Zn+x+_ 5 (C6)
2 2 2 2 0
where z, = %{0)_ Expanding the above equation about ¢ = 0, we get
v _gﬁﬂﬂ'qz 1 1 4ﬂ'A
(17 )vae (g €B) = —7 5 '% dXH——yEHn(Z B)}Aﬂ(q 0)(aig"™ - d}a})

- (qﬁgﬁ q”q)ZeB{lnl"< ) }
v 1 1

+qidl’ ) Anlqr = )+— S8 =0)qw|z+5) vz +tx+ts . (C7)

2 2 2 £0
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where y/(z) is the digamma function. It is now trivial to check that, in the limit eB — 0, the above equation exactly boils
down to the pure-vacuum contribution given in Eq. (9). Thus, extracting the pure-vacuum contribution from the above

equation, we get

(H%y)vac(qH ’ eB) =

where

(H%y)eB-vac (QH ’ EB) =

(Hliéy)pure—vac (qH) + (H%y)eB—vac (qH’ eB)’

(C8)

0)> - I}Aﬂ(cu = 0)(qj9" - q}4a})

2 2
—9pnnq 1 A =
pre] / ael L (Bele
32 0 2¢B

G {1nr<z,,+%>—1nx/ﬂ}

eB

+ qﬁdi”{An(cu =0)+—-3

2

which is finite and independent of scale.

APPENDIX D: CALCULATION OF
eB-DEPENDENT VACUUM CONTRIBUTION
FOR PROTON-PROTON LOOP

In this Appendix, we sketch how to obtain Eqgs. (47) and
(49) We rewrite Eq. (45) as

© o de d k
i) I L
e EE B

pnl(q k)

2-M2+ie)’
(D1)

where N’ (g, k) is given in Eq. (42). For simplicity in
analytic calculations, we take the transverse momentum of
the p° to be zero, i.e., ¢, = 0. This implies that the d?k |
integration can be performed analytically using the ortho-
gonality of the Laguerre polynomial, the details of which
can be obtained from Appendix E, so that the self-energy
becomes

(H )vac (qH s eB)

ORI =

=0 n=0

Noa(asky)
—M7+ie)((q)+k)*—

M2 +ie)’
(D2)

Ar(qL = 0){w<zﬂ+%> +w<zn+x4r%> }H (C9)

where \/’ ’;fn /(g k) can be read off from Eq. (E8). Next, we
use the standard Feynman parametrization technique to
combine the denominators of Eq. (D2) and change the
reduced space-time dimension from 2 to d in order to apply
the dimensional regularization for which a scale parameter
Ay of dimension GeV? has to be introduced in order to
keep the overall dimension of the self-energy the same.
This leads to

(ng)vac qH eB lZ

/ /dk AL
=0 n=0

Noilay k)
. , D3
[(ky + xqy)* = AD ]2 aes (D3)
where
AV =Ayn(g, =0)+2eB{l—x(I—n)} (D4)

with Ay defined in Eq. (B7). It is now trivial to perform the
ddk” integration after a shift of momentum kj — (k; —
qu) using the identities provided in Appendix A, so that
the self-energy becomes
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(H/I;y)vac (qH ’ eB)

2 o (n+1)
9poNN ! n e v, sn—
— :”2 eB/ deOjl > (1) (4xA,) | [4eBd nd))!

=(n—1)
{0+ 31 = X)) = 261 = X't YOI + 1) = (i + x(1 = X)) L, + 5]
x Tl + 1)(a0) ™" = {g)" (815 + 81)e + o' (51, + 67" ) (=& + D}T(e)(A;)
AR — )G + ) — @B, + 3T + 1) (A%
2
4

- o+ +(1 + X)) (G, + 50 + 1) (AL
K.2
~ gz (@ = gla) (e = VG +7) + g (5, + o eI e) (A ]

gz {—AeBnO! (0, + x(1 = X)) G + 3 Haid - i)

, (DS5)

e—0

where ¢ = (1 — d/2) and the presence of Kronecker delta functions in Eq. (E8) has made the double sum into a single one
or, in other words, the sum over index [/ runs only from (n — 1) to (n + 1). The infinite sum in the above equations can be
expressed in terms of the Hurwitz zeta function so that we get, after some simplifications,

(T5") e (qy» €B) =

where zy =

(") yac (q) - €B)

