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In the dynamically assisted Schwinger mechanism, the pair production probability is significantly
enhanced by including a weak, rapidly varying field in addition to a strong, slowly varying field. In a
previous paper we showed that several features of dynamical assistance can be understood by a perturbative
treatment of the weak field. Here we show how to calculate the prefactors of the higher-order terms, which
is important because the dominant contribution can come from higher orders. We give a new and
independent derivation of the momentum spectrum using the worldline formalism, and extend our WKB
approach to calculate the amplitude to higher orders. We show that these methods are also applicable to
doubly assisted pair production.
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I. INTRODUCTION

Schwinger pair production [1–3] by a slowly varying
electric field will probably not be observed in the near
future, as the probability is too small even for the highest
intensities that will be available. However, by adding to the
slowly varying field a weaker, but rapidly varying field, one
can increase the probability by orders of magnitude [4–10],
and hence significantly reduce the required field strength.
One key aspect of Schwinger pair production is its non-
perturbative dependence on the field strength. When adding
assisting, high-frequency fields, one might like to have a
probability that is still nonperturbative in the field strength,
as such high-frequency fields can lead to perturbative pair
production, which could be produced in experiments
similar to the famous one at SLAC [11]. This does not
mean, though, that the probability has to be nonperturbative
in both fields separately. Indeed, in our previous paper [8]
we showed that the weak field can in many cases be treated
perturbatively, which allows us to find explicit analytical
expressions to study dynamical assistance for a large class
of fields.
Let us first recall some of the most important results

in [8]. Consider a time-dependent electric field given
by EzðtÞ ¼ Eðf0ðtÞ þ εfðtÞÞ, where E ≪ 1 is the field
strength of the strong field and f the field shape of the weak

field, with ε ≪ 1. We assume that the weak field is much
faster than the strong field and in most of the calculations
we can set f0 ≈ 1. We use units with ℏ ¼ c ¼ 1 as well as
m ¼ 1, wherem is the electron mass, and absorb a factor of
the charge into the definition of the background field
eE → E. For example, Schwinger’s critical field is in these
conventions simply Ecrit ¼ m2=e ¼ 1. In [8] we expanded
the pair production probability as

Peþe− ¼ P0 þ εP1 þ ε2P2 þ � � � ; ð1Þ

where P0 ∼ expð−π=EÞ gives the ordinary Schwinger pair
production probability [1–3] and the higher-order terms
give dynamical assistance. Despite being suppressed by
higher powers of ε, in regimes with significant dynamical
assistance the contribution from these higher orders is
much larger than P0 thanks to the exponential enhancement
due to photon absorption.
By expressing the weak field in terms of its Fourier

transform we found PN in terms of N Fourier integrals,

PN ¼
Z

dω1 � � � dωNfðω1Þ � � � fðωNÞFN; ð2Þ

where ωi are the Fourier frequencies. FN contains δðω1 þ
� � � þ ωNÞ for a constant strong field. The dominant
contribution to the integrand is given by [8]

FN ∼ exp

�
−
2

E
ðarccosΣ − Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p
Þ
�
; ð3Þ

where
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Σ ¼ 1

2

XJ
i¼1

ωi ð4Þ

is the sum of the positive frequencies, ordered for simplicity
such that ωi > 0 for 1 ≤ i ≤ J < N for some J, divided by
the energy of a real pair at rest. For even N, the dominant
contribution comes from J ¼ N=2, where half of the ωi’s
are positive and the other half negative.
For a Sauter pulse, ∝sech2ðωtÞ, the Fourier transform

scales as fðω1Þ ∼ expð−jω1j=ω�Þ for jω1j ≫ ω�, where
ω� ¼ 2ω=π. We focus on jω1j ≫ ω� because that is the
part of the Fourier integrals which gives the dominant
contribution. By performing the Fourier integrals in (2) we
found [8]

P ∼ exp

�
−
2

E

� ffiffiffiffiffiffiffiffiffiffiffiffi
γ2� − 1

p
γ2�

þ arcsin
1

γ�

��
; ð5Þ

where the normalized Keldysh parameter is given by
γ� ¼ γ=γcrit, γ ¼ ω=E, and for a Sauter pulse γcrit ¼ π=2.
For a Sauter pulse, Eq. (5) gives the exponential scaling
of PN for all N > 1, which, since the higher orders are
suppressed by εN, means that already ε2P2 gives the
dominant contribution (independently of γ and E), and
the exponent agrees exactly with the exponent found in [4]
by treating both the strong, constant field and the weak,
Sauter pulse with nonperturbative methods. On a concep-
tual level, this tells us that the dependence on the weak field
is perturbative, which might not be obvious in other
approaches. On a practical level, the fact that the dominant
contribution is already given by ε2P2 allows us to find
analytical expressions for the prefactor, too, which we have
shown agree well with the exact numerical result [8]. This
has the advantage of working also for other fields with
similar Fourier transforms at large frequencies.
In contrast, for a Gaussian pulse and for a monochro-

matic field, we found that PN increases as one goes to
higher orders. Because of the factor of εN in the prefactor,
there is in general a dominant order [8], i.e., the order Ndom
which gives the dominant contribution, which in this case
can beNdom > 2. By treatingN as a continuous variable we
found [8]

NGauss
dom ∼

2

Ej ln εj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p
χ2

; ð6Þ

where χ ∼ γ=
ffiffiffiffiffiffiffiffiffiffiffij ln εjp

∼ γ=γcrit, and by estimating the sum
of all orders with this “saddle point” for N, we recover (5),
but with γcrit ∼

ffiffiffiffiffiffiffiffiffiffiffij ln εjp
for a Gaussian pulse (and γcrit ∼

j ln εj for a monochromatic field), which agrees with the γcrit
found previously in [7]. From (6) we see that below the
threshold (γ < γcrit ∼

ffiffiffiffiffiffiffiffiffiffiffij ln εjp
) the dominant order is zero,

which is natural since there is no exponential enhancement
of the higher orders there, and so one basically has an

ordinary power series. As γ increases, the dominant order
first increases, and then it reaches a maximum after which it
decreases, which is also natural since at sufficiently high
frequencies already the first order can provide enough
energy to give the dominant contribution. The maximum
dominant order is at χ ¼ ffiffiffi

2
p

, which is also the most inter-
esting region, because there one can expect the maximum
enhancement compared to both pure Schwinger and purely
perturbative pair production. Apart from the weak, loga-
rithmic dependence on ε, we see that the most important
parameter determining the dominant order is the field
strength E. Weaker E leads to a higher dominant order,
which is illustrated in Fig. 3 in [8].
Let us put these results into a bigger picture. Consider

pair production in an ensemble of constant energy E. The
exponential part of the probability for this process was
derived in [12] [see Eq. (66) in [12] ], which to leading
order1 in α can be expressed as

P ∼ exp

(
−
2

E

 
arccos

E
2
−
E
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
E
2

�
2

s !)
: ð7Þ

By identifying our sum over “absorbed” Fourier frequen-
cies

P
ωi in (3) with the energy E in (7) we find an exact

agreement. As an aside, we note that the constant energy
result in [12] was obtained by a Legendre transform of a
corresponding result for constant temperature T, which has
exactly the same functional form as the exponential in (5)
for a Sauter pulse, but with γ� → 2mT=ðqEÞ; see also [13].
We can understand this as being due to the fact that the
exponential scaling of the Fourier transform of a Sauter
pulse effectively acts as a Boltzmann factor, and so
performing the Fourier integrals with the saddle-point
method effectively corresponds to doing the Legendre
transform in [12] in reverse.
Many aspects in Schwinger pair production have close

analogies in tunneling in semiconductors [14]. In particular,
dynamically assisted Schwinger pair production is analo-
gous to the Franz-Keldysh effect [14–17], where semi-
conductor tunneling in an electric field is assisted by
higher-frequency photons. The Franz-Keldysh effect in
QED was very recently studied in [18]. There exists certain
replacement rules [14] for translating results for semi-
conductor tunneling to Schwinger pair production or vice
versa. To translate our result (3) for Schwinger pair
production to the corresponding result for semiconductor
tunneling we have to replace [14] qEcrit → c3�m2� and
Σ → ω=ð2m�c2�Þ, where c� and m� are semiconductor
parameters related to the effective speed of light and the
band gap. The resulting exponential agrees exactly with the

1The results in [12] also contain higher orders in α, which can
be seen as an invitation to consider such higher orders also in our
case.
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literature on the Franz-Keldysh effect; see Eq. (32) in [19]
or Eq. (C11) in [20] for the first order, and [21] for higher
orders. We will study this analogy further elsewhere [22].
Of course, this does not mean that we can obtain all our

results by just replacing various parameters in existing
literature results. In particular, this does not tell us how
different field shapes affect the probability or how to obtain
the prefactor.
This paper is organized as follows. In [8] we calculated

the prefactor of the momentum spectrum using a WKB
approach; here in Sec. II we rederive those results using a
completely different approach, namely one based on the
worldline formalism. In [8] we calculated the exponential
part of the probability to all orders, but the prefactor only up
to N ¼ 2; here in Sec. III we show how to calculate the
prefactor at higher orders and give examples where we go
up to N ¼ 6. In [8] we showed that N ¼ 2 is in general
enough for Sauter-like fields but not always enough for a
Gaussian field, and we gave an example whereN ¼ 2 is not
enough for a Gaussian field; here in Sec. III we show that
going to N ¼ 4 does give a good agreement for that
example, which is hence an explicit example, with the
prefactor included, where the dominant order is higher than
two. In [8] we calculated the exponentials at higher order
using the worldline formalism; here in Sec. III C we show
how to obtain these using the WKB approach. In Sec. IV
we show how the results in Sec. III for the higher-order
prefactors of the integrated probability can be obtained by
including the prefactor in the worldline approach we used
in [8]. In [23] we introduced a doubly assisted mechanism,
where Schwinger pair production is assisted by both a weak
(coherent) field and a single, on-shell high-energy photon,
which we studied by treating both the strong and the weak
fields with nonperturbative methods; here in Sec. V we
study this mechanism by treating the weak field perturba-
tively, which offers the possibility to obtain the prefactor
e.g., for Sauter-like weak fields.

II. MOMENTUM SPECTRUM FROM THE
WORLDLINE FORMALISM

In this section we rederive the momentum spectrum of
the produced particles using the worldline-momentum
representation of the effective action [24]. To the best of
our knowledge this formalism2 has so far been used only in
[24], but we show here that it offers a useful alternative to
the WKB approach for obtaining the momentum spectrum,
including the prefactor. The pair production probability is
given by the imaginary part of the effective action
Peþe− ¼ 2ImΓ, which in turn is given in the usual worldline
representation by (see e.g., [26–28])

Γ ¼ 2

Z
∞

0

dT
T

I
Dx spin e−ið

T
2
þ
R

1

0

_x2
2TþA_xÞ; ð8Þ

where xμð0Þ ¼ xμð1Þ and the spin factor is in general given
by the trace of a path-ordered exponential

spin ¼ 1

4
tr “path order” exp

�
−
iT
4

Z
1

0

σμνFμν

�
; ð9Þ

but, for the one-component fields we consider here,
Aμ ¼ δ3μA3ðtÞ, it reduces to [24,27]

spin ¼ cos

�
iT
2

Z
1

0

A0
3ðtÞ
�
: ð10Þ

The standard representation (8) gives the total/integrated
probability. To obtain the spectrum, we follow [24]
and rewrite the effective action in a momentum represen-
tation as

Γ ¼ 2V3

Z
d3p
ð2πÞ3

Z
∞

0

dT
T

I
Dt spin

× exp

�
−i
�
Tm2⊥
2

þ
Z

1

0

_t2

2T
þ T

2
ðp3 − AÞ2

��
; ð11Þ

where m⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2⊥

p
, p⊥ ¼ fp1; p2g, and where the

integrand of the p-integral gives the momentum spectrum.3

We consider a strong constant field E plus a weak, rapidly
varying field aðtÞ, A3 ¼ Etþ aðtÞ, and expand (11) in the
weak field a ∼ ε ≪ 1,

Γ ¼ Γ0 þ εΓ1 þ ε2Γ2 þ � � � : ð12Þ

This expansion is illustrated in Fig. 1. After expressing the
weak field in terms of its Fourier transform,

FIG. 1. The expansion of the one-loop effective action in terms
of the weak field. The bold line represents fermions dressed by
both the strong and the weak fields; the double lines represent
fermions dressed by the strong field alone; and the wiggly lines
represent photons from the weak field (these photons are off-shell
for the fields we focus on here).

