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We study theoretically the decay τ− → ντP−A, with P− a π− or K− and A an axial-vector resonance
b1ð1235Þ, h1ð1170Þ, h1ð1380Þ, a1ð1260Þ, f1ð1285Þ or any of the two poles of the K1ð1270Þ. The process
proceeds through a triangle mechanism where a vector meson pair is first produced from the weak current
and then one of the vectors produces two pseudoscalars, one of which reinteracts with the other vector to
produce the axial resonance. For the initial weak hadronic production we use a recent formalism to account
for the hadronization after the initial quark-antiquark pair produced from the weak current, which explicitly
filters G-parity states and obtain easy analytic formulas after working out the angular momentum algebra.
The model also takes advantage of the chiral unitary theories to evaluate the vector-pseudoscalar (VP)
amplitudes, where the axial-vector resonances were obtained as dynamically generated from the vector-
pseudoscalar interaction. We make predictions for invariant mass distribution and branching ratios for the
channels considered.

DOI: 10.1103/PhysRevD.99.096003

I. INTRODUCTION

The fact that the τ is the only lepton heavy enough to
decay into hadrons makes the hadronic τ lepton decays a
priceless test of the strong interaction at low energy in the
light flavor sector [1–4]. The intermediate and final state
decay hadrons are usually produced with lower background
than in other low energy processes. Even though there are
more than 100 hadronic τ decays experimentally reported
by the PDG [5] (which account for about 65% of the τ
decay width), it is also clear that not all the possible ones
have been observed or whether there is no room for decays
beyond the standard model. While inclusive reactions are
well suited for accurate extraction of standard model
parameters such as the strong coupling constant [3,6,7],
the exclusive ones are much more involved and difficult to
predict within QCD, and here is where effective theories
for hadronic low energy interactions gain prominence.
Special theoretical attention has been devoted to decay
channels with two and three pseudoscalar mesons in the
final state (see [8] for a brief review). Channels with more

pseudoscalars or other mesons like vector or axial-vector
ones are less studied [1,9]. Particularly, very poorly under-
stood are the channels with one pseudoscalar plus one
axial-vector meson in the final state, which are the aim of
the study in the present work. Experimentally only the
f1ð1285Þπ channel has been measured [5]. It is at this point
where effective theories of strong interactions at low
energies can stand up. Particularly, the unitary extensions
of chiral perturbation theory (UχPT) provide a dynamical
and powerful explanation of the generation of the low-lying
axial-vector resonances [10–12]. With the only input of the
lowest order chiral perturbation theory Lagrangians and
the implementation of unitarity in coupled channels, most
of the lowest mass axial vector resonances [b1ð1235Þ,
h1ð1170Þ, h1ð1380Þ, a1ð1260Þ, f1ð1285Þ and two poles for
the K1ð1270Þ] were dynamically obtained [10–12] as poles
in the pseudoscalar-vector (PV) scattering amplitudes,
without the need to include them as explicit degrees of
freedom. With only one free parameter (for regularization
of PV loops), this model predicts not only masses and
widths of these axial vector resonances but also the full PV
scattering amplitudes from where e.g., the coupling of
the different resonances to the different PV channels can be
obtained. Within this model, the τ decay into one pseudo-
scalar plus one axial-vector resonance requires the pro-
duction of one pseudoscalar and one PV pair in the
hadronization process, since these axial-vector resonances
are dynamically generated from the PV interaction.
This can be dominantly accomplished via a triangular
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mechanism of the kind shown in Fig. 1. Actually, for the
f1ð1285Þπ case, it was shown in [13] that it was the
dominant contribution. Indeed, for some particular kin-
ematic conditions, the triangle diagram benefits from a
large enhancement since it develops a singularity [14],
which according to the Coleman Norton theorem [15]
is related to the classical process in which a particle
decays into two particles A and B, then A decays into
two other particles, and one of them merges with particle B
to produce a third particle. A new reformulation of these
findings can be seen in [16,17]. A similar mechanism
has been also recently used for the decay τ− →
ντπ

−f0ð980Þða0ð980ÞÞ [18]. Other theoretical approaches
regarding the τ decay into an axial and a pseudoscalar can
be found in [22–24] where the axial is produced as an
intermediate resonance produced in the weak vertex.
On the other hand, for the hadronization process from the

W− boson to two mesons, we follow the approach of [19],
where the 3P0 model [20,21] is used to hadronize the
primary quarks produced from the weak interaction, work-
ing out all the angular momentum and spin algebra. In
particular, a Cabibbo favored dū pair is produced from the
W− which then hadronizes from an extra qq̄ pair with the
quantum numbers of the vacuum. The different possible
final meson-meson states are related by SUð3Þ symmetry.
The strength of the formalism in [19] is that it carries on an
elaborate calculation of the angular momentum and spin
algebra which allows, in the end, to rely upon only one
global unknown constant to get all the different channels.
This unknown factor is obtained in the present work
from the experimental value of the τ− → ντK�K̄� decay.
Furthermore, the formalism allows for an explicit filter of
G-parity states, of special importance in the present work.

II. FORMALISM

A. Feynman diagrams

We are going to study the decays τ− → ντπ
−A, with A

being axial-vector resonances, including the positive G-
parity f1ð1285Þ, b1ð1235Þ states, and negative G-parity
h1ð1170Þ, h1ð1380Þ and a1ð1260Þ states, and the τ− →
ντK−K1ð1270Þ decay. As mentioned in the Introduction,
these were the low-lying axial-vector resonances dynami-
cally generated in [11]. Actually, for the K1ð1270Þ

resonance, it was shown in [11,25] that is has a two pole
structure and then we will consider both of them. Since the
A resonances are dynamically generated from the PV
interaction, for the τ− → ντP−A, the way to produce the
vector-pseudoscalar (VP) to generate axials and the extra
pseudoscalar in the final state is via a triangular mechanism
of the kind shown in Fig. 1. Other possible diagrams with a
different combination of pseudoscalar and vector mesons
inside the triangle loop are also possible but they need VVP
or pseudoscalar-pseudoscalar-pseudoscalar (PPP) anoma-
lous vertices which are small. Furthermore, diagrams with
analogous triangles but where two pseudoscalars are
produced from the W boson and with a vector in the right
leg of the triangle are also small. Indeed, in the case of
KK̄K� in the loop, it requires the coupling of the W to KK̄
which must be about one order of magnitude smaller than
to K�K̄� as can be inferred from the ratio of phase space
allowed for the τ− → ντKK̄ and τ− → ντK�K̄� and the
experimental results. For the case of the ππρ in the loop,
with theW boson coupling to ππ and a ρ in the other leg of
the loop, which contributes for negative G-parity axial
production, the justification of its small size is not so clear.
Therefore we will evaluate its explicit contribution explic-
itly later on.
The well-defined G-parity axial-vector states have dom-