M
2eB

g%"” / <4”AN> H%Bd”{é(m;v)—ZNC(8+1,ZN)}

(0 +x(1 = D - 260 - et el + 1) — 5|

+ (m% + x(1 = x)qﬁ)g”fg(s +1,zy + x)} Me+1) - 2e3{gf'”e<g(g, ) — ;z;f)
o= D+ ) ) + {w* -t (et -+ e -3
+qﬁ9‘fé(8+1,zN+X)}F( H —2eB ( e.zy) —anlle+ 1, ZN)>
0+ (1= 0)q]) (&Ce+ 1.2) =355 ) b =

+ @R+ (1 = e+ Lz + 0| et 1)+ 70 zeB{<q”¢ diat)e+1)

Zz_vg) +qid el (e 2y + x) }F(e)} : (D6)

(s~

e—0

Expanding the above equation about ¢ = 0, we get

—g’Z’NN/'d L (AN ot — i+ - 5 A () = 0) Va2 — gtt)
42 )y X Yg TIn 2¢B X X) T K, > 4m12\/ Nqg1L = C]”gﬂ 9,49

2

—2x(1-x) <1//(ZN) + %) (gig)” — ajat) + 2eBdi”{ <ZN - %) w(zy +x) + 2y
+Inl(z+x)—1In \/ﬂ} - K,){(qﬁgﬁ” ) (z//(zN) + %) + qﬁg‘fl//(z + x)}

2

+ %kB {(ng*‘” - q"qﬁ){—zlg (w(zN) + 21N> + iln(zN) +1InT(zy) —In x/ﬂ}

4
‘Wi{< i )w(ZN+X)+AN q.=0 H
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It is now trivial to check that, in the limit eB — 0, the above equation exactly boils down to the % times pure-vacuum
contribution given in Eq. (10). Thus, extracting the pure-vacuum contribution from the above equation, we get

v 1 v v
(HI]; )vac(qH’ eB) = 5 (HIIiI )pure—vac(qﬂ) + (HII; )eB—vac(qH’ eB)’ (DS)

where

(T8 gy ) = 222 [ x| (S0 Lo - SR 2  8nlas =0 b - i)

4m
—2x(1—x)<1//(zN)+2iN>(qzd|' - 4q,4q1) +2eBg’i{< > (zy +x) + 2y
+1nr(z+x)—1n\/2?}—x,,{<qﬁ¢”' q”q)( (2n) + 5~ >+q”g'1w(z+x)}

2

2
K/’ AN N ] nmy 1
+4—m}2v 2eB {(qj‘ qq”){ B ( (zw) + ) 2ln zy) +InT(zy) — In \/27[}
2
p

m2
- qﬁg’f{ (eg >w(zN +x)+Ay(gL = 0)} (gfg" — djat)An(g.L = 0)} ; (D9)

4m 2

which is finite and independent of scale. N (. k) = 4G (1) e L (2 )L, (2ax,,)

APPENDIX E: ANALYTIC EVALUATION x[akH + (g krae’
: ) ) )
OF d’k, INTEGRAL FOR ¢, =0 — ¢ (q- k) (qg"k + g*k")), (E3)

In this Appendix, we will calculate the quantities which for ¢, = 0 becomes

< d*k ) p 42 1\t -2
Noalay k) :/ﬁ/\fﬁ,nz(mwm:&k) (B1)  Nawld1: k) = 4pee(=1)" 7Ly 2 L 2a1)
x [qikk + (q) - ky)d)qf

N (q) k) /(2 N (q.q1 =0.k).  (E2) = qj(q) - k) (q)k + gik)]. (E4)

We now perform the d?k, integration using the orthogon-
We have the expression for N (g, k) from Egs. (40) and  ality of the Laguerre polynomial (identities provided in
(7) as Appendix A) to obtain

N HY n eB v v v n
Nty k) = 495 (0" o {aikiky + (a - k) aaf = ai(a) - k) (@] + gk}
B
- qﬂjﬁ'% {@n+1)8" = (n+ Dy — nsp—1} | (E5)

Similarly, N**

"ni(q. k) is obtained from Eq. (41) as

pat(@-k) = —goyy (=1)" e~ e[l (q) D, (q + k)I*(—q) Dy (k). (E6)

Evaluating the trace over the Dirac matrices in the above equation, we get for ¢, = 0 (considering the Lorentz symmetric
part since the self-energy should be symmetric in the two Lorentz indices)
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Ni(a)- k) = =8goyn (=1)"He% 182K K — k3 g™) L1, 2a) L, (20