2Note, though, that a similar representation of the propagator
was used in [25].

3The effective action gives, of course, the probability of
producing any number of pairs, but this is approximately equal
to the probability of producing a single pair.
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aðtÞ ¼
Z

dω1

2π
e−iω1taðω1Þ; ð13Þ

we find Gaussian path integrals which we can perform with
methods similar to those used in [29–31] to calculate
N-photon amplitudes in constant background fields.
Two typical fields are the Sauter and the Gaussian pulses.

The Sauter pulse is given by

aðtÞ ¼ Eε
ω

tanhωt →

aðω1Þ ¼
Eε
ω2

πi
sinh πω1

2ω

≈ signðω1Þ2πi
Eε
ω2

e−
jω1 j
ω� ; ð14Þ

where we have introduced ω� ¼ 2ω=π to make it easier to
generalize to other fields that have exponentially decaying
Fourier transforms for Fourier frequencies above the
characteristic frequency, i.e., jω1j ≫ ω (recall that this
gives the dominant contribution). The Gaussian pulse is
given by

aðtÞ ¼ Eε
ω

ffiffiffi
π

p
2

erfðωtÞ →

aðω1Þ ¼
Eε
ω

i
ffiffiffi
π

p
ω1

e−½
ω1
2ω�2 : ð15Þ

A. Zeroth order Γ0

We begin with Γ0. This gives, of course, the well-known
constant field result [1–3], but it allows us to check the
overall normalization constant, which is the same for the
higher orders. Changing from Minkowski to Euclidean
variables

T → −iT; t → −itþ p3

E
ð16Þ

gives us

Γ0 ¼ 2iV3

Z
d3p
ð2πÞ3

Z
∞

0

dT
T

I
Dt cos

ET
2

× exp−
�
Tm2⊥
2

þ
Z

1

0

_t2

2T
−
T
2
ðEtÞ2

�
: ð17Þ

We separate the center of mass t0 from the time variable
tðτÞ → t0 þ tðτÞ, Fourier expand

tðτÞ ¼
X∞
n¼1

an cos 2πnτ þ bn sin 2πnτ; ð18Þ

and calculate the path integral by multiplying together
all the eigenvalues. The path integral is normalized accord-
ing to

I
Dt exp−

Z
1

0

_t2

2T
¼ 1ffiffiffiffiffiffiffiffiffi

2πT
p ; ð19Þ

so, by dividing by the free integral (cf. [26]), we obtain

Z
dt0

I
Dt exp

�
−

1

2T

Z
t½−∂2 − ðETÞ2�t

�

¼ 1ffiffiffiffiffiffiffiffiffi
2πT

p i

ffiffiffiffiffiffiffiffiffi
2πT

p

ET

Y∞
n¼1

ð2πnÞ2
ð2πnÞ2 − ðETÞ2 ¼

i
2 sin s

; ð20Þ

where s ¼ ET=2 and the product can be obtained, e.g.,
from Eq. (1.431.1) in [32]. The integration contour for s
goes over the poles and gives an imaginary part to the
effective action. To leading order we find

2ImΓ0 ¼ −2ImV3

Z
d3p
ð2πÞ3

Z
∞

0

ds
s
cot s e−sm

2⊥=E

≈ 2V3

Z
d3p
ð2πÞ3 e

−πm2⊥=E ¼ V4

E2

4π3
e−

π
E: ð21Þ

This is, of course, the leading term in the well-known
Schwinger formula. We can thus confirm that the normali-
zation factor in (17) is correct.

B. First order Γ1

The first order Γ1 corresponds to the cross term between
the zeroth and first order amplitudes, 2ReA�

0A1, which we
calculated in [8] using a WKB approach. Here we find by
expanding (11)

εΓ1 ¼ 2V3

Z
d3p
ð2πÞ3

Z
∞

0

dT
T

I
Dt cos

iET
2

× exp

�
−i
�
Tm2⊥
2

þ
Z

1

0

_t2

2T
þ T

2
ðp3 − EtÞ2

��

×
Z

dω1

2π
aðω1Þ

Z
1

0

dτ1
iT
2
e−iω1tðτ1Þ

×

�
iω1 tan

iET
2

þ 2½p3 − Etðτ1Þ�
�
; ð22Þ

where the first two lines are the same as for Γ0 and hence
have the same normalization. We change to Euclidean
variables according to (16).
To make the exponent quadratic in t we make a

replacement t → tcl þ t. Since the “classical” solution tcl
takes the same form for all orders, ΓN , we consider
temporarily general N. We find tcl by expanding its
equation of motion,

ð∂2 þ ðETÞ2ÞtclðτÞ ¼ T
XN
i¼1

ωiδðτ − τiÞ; ð23Þ

in terms of Fourier modes, which yields
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tclðτÞ ¼ T
XN
i¼1

ωi

X∞
n¼−∞

e2πinðτ−τiÞ

ðETÞ2 − ð2πnÞ2

¼ 1

2E

X
i

ωi
cos½sð1 − 2jτ − τijÞ�

sin s
; ð24Þ

where the sum over n can be performed using Eq. (1.445.2)
or (1.445.9) in [32]. With the linear term removed from the
exponent, the t-integral is now the same for all orders and is
given by (20).
Returning to N ¼ 1, the τ1-integral is trivial, and we find

εΓ1 ¼ −V3

Z
d3p
ð2πÞ3

Z
∞

0

ds
s
cot s e−

sm2⊥
E

× i
Z

dω1

2π
aðω1Þ

s
E

ω1

sin s cos s
e−

1
Eðip3ω1þ

ω2
1
4
cot sÞ: ð25Þ

Performing this p3 integral simply gives a delta function
δðω1Þ which reduces the exponential in Γ1 to the constant
field case, and then there is nothing to compensate for the
small prefactor, a ≪ 1, which means that Γ1 only gives a
small correction to the integrated probability. Note though
that this delta function does not automatically make the
prefactor zero, since −iω1aðω1Þjω1¼0 ¼

R
dt a0ðtÞ, which

can be nonzero depending on how the total field is
separated into a strong and a weak field.4 In any case,
we are not interested here in such small corrections to the
constant field result. We are instead interested in higher-
order terms that come from nonzero Fourier frequencies
and that, due to exponential enhancement, can be much
larger than the zeroth order/constant field probability.
While εΓ1 gives a negligible contribution to the integrated
probability, it can give important interference effects in the
spectrum.
We perform the proper-time s integral with the saddle-

point method. We define for convenience Σ ¼ jω1j=ð2m⊥Þ.
The saddle-point equation sin2s ¼ Σ2 has two solutions in
the region 0 < s < π. Although the first saddle point s ¼
arcsinΣ (0 < s < π=2) gives a larger exponential, the
Gaussian integral around it is real so, since the Fourier
integral is also real, this saddle point does not contribute to
the imaginary part of the effective action. Thus, only the
second saddle point

s� ¼
π

2
þ arccosΣ ð26Þ

(π=2 < s� < π) is relevant here. Let δs ¼ s − s� be the
perturbation around this saddle point, and then for small δs

the exponent is given by exp fm2⊥
E

ffiffiffiffiffiffiffiffi
1−Σ2

p
Σ δs2g. The first part

of the integration contour follows the real axis from s ¼ 0
to the saddle point (26) and gives a purely real contribution
to the integral. The second part of the contour starts at the
saddle point and follows the steepest descent where the
imaginary part of the exponent is zero. Since the second
part starts perpendicular to the real axis, it gives us an
imaginary contribution to Γ. Recalling that the initial
contour followed what now corresponds to the imaginary
axis, we have ds ∝ þi near the saddle point. The Gaussian
integral around this saddle point hence gives

Z
ds fðsÞ ¼ i

2

�
πE
m2⊥

Σffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p
�1

2

fðs�Þ þ “something real;”

ð27Þ

where a factor of 1=2 comes from having only half of a
Gaussian integral. Collecting all the terms we find

2Im εΓ1

¼ 2V3

Z
d3p
ð2πÞ3 2Re

Z
∞

0

dω1

2π

ffiffiffiffi
π

E

r ð−iÞaðω1Þffiffiffi
Σ

p ð1 − Σ2Þ14

× exp

�
−
m2⊥
E

�
π

2
þ 2iPΣþ arccosΣ − Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p ��
;

ð28Þ

where P ¼ p3=m⊥. Clearly, the saddle-point method that
we have used to derive (28) is only valid for 0 < Σ < 1 or
0 < jω1j < 2m⊥. Fortunately, the ω1 integral has in general
a saddle point in this range, and we are interested in regimes
where the dominant contribution comes from such saddle
points. So, the integration limits should in fact be restricted
to regions that are sufficiently close to the saddle points, but
we do not explicitly write out these integration limits. The
same holds for other Fourier integrals below.
To compare (28) with our results in [8], we first recall

that in [8] the momentum spectrum was obtained from the
amplitude, A, as

Peþe− ¼ V3

Z
d3p
ð2πÞ3 jA0 þ εA1 þ ε2A2 þ � � � j2; ð29Þ

where the zeroth order amplitude is given by

A0 ¼ δs;s0 exp

�
−
m2⊥
E

π

2
þ im2⊥

E
ϕðPÞ

�
; ð30Þ

and, from Eqs. (2.7), (4.14), and (4.23) in [8], the first order
amplitude can be expressed as

4To recover the prefactor obtained by replacing E → EþR
a0=V0 in the constant field result, the last expression in (21),

and expanding in a0, one has to remember that converting the p3-
integral into a volume factor also leads to a field-dependent factor.
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εA1 ¼ δs;s0
Z

∞

0

dω1

2π
aðω1Þð−iÞ

ffiffiffiffi
π

E

r
exp fim2⊥

E ϕðPÞgffiffiffi
Σ

p ð1 − Σ2Þ14

× exp
�
−
m2⊥
E

ð2iPΣþ arccosΣ − Σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p
Þ
�
;

ð31Þ

where the restriction to ω1 > 0 is due to the fact that this
gives the dominant contribution, and Σ ¼ ω1=ð2m⊥Þ. Here
s and s0 describe the spin of the electron and positron, and
the δs;s0 means that the sum over spins simply gives a factor
of 2 [the phase iϕðPÞ is completely irrelevant and is due to
an arbitrary choice in the WKB solutions]. Thus, we find
perfect agreement between the worldline-momentum
approach and the WKB approach, i.e.,

2Im εΓ1 ¼ V3

Z
d3p
ð2πÞ3

X
spin

2ReA�
0εA1; ð32Þ

where Γ1, A0, and A1 are given by (28), (30), and (31),
respectively. This relation is illustrated in Fig. 2.
We have demonstrated this equivalence without having

to specify the shape of the weak field. To make this
agreement more explicit, we consider in the next two
subsections the Sauter and the Gaussian pulses.

1. Sauter pulse

To obtain the spectrum we now have only the Fourier
integral left, and to perform it we need to specify the shape
of the weak field. We begin with the Sauter pulse (14). We
perform the Fourier integral with the saddle-point method.
There are two saddle points with opposite signs that give
complex conjugate contributions. We can therefore without
loss of generality focus on Reω1 > 0. The saddle point for
ω1 is given by Σðω1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ π̂23

p
≕ π̂0 ¼ π0=m⊥, where

π̂3 ¼ ðp3 − i=γ�Þ=m⊥ can be thought of as the “physical”
momentum of an electron in a constant electric field at an
imaginary time, and γ� ¼ ω�=E is the combined Keldysh
parameter suitably normalized. Notice that this saddle point
corresponds to a Fourier frequency of ω1 ¼ 2π0, which is
on the order of the electron mass even for a characteristic
frequency ω ≪ 1. The exponential suppression of the
Fourier transform at such high frequencies (we assume
ω ≪ 1) contributes to the overall exponential behavior of
the pair production probability. Collecting everything we
finally find

2Im εΓ1 ¼ 2V3

Z
d3p
ð2πÞ3 2Re

2πEε
ω2

1

π̂0
e−

m2⊥
E ½π

2
þiϕðπ̂3Þ�; ð33Þ

which agrees with what we found in our previous paper [8]
for the cross term between the zeroth and first order
amplitudes 2ReA�

0A1.