inant couplings to either ρπ or K�K̄ [11]. Therefore, for the
positive G-parity axial-vector states [f1ð1285Þ and
b1ð1235Þ], the complete Feynman diagrams for the decay
with the triangle mechanism are those shown in Fig. 1.
Figure 1(a) shows the process τ− → ντK�0K�− followed by
the K�0 decay into π−Kþ and the merging of the K�−Kþ

into A; and Fig. 1(b) shows the process τ− → ντK�−K0

followed by the K�− decay into π−K̄0 and the merging of
the K�0K̄0 into A. The momenta assignment for the decay

(a) (b)

FIG. 1. Diagrams for the decay of τ− → ντπ
−A, with A axial vectors.

FIG. 2. The momenta assignment for the decay process.
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process is given in Fig. 2. The needed couplings obtained
in [11,13] for positive G-parity axial-vector states to the
appropriate G-parity VP eigenstates are given in Table I.
For the negative G-parity axial-vector states [h1ð1170Þ,

h1ð1380Þ and a1ð1260Þ], we need to consider the diagrams
in Fig. 3 in addition to those in Fig. 1 because ρρ has
G ¼ þ and, the fact that GðπÞ ¼ − demands that the axial
has negativeG − parity to haveG-parity conservation. This
mechanism with initial ρρ production is thus not possible
for the positive G-parity axials f1ð1285Þ and b1ð1235Þ.
Figure 3(a) shows the process τ− → ντρ

−ρ0 followed by the
ρ− decay into π−π0 and the merging of the ρ0π0 into A; and
Fig. 3(b) shows the process τ− → ντρ

0ρ− followed by the
ρ0 decay into π−πþ and the merging of the ρ−πþ into A.
The needed couplings [11] for negative G-parity states are
given in Table II.
In [11,25] two poles for the K1ð1270Þ where obtained

at complex energy positions 1195 − i123 MeV and
1284 − i73 MeV in unphysical Riemann sheets. The low-
est mass pole, which we will call in the following K1ð1Þ,
couples mostly to K�π and the highest one, K1ð2Þ, to ρK.
The dominant couplings are shown in Table III [25].
In Figs. 4 and 5 we show the mechanisms for τ− →

ντK−K1ð1270Þ decay for the formation of the twoK1ð1270Þ
states. Figure 4 shows the decay τ− → ντK−K1ð1Þ via the

process τ− → ντK�−K�0 [Fig. 5(a)] followed by the K�−

decay into K−π0 and the merging of the K�0π0 into K1ð1Þ.
Figure 5 shows the decay τ− → ντK−K1ð2Þ via the process
τ− → ντρ

−ρ0 followed by the ρ− decay into K−K0 and the
merging of the ρ0K0 into the second pole of K1, K1ð2Þ;
Fig. 5(b) shows the process τ− → ντρ

0ρ− followed by the ρ0

decay into K−Kþ and the merging of the ρ−Kþ into the
second pole of K1, K1ð2Þ.

B. The VV weak production vertex

Next, we address the evaluation of the τ → ντK�0K�−;
ντK�−K�0, and τ → ντρ

−ρ0; ντρ0ρ− amplitudes. The pro-
duction is assumed to proceed first from the Cabibbo
favored ūd production from the W− which then hadronizes
producing an extra q̄q with the quantum numbers of the
vacuum, which are implemented with the 3P0 model
[20,26,27]. In Ref. [19] the mechanism for hadronization
is done in detail. Next, we summarize and adapt the
formalism to the present case. The first step corresponds
to the flavor combinations in the hadronization. In Ref. [19]
it is shown that dðs̄sÞū ¼ ðds̄Þsū gives rise to K�0K�−,
while dðūuÞū and dðd̄dÞū give rise to ρ−ρ0 and ρ0ρ− [see
Eq. (4)] of [19]). The second step corresponds to the
detailed study of the spin-angular momentum algebra to

TABLE I. Couplings for positive G-parity states [11,13] (All the units are MeV).

Couplings

f1ð1285Þ b1ð1235Þ
gi jgij gi jgij

1ffiffi
2

p ðjK̄�KiI¼0 þ jK�K̄iI¼0Þ 7350þ i0 7350 … …
1ffiffi
2

p ðjK̄�KiI¼1 þ jK�K̄iI¼1Þ … … 6172 − i75 6172

(a) (b)

FIG. 3. The same as Fig. 1 but for τ− → ντρ
−ρ0; ντρ0ρ− decays.

TABLE II. The same as Table I but for negative G-parity states.

couplings

h1ð1170Þ h1ð1380Þ a1ð1260Þ
gi jgij gi jgij gi jgij

ρπ −3453þ i1681 3840 648 − i959 1157 −3795þ i2330 4453
1ffiffi
2

p ðjK̄�KiI¼0 − jK�K̄iI¼0Þ 781 − i498 926 6147þ i183 6150 … …

1ffiffi
2

p ðjK̄�KiI¼1 − jK�K̄iI¼1Þ … … … … 1872 − i1486 2390
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combine the quarks for the 3P0 q̄q state (L0 ¼ 1, S0 ¼ 1,
J0 ¼ 0) with a d̄ quark in L ¼ 1 to have finally s-wave
production of the two mesons. In [18] a similar calculation
has been done to discuss the triangle singularity in τ− →
ντπ

−f0ð980Þ [a0ð980Þ] decays, but with pseudoscalar-
vector production from the W rather than two vectors, as
we have here.
The elementary quark dū production in the τ decay is

given by

H ¼ CLμQμ; ð1Þ

where C contains the couplings of the weak interaction to be
determined later on. The leptonic current is given by

Lμ ¼ hūνjγμ − γμγ5juτi; ð2Þ

and the quark current by

Qμ ¼ hūdjγμ − γμγ5jvūi: ð3Þ

In the evaluation of the decay widths to three final particles,
we find convenient to evaluate the matrix elements in the

frame where the two meson system is at rest, and we
assume that the quark spinors are at rest for the evaluation
of the Qμ matrix element in the same frame [19]. Then we
have γ0 → 1, γiγ5 → σi in terms of bispinors χ, and after the
spin angular momentum combination we end up with the
following spinor matrix elements:

Q0 ¼ hχ0j1jχi≡M0;

Qi ¼ hχ0jσijχi≡ Ni: ð4Þ

Denoting for simplicity,

L̄μν ≡XX
LμLν†; ð5Þ

to obtain the τ width we must evaluate

XX
jtj2 ¼

XX
LμLν†QμQ�

ν;

¼ L̄00M0M�
0 þ L̄0iM0N�

i þ L̄i0NiM�
0

þ L̄ijNiN�
j ; ð6Þ

with L̄μν given by

XX
LμLν† ¼ 1

mνmτ
ðp0μpν þ p0νpμ − gμνp0 · p

þ iϵαμβνp0
αpβÞ; ð7Þ

where p, p0 are the momenta of the τ and ντ respectively
and we use the field normalization for fermions of
Ref. [28]. The expression of the amplitudes in terms of
the M0 and Ni functions was the main novelty of the work
in [19]. This formalism has the advantage of filtering the
G-parity contributions since the M0 and Ni operators act
with defined G-parity as explained below.
From the work [19] we obtain the results for the VV,

J ¼ 1, J0 ¼ 1 case,

M0 ¼
1ffiffiffi
3

p 1

4π
Cð111;M;M0;M þM0Þ; ð8Þ

TABLE III. The same as Table II but for two K1ð1270Þ states.
K1ð1Þ K1ð2Þ

couplings gi jgij gi jgij
ρK … … 5274þ i297 5282
K�π 4187 − i2098 4683 … …

FIG. 4. Diagram for the decay of τ− → ντK−K1ð1Þ, where
K1ð1Þ is the first pole of K1ð1270Þ.

(a) (b)

FIG. 5. Diagram for the decay of τ− → ντK−K1ð2ÞÞ, where K1ð2Þ is the second pole of K1ð1270Þ.
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Nμ ¼
1ffiffiffi
6

p 1

4π
fδMμ þ 2ð−1Þ−μ−M0

Cð111;M;−μ;M − μÞ

× Cð111;M0;−M −M0 þ μ;−M þ μÞg; ð9Þ

whereM,M0 are the third components of J, J0 respectively,
and μ is the index of Ni in spherical basis, with Cð� � �Þ a
Clebsch-Gordan coefficient.
In [19], it was shown that the order in which the vector

mesons are produced is essential to understand theG-parity
symmetry of these reactions, which is given in Table IV. We
note from Table IV that M0 changes sign for VV, when
exchanging the mesons, while for Ni it is the same. This
sign is essential for the conservation of G-parity in the
reaction, as we shall see. On the other hand, at the quark
level the primary dū state produced has I3 ¼ −1 and hence
I ¼ 1. The G-parity of a qq̄ pair is given by ð−1ÞLþSþI. As
we mentioned, L ¼ 1, I ¼ 1 and the spin of the state is 0
for the 1 operator and 1 for the σi operator of Eq. (4). This
means that the term Ni proceeds with G-parity negative,
while M0 has G-parity positive. Since π, h1ð1170Þ,
h1ð1380Þ, a1ð1260Þ, f1ð1285Þ, and b1ð1235Þ have
G-parity −;−;−;−;þ;þ respectively, then π−f1ð1285Þ
and π−b1ð1235Þ proceed with the Ni amplitude, while
π−h1ð1170Þ, π−h1ð1380Þ and π−a1ð1260Þ will proceed
with theM0 term and there is no simultaneous contribution
of the two terms in these reactions, implying that the
crossed terms in Eq. (6) are zero. We shall see this
analytically when evaluating explicitly the amplitudes for
the processes of Figs. 1 and 3.

C. Evaluation of the constant C

The global unknown constant C in Eq. (1) can be
determined from the experimental ratio of τ→ντK�0K�−,
using a similar method as in Ref. [13].
In the present work, the structure of

P̄ P jtj2 for the τ
decay into two vector mesons is taken from the results of
[19] for this reaction. If we take the quantization axis along
the direction of the neutrino in the τ− rest frame we find

XX
jtj2 ¼ C2

mτmν

�
1

4π

�
2
�
ðEτEν þ p2Þh2i

þ 7

2

�
EτEν −

1

3
p2

�
h̄2i

�
; ð10Þ

where p is the momentum of the τ, or ντ, in the K�0K�− rest
frame, given by

p ¼ pν ¼ pτ ¼
λ1=2ðm2

τ ; m2
ν;M2

invðK�0K�−ÞÞ
2MinvðK�0K�−Þ ; ð11Þ

and Eν ¼ p, Eτ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

τ þ p2
p

. In Eq. (10) the coefficients
hi and h̄i account for the weights of the VV components for
M0 and Nμ respectively and their values are listed in
Table V. Note that we are considering only the final s-wave
production since, as explained in [19], because of the large
vector masses, the expected momenta are very small.
The mass distribution is given by

dΓ
dMinvðK�0K�−Þ ¼

2mτ2mν

ð2πÞ3
1

4m2
τ
p0
νp̃K

X̄ X
jtj2; ð12Þ

where p̃K is the momentum of K− in the K�0K�− rest frame
given by

p̃K ¼ λ1=2ðM2
invðK�0K�−Þ; m2

K�0 ; m2
K�−Þ

2MinvðK�0K�−Þ ; ð13Þ

and p0
ν the neutrino momentum in the τ rest frame

p0
ν ¼

λ1=2ðm2
τ ; m2

ν;M2
invðK�0K�−ÞÞ

2mτ
: ð14Þ

The experimental branching ratio of the τ → ντK�0K�−
decay was constructed in Ref. [13] from information in the
PDG [5], with the result,

Bðτ → ντK�0K�−Þ ¼ 1

Γτ
Γðτ → ντK�0K�−Þ

¼ ð2.1� 0.5Þ × 10−3; ð15Þ

from which we can evaluate the value of the constant C2,

C2

Γτ
¼ Bðτ → ντK�0K�−ÞR

dΓ
dMinvðK�0K�−Þ dMinvðK�0K�−Þ ¼ 5.0 × 10−4 ½MeV−1�:

ð16Þ

Note that the τ decay into ντK�0K�− can only proceed
because of the finite width of the K�, since otherwise there
would be no available phase space for infinitely narrow K�.
Hence it is crucial to fold the width with a realistic spectral
function of the K� meson, (see Eq. (9) in [13]). Note that,
in Ref. [13], the structure of

PP jtj2 was assumed to

TABLE IV. Signs resulting in the M0, and Nμ amplitudes for
s-wave by permuting the order of the mesons.