+{(my — ki =k - q)g)" + 2Kkt + (q)kt + gtk H Lo Q) Loy (2a) + Li(2a4 ) L, (20) }
— (my, - kH ky - q) g {Li2ag) Ly—y 2a) + Ly 2y ) L, (20) }
+Kﬂ[(qufw q”q”){Ll 12 ) Loy 2ay) + Ly(204) Ly (200) }
= g9 {Li(2oy) L,y (204) + Ly (205) L, (204) }]
2

A 2 8{k1(qj9" = alja}) — ajd' " {Li(2ow) L, (204) + Ly (205 )L, (204) } }
- {Z(ku ~q))g)" + 2q Kkt = 2(ky - q) (g Ky + gtk)) = (my + kj = k- qy) (a7} — gjat)}
X L1 (20y)Lyoy (20y) + Ly (20p) L, (20) } — {‘]ﬁ(m%v + kﬁ —ky-qy) =2k - q)*} Y

X {L(20) Loy (2a) + Ly (2ey) Ly (20) }] | (E7)

where the terms involving odd powers of k| are discarded as they will vanish while integrating over d’k ;. We now perform
the d?k, integration using the orthogonality of the Laguerre polynomial (identities provided in Appendix A) to obtain

~ n eB Vo on— v v v v n— 7
Ng,nz(%\’ku) = _9,%1\/1\/(_1) +Z7 4339’(\ n&= +{(mj - kﬁ =k ‘CI||)9J‘T +2k’ﬁkH (q’ﬁk” + quﬁ)}(51_ll +7)
— (=R =k ) (G + 67+, (P — gt (617 +87) — g (B, + 617

2

+f7”12v[—4e3(qﬁd|’| —qqi)ndi —{2(ky - q))°g)" +2q Kkt = 2(ky - q)) (g} ki + qik])

—(m% + ki —ky-q))(ajg)" — ajai) }oi=! +67) = {aj(my + ki —ky - q)) = 2(ky - q))* o (81, + 877 |-

(E8)

I
It is to be noted that a Kronecker delta with -ve index is g, N%"(q.k) = @2, [q* Kk + (q - k)*q* — ¢*(q - k)2q - K]
zero, which comes from our constraint on the Laguerre

polynomials L%, = 0. (F1)
APPENDIX F: DETAILS OF N*, AND N/ NO(g,k) = Roal 12+ (q-K)2G3 — 4*(q-k)24°K°]  (F2)
FOR DIFFERENT LOOPS
In this Appendix, we list the explicit forms of N#, and (F3)
N for all the different loops. For the zero magnetic field
case, we have for the 7z loop and for the NN loop
9NN (q.k) = —8g§NN {(mlzV — Ik —k-q)4+2k*+ q-k+x,34*
K
+ o {(myy + 2 = k- )37 = 267K = 2(k- q)*4 + 4(k - 61)2}} : (F4)
N
N (q.k) = =8g5xy [(m%v — K —k-q) +2k; + 29K = x, G
2
+ ﬁ {=(m% + K —k-q9)g* —2¢°k} = 2(k - q)* + 4(k - q)qoko}} . (F5)
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The corresponding expressions for the zz loop for the finite magnetic field case are given by

A UV n eB n
Nzt (@) Ky) = A90en (1) o K] + (g - k) af = aif(ay - k)24 - Ky},
4€B n n+1 n—1
—dj > 2n+1)6} — (n+1)8/"" —né}~'} (Fo6)
~ eB
Noulay k) = 49,%757[(—1)"“@ [qk5 + () - ky)*a5 — g (q) - k))24°K°)57]. (F7)

whereas the same for the proton-proton loop are

P

eB
GuNbuia) k) = —g,z,NN(—l)"+l7 8eBnd;~| + {(my —k

T =k 9))2+ 2k +2q) - Ky }E5 +67)

= (my = ki = ky - q))2(5; +677") + &, a7 (617 +67) — qf2(8_y +677")]

2

K
+ 505 [4eBaingi T — {2(k) - q))*2 + 2q7ki = 2(k; - q))2q) - k)

2
4my,

= (m} + K =k q))af HEZ +67) = {aj(my + kf =k - qp) = 2(ky - q))}2(51, + 877D (F8)

<700 ni1€B - aml o sn
Non(ay ky) = _g/ZJNN(_l) +l7 4eBnéi~| + {(my — kﬁ —kj - q) + 2k§ +2¢°k°} (677 + 67)

2

K
+K,[~q2 (875 +67)] + ﬁ 4eBgznsi=! = {2(ky - q))* + 2qiks — 2(ky - ¢))2¢°k°
N

+ (my + ki = ky - q)aH 85 +67)] ]
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