2. Gaussian pulse

As a second example we consider a Gaussian weak field
(15). The saddle point for the ω1 integral is given by

Σðω1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2 þ P2

p
− iνP

1þ ν2
; ð34Þ

where P ¼ p3=m⊥ and ν ¼ E=ω2. Notice that for this
Gaussian pulse the results are conveniently expressed in
terms of ν instead of the usual Keldysh parameter γ (at least
when considering different orders separately). We hence
find

2Im εΓ1 ¼ 2V3

Z
d3p
ð2πÞ3 2Re

Eε
2m⊥ω

ffiffiffi
π

p
Σ2

�
1þ ν2 þ iνP

Σ

�
−1
2

× exp

�
−
m2⊥
E

�
π

2
þ iPΣþ arccosΣ

��
; ð35Þ

where Σ is given by (34). This is again exactly the same as
our result for 2ReA�

0A1 in [8] where we used a WKB
approach. This follows immediately from the expressions
for the zeroth (30) and first order amplitudes [8]

εA1 ¼ δs;s0
Eε

ffiffiffi
π

p
2m⊥ω

1

Σ2

�
1þ ν2 þ iPν

Σ

�
−1
2

× exp

�
−
m2⊥
E

½iPΣþ arccosΣ − iϕðPÞ�
�
: ð36Þ

C. Second order Γ2

At second order there are two different contributions,
which in the WKB approach are given by the square of the
first order amplitude jA1j2 and the cross term between the
zeroth and second order amplitudes 2ReA�

0A2. As we will
see, we can obtain both of these contributions with the
worldline-momentum approach; cf. Fig. 3. By expanding
(11) to second order we find

FIG. 2. A diagrammatic illustration of (32). One of the
diagrams on the right-hand side represents the complex conjugate
of the corresponding amplitude.

FIG. 3. A diagrammatic illustration of the relation between the
effective action and the amplitude at second order.
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ε2Γ2 ¼ −V3

Z
d3p
ð2πÞ3

Z
∞

0

ds
s
cot s e−

sm2⊥
E

Z
1

0

dτ1dτ2

×
Z

dω1

2π

dω2

2π
aðω1Þaðω2Þ

��
s
E

�
2
�
ω1ω2

2
− 2E2t1t2

− tan sðω1Et2 þ ω2Et1Þ
�
−

s
E
δðτ1 − τ2Þ

�

× e−
1
E½ip3½ω1þω2�þ

ω2
1
þω2

2
4

cot sþω1ω2
2

cos sð1−2jτ1−τ2 jÞ
sin s �; ð37Þ

where t1 ¼ 1
2E sin s ðω1 cos sþ ω2 cos½sð1 − 2jτ1 − τ2jÞ�Þ

and t2 ¼ t1ðω1 ↔ ω2Þ. We divide Γ2 into two parts, one
where the two Fourier frequencies have opposite signs and
the other where they have the same sign, which we treat
separately.
We begin with the region where ω1ω2 < 0, which gives

the dominant contribution. Because of the translation
symmetry/periodicity in τ (see e.g., [29]), the integrand
becomes independent of τ2 after changing variables from τ1
to τ01 ¼ τ1 − τ2. We perform the remaining τ01-integral by
expanding around the saddle point τ01 ¼ 1=2. Next we
perform the s-integral, for which the exponential part of the
integrand is given by

exp

�
−
m2⊥
E

ðsþ ½r21 þ r22� cot sþ 2r1r2 csc sÞ
�
; ð38Þ

where ri ¼ ωi=2m⊥. The saddle point is given by

s ¼ 2 arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

h
1 − r1r2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − r21Þð1 − r22Þ

q ir
; ð39Þ

where the sign in front of the square root has been
determined by demanding that the integral around the
saddle point gives a factor of i (as only such a saddle
point contributes to ImΓ). At the saddle point we find5

ð38Þ→ exp

�
−
m2⊥
E

�
π− signðr1− r2Þ

×

�
arcsinr1þ r1

ffiffiffiffiffiffiffiffiffiffiffi
1− r21

q
−arcsinr2− r2

ffiffiffiffiffiffiffiffiffiffiffi
1− r22

q ���
:

ð40Þ

We have assumed that ω1ω2 < 0. Without loss of general-
ity we consider ω2 < 0 and multiply with a factor of 2 to
account for the other case. Changing variable ω2 → −ω2,
this contribution to the second order becomes

2Im ε2Γ2ðω1ω2 < 0Þ

¼ 2V3

Z
d3p
ð2πÞ3

π

E

				
Z

∞

0

dω1

2π

aðω1Þffiffiffiffiffi
r1

p ½1 − r21�
1
4

e−
m2⊥
E ð2iPr1þarccos r1−r1

ffiffiffiffiffiffiffi
1−r2

1

p
Þ
				2; ð41Þ

where P ¼ p3=m⊥. It is now clear that (41) agrees with
jεA1j2, i.e.,

2Im ε2Γ2ðω1ω2 < 0Þ ¼ V3

Z
d3p
ð2πÞ3

X
spin

jεA1j2; ð42Þ

where Γ2ðω1ω2 < 0Þ and A1 are given by (41) and (31),
respectively.
Next we consider the second region, where ω1ω2 > 0.

For the term without δðτ1 − τ2Þ we use translation invari-
ance to set τ2 ¼ 1=2. The exponent is maximized at
τ1 ¼ 1=2. For ω1ω2 < 0 we could neglect the term with
δðτ1 − τ2Þ, but this time we need it as it leads to the
same exponential as the other terms. The exponential for

the s-integral becomes exp f− m2⊥
E ðsþ Σ2 cot sÞg, where

Σ ¼ jω1þω2j
2m⊥ . This is the same exponential as in (25) for

the first order, except that Σ is now given by the sum of two
Fourier frequencies. The saddle point and the integral
around it are therefore given by (26) and (27). The
contribution from ω1, ω2 < 0 is the complex conjugate
of that from ω1, ω2 > 0, and hence

2Im ε2Γ2ðω1ω2 > 0Þ

¼ −2V3

Z
d3p
ð2πÞ3 2Re

×
Z

∞

0

dω1

2π

dω2

2π
aðω1Þaðω2Þ

ffiffiffiffi
π

E

r
2m⊥
ω1ω2

ð1 − Σ2Þ14ffiffiffi
Σ

p

× exp

�
−
m2⊥
E

�
π

2
þ 2iPΣþ arccosΣ − Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p ��
:

ð43Þ

Given the first order result, this looks like it could be the
cross term between the zeroth and second order amplitudes
2ReA�

0A2. To show that this is indeed the case, we first
have to obtain A2, which we do in the next section.
Although Σ is here given by the sum of two Fourier

frequencies, for Sauter-like fields (43) still leads to the
same exponential as in (33) for Γ1, and then there is nothing
to compensate for the extra factor of the weak field strength
a ∼ ε ≪ 1, which means that this second order contribution
(43) can be neglected. This is why we in [8] did not have to
calculate A2 in order to find good agreement with exact/
numerical results for Sauter-like fields. As we showed in
[8], though, for e.g., Gaussian pulses, higher orders can be
important.

5One can show this e.g., by studying the derivative of the
exponent with respect to r1 and r2.
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III. USING THE PROPAGATOR IN A
CONSTANT ELECTRIC FIELD

In this section we show how to extend the WKB
approach in [8] to obtain the amplitude at higher orders.
To do so, we use the fermion propagator in a constant
electric field. The propagator is defined by6

h0; outjTΨαðxÞΨ̄βðx0Þj0; ini
h0; outj0; ini ≕ iGαβðx; x0Þ ð44Þ

and satisfies

ðiDx −mÞGðx; x0Þ ¼ δðx − x0Þ; ð45Þ

where Dμ ¼ ∂μ þ iAμ. The propagator can be obtained
from, e.g., [3,33,34]

Gðx; x0Þ ¼ −e−iE
2
ðz−z0Þðtþt0Þ

Z
d4q
ð2πÞ4 e

−iqðx−x0Þ
Z

∞

0

ds

× exp

�
−sm2⊥ þ ðq20 − q23Þ

tanðEsÞ
E

�
× ½=qþmþ iðγ0q3 þ γ3q0Þ tanðEsÞ�
× ½1 − iγ0γ3 tanðEsÞ�: ð46Þ

With the standard iϵ-prescription m2 → m2 − iϵ, the con-
tour for the s-integral can be taken along the imaginary axis
from s ¼ 0 to s ¼ i∞ or rotated toward the real axis, but
not all the way since there are singularities there due
to tan s.

A. Second order A2

The second order amplitude is given by (note that
h0; outj0; ini ≈ 1)

ð2πÞ3δ3ðpþ p0Þε2A2 ¼ ð−iÞ2
Z

d4x d4x0ūs;pðtÞeipjxj

× =aðtÞiGðx; x0Þ=aðt0Þvs0;p0 ðt0Þeip0
jx

0j
:

ð47Þ

This second-order part of the amplitude is represented
by the last diagram in Fig. 4. We begin with the trivial
spatial integrals, which give the momentum conservation

delta function and a second delta function that we use to
perform three of the Fourier integrals in the propagator,
in particular q3 ¼ p3 − Eðtþ t0Þ=2. The last term comes
from the holonomy factor in the propagator. The reason
we cannot neglect this term for E ≪ 1 is that the saddle
points for the time integrals turn out to be on the order
of t ∼ 1=E.
Next we turn to the proper-time s integral. In the

previous sections we used the saddle-point method to
perform proper-time integrals in order to obtain the
imaginary part of the effective action. For the propagator
considered here, though, both its real and imaginary
parts contribute to the amplitude and the dominant
contribution comes from s ≈ 0. Upon expanding to
lowest order in s one finds that the field-dependent
propagator reduces to the free propagator times the
holonomy factor. This means that the factors from the
last exponential in (46) do not affect the saddle points for
the t, t0, and q0-integrals, they only affect the prefactor.
So, to a first approximation the propagator only gives a
field-dependent contribution via the holonomy factor.
This approximation leads to results that agree with the
approximations we obtain with the worldline formalism
in Secs. II, IV, and B, where s ¼ 0 corresponds to
τk ¼ τl for the τ variables that correspond to ωkωl > 0;
see also [8,35].
We approximate the exact wave functions with the

WKB approximations u → U and v → V as in [8] (see
Appendix A), which leads to the following exponent for the
time integrals:

exp

�
i
Z

t

0

π0 − iω1t − iq0ðt − t0Þ − iω2t0 þ i
Z

t0

0

π0

�
:

ð48Þ

We perform the integrals over t, t0, and q0 with the saddle-
point method. The saddle point is determined by
π0ðtÞ − ω1 − q0 ¼ 0, πðt0Þ − ω2 þ q0 ¼ 0, and t − t0 ¼ 0,
which give Et ¼ Et0 ¼ p3 þ im⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p
, where Σ ¼

ðω1 þ ω2Þ=ð2m⊥Þ, and q0 ¼ ðω2 − ω1Þ=2. To lowest
order in E the proper-time integral simply givesR
∞
0 ds e−ω1ω2s ¼ 1

ω1ω2
. Since most of this integral comes

from the region with s≲ 1=ðω1ω2Þ, we see that our
approximation Es ≪ 1 requires E=ðω1ω2Þ ≪ 1. For, e.g.,
a Gaussian or a Sauter pulse, a0ðtÞ ∼ e−ðωtÞ2 or sech2ωt,
the Fourier integrals are dominated by high-frequency
components (ωi ≫ ω with ω ≪ 1) with the saddle points
on the order of ωi ∼ 1, which agrees with E=ðω1ω2Þ ≪ 1 as
E ≪ 1. For a monochromatic field ∼ cosωt we only have
photons with frequency ω, and then one might want to keep
ω ≪ 1 for experimental reasons. However, one is never-
theless forced to consider larger ω in the monochromatic
case if one wants significant dynamical assistance compa-
rable to the Gaussian or Sauter cases. So, for frequencies

FIG. 4. The expansion of the pair production amplitude in terms
of the weak field, with the same notation as in Fig. 1.