PP PV VP VV

M0 − þ þ −
Nμ þ − − þ

TABLE V. The hi and h̄i coefficients for the different VV
channels with the two vectors in s-wave.

channels hi (for M0) h̄i (for Nμ)

K�0K�− 1 1
ρ−ρ0

ffiffiffi
2

p
0
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proceed with the dominant term EτEν −
p2

3
of Eq. (10)

alone, and hence a somewhat different C constant was
obtained.

D. Evaluation of the triangle diagram

In order to evaluate the triangle loops of Fig. 1, we
need first the K� → Kπ vertex obtained from the VPP
Lagrangian

LVPP ¼ −igh½P; ∂μP�Vμi; ð17Þ
with the coupling g ¼ 4.31 [13], P and V the SU(3)
matrices of the pseudoscalar and vector mesons, by means
of which we find

tK�0→π−Kþ ¼ ð2kþ qÞ · ϵg; ð18Þ
tK�−→π−K0 ¼ −ð2kþ qÞ · ϵg: ð19Þ

We can see that for this vertex we find a relative minus
sign from Fig. 1(a) to Fig. 1(b). We find it convenient to
take the z direction along the momentum k of the final
pion (see Fig. 2). Indeed, in the πA rest frame, where we
evaluate the amplitude, P ¼ 0. The vertex K� → Kπ is of
the type ϵ · ðkþ qþ kÞ.1 On the other hand, the q
integration

R
dqið2kþ qÞ � � � of the triangle loop must

necessarily give something proportional to k, which is
the only nonintegrated vector in the loop integral. ThenR
dqið2kþ qÞ � � � ¼ Ak and contracting with k gives

k
R
dqið2þ q · k=k2Þ � � �. Hence, we have an effective

vertex of the type ϵ · k. If the z direction is chosen along
k, this selects only the ϵz component (ϵ0 in spherical basis)
and ϵ · k ¼ jkj ¼ k. This also means that only M ¼ 0, for
Eqs. (8) and (9), contributes in the loop and this allows us to
calculate trivially the M0 and Nμ amplitudes in that frame.

1. Evaluation of M0

ForK�0ðMÞ andK�−ðM0Þ of Fig. 1(a) andM ¼ 0, we get
from Eq. (8)

M0 →
1ffiffiffi
3

p 1

4π
Cð111; 0;M0;M0Þ: ð20Þ

On the other hand, in Fig. 1(b) we will have M0 of K�−
equal to zero and then

M0 →
1ffiffiffi
3

p 1

4π
Cð111;M; 0;MÞ

¼ ð−1Þ 1ffiffiffi
3

p 1

4π
Cð111; 0;M;MÞ: ð21Þ

We can see that the M0 changes sign from Fig. 1(a) to
Fig. 1(b). From the sign of Eqs. (18) and (19) and this latter
sign, we can see that the global sign is the same for these
two diagrams.
Finally, in order to evaluate the final amplitude of the

loop diagram we need the vertex A → VP, which is of the
type [11]

gA;VPϵV · ϵA ð22Þ
with ϵV , ϵA, the polarization vector of the vector and axial-
vector resonances. Note that the ϵV · ϵA structure is indeed
an approximation of the more general possible like the one
in Eq. (11) in Ref. [22]. However the later reduces to ours
considering that the ϵ0 components usually give a small
contribution of the order of jp⃗=Mj2 (see for instance
Ref. [11,29] and that the couplings are evaluated at the
axial poles and dominates the axials on-shell. The evalu-
ation in [11] is done for pseudoscalar and vectors mesons
on shell, while we have them in a loop here. Yet, the
proximity to the triangle singularity of the mechanism
considered makes the on shell contribution of the particles
more important and we can then use the on shell informa-
tion for the vertices.
The couplings of the axials to pseudoscalar and vector

are given in [11] in terms of well definedG-parity PV states
(see Tables I–III). In order to relate those couplings to the
charge basis PV states that we are using, we need to write
our states for the axial vector mesons in terms of their
vector pseudoscalar components forming states of well-
defined C and G parity:

jI¼0;C¼−i¼ 1ffiffiffi
2

p ðjK̄�KiI¼0− jK�K̄iI¼0Þ

¼þ1

2
ðK�þK−þK�0K̄0þK�−Kþþ K̄�0K0Þ

jI¼0;C¼þi¼ 1ffiffiffi
2

p ðjK̄�KiI¼0þjK�K̄iI¼0Þ

¼−
1

2
ðK�þK−þK�0K̄0−K�−Kþ−K̄�0K0Þ;

ð23Þ

jI¼1;C¼−i¼ 1ffiffiffi
2

p ðjK̄�KiI¼1þjK�K̄iI¼1Þ

¼−
1

2
ðK�þK−−K�0K̄0þK�−Kþ−K̄�0K0Þ

jI¼1;C¼þi¼ 1ffiffiffi
2

p ðjK̄�KiI¼1− jK�K̄iI¼1Þ

¼þ1

2
ðK�þK−−K�0K̄0−K�−Kþþ K̄�0K0Þ:

ð24Þ

1Since in the triangle diagram the K�0K�− intermediate states
have a small momentum compared to the K� mass [13], we
neglect the ϵ0 component, which was found in [29] to be an
excellent approximation in such a case.
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Since G ¼ ð−1ÞIC, we need from the sum of Figs. 1(a) and
1(b), the following combinations.