6See [33] for a detailed discussion of different types of
propagators.
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that give significant enhancement this should be a good first
approximation.
The final piece comes from the spinor structure in the

prefactor, which we calculate using the spinor repre-
sentation in [8]. This leads to Ūs;pγ

3ð=qþmÞγ3Vs0;−p →
−δs;s02m⊥ π3

π0
. Collecting all the terms we finally find

ε2A2 ¼ −δs;s0
Z

∞

0

dω1

2π

dω2

2π
aðω1Þaðω2Þ

×
2m⊥
ω1ω2

�
π

E

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p

Σ

�1
2

exp

�
im2⊥
E

ϕðPÞ
�

× exp

�
−
m2⊥
E

ð2iPΣþ arccosΣ − Σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p
Þ
�
;

ð49Þ

where Σ ¼ ðω1 þ ω2Þ=ð2m⊥Þ. With the zeroth order ampli-
tude given by (30) [note that it contains the same irrelevant
phase as in (49)] we immediately see that the cross term
between the zeroth and second order amplitudes gives
exactly (43), i.e.,

2Im ε2Γ2ðω1ω2 > 0Þ ¼ V3

Z
d3p
ð2πÞ3

X
spin

2ReA�
0ε

2A2;

ð50Þ

where Γ2ðω1ω2 > 0Þ, A0 and ε2A2 are given by (43), (30),
and (49), respectively, and where the sum over spin simply
gives a factor of 2.
In fact, having obtained the second order amplitude, we

can now use it to calculate also the prefactor of the
dominant contribution to P3 and P4 (from 2ReA�

1A2 and
jA2j2, respectively).

B. Second order A2 for a Gaussian pulse

Since the first orders dominate for Sauter-like pulses, we
turn directly to a Gaussian pulse, for which the dominant
contribution can come from higher orders. To perform the
Fourier integrals in (49), we change variables to Σ ¼ ðω1 þ
ω2Þ=ð2m⊥Þ and θ ¼ ðω1 − ω2Þ=ð2m⊥Þ and perform the
integrals with the saddle-point method. The saddle point is
given by θ ¼ 0 and Σ ¼ Σ2, where

Σn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2n þ P2

p
− iνnP

1þ ν2n
; ð51Þ

νn ≔ ν=n, and ν ¼ E=ω2 (these definitions of νn and Σn
also apply to higher orders). The Σ integral is formally the
same as in the first-order case (34) after replacing ν with ν2.
Thus, the second-order amplitude for a Gaussian pulse is
given by

ε2A2 ¼ δs;s0

�
Eε
ω

�
2
ffiffiffiffiffiffiffiffiffiffi
πEν2

p
m3⊥Σ4

2

1þ iP
ν2Σ2h

1þ ν22 þ iν2P
Σ2

i1
2

× exp

�
−
m2⊥
E

½iPΣ2 þ arccosΣ2 − iϕðPÞ�
�
: ð52Þ

In Fig. 5 we return to an example which we in [8] used to
demonstrate that jA0 þA1j2 is not always enough to obtain
a good approximation of the spectrum for these fields.
Figure 5 shows that jA0 þA1 þA2j2, on the other hand,
does lead to good agreement with the exact/numerical
solution of the Riccati equation that was obtained in [8],
especially given that the parameter values in this example
have not been optimized but are simply the ones we
considered in [8], and the strong field is actually not a
constant field but a slowly varying Sauter pulse. As
mentioned, the dominant order is given by (6), which
reaches its maximum at χ ¼ ffiffiffi

2
p

. For ε ¼ 10−3 this corre-
sponds to γ ¼ 3.72, which is close to the value we have
chosen in Fig. 5. For this example (6) gives Ndom ∼ 4,
which agrees with the fact that we need A2 to find a good
agreement. We can increase the dominant order by decreas-
ing E, but this also makes the probability much smaller.
Together with the first order amplitude (36) and with the

saddle point for the longitudinal momentum given by (C2)
we find that the total probability at third order is given by

0.0 0.2 0.4 0.6 0.8 1.0 1.2

10–42

10–40

10– 38

10–36

FIG. 5. The momentum spectrum as a function of the longi-
tudinal momentum p3=m for p⊥ ¼ 0. The field parameters are
chosen as in the right plot of Fig. 3 in [8]; i.e., E ¼ 0.033Ecrit,
ε ¼ 10−3, γ ¼ 3.8, and, for the numerical results, the strong field is
a slowly varying Sauter pulse with γstrong ¼ 0.2. The red dotted
curve corresponds to the strong field alone jA0j2, the orange
dashed curve is given by jA0 þA1j2, and the black solid curve is
given by jA0 þA1 þA2j2. The blue dots show the result obtained
in [8] by numerically solving the Riccati equation using the code
from [36]. It is obvious that for these parameter values we need the
second-order amplitude to obtain a good approximation of the
probability. (For the weak field alone the spectrum at p3 ¼ 0 is
∼10−43 and quickly becomes much smaller for larger p3.)
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ε3P3 ¼ V3

Z
d3p
ð2πÞ3

X
spin

2ReεA�
1ε

2A2

¼ V3

ðEεÞ3
6

ffiffiffiffi
E
π

r
ν̄
3
2ð1þ ν̄2Þ52
arctan ν̄

exp

�
−
2

E
arctan ν̄

�
;

ð53Þ
where ν̄ ¼ 2N

N2−1 ν ¼ 3ν=4 ¼ ðν1 þ ν2Þ=2. From the square
of the second-order amplitude we obtain

ε4P4 ¼ V3

Z
d3p
ð2πÞ3

X
spin

jε2A2j2

¼ V3ðEεÞ4
ffiffiffiffiffiffi
E
2π

r
ν
5
2

2ð1þ ν22Þ
7
2

2 arctan ν2
exp

�
−
2

E
arctan ν2

�
:

ð54Þ
Compare (53) and (54) with Eq. (2.18) in [8] for the
second-order term, which can be expressed as

ε2P2 ¼ V3

ðEεÞ2
32

ffiffiffiffiffiffi
Eν
2π

r
ð1þ ν2Þ32
arctan ν

exp

�
−
2

E
arctan ν

�
:

ð55Þ

Both (53) and (54) are in perfect agreement with 2ImΓ3

and 2ImΓ4, respectively, which we show using the world-
line formalism (not in the momentum representation) in
Sec. IV.
Recall that to obtain the zeroth order, P0 ∼ e−π=E, from a

perturbative series, it is necessary to use Borel resummation
techniques [37,38]. The saddle-point results (53)–(55) can
be expanded in a Taylor series in E (by keeping ω in ν ¼
E=ω2 fixed) and then directly reconstructed without using,
e.g., Borel resummation. However, this does not mean that
one can obtain (53)–(55) in the region ν ∼ 1 from an
ab initio perturbative treatment of the strong field.

C. Higher orders An

We will now use the propagator from the previous
section to obtain the exponentials of higher order ampli-
tudes. We obtain the nth order amplitude from

ð2πÞ3δ3ðpþp0ÞεnAn∼
Z

d4x1…d4xnūðt1Þeipjx
j
1

×=aðt1ÞGðx1;x2Þ=aðt2ÞGðx2;x3Þ���
×=aðtn−1ÞGðxn−1;xnÞ=aðtnÞvðtnÞeip

0
jx

j
n :

ð56Þ

The spatial integrals give delta functions which we use to
perform the integrals over qðjÞ for each propagator. The
proper-time integrals from the propagators are again
dominated by sk ∼ 0 and do not affect the exponential

behavior of the probability, which means that, when
performing the time integrals with the saddle-point method,
the exponential is a relatively simple generalization of
the second order case above. Using (A8) and shifting the
time variables, tk → tk þ p3=E, to make the simple p3-
dependence manifest, we find

εnAn ∼
Z Yn

k¼1

½dωkdtkaðωkÞ�
Yn−1
k¼1

dqðkÞ0 � � �

× exp i

�
−
p3

E

Xn
k¼1

ωk þ
m2⊥
2E

ϕ

�
Et1
m⊥

�
−
Xn
k¼1

ωktk

−
Xn−1
k¼1

qðkÞ0 ðtk − tkþ1Þ þ
m2⊥
2E

ϕ

�
Etn
m⊥

��
; ð57Þ

where the ellipses stand for factors that do not affect the
exponential behavior of the probability [and we have
omitted the term in (A8) with ϕðp3=m⊥Þ since it cancels
anyway when squaring the amplitude]. We perform the t1
integral with the saddle-point method, where the saddle

point is given by Et1ðqð1Þ0 Þ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ − ðω1 þ qð1Þ0 Þ2

q
(assuming 0 < ω1 þ qð1Þ0 < m⊥). We can now perform

the qð1Þ0 integral also with the saddle-point method.

Although t1ðqð1Þ0 Þ now depends on qð1Þ0 , the saddle-point

equation for qð1Þ0 is simply given by t1ðqð1Þ0 Þ ¼ t2, and we do

not even have to find the explicit solution for qð1Þ0 in order to
obtain the exponential part of the probability. We can now

perform the integrals over t2 and qð2Þ0 in exactly the same
way, the only difference is ω1 → ω1 þ ω2. This in turn

leads to similar integrals for t3 and qð3Þ0 , with
ω1 → ω1 þ ω2 þ ω3, and so on. The last time integral is
similar to the previous ones, and the saddle point is given
by Etn ¼ im⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p
, where Σ ¼ 1

2m⊥
P

n
k¼1 ωk. The sum

over Fourier frequencies is the only difference between the
resulting exponent and the one for n ¼ 1. We can therefore
immediately write down the result for arbitrary n using the
first order results in [8]. We hence find

εnAn ∼
Z Yn

k¼1

dωkaðωkÞ � � � e−
m2⊥
E ½2iPΣþarccosΣ−Σ

ffiffiffiffiffiffiffiffi
1−Σ2

p
�;

ð58Þ

where P ¼ p3=m⊥,

Σ ¼ 1

2m⊥

Xn
k¼1

ωk; ð59Þ

and the ellipses stand for factors that do not affect the
exponential.
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In fact, this exponential part of the amplitude can also be
obtained from the worldline-momentum approach: The nth
order of the imaginary part of the effective action, ImΓn,
corresponds to the sum of products of different orders of the
amplitude. For example, ImΓ4 contains jA2j2, ReA�

1A3,
and ReA�

0A4. The nth order amplitude An can be obtained
from the term in ImΓn in which all Fourier frequencies
have the same sign, because this corresponds to the cross
term 2ReA�

0An andA0 has a simple exponential that is easy
to separate out. In this case the exponential is given by

e
−
m2⊥
E



2iPΣþsþ 1

4m2⊥

P
n
i;j¼1

ωiωj
cos½sð1−2jτi−τj jÞ�

sin s

�
; ð60Þ

which for ωiωj > 0 is maximized by jτi − τjj ¼ 0, 1, which
leads to

exp

�
−
m2⊥
E

ð2iPΣþ sþ Σ2 cot sÞ
�

ð61Þ

with the same Σ as in (59). Performing the s integral with
the saddle-point method as in (27) gives the same expo-
nential for An as in (58). See Appendix B for more details
on this approach.
Upon squaring the amplitude, the Nth order terms in the

probability are given by A�
N−nAn, with 0 ≤ n ≤ N. Since

p3 only enters in the linear term in the exponential, the
integral over p3 gives a delta function δðΣ0 − ΣÞ, with Σ and
Σ0 for A�

N−n and An, respectively. This is the same as in
Eq. (5.1) in [8], and we immediately recover the exponent
in Eq. (5.5) in [8], which we there obtained with a
completely different approach. Thus, for the total/inte-
grated probability, we can stop at this point; after repro-
ducing Eq. (5.5) in [8], which holds for quite general field
shapes of the weak field, the rest of the calculation is
identical to that in [8]. See though Appendix C for a
different approach.

D. Third order A3 for a Gaussian pulse

Having obtained the saddle points at arbitrary orders, it is
now straightforward to calculate the prefactors. In this
section we do so for the third order amplitude for a
Gaussian pulse. The calculation is similar to the one above
for A2 so we simply state the results. We find

ε3A3 ¼ δs;s0

�
Eε
ω

�
3 27

ffiffiffiffiffiffi
3π

p
E

128m5⊥Σ8
3ν3

9 − 8Σ2
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ν23 þ iν3P
Σ3

q
× exp

�
−
m2⊥
E

½iPΣ3 þ arccosΣ3 − iϕðPÞ�
�
; ð62Þ

where Σ3 is given by (51). We show in Appendix B how to
obtain (62) with the worldline-momentum approach. From
(62) and (52) we obtain the dominant contribution to P5

and P6,

ε5P5 ¼ V3

Z
d3p
ð2πÞ3

X
spin

2Reε2A�
2ε

3A3

¼ V3ðEεÞ5
243

640

ffiffiffiffiffiffi
3E
π

r
ν̄
3
2ð1þ ν̄2Þ92ð1þ 9ν̄2Þ

arctan ν̄
e−

2
E arctan ν̄;

ð63Þ

where ν̄ ¼ 5ν=12, and

ε6P6 ¼ V3

Z
d3p
ð2πÞ3

X
spin

jε3A3j2

¼ V3ðEεÞ6
59049

131072

ffiffiffiffiffiffiffiffi
Eν3
2π

r
ð1þ ν23Þ

11
2 ð1þ 9ν23Þ2

arctan ν3

× e−
2
E arctan ν3 : ð64Þ

For the example in Fig. 5 we can now check that A3

indeed gives a negligible contribution to the spectrum,
and from (55), (53), (54), (63), and (64) we find that εNPN
increases from N ¼ 0 to N ¼ 4 and then decreases, so
for this particular example we do not have to calculate
more terms.

E. Cos-Gaussian pulse

So far we have focused on fields with a single maximum
in t. However, since it is the Fourier transform of the weak
field that is most important here, it is relatively easy to
generalize the results in the previous sections to oscillating
fields. As an example we consider a sinusoidal field with a
Gaussian envelope

a0ðtÞ ¼ Eε cosðΩtþ φÞe−ðωtÞ2 : ð65Þ

The Fourier transform is similar to the simple Gaussian
pulse,

aðω1Þ ¼
ω1 −Ω
2ω1

e−iφaGðω1 −ΩÞ þω1 þΩ
2ω1

eiφaGðω1 þΩÞ;

ð66Þ

where aGðω1Þ is the Fourier transform for Ω ¼ ϕ ¼ 0
given by (15). If we assume thatΩ is not too small, then one
can neglect aGðω1 þΩÞ compared to aGðω1 − ΩÞ. We can
perform the integrals with the same methods as before, so
we simply state the final results here. We find

εA1 ¼ δs;s0
e−iφEε
2ω

ffiffiffi
π

p
2m⊥Σ2

1

×
e−

m2⊥
E ½Λ1ν1ðΛ1−Σ1ÞþiPΣ1þarccosΣ1−iϕðPÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ν21ð1 − Λ1

Σ1
Þ þ iPν1

Σ1

q ; ð67Þ
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ε2A2 ¼ δs;s0

�
e−iφEε
2ω

�
2
ffiffiffiffiffiffiffiffiffiffi
πEν2

p
m3⊥Σ4

2

�
1 −

Λ2

Σ2

þ iP
ν2Σ2

�

×
e−

m2⊥
E ½Λ2ν2ðΛ−Σ2ÞþiPΣ2þarccosΣ2−iϕðPÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ν22ð1 − Λ2

Σ2
Þ þ iPν2

Σ2

q ; ð68Þ

ε3A3 ¼ δs;s0

�
e−iφEε
2ω

�
3 27

ffiffiffiffiffiffi
3π

p
E

128m5⊥Σ8
3ν3

ð9 − 8Σ2
3Þ

×
e−

m2⊥
E ½Λ3ν3ðΛ3−Σ3ÞþiPΣ3þarccosΣ3−iϕðPÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ν23ð1 − Λ3

Σ3
Þ þ iPν3

Σ3

q ; ð69Þ

where νn ¼ ν=n,

Σn ¼
Λnν

2
n − iPνn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2n þ P2 − Λ2

nν
2
n þ 2iPΛnνn

p
1þ ν2n

;

ð70Þ

and Λn ¼ nΩ=ð2mÞ. In Fig. 6 we compare these terms with
the exact numerical result. In this example jA0 þA1j2 is
not enough, not even qualitatively. However by including

the second order amplitude, jA0 þA1 þA2j2, we find a
good agreement.
One advantage of this approach is that it gives the correct

results in the limits where either the weak or the strong field
vanishes. The limit ε → 0 gives trivially the zeroth order
P0, which only depends on the strong field. In the other
limit we can directly obtain the results by taking E → 0
with Eε fixed in (67)–(69), which gives

εA1 ¼
ffiffiffi
π

p
4

m⊥Eε
p2
0ω

e−iφ−
ð2p0−ΩÞ2

4ω2 ; ð71Þ

ε2A2 ¼
i
2

ffiffiffi
π

2

r
m⊥p3ðEεÞ2

p5
0ω

e−2iφ−
ð2p0−2ΩÞ2

8ω2 ; ð72Þ

ε3A3 ¼
81

ffiffiffiffiffiffi
3π

p

1024

ð9m2⊥ − 8p2
0Þm⊥ðEεÞ3

p8
0ω

e−3iφ−
ð2p0−3ΩÞ2

12ω2 ; ð73Þ

where p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ p2

3

p
. Figure 6 shows one example

where the dominant contribution comes from A2 in one
part of the spectrum and from A3 in the other, and the
agreement with the exact numerical result is excellent. In
the limit of a long pulse ω → 0 these terms become
proportional to δð2p0 − nΩÞ as expected.

IV. HIGHER-ORDER PREFACTORS FOR
THE INTEGRATED PROBABILITY

In this section we show how to obtain higher orders
of the integrated probability, including the prefactors,
using the worldline formalism. We show in particular
how to use this method to obtain (53)–(55), (63), and
(64). Our starting point is (8) with the spin factor given by
(10). However, as we in this section only calculate the
integrated probability, we do not go over to the worldline-
momentum representation. This is a generalization of the
approach we used in [8]. We expand the effective action
in the weak field as in (12), where now

εNΓN ¼
Z YN

k¼1

dωk

2π
aðωkÞ

Z
∞

0

dT
T

Z
1

0

YN
k¼1

dτk

I
DxWN

× exp

�
−i
�
T
2
þ
XN
i¼1

ωitðτiÞ þ
Z

1

0

_x2

2T
þ Et_z

��
;

ð74Þ

and the prefactor WNðT;ωi; _zðτiÞÞ is obtained from the
expansion of

2 cos

�
iT
2

�
Eþ

Z
1

0

a0ðtÞ
��

exp

�
−i
Z

1

0

a_z

�
ð75Þ

in the field strength a. We start with the path integral.
The transverse integrals simply give

0.0 0.5 1.0 1.5 2.0 2.5 3.0

10–27

10–25

10–23

10–21

10–19

FIG. 6. The p3 spectrum jAj2 at p⊥ ¼ 0 for (65) with
E ¼ 0.05, ε ¼ 10−3, ω ¼ 1.5E,Ω ¼ 0.75, and φ ¼ 0. The strong
field is a Sauter pulse with frequency E=15. The red dashed curve
gives jA0j2, the orange dashed curve jA0 þA1j2, and the black
curve jA0 þA1 þA2j2, whereA1 andA2 are obtained from (67)
and (68). The blue dotted lines give the exact result obtained by
solving the Riccati equation numerically [39] with the approach
in [36], i.e., by using the TIDES differential equation solver [40]
and the multiple-precision library MPFR [41]. The lower blue
and the dashed black curves show the spectrum for the weak
field alone, where the dashed black curve is given by
jA1 þA2 þA3j2, with Ai from (71)–(73). This weak spectrum
is dominated by A2 for p3 ≲ 0.4 (except close to p3 ¼ 0 where
A2 ¼ 0) and by A3 for p3 ≳ 0.5, while A1 is completely
negligible.
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I
Dx⊥ exp

�
−i
Z

−_x2⊥
2T

�
¼ V⊥

ð2πiTÞd2 ; ð76Þ

where d is the number of transverse dimensions. We
separate the time integral into a “center of mass” plus
oscillating terms, tðτÞ → tc þ tðτÞ, where the new t obeysR
1
0 t ¼ 0. The tc integral gives a delta function for the
Fourier frequencies

R
dtc → 2πδðω1 þ � � � þ ωNÞ. For the

fields we consider here it is natural to switch to Euclidean
variables, t → −it and T → −iT. It turns out to be
convenient to use s ¼ ET=2 instead of T. Selecting the
Nth order from (75) and exponentiating the resulting
products (cf. [29]) give

WN ¼ linearϵ
iN

N!

�
exp

�
is −

XN
k¼1

ϵk

�
_zðτkÞ þ

s
E
iωk

��

þ exp

�
−is −

XN
k¼1

ϵk

�
_zðτkÞ −

s
E
iωk

���
; ð77Þ

where linearϵ selects all the terms that are linear in all ϵk.
7

The path integral is now a relatively simple Gaussian. We
remove the terms in the exponent that are linear in z by
making a shift in the integration variables, z → zcl þ z,
where the “classical” part is given by

_zclðτÞ ¼ −ETt − T
XN
k¼1

ϵk½δðτ − τkÞ − 1�: ð78Þ

The z integral is now free and gives a volume factor Δz,

I
Dz exp

�
−
Z

_z2

2T

�
¼ Δzffiffiffiffiffiffiffiffiffi

2πT
p : ð79Þ

For the remaining t integral we again make the exponent
quadratic by shifting the integration variable, t → tcl þ t,
where the “classical” part is obtained by expanding its
equation of motion [cf. (23)],

ð∂2
τ þ ½2s�2ÞtclðτÞ ¼ T

XN
k¼1

ðωk − 2sϵkÞðδτ;τk − 1Þ; ð80Þ

in terms of Fourier modes, which yields [cf. (24)]

tclðτÞ ¼ T
XN
k¼1

ðωk − 2sϵkÞ
X
n≠0

e2πinðτ−τkÞ

ð2sÞ2 − ð2πnÞ2

¼ 1

2E

XN
k¼1

ðωk − 2sϵkÞ
�
cos½sð1 − 2jτ − τkjÞ�

sin s
−
1

s

�
;

ð81Þ

where the sum over n can be performed using Eq. (1.445.2)
in [32]. We perform the Gaussian path integral by Fourier
expanding t as in (18) and then multiplying the eigenvalues
as in (20), which gives

I
Dt exp

�
−
Z

tð−∂2
τ − ð2sÞ2Þt
2T

�
¼ 1ffiffiffiffiffiffiffiffiffi

2πT
p s

sin s
: ð82Þ

The prefactor WN is now given by

WN ¼ 2
iN

N!
linearϵ cos

�
s −

s
E

XN
k¼1

ϵkωk

�
exp

�
s
E

XN
k¼1

ϵkξk

þ s
E

XN
k;l¼1

ϵkϵl

�
δτkτl − s

cos½sð1 − 2jτk − τljÞ�
sin s

��
;

ð83Þ

where

ξk ≔
XN
l¼1

ωl
cos½sð1 − 2jτk − τljÞ� − cos s

sin s
: ð84Þ

With the path integral performed, we now have

εNΓN ¼ −V3

Z YN
k¼1

�
dωk

2π
aðωkÞ

�
2πδ

�XN
k¼1

ωk

�

×
Z

∞

0

ds

�
E
4πs

�d
2
þ1 1

sin s

Z
1

0

YN
k¼1

dτkWN

× e−
1
Eðsþ
P

N
i;j¼1

ωiωj
cos½sð1−2jτi−τj jÞ�−cos s

4 sin s Þ: ð85Þ

Equation (85) complements Eq. (5.1) in [8] by providing
the prefactor, and so gives the exact ΓN for arbitrary N.
In deriving (85) we have used the fact that ω1 þ � � � þ
ωN ¼ 0. For Γ1, though, one has to be more careful since
aðω1Þω1δðω1Þ leads to a nonzero contribution. However, as
mentioned, we are not interested in terms like Γ1 (integrated
over the momentum), which have the same exponential as
Γ0 and therefore only give small corrections.
We also perform the τi and s integrals for general weak

field a. Let us first consider the zeroth order as a check of
e.g., signs and factors of 2. To zeroth order the prefactor is
given by W0 ¼ 2 cos s, the delta function gives a volume
factor 2πδð0Þ ¼ Δt, and we recover the well-known

7Note that ϵk (k ¼ 1;…; N) are just temporary, nonphysical
parameters, which are introduced as a mathematical tool.
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Euler-Heisenberg action for a constant electric field; see
e.g., [42],

Γ0 ¼ −V4

Z
∞

0

ds

�
E
4πs

�d
2
þ1 2 cos s

sin s
e−s=E: ð86Þ

The integration over the first pole gives the leading order of
the imaginary part of the effective action as in (21).