I ¼ 0; C ¼ −; G ¼ −; gA;K�−Kþ þ gA;K�0K̄0 ¼ þgA;K�K̄;

I ¼ 0; C ¼ þ; G ¼ þ; gA;K�−Kþ þ gA;K�0K̄0 ¼ 0;

I ¼ 1; C ¼ −; G ¼ þ; gA;K�−Kþ þ gA;K�0K̄0 ¼ 0;

I ¼ 1; C ¼ þ; G ¼ −; gA;K�−Kþ þ gA;K�0K̄0 ¼ −gA;K�K̄:

ð25Þ

Note that Eq. (22) implies that the M0 third component of
Eq. (20) becomes the MA third component of the axial
vector A. Then the M0 contribution to h1 and a1 from the
K�K̄� loop becomes

tM0
¼ CgkhK�0K�−Cð111; 0;MA;MAÞð�1ÞgA;K�K̄tLðK�K̄�Þ;

ð26Þ

with the þ;− sign for h1 and a1 production, respectively,
and

tL ¼
Z

d3q
ð2πÞ3

2þ k · q=jkj2
8ω1ω2ω3

1

k0 −ω3 −ω1 þ iϵ

×
1

P0 − ω1 −ω2 þ iϵ

×
2P0ω2 þ 2k0ω3 − 2ðω2 þω3Þðω2 þω3 þω1Þ

ðP0 −ω2 −ω3 − k0 þ iϵÞðP0 þω2 þω3 − k0 − iϵÞ ;

ð27Þ

is the triangle loop function which appears after an
analytical calculation of the q0 integral [30]. For the case
of the diagrams in Fig. 1(a) the states 1, 2, 3 correspond to
K�0, K�−, Kþ, respectively. In Eq. (27) ω1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

1

p
,

ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

2

p
and ω3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ kÞ2 þm2

3

p
are the ener-

gies of the 1, 2 and 3 states in the loop respectively,
P0 ¼ Minvðπ−AÞ, and

k0 ¼ M2
invðπ−AÞ þm2

π −m2
A

2Minvðπ−AÞ
; ð28Þ

k ¼ λ1=2ðM2
invðπ−AÞ; m2

π; m2
AÞ

2Minvðπ−AÞ
: ð29Þ

We also account for the K�0, K�− widths by replacing
ω1 → ω1 − i ΓK�

2
, ω2 → ω2 − i ΓK�

2
in the propagators

involving ωK� in the actual calculation. Similarly, we
can get the triangle amplitude for Fig. 1(b) case.

2. Evaluation of Ni

In spherical basis, Ni → Nμðμ ¼ 0;�1Þ, is given by
Eq. (9). Once again we choose now k in the z direction and

thus force M ¼ 0. On the other hand, as we did before, M0
becomesMA, the axial vector polarization, since the s-wave
coupling of A → PVðϵA · ϵÞ implies the same A and V
polarization. Then Eq. (9) becomes

Nμ ¼
1ffiffiffi
6

p 1

4π
fδμ0 þ 2ð−1Þ−μ−MACð111; 0;−μ;−μÞ

× Cð111;MA;−MA þ μ; μÞg: ð30Þ

Contrary to what happens with the M0 component, we
can see that Nμ does not change sign when we exchange
K�0K�− → K�−K�0 in the loop of Fig. 1(a) and Fig. 1(b).
Then, considering the different sign in the vertex K� → Kπ
of Eqs. (18) and (19), we get the combination
gA;K�−Kþ − gA;K�0K̄0 , which in view of Eqs. (23) and (24)
provides,

I ¼ 0; C ¼ −; G ¼ −; gA;K�−Kþ − gA;K�0K̄0 ¼ 0;

I ¼ 0; C ¼ þ; G ¼ þ; gA;K�−Kþ − gA;K�0K̄0 ¼ gA;K�K̄;

I ¼ 1; C ¼ −; G ¼ þ; gA;K�−Kþ − gA;K�0K̄0 ¼ −gA;K�K̄:

I ¼ 1; C ¼ þ; G ¼ −; gA;K�−Kþ − gA;K�0K̄0 ¼ 0:

ð31Þ

This shows explicitly that withG-parity positive axials only
the Ni term contributes, as we saw at the beginning at the
quark level, while for G negative axials only the M0 term
contributes.
From Eq. (30) we can calculate the Ni components in the

Cartesian basis and we find

N1 ¼
1ffiffiffi
2

p ðN−1 − Nþ1Þ ¼
1ffiffiffi
2

p

8>><
>>:

− 1ffiffi
6

p 1
4π ; ðMA ¼ 1Þ

0; ðMA ¼ 0Þ
1ffiffi
6

p 1
4π ; ðMA ¼ −1Þ

ð32Þ

N2 ¼
iffiffiffi
2

p ðN−1 þ Nþ1Þ ¼
1ffiffiffi
2

p

8>>><
>>>:

1ffiffi
6

p 1
4π ; ðMA ¼ 1Þ

2ffiffi
6

p 1
4π ; ðMA ¼ 0Þ

1ffiffi
6

p 1
4π ; ðMA ¼ −1Þ

ð33Þ

N3 ¼ N0 ¼
1ffiffiffi
6

p 1

4π
; ðfor anyMAÞ: ð34Þ

E. Incorporation of intermediate ρρ states

For the production of negative G-parity axial vector
mesons, we must also consider the ρ0ρ− diagrams of Fig. 3
in addition to Fig. 1. For this we need the hi coefficients of
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Table V. Recall that in this case only the M0 term
contributes. Next we need the ρ− → π−π0, ρ0 → π−πþ
vertices obtained from the Lagrangian in Eq. (17),

tρ−→π−π0 ¼
ffiffiffi
2

p
gð2kþ qÞ · ϵ; ð35Þ

tρ0→π−πþ ¼ −
ffiffiffi
2

p
gð2kþ qÞ · ϵ: ð36Þ

Since M0 changes sign from ρ−ρ0 to ρ0ρ− production
(see Table IV), this sign and the relative one of Eqs. (35)
and (36) cancel and we get the factor in the sum of the
loops

gA;ρ0π0 þ gA;ρ−πþ : ð37Þ

To relate these couplings in charge basis to the coupling of
A to ρπ in isospin basis, evaluated in [11], we recall that the
isospin multiplets are (−πþ; π0; π−), (−ρþ; ρ0; ρ−). Then
we have

jρρ; I ¼ 0; I3 ¼ 0i ¼ −
1ffiffiffi
3

p ðρþπ− þ ρ−πþ þ ρ0π0Þ;

jρρ; I ¼ 1; I3 ¼ 0i ¼ 1ffiffiffi
2

p ðρ−πþ − ρþπ−Þ: ð38Þ

Then

gA;ρ0π0 þ gA;ρ−πþ ¼ − 2ffiffi
3

p gA;ρπ; for I ¼ 0 ðh1Þ
gA;ρ0π0 þ gA;ρ−πþ ¼ 1ffiffi

2
p gA;ρπ; for I ¼ 1 ða1Þ

: ð39Þ

The ρπ channel only contributes to these two states that
have negative G-parity.
Thus, in order to account for the coherent sum ofK�−K�0

and ρ−ρ0 we can use tM0
of Eq. (26) but performing the

following substitution,

gA;K�K̄tLðK�K̄�Þ → gA;K�K̄tLðK�K̄�Þ þ 2DgA;ρπtLðρρÞ;
ð40Þ

with

D ¼
8<
:

− 2ffiffi
3

p ; for I ¼ 0 ðh1Þ
1ffiffi
2

p ; for I ¼ 1 ða1Þ
: ð41Þ

Next we must perform the sum of Eq. (6) independently,
L̄00M0M�

0 for negative G-parity A states and L̄ijNiN�
j for

positive G-parity A states. By using Eq. (7) and Eqs. (20),
(32)–(34) and summing over the MA components we
obtain:

(a) G-parity positive axial states:

XX
jtj2 ¼ C2

mτmν

1

ð4πÞ2
7

6

�
EτEν −

1

3
p2

�

× g2k2jgA;K�K̄j2jtLðK�K̄�Þj2; ð42Þ

(b) G-parity negative axial states:

XX
jtj2 ¼ C2

mτmν

1

ð4πÞ2
1

3
ðEτEν þ p2Þg2k2

× jgA;K�K̄tLðK�K̄�Þ þ 2DgA;ρπtLðρρÞj2:
ð43Þ

We should note that the ϵαμβνp0
αpβ term of Eq. (7) does

not contribute in M0 since μ ¼ 0 and p0
αpβðpτpνÞ will be

spatial and pτpν are the same in the frame we work. For Ni,
α or β must be zero and we have just one vector pν that
cancels in the phase space integration. For the same reason,
the term with pνipνj becomes 1

3
p2νδij upon integration over

phase space.

F. τ − → ντK −K1ð1270Þ
In [11] two states corresponding to K1 were found and

the pole positions were refined in [25], one of them at
1195 MeV coupling mostly to K�π, and another one at
1284 MeV coupling mostly to ρK. Proceeding analogously
to the previous cases, the terms that go like L0i, of ϵαμβν

cancel again in the integration over phase space, and we
obtain:
(a) K1ð1Þ state:

XX
jtj2 ¼ C2

mτmν

1

ð4πÞ2 g
2k2jtLðK�K̄�Þj2 1

3
jgK1;K�πj2

×
1

2

�
1

3
ðEτEνþp2Þþ 7

6

�
EτEν−

1

3
p2

��
;

ð44Þ

(b) K1ð2Þ state:
XX

jtj2 ¼ C2

mτmν

1

ð4πÞ2 g
2k2jtLðρρÞj2ð

ffiffiffi
2

p
Þ2

×
1

3
ðEτEν þ p2Þ 4

3
jgK1;ρKj2: ð45Þ

For τ− → ντπ
−A decay, the differential mass distribution

for Minvðπ−AÞ is given by

1

Γτ

dΓ
dMinvðπ−AÞ

¼ 1

Γτ

1

ð2πÞ3
2mτ2mν

4m2
τ

pνp̃π

XX
jtj2; ð46Þ
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with

pν ¼
λ1=2ðm2

τ ; m2
ν;M2

invðπ−AÞÞ
2mτ

;

p̃π ¼
λ1=2ðM2

invðπ−AÞ; m2
π; m2

AÞ
2Minvðπ−AÞ

; ð47Þ

and p is the momentum of the τ, or ντ, in the π−A rest
frame, given by

p̃ ¼ λ1=2ðm2
τ ; m2

ν;M2
invðπ−AÞÞ

2Minvðπ−AÞ
: ð48Þ

Similarly, for the τ− → ντK−K1ð1270Þ decay, we can get
the differential mass distribution for MinvðK−K1ð1270ÞÞ.
Note that the term mτmν in the numerator of

Eq. (62) cancels the same factor in the denominator of
Eqs. (42)–(45). In Eq. (62) we have the same factor C2

Γτ

from Eq. (16) and thus we can provide absolute values for
the mass distributions.

III. RESULTS

First we show in Fig. 6 the triangle loop in Eq. (27), for
the τ− → ντπ

−f1ð1285Þ case, as a function of the π−f1
invariant mass, Minvðπ−f1Þ. Note that there is a large
increase of the strength at around the region of interest at
the present work, Minvðπ−f1Þ ¼ mτ ¼ 1777 MeV, which
will push the invariant mass distributions for the decays
considered in the present work to the higher energy region
of the spectrum, as we will see below. As already discussed
in [13] the origin of this increase is twofold: first because of
the presence of a nearby triangular singularity and, second,
because of the presence of the K�K̄� threshold. Both effects
are implicitly properly taken into account in the evaluation
of the triangle loop in the present work. In Fig. 7 we see the
triangle loop for ρρπ as internal lines, for the h1ð1170Þ in
the final state. In this case we see that the enhancement is
smaller because there is no a nearby singularity but some
strength is visible from the ρρ threshold.
In Figs. 8–13 we show the pseudoscalar-axial, PA,

invariant mass distributions of the different τ− → ντPA
decays. We have considered the finite width of the axial
resonances by folding the invariant mass distributions with
the corresponding axial meson spectral function:

dΓτ→ντPA

dMinvðPAÞ
¼ 1

N

Z ðMAþ2ΓAÞ2

ðMA−2ΓAÞ2
dm2ImDðmÞ dΓðmÞ

dMinvðPAÞ
;

ð49Þ

where DðmÞ is the axial-vector propagator,

DðmÞ ¼ 1

m2 −M2
A þ iΓAmA

;

N ¼
Z ðMAþ2ΓAÞ2

ðMA−2ΓAÞ2
dm2ImDðmÞ; ð50Þ

This folding is particularly relevant for the decays into K1

because of the little and null available phase space for the

FIG. 6. Triangle amplitude ReðtLÞ, ImðtLÞ and jtLj for τ− →
ντπf1ð1285Þ decay, taking Minvðf1Þ ¼ 1229.5 MeV.

FIG. 7. Same as Fig. 6 for τ− → ντπh1ð1170Þ decay.
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K1ð1Þ and K1ð2Þ respectively. Actually K1ð2Þ can only
proceed because of its tail.
In Figs. 8–13 we also plot (dashed line) the phase space

distribution normalized to the area below the full calcu-
lation. We can see that the strengths of the full calculations
are moved to the higher mass of the spectrum, as a
consequence of the particular increase of strength at these

energies of the triangle loop function. Figure 14 for K1ð2Þ
production is an exception tied to the fact that only the tail
of the resonance allows its production.
In Table VI we show the integrated branching ratios for

the different τ → ντPA decay channels. In Ref. [13] a
careful error analysis was performed for the f1ð1285Þ and
an error of about 40% was obtained. For the present

FIG. 8. Mass distribution for τ− → ντπ
−f1ð1285Þ decay.