A. ImΓ2

As a more nontrivial check of (85), we compare with
previous results for Γ2. In order to compare with the exact
expression in [34] for the polarization tensor in a constant
electric field, we make a partial integration in τ1 to replace
the delta function in (83); cf. [31]. Using the translation
invariance we put τ2 ¼ 0 in the integrand. To facilitate
comparison with [34], we change variable from τ1 to v ¼
2τ1 − 1. We find

ε2Γ2 ¼ −V3

Z
dω1

2π
jω1aðω1Þj2

Z
∞

0

ds

�
1

4π

�d
2
þ1
�
E
s

�d
2
−1

×
Z

1

−1
dv

cos s − cosðsvÞ
sin3s

e−
1
Eðs−ω2

1

cosðsvÞ−cos s
2 sin s Þ: ð87Þ

For d ¼ 2, Eq. (87) is identical to the expression we used in
[8] to obtain P2 from the exact polarization tensor in [34].
So we already know that performing the integrals in (87)
with the saddle-point method leads to a result that agrees
with the WKB-based approach we used in [8]. However,
we go through the calculation here to prepare for the
calculation of higher-order terms. For a Gaussian weak
field, the ω1 integral is Gaussian and can be performed
exactly at this stage. However, since we want to make as
much progress as possible for general pulse shapes, we
keep the ω1 integral and perform the other integrals first.
The saddle point for the τ1 integral is τ1 ¼ 1=2. The

exponential for the s-integral is now given by

exp

�
−
2

E

�
s
2
− Σ2 tan

s
2

��
; ð88Þ

where Σ ¼ jω1j=2. As performing this proper-time integral
with the saddle-point method is similar to what we did
for (25), we just state the results here. The saddle point is
given by

s ¼ 2 arccosΣ; ð89Þ

and the Gaussian integral around it is similar to (27). After
performing all integrals except for the one over ω1, we find

2Im ε2Γ2 ¼ V3

Z
dω1

2π
jaðω1Þj2

�
E
4πs

�d
2 1

2Σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p

× exp

�
−
2

E
ðarccosΣ − Σ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p
Þ
�
; ð90Þ

where s is given by (89) and Σ ¼ jω1j=2. It is now
straightforward to check that this agrees with the WKB
result: Just square the first order amplitude A1, given by
(31), and integrate over the momenta as in (41). The p3

integral gives a delta function setting the Fourier frequency
inA�

1 equal to that inA1, and the perpendicular momentum
integrals are Gaussian around p⊥ ≈ 0 and give the
½E=ð4πsÞ�d=2 factor in (90).
For a Gaussian field (15), we find for the ω1 integral two

saddle points given by jω1j ¼ 2Σ, where

Σ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2

p : ð91Þ

The saddle point (91) is relevant also at higher orders, but
with ν depending on the order. With these two saddle points
we find 2ImΓ2 ¼ P2 with P2 given by (55) (for d ¼ 2).

B. ImΓ3

Now we turn to the first nontrivial odd term, Γ3, which is
illustrated by the fourth diagram on the right-hand side in
Fig. 1. Because of δðω1 þ ω2 þ ω3Þ, one of the three ωi
must have opposite sign compared to the other two. We
assume without loss of generality that ω1 and ω2 have the
same sign, and we multiply with a factor of 3 to account
for the other two equivalent regions. We have two different

contributions to W3 ¼ Wð1Þ
3 þWð2Þ

3 : one (Wð1Þ
3 ) without

delta functions, and the other (Wð2Þ
3 ) with delta functions.

For Wð1Þ
3 we use translation invariance [29] to set τ3 ¼ 0.

Looking at the behavior of the exponential, we find that
the dominant contribution comes from the integration
region near τ1 ¼ τ2 ¼ 1=2. We expand around this point,
τ1 ¼ 1=2þ δτ1 and τ2 ¼ 1=2þ δτ2. We change variable
from δτ2 to δτ02 ¼ δτ2 − δτ1. The leading order perturbation
around the “saddle point” is given by

Z
∞

−∞
dδ τ1dδ τ02 exp

�
−
1

E

�ð2ΣsÞ2
sin s

δτ21 þ sω1ω2jδτ02j
��

:

ð92Þ

From this we see that δτ1 ∼
ffiffiffiffi
E

p
while δτ02 ∼ E, which

means that to leading order we can neglect terms like
δτ1δτ

0
2 ∼ E3=2 or δτ022 ∼ E2. Note that while the δτ1 integral

is Gaussian around the saddle point, the exponent behaves
as jδτ02j rather than δτ022 , so we are dealing here with a
generalization of the ordinary saddle-point method. The
resulting integrals are still elementary though. At higher
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orders we have more terms where the fluctuation, δ say,
around some “saddle point” for the τ integrals behaves as

jδj rather than δ2. Of the three terms inWð2Þ
3 , we can neglect

those with δτ1;τ3 and δτ2;τ3 since they give exponentially
smaller contributions. The term with δτ1;τ2 ¼ δðδτ02Þ leads
to the same exponential as the terms in Wð1Þ

3 . We see from

(92) that compared to the integrals in Wð1Þ
3 this delta

function gives

δðδτ02Þ →
sω1ω2

2E
; ð93Þ

which means that also the prefactor part of this contribution

is on the same order as Wð1Þ
3 .

The s-dependent part of the exponential is now given by
(88) with Σ given by Σ ¼ jω1 þ ω2j=2, and the saddle point
is given by (89). The contribution from ω1, ω2 < 0 is equal
to minus the complex conjugate of the contribution from
ω1, ω2 > 0. We hence find

2Im ε3Γ3 ¼ 4V3Im
Z

dω1

2π

dω2

2π
aðω1Þaðω2Það−ω1 − ω2Þ

×

�
E
4πs

�d
2 1

ω1ω2Σ
e−

2
EðarccosΣ−Σ

ffiffiffiffiffiffiffiffi
1−Σ2

p
Þ; ð94Þ

where ω1 > 0, ω2 > 0, and Σ ¼ ðω1 þ ω2Þ=2. It is now
straightforward to check that (94) agrees with our WKB
results for the amplitude: Just takeA1 andA2 from (31) and
(49), and integrate 2ReA�

1A2 as in (53). The momentum
integrals are similar to the previous section, and we hence
find

2Im ε3Γ3 ≈ V3

Z
d3p
ð2πÞ3

X
spin

2ReεA�
1ε

2A2: ð95Þ

(Note that we have≈ because the exact relation between the
effective action and the amplitude at this order also includes
the subleading term with 2ReA�

0A3.)

C. ImΓ4

The effective action at fourth order, Γ4, is represented by
the fifth diagram on the right-hand side in Fig. 1. The
dominant contribution to Γ4 comes from the region where
two ωi’s are positive and the other two are negative.
Without loss of generality we assume ω1, ω2 > 0 and
ω3, ω4 < 0, and we multiply with a factor of 6 to account
for the other equivalent regions. We again use the trans-
lation invariance to put τ4 ¼ const ≔ τ0, and for definite-
ness we choose 0 < τ0 < 1=2. Then the dominant
contribution comes from the region around τ1 ¼ τ2 ¼ τ0 þ
1=2 and τ3 ¼ τ0. Expanding around this point, τ1;2 ¼ τ0 þ
1=2þ δτ1;2 and τ3 ¼ τ0 þ δτ3, we find two integrals with
the jδj-type of fluctuation and one Gaussian integral,

exp

�
−
1

E

�ð2ΣsÞ2
sin s

δτ21 þ sω1ω2jδτ02j þ sω3ω4jδτ3j
��

;

ð96Þ

where δτ02 ¼ δτ2 − δτ1. The exponential for the s integral
has the same form as before, Eq. (88), and hence the saddle
point is given by (89), where Σ ¼ ðω1 þ ω2Þ=2. W4 is
given by (83) with ξ1 ¼ ξ2 ¼ −ξ3 ¼ −ξ4 ¼ −2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p
.

We can calculate the delta function terms in W4 by
reexpressing the delta functions using partial integration,
but it is easier to use the delta functions to perform τ-
integrals. We first note that, to leading order in E, we can
take ϵkϵl½δτk;τl � � �� → ϵkϵlδτk;τl in (83), and we only need to
consider the terms with δτ1;τ2 and δτ3;τ4 , which contribute
similarly to (93), since the other delta functions lead to
exponentially smaller contributions. We hence find

2Im ε4Γ4 ¼ V3

Z Y4
k¼1

�
dωk

2π
aðωkÞ

�
2πδ

�X4
k¼1

ωk

��
E
4πs

�d
2

×
4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p

Σω1ω2ω3ω4

e−
2
EðarccosΣ−Σ

ffiffiffiffiffiffiffiffi
1−Σ2

p
Þ; ð97Þ

where the integrals are restricted to the region withω1;2 > 0

and ω3;4 < 0, and Σ ¼ ðω1 þ ω2Þ=2. It is now straightfor-
ward to check that (97) agrees with our WKB results for the
amplitude. We again perform the momentum integral as
before and find

2Im ε4Γ4 ≈ V3

Z
d3p
ð2πÞ3

X
spin

jε2A2j2; ð98Þ

with A2 given by (49). (Note again that we have an
approximate sign because we have neglected the sublead-
ing terms with 2ReA�

0A4 and 2ReA�
1A3.)
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10–16

10–12
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10–4

FIG. 7. 2ImΓ4 for ω1 ¼ ω2 ¼ −ω3 ¼ −ω4 ¼ ω and without
the factor of V3

R Q
4
k¼1 ½dωk

2π aðωkÞ�2πδð
P

4
k¼1 ωkÞ. The dots are

obtained by numerically integrating (85), and the line shows the
analytical approximation (97), which is only valid for ω < 1
where the result is exponentially suppressed.
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Thus, we have now obtained the same P3 and P4 using
two completely different approaches, and without choosing
a particular field shape of the weak field. For a Gaussian
weak field (15), performing the remaining Fourier integrals
with the saddle point method gives (53) and (54) (for d ¼ 2
transverse dimensions).
The integrals in (85) can also be performed numerically.

One approach is to first perform the s-integral by integrat-
ing along e.g., a C-shaped contour that passes vertically
through the saddle point, which depends on τi, or a similar
contour in regimes where the result is not exponentially
suppressed. Then one can perform the τi integrals on a real
N − 1 dimensional unit hypercube 0 < τi < 1. In Fig. 7 we
show the results of such a numerical integration for Γ4 and
ω1 ¼ ω2 ¼ −ω3 ¼ −ω4 ¼ ω. Of course, even for a mono-
chromatic field we have N integrals to perform for ΓN, and
the integrand becomes more complicated at higher N
because of the increase in the number of terms in the
prefactorWN, which can make a numerical integration time
consuming at high orders.
As a straightforward generalization of the above calcu-

lations we can also obtain higher orders. We already have
the saddle points. What remains is to find some suitable
integration variables and their scaling with respect to E,
and then expand the integrand in E. We find exactly the
same results as from the amplitude approach, i.e.,
2Im ε5Γ5 ¼ ð63Þ and 2Im ε6Γ6 ¼ ð64Þ.
As yet another approach, we have also derived (94)

and (97) by calculating the corresponding loop diagrams
in Fig. 1 using the electron propagator in (46) [or rather
the single-integral representation obtained by first per-
forming the momentum integrals in (46)]. The prefactor
can then be obtained by choosing a representation for the
Dirac matrices. This might at first seem like a simpler
approach, but we found it much simpler to obtain (94)
and (97) with the path-integral approach described in this
section.

V. DOUBLE ASSISTANCE

So far we have considered a strong constant field assisted
by a single weak field. In [23] we proposed and studied a
doubly assisted generalization, where the strong field is
assisted by both a weak field [4] as well as a real/on-shell

high-energy photon [43]. In [23] we treated the weak
field with nonperturbative methods. Here we will show that
one can treat it with our perturbative approach. The
inclusion of the high-energy photon basically corresponds
to adding a third field in the shape of a plane wave, which
is treated to lowest order. The pair production probability
can be obtained from the polarization tensor using the
optical theorem. Its weak field expansion is illustrated in
Fig. 8. The polarization tensor can be obtained from the
following worldline representation of the effective action
(see e.g., [29,31,44]):

Γk;ϵ→k0;ϵ0 ¼ 2e2
Z

∞

0

dT
T

I
Dx
Z

Dψ

4

Z
1

0

dτ1dτ2

× ½ϵ_xþTkψϵψ �τ1 ½ϵ0 _x−Tk0ψϵ0ψ �τ2e−ikxðτ1Þþik0xðτ2Þ

×exp−i
�
T
2
þ
Z

1

0

_x2

2T
þA_x−

i
2
ψ _ψþ i

2
ψTFψ

�
;

ð99Þ

where ψμðτÞ is an anticommuting Grassmann variable with
antisymmetric boundary conditions, ψð1Þ ¼ −ψð0Þ,
Fμν ¼ ∂μAν − ∂νAμ, and kμ and ϵμ are the momentum
and polarization of the high-energy photon. We consider
again A3 ¼ aðtÞ þ Et and treat the weak field perturba-
tively using its Fourier transform (13). This expansion
makes the path integrals Gaussian and the prefactor is
obtained from various Wick contractions as described in
e.g., [29,44]; we have included the formulas we need in
Appendix D. The spatial homogeneity leads to the con-
servation of the photon momentum,

Γk;ϵ→k0;ϵ0 ≕ ð2πÞ3δ3ðk0 − kÞiMϵ0;ϵ: ð100Þ

The optical theorem now gives the pair production prob-
ability Peþe− ¼ 1

k0
ImMϵ;ϵ. For the high-energy photon we

choose kμ ¼ Ωð1; sin θ; 0; cos θÞ and two orthogonal

polarization vectors ϵðjjÞμ ¼ ð0;−cos θ; 0; sin θÞ and ϵð⊥Þ
μ ¼

ð0; 0; 1; 0Þ, which obey kϵ ¼ 0 and ϵ2 ¼ −1.
We focus on the perpendicular case, k3 ¼ 0, since this

gives the largest probability and the simplest results. After
performing the path integrals we find

FIG. 8. The expansion of the polarization tensor. The bold and double lines again represent fermions dressed by both fields and only
the strong field, respectively. The horizontal photon lines represent the single high-energy photon, and the vertical photon lines represent
photons from the weak field. The pair production probability is obtained by applying the optical theorem.
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εNPN ¼ Im
Z

∞

0

dT
Z YN

i¼1

dωiaðωiÞδ
�XN

i¼1

ωi

�Z YNþ2

i¼1

dτi

� � � e−iðT2þ1
2

P
Nþ2

k;l¼1
Kk½GBðτk−τlÞ−GBð0Þ�KlÞ; ð101Þ

whereKi;μ ¼ δ0μωi for i ¼ 1;…; N,KNþ1;μ ¼ kμ,KNþ2;μ ¼
−k0μ, GB is a worldline Green’s function given by (D1), and
the ellipses stand for subdominant prefactor terms (see
below), which are obtained from Wick contractions as
described in (D8). We begin by finding the values of τi that
maximize the exponential. This is similar to the case
without the high-energy photon, and we again find that
either jτi − τjj ¼ 0 or jτi − τjj ¼ 1=2. The T-integral is also
similar to what we had in the previous sections. Using
methods similar to the ones described above, we hence find

εNPN ∼
Z YN

i¼1

dωiaðωiÞδ
�XN

i¼1

ωi

�

� � � exp
�
−
2m2⊥
E

ðarccosΣ − Σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p
Þ
�
; ð102Þ

where Σ is again the sum of the positive frequencies, but
this time divided by an effective mass that depends on the
frequency of the high-energy photon,

Σ ¼ 1

2m⊥

�
Ωþ

XJ
i¼1

ωi

�
; m2⊥ ¼ 1þ

�
Ω
2

�
2

; ð103Þ

where 0 < J < N is an integer that characterizes different
saddle points. For even N the dominant contribution
comes from J ¼ N=2, and for a monochromatic field half
of the Fourier frequencies must be positive implyingP

J
i¼1 ωi ¼ Nω=2. Compare (102) with (3) for the case

without the high-energy photon. The main difference is a
heavy effective mass m⊥ > 1 that comes from the spatial
components of the high-energy photon momentum, which
is similar to the results in [9] for singly assisted pair
production with a weak field in the shape of a plane wave.
Note that, even if the characteristic frequency ω� of the
weak field is much smaller than Ω and the electron mass,
the dominant contributions for Gaussian and Sauter-like
pulses still come from Fourier frequencies on the order of
the electron mass ωi ∼ 1, similar to the case in the previous
sections.

A. Sauter pulse

For a Sauter pulse (14), we find after performing the
Fourier integrals

PN ∼ exp

�
−
2m2⊥
E

�
−

Ω
m⊥χ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p
χ2

þ arcsin
1

χ

��
;

ð104Þ

where χ ¼ m⊥γ� and γ� ¼ ω�=E. Note that all orders have
the same exponential for these Sauter-like fields. That is
what we found for ordinary dynamical assistance in [8],
and now we can see that this is also the case with the
addition of a high-energy photon. Note also that (104),
which is obtained by treating the weak field perturbatively,
is exactly the same as the exponential we found in [23] by
treating the weak field nonperturbatively.

B. Gaussian pulse

For a Gaussian field (15) the results are conveniently
expressed in terms of ν ¼ E=ω2 and Λ ¼ Ω=ð2m⊥Þ.
Performing the Fourier integrals with the saddle-point
method leads to

PN ∼ exp

�
−
2m2⊥
E

ðarccosΣ − Λν̄ðΣ − ΛÞÞ
�
; ð105Þ

where

Σ ¼ ν̄2Λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν̄2 − ν̄2Λ2

p

1þ ν̄2
; ν̄ ¼ Nν

2JðN − JÞ : ð106Þ

The exponential is a strictly decreasing function of ν (which
is natural since increasing ν corresponds to decreasing ω).
Thus, the dominant contribution comes from the value of J
that gives the smallest ν̄, which is J ¼ N=2 for even N and
J ¼ ðN � 1Þ=2 for odd N. For Λ → 0 we recover our
results for single assistance. For Λ ≪ 1 we have

Λ ≪ 1∶ PN ∼ e−
2m2⊥
E ðarctan ν̄− 2Λν̄

1þν̄2
Þ; ð107Þ

which shows that the additional photon leads to a further
reduction of the exponential suppression. For ν ≪ 1 the
field strength drops out in the leading term in the exponent,
and we find for even N

ν ≪ 1∶ PN ∼ e−Nð2m⊥−Ω
Nω Þ2ð1−1

3
½1−Λ�ν̄2Þ; ð108Þ

where the leading term is what one expects from N factors
of the Fourier transform evaluated at the minimum Fourier
frequency needed to add up to the necessary energy, i.e.,
ðN=2Þωi ¼ 2m⊥ −Ω.
As without the high-energy photon, the exponential

increases while the prefactor decreases as we go to higher
orders. As in [8] we can estimate the probability by
exponentiating εN from the prefactor and approximating
the sum over all orders with the “saddle point” forN, which
we find to be

NGauss
dom ∼ 2νχðΣ − ΛÞ where Σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

χ2

s
; ð109Þ
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χ ≔ γ⊥=
ffiffiffiffiffiffiffiffiffiffiffij ln εjp

, and γ⊥ ¼ m⊥γ. As Λ → 0 this reduces to
the estimate in [8] of the dominant order in the singly
assisted case. A nonzeroΩ hence leads to a lower dominant
order. Substituting the dominant order into PN gives us

Pdom
eþe− ∼ e

−
2m2⊥
E



− Ω
m⊥χþ

ffiffiffiffiffiffi
χ2−1

p
χ2

þarcsin1χ

�
: ð110Þ

Curiously, this exponential has the same form as for a
Sauter pulse (104), but with χ ¼ γ⊥=γcrit where γcrit ∼ffiffiffiffiffiffiffiffiffiffiffij ln εjp

in the Gaussian case. This generalizes a similar
result in [8] to the case with an additional high-energy
photon. A better agreement with the instanton exponent can
be achieved by exponentiating a factor of γ together with ε,
so that γcrit →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij lnðcε=γÞjp
, where c is (to a first approxi-

mation) a constant obtained by matching; see [9]. It might
look like (110) has a threshold at χ ¼ 1, but NGauss

dom > 0 [in
(109)] implies χ > m⊥ so the threshold is given by γ=γcrit ¼
1 and not γ⊥=γcrit ¼ 1. We can also confirm this by noting
that at χ ¼ m⊥ the weak field drops out and we recover
Eq. (5) in [43], which gives the exponential for the case
where the strong constant field is only assisted by a high-
energy photon.

C. Sinusoidal field

Our third example is a sinusoidal field aðtÞ ∝ sinðωtÞ.
For this field we have Σ ¼ 1

2m⊥ ðΩþ Nω
2
Þ. Estimating the

dominant order as above we find results similar to the
Gaussian case (109),

Ncos
dom ¼ 4m⊥

ω
ðΣ − ΛÞ where Σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

χ2

s
; ð111Þ

and χ ¼ γ⊥=j ln εj. We again recover the result for the
singly assisted case [8] as Ω → 0. The threshold is again
given by χ ¼ m⊥. Substituting the dominant order into the
exponential gives us (110); i.e., we again find the same
form as in the Sauter case and the corresponding estimate
for the Gaussian pulse, but with γcoscrit ∼ j ln εj. We note that
for γ ≫ γcrit we have

Peþe− ∼ exp

�
2
2m⊥ − Ω

ω
ln
ε

γ

�
; ð112Þ

which is simply the amplitude of the weak field ε=γ to the
power of the number of photons from the weak field that are
needed to add up to twice the electron (effective) mass.
To understand why we obtain (110) for a sinusoidal field,

notice that with ω̂ ≔ Nω=2 the sum over all orders N can
be expressed as

Peþe− ∼
X
ω̂

e−2
ω̂j ln εj

ω −
2m2⊥
E ðarccosΣ−Σ

ffiffiffiffiffiffiffiffi
1−Σ2

p
Þ; ð113Þ

where Σ ¼ ðΩþ ω̂Þ=ð2m⊥Þ, so, by formally identifying ω̂
with the Fourier frequency in the second order case, we see
that the ln ε-term in (113) behaves as the exponential decay
(14) of the Fourier transform of a Sauter pulse with an
effective frequency ω� ¼ ω=j ln εj. Thus, estimating the
sum in (113) with the “saddle point” for N leads to the
Sauter exponential with γcrit ∼ j ln εj.