FIG. 9. Mass distribution for τ− → ντπ
−b1ð1235Þ decay.

FIG. 10. Mass distribution for τ− → ντπ
−h1ð1170Þ decay.
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FIG. 11. Mass distribution for τ− → ντπ
−a1ð1260Þ decay.

FIG. 12. Mass distribution for τ− → ντπ
−h1ð1380Þ decay.

FIG. 13. Mass distribution for τ− → ντK−K1ð1Þ decay.
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calculation, since the sources of uncertainty are similar to
those of Ref. [13], we can also expect an error of the order
of 40% to the values shown in Table VI. Of the branching
ratios calculated in the present work only the one for
τ− → ντπ

−f1ð1285Þ has been experimentally measured [5]
giving ð3.8� 1.4Þ × 10−4, which compares well with the
value we obtain for that channel within uncertainties. For
the channels not yet measured, even though the branching
ratios obtained for some of them seem small, they are of the
same order as many of the already experimentally mea-
sured hadronic decays reported by the PDG [5]. We can
also compare our results with previous theoretical
works which also tackle these decays. For instance, in
Ref. [22] the decay of the τ into an axial and a pseudo-
scalar was evaluated considering a intermediate production
of a ρð770Þ and a ρð1450Þ from the W boson and then
decaying into the final axial and pseudoscalar. However all
the couplings involved were obtained experimentally.
Concerning the different channels, the results obtained
here agree for a1π, h1ð1170Þπ and f1ð1285Þπ with those of
[22] within uncertainties, while for the K1ð1270Þ channels
they disagree by 3-4 orders of magnitude. Note, however,
that the discrepancy in the K1ð1270Þ results is expectable
since the model we use for the axial vector mesons predicts
that there are actually two poles for the K1ð1270Þ. In
Refs. [23,24] only the f1ð1285Þπ channel was evaluated
using a Nambu-Jona-Lasinio model and they found a

branching ratio of 3.98 × 10−4, compatible within errors
with our result.
The mass distributions and the branching ratios of

Table VI are nontrivial and genuine predictions because,
first, they crucially depend on the axial-vector resonance
couplings to VP which are a nontrivial output of the chiral
unitary model [11] and consequence of the dynamical origin
of these resonances, and, second, because of the nontrivial
shape of the triangular mechanism and the enhancement due
to nearby singularities when present. Therefore, experimen-
tal measurements of these decays could check the dynamical
origin of these axial-vector resonances.

IV. TRIANGLE MECHANISM WITH TWO
INTERMEDIATE PIONS

For the states of negative G-parity h1ð1170Þ, h1ð1380Þ
and a1ð1260Þ we can consider the diagrams of Fig. 1 but
replacing the ρ by pions and the pions by ρ, as shown in
Fig. 15. The calculation is done following the same steps
as before, with several changes. The first one is that the
τ− → ντπ

−π0 proceeds via p-wave. According to Ref. [19]
the M0 term is zero and Ni is given by

Ni ¼ h̄
1ffiffiffiffiffiffi
2π

p p̃1i; h̄ ¼
ffiffiffi
2

p
ð51Þ

and p̃1 is the π− momentum in the π−π0 rest frame. In this
case the differential decay width is given by

dΓ
dMinvðππÞ

¼ 2mτ2mν

ð2πÞ3
1

4m2
τ
pνp̃1

XX
jtj2; ð52Þ

with

pν ¼
λ1=2ðm2

τ ; m2
ν;M2

invðππÞÞ
2mτ

;

p̃1 ¼
λ1=2ðM2

invðππÞ; m2
π; m2

πÞ
2MinvðππÞ

; ð53Þ

and

XX
jtj2 ¼ C02h̄2

1

mτmν

1

2π
p̃1

2

�
EτEν −

p2

3

�
; ð54Þ

and p is the momentum of τ or ντ in the ππ rest frame

p ¼ λ1=2ðm2
τ ; m2

ν;M2
invðππÞÞ

2MinvðππÞ
; ð55Þ

with Eτ, Eν evaluated in that frame.
By integrating dΓ

dMinvðππÞ we can get the τ− → ντπ
þπ−

width, and comparing it with the experimental branching
ratio from the non- ρ → π−π0, Bðτ → ντπ

−π0Þ ¼
ð3.0� 3.2Þ × 10−3, we can determine the normalization

FIG. 14. Mass distribution for τ− → ντK−K1ð2Þ decay.

TABLE VI. The branching ratios for τ → π−A;K−K1 decays.

B

h1ð1170Þ 3.1 × 10−3

a1ð1260Þ 1.3 × 10−3

b1ð1235Þ 2.4 × 10−4

f1ð1285Þ 2.4 × 10−4

h1ð1380Þ 3.8 × 10−5

K1ð1Þ 2.1 × 10−5

K1ð2Þ 4.1 × 10−6
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constant C0.2 Certainly, with this large experimental error
we can only make an estimate of the final contribution of
our process.
In order to evaluate the contribution of the diagrams of

Fig. 15, we must reevaluate the loop function because in tL
of Eq. (27) only the positive energy part of the vector
propagator is taken. Here we do the same but the vector is
now in the position of particle 3, with different kinematics
than in position 1 in the former diagrams. One must also
consider that in the diagram (a) of Fig. 15 the π− has
momentum −q, while in the diagram (b) it has momentum
q. This sign is compensated by a different sign in the
π− → π−ρ0, π0 → π−ρþ vertices, such that we get the same
combinations of couplings as in Eq. (39).

At the end we find that

Ni ¼ FfkiϵA · ktð1ÞL þ ϵAi
tð2ÞL g; ð56Þ

where F collects all the factors,

F ¼ h̄ffiffiffiffiffiffi
2π

p ffiffiffi
2

p
gBgA;ρπ; B ¼

8<
:

2ffiffi
3

p ; for I ¼ 0 ðh1Þ
− 1ffiffi

2
p ; for I ¼ 1 ða1Þ

;

ð57Þ

and

tð1ÞL ¼
Z

d3q
ð2πÞ3

�
k · q
k2

−
3

2

ðk · qÞ2
k4

þ 1

2

q2

k2

�
1

8ω1ω2ω

×
2ðω1 þ ω2Þðω1 þ ω2 þ ωþ k0Þ − 2P0ω2

ðω1 þ k0 þ ωÞðP0 þ ω1 þ ω2ÞðP0 − ω1 − ω2 þ iϵÞðP0 − k0 − ω − ω2 þ iϵÞ ; ð58Þ

tð2ÞL ¼
Z

d3q
ð2πÞ3

1

2

�ðk · qÞ2
k2

− q2
�

1

8ω1ω2ω

×
2ðω1 þ ω2Þðω1 þ ω2 þ ωþ k0Þ − 2P0ω2

ðω1 þ k0 þ ωÞðP0 þ ω1 þ ω2ÞðP0 − ω1 − ω2 þ iϵÞðP0 − k0 − ω − ω2 þ iϵÞ ; ð59Þ

where

ω¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþkÞ2þm2

ρ

q
; ω1¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþq2
q

; ω2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πþq2
q

;

ð60Þ

and iϵ is replaced by i Γρ

2
in the last denominator of Eq. (59).

Contracting NiN�
j with LiLj† of Eq. (7) we find

XX
jtj2 ¼ F2

mτmν

�
EτEν −

1

3
p2

�n
3jtð2ÞL j2 þ k2jtð1ÞL j2

þ tð1ÞL tð2Þ�L þ tð1Þ�L tð2ÞL

o
; ð61Þ

and now

1

Γτ

dΓ
dMinvðπ−AÞ

¼C02

Γτ

1

ð2πÞ3
2mτ2mν

4m2
τ

pνp̃π

XX
jtj2; ð62Þ

(a) (b)

FIG. 15. Diagrams for the decay of τ− → ντπ
−A exchanging pions and rhos. The momenta assignment is the same as Fig. 2 for the

decay process.

2The part of the τ− → ντρ
−ðρ− → π0π−Þ decay is not consid-

ered because in the diagrams of Fig. 15 it would introduce the ρ
propagator with a ρ invariant mass equal to Minvðπ−AÞ, of the
order of 1400 MeV, for which the ρ propagator ðM2

invðπ−AÞ −
m2

ρ þ imρΓρÞ−1 is highly suppressed.
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with

pν ¼
λ1=2ðm2

τ ; m2
ν;M2

invðπ−AÞÞ
2mτ

;

p̃π ¼ k ¼ λ1=2ðM2
invðπ−AÞ; m2

π; m2
AÞ

2Minvðπ−AÞ
;

and p the τ, ντ momentum in the π−A rest frame given by
Eq. (48), with Eτ, Eν evaluated in the same frame. To the
mass distribution of Eq. (62) we have also implemented its
folding with the axial-vector spectral function as explained
in the previous section.
In Fig. 16 we show the invariant mass distributions of the

different τ− → ντπ
−A decays by exchanging two inter-

mediate pions.
In Table VII we show the integrated branching ratios of

exchanging two intermediate pions for the different τ →
ντπ

−A decay channels.
The results are obtained using the central value of the

non- ρBðτ → ντπ
−π0Þ ¼ 3.0 × 10−3 and they are about

three orders of magnitude smaller than the results obtained
from the previous mechanisms. Even if we have to sum the
amplitudes and not the widths, the structures are rather
different indicating small interference, but even with
maximum interference, one can only get a few percent
contribution from this mechanism.

V. CONCLUSIONS

We have carried out a theoretical study of the τ decay
into a pseudoscalar meson plus an axial-vector resonance.
These hadronic decay channels have been very little
studied previously, both theoretical and experimentally.
Nonetheless, these channels could play an important role in
order to shed light on the dynamical formation and structure
of the axial-vector resonances. In particular we focused
on the two lowest mass nonets of axial-vector mesons,
a1ð1260Þb1ð1235Þ, h1ð1170Þ, h1ð1380Þ, a1ð1260Þ,
f1ð1285Þ, and both poles of the K1ð1270Þ. There has been
in the last 15 years compelling theoretical and experimental
evidence that these resonances can be interpreted as molecu-
lar or dynamically generated from the interaction of a
pseudoscalar and a vector meson in s-wave. Indeed, using
the techniques of the chiral unitary approach (UχPT), which
extends the range of applicability of χPT beyond the lowest
resonance regions by the implementation of unitarity in
coupled channels to a lowest order amplitude obtained from
chiral Lagrangians, poles of the unitarized PV amplitudes
were found which could be associated to the known axial-
vector resonances. In particular, of great relevance was the
prediction that in the strange sector the K1ð1270Þ actually
corresponds to two disctinct poles with different coupling
intensities to the different VP channels. Within this frame-
work the dominant production mechanism for the τ decays
considered in the present work is through a triangle
mechanism of the kind shown in Fig. 1, since a vector
and a pseudoscalar need to be produced, in addition to the
extra final pseudoscalar, to generate the axial-vector reso-
nance. The initial VV production from the weak current has
been theoretically determined, up to a global common factor
obtained from the experimental τ → ντK�0K�− branching
ratio, from a primary dū formation from the W− boson
which then hadronizes producing an extra qq̄ pair within the
3P0 model. The spinor algebra is worked out following a
recent approach where differentG-parity contributions could
be easily filtered, of special interest in the present work.
The pseudoscalar-axial mass distributions predicted in

the present work manifest shifts of the strength to the higher
energy region of the spectrum partly due to the special
shape of the triangle loop function which is carefully
evaluated. We make predictions also for integrated branch-
ing ratios and, for the only channel experimentally mea-
sured, τ− → ντπ

−f1ð1285Þ, our result agree with it within
uncertainties. For most of the other channels, the strength
of the predicted branching ratios are such that they should
be expected to be attainable in experimental studies devoted
to exclusive hadronic τ decays. Since the strength of the
decays depends crucially on the coupling of the axial-
vector resonances to the different VP channels, and these
are genuine and nontrivial predictions of the UχPT
approach, a positive comparison with those experimental
results should reinforce the dynamical or molecular nature
of these axial-vector resonances.

FIG. 16. The mass distribution of τ− → ντπ
−A decay from the

mechanism of Fig. 15.

TABLE VII. The branching ratios of exchanging two inter-
mediate pions.

B

h1ð1170Þ 4.0 × 10−6

a1ð1260Þ 1.7 × 10−6

h1ð1380Þ 5.1 × 10−8
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