VI. CONCLUSIONS

This paper is a continuation of [8] where we study
dynamically assisted Schwinger pair production by
expanding the probability in a power series in the field
strength of the weak field ∼ε ≪ 1. This approach allows us
to obtain analytical approximations for a large class of
fields, and hence provides a useful alternative to e.g.,
treating the total field with instanton methods. We can
therefore learn more about the analytical structure of the
probability, which is particularly important when assisting
Schwinger pair production with high-energy photons.
The Keldysh parameter of the weak field alone is large,

ω=ðεEÞ ≫ 1, and so the weak field is sometimes associated
with the multiphoton regime. However, for weak fields
with sufficiently wide Fourier transforms, such as the
exponentially decaying Fourier transform of a Sauter pulse,
the dominant contribution comes already from the first
order amplitude, Peþe− ∼ jεA1j2, i.e., from the absorption
of a single photon. This means that both the exponential
and the prefactor parts of the probability can be calculated
analytically for this class of fields [8]. For a Gaussian pulse
the Fourier transform decays more rapidly and, although
for some field parameters we still have Peþe− ∼ jεA1j2, in
general one has to include higher orders in the ε expansion,
because the dominant contribution can come from one of
the higher orders.
One of our main objectives in this paper is to show how

to calculate the prefactor of higher-order terms in this
expansion. We have showed how to use either WKB or
worldline methods. We have for example derived the
momentum spectrum using the worldline formalism [24].
To the best of our knowledge, this is the first time that the
preexponential factor of the momentum spectrum is derived
using this formalism.
As an example, we chose in [8] two sets of parameter

values for a Gaussian field, one for which the exact/
numerical results agree with jA0 þA1j2, and another with
a weaker E for which jA0 þA1j2 is clearly not enough. In
this paper we have calculated A2 and showed that by
including it we obtain a good approximation also for the
second set of parameters. This agrees with our estimate of
the dominant order [8] [see (6)], which says that a weaker E
increases the dominant order. This is an explicit example of
the fact that, although jA0 þA1j2 is not enough for all field
shapes or in all parameter regimes, one can nevertheless
treat the weak field perturbatively, one just has to go to
higher orders. Here we have obtained the prefactor up to P6
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(or A3), which was enough for a good approximation for
the particular example just mentioned. In general the
dominant contribution can, of course, come from even
higher orders. It might become tedious at some point, but at
least in principle one should be able to use the methods
presented in this paper to obtain the prefactor of these
higher orders as well. In fact, as (6) shows, the dominant
order is mainly increased by a reduction of E, but a weaker
E also makes the probability much smaller (because of the
exponential scaling), so for the most relevant parameter
values one can quite generally expect the dominant order
to still be low enough to not make the calculations
impractical.
One advantage of our approach, where the weak field is

expressed in terms of its Fourier transform, is that it
becomes clear what frequency components are responsible
for the dominant contribution. We have found that, e.g.,
for a Sauter pulse ∝sech2ðωtÞ or Gaussian ∝e−ðωtÞ2 , the
dominant contribution tends to come from Fourier frequen-
cies on the order of the electron mass, even for ω ≪ m.
If one insists on restricting the relevant frequencies to be
below the electron mass, e.g., for experimental reasons,
then one might be led to consider monochromatic fields,
e.g., cosωt. However, as the Fourier transform only has
support at ω, one then needs larger ω, compared to the
characteristic frequency of a Gaussian or a Sauter pulse, to
obtain a significant enhancement; see e.g., [9]. So, in the
parameter regime considered here it seems that for signifi-
cant enhancement one is naturally led to consider frequen-
cies that might be rather large compared to what near-future
lasers can provide, but at least these higher frequencies
make it easier to obtain simple approximations with the
methods described here.
In this paper we have focused on linearly polarized

electric fields that only depend on time. This allows us to
find simple, explicit analytical approximations. As shown
in [7,45], purely time-dependent fields can, at least in
some regimes, be used to give good quantitative approx-
imations. It is also useful to start with such fields because it
allows us to compare with the exact result obtained with
well-developed numerical methods such as solving the
Riccati equation, which can be done to high precision [36],
or the Wigner/quantum kinetic theory, which could be used
for e.g., rotating fields [46,47]. However, our perturbative
approach can also be useful for studying weak fields with
more complex spacetime structure and/or strong fields with
e.g., a nonzero magnetic component. For example, in [9]
we applied our perturbative approach to a weak field in the
shape of a plane wave, i.e., a case where the total field is an
exact solution to Maxwell’s equation in vacuum. We again
found good agreement with results obtained with other
methods. We found qualitatively similar behavior as for
purely time-dependent fields, e.g., the existence of a
dominant order, which provides further motivation for
studying purely time-dependent electric fields.

To further demonstrate the usefulness of this perturbative
approach, we have also applied it to doubly assisted pair
production [23], where a high-energy photon is added to
ordinary dynamical assistance. For Sauter-like weak fields
we again find that the dominant contribution to the
probability is quadratic in the weak field and its exponential
part is exactly the same as the one obtained in [23] by
treating both the strong and the weak fields with non-
perturbative methods. As in the singly assisted case [23],
we again find that a Gaussian or monochromatic weak field
can lead to a higher dominant order. Although we have for
simplicity assumed that both the (coherent) fields are
purely time dependent, the high-energy photon is on-shell,
so this is another multidimensional example, and here we
have showed that it is still possible to calculate the
prefactor.
When extending the methods presented here to more

complex, spacetime dependent fields, one might have to
perform some steps numerically, e.g., to find the saddle
points. Although the approximation would then not be
completely analytical, one would still see the analytical
dependence on some of the parameters, and it could be very
useful for quickly obtaining estimates in cases where an
exact numerical treatment would be challenging or time
consuming. This could be useful for searching for prom-
ising parameter values for maximizing the enhancement of
the probability for future experiments, before turning to a
fully numerical treatment [10,48–51]. Moreover, as dem-
onstrated in [45,52], knowing the saddle points for some
simpler fields can be very useful for finding the corre-
sponding ones for complex fields that can be reached via a
continuous deformation, which gives further motivation for
working out all the details for simple fields as a start.
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APPENDIX A: INGREDIENTS FOR THE
WKB APPROACH

In this Appendix we collect some of the main ingredients
needed in the WKB approach. The WKB approximations
are given by (see e.g., [53,54])

Urðt;qÞ ¼ ðγ0π0 þ γiπi þ 1ÞGþðt;qÞRr;

Vrðt;−qÞ ¼ ð−γ0π0 þ γiπi þ 1ÞG−ðt;qÞRr; ðA1Þ

where Rr, r ¼ 1, 2, are eigenspinors γ0γ3Rs ¼ Rs, and
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G�ðt;qÞ ¼ ½2π0ðπ0 � π3Þ�−1
2 exp

�
∓ i

Z
t

t0

dt0π0ðt0Þ
�
;

ðA2Þ

where π3ðtÞ ¼ p3 − AðtÞ and π0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2⊥ þ π23ðtÞ

p
. We

arbitrarily choose t0 ¼ 0. These WKB approximations
are eigenstates of the Hamiltonian (cf. e.g., [33])

H ¼ γ0ð−iγi∂i þ =Aþ 1Þ; ðA3Þ

He−ipixiUðt;pÞ ¼ π0ðtÞe−ipixiUðt;pÞ; ðA4Þ

HeipixiVðt;pÞ ¼ −π0ðtÞjA→−Ae
ipixiVðt;pÞ: ðA5Þ

It follows from γ0γ3Rs ¼ Rs that R†
sγ0Rr ¼ R†

sγ3Rr ¼
−ðγ3RsÞ†Rr ¼ −R†

sγ0Rr ¼ 0 and similarly R†
sγ0γ⊥Rr ¼ 0.

Using these equations it is straightforward to show that

U†
sðt;qÞUrðt;qÞ ¼ V†

sðt;qÞVrðt;qÞ ¼ δsr ðA6Þ

and

U†
sðt;qÞVrðt;−pÞ ¼ 0: ðA7Þ

For a constant strong field A ¼ Et, the integral in the
exponent is given by

Z
t

0

π0 ¼ −
m2⊥
2E

�
ϕ

�
p3 − Et
m⊥

�
− ϕ

�
p3

m⊥

��
; ðA8Þ

where the second term is irrelevant and cancels upon
squaring the amplitude to obtain the probability, and

ϕðuÞ ¼ u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
þ arcsinh u: ðA9Þ

For the first order amplitude we also readily find

ŪsðpÞγ3Vs0 ð−pÞ ¼ δss0
m⊥
π0

e���: ðA10Þ

APPENDIX B: An FROM Γn

In this section we will show how to generalize the
method in Sec. II to higher orders. The idea is that to
leading order we have

V3

Z
d3p
ð2πÞ3

X
spin

2ReA�
0ε

nAn ¼ 2ImΓnðωiωj > 0Þ; ðB1Þ

where Γnðωiωj > 0Þ is the contribution to Γn in which all
Fourier frequencies have the same sign. We can use (B1) to
check that the methods in Secs. II and III give the same
results, but since A0 is so simple [see (30)] we can actually

use (B1) to extract An from Γn. This is useful because
from An we obtain the dominant contribution to P2n, and
Γnðωiωj > 0Þ is simpler to calculate than Γ2n. Note that
Γnðωiωj > 0Þ does not give the dominant contribution to
Γn, which instead involves both positive and negative ωi.
We calculate Γnðωiωj > 0Þ here in order to extractAn. The
starting point is again (11), which we expand in ε. This
leads to three different factors in the preexponential part of
the integrand,Z

1

0

dτja0ðtðτjÞÞ ¼
Z

1

0

dτj

Z
dωj

2π
aðωjÞð−iωjÞe−iωjtðτjÞ;

ðB2ÞZ
1

0

dτj½p3 − EtðτjÞ�aðtðτjÞÞ

¼
Z

1

0

dτj

Z
dωj

2π
aðωjÞ

�
p3 − iE

∂
∂ωj

�
e−iωjtðτjÞ; ðB3Þ

andZ
1

0

dτj
E
s
a2ðtðτjÞÞ ¼

Z
1

0

dτj dτk

Z
dωj

2π

dωk

2π
aðωjÞaðωkÞ

×
E
s
δðτj − τkÞe−iωjtðτjÞ−iωktðτkÞ:

ðB4Þ

The t path integral is now Gaussian and can be performed
by removing the linear terms in the exponent with tðτÞ →
tðτÞ þ tclðτÞ where tcl is given by (24), and the resulting
Gaussian integral gives (20). The term in (B3) becomes�

p3 − iE
∂

∂ωj

�
e−

i
Ep3

P
n
k¼1

ωk

× e−
1
4E

P
n
k;l¼1

ωkωl
cos½sð1−2jτk−τl jÞ�

sin s ¼ iEtclðτjÞe���: ðB5Þ

The terms with e.g., ∂tclðτjÞ=∂ωk can be neglected to
leading order in E. For ωiωj > 0 the exponent is maxi-
mized by jτi − τjj ¼ 0, 1 for i; j ¼ 1;…; n. We substitute
this into the prefactor and expand the exponent to leading
order. This gives terms with e−sωiωjjτi−τjj=E, which lead to
elementary τ integrals. There is one τ integral that is trivial
because of translation invariance. The other, nontrivial τ
integrals each gives a factor of E, which means that the
Eδðτi − τjÞ term in (B4) is on the same order of magnitude
as the other terms. We now have the exponent in (61). We
can therefore perform the s integral in exactly the same way
as for n ¼ 1. So, the saddle point is given by (26) and the
contribution to the prefactor is given by (27). The exponent
is now given by

e−
m2⊥
E

π
2e−

m2⊥
E ½2iPΣþarccosΣ−Σ

ffiffiffiffiffiffiffiffi
1−Σ2

p
�: ðB6Þ
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The first part of the exponent comes fromA0 [see (30)] and
the second part is the same as the one we obtained in
Sec. III for An [see (58)].
We now only have the Fourier integrals left, which

we can perform with the saddle-point method for a
Gaussian weak field. The exponential contribution from
the Fourier transform depends on the ωi variables sepa-
rately, while the exponent in (B6) only depends on their
sum via Σ ¼Pωi=ð2m⊥Þ. One option is to free the Σ
variable so that we can use it as an integration variable,
which can be achieved by inserting the following into the
integrand:

1 ¼
Z

dΣ
Z

dλ
2π

e
iλ



Σ− 1

2m⊥ Σ
n
i¼1ωi

�
: ðB7Þ

It is now simple to perform the ωi integrals with the saddle-
point method, which gives a Gaussian λ integral. Instead
of introducing the λ integral one can change variable
e.g., from ω1 to Σ and then perform the remaining ωi
integrals with the saddle-point method. The exponent is
now given by

e−
m2⊥
E

π
2e−

m2⊥
E ½νnΣ2þ2iPΣþarccosΣ−Σ

ffiffiffiffiffiffiffiffi
1−Σ2

p
�; ðB8Þ

where νn ¼ E=ðnω2Þ. We also perform the final integral
with the saddle-point method. The saddle point for Σ is
given by (51). The final exponent for the momentum
spectrum is given by

e−
m2⊥
E

π
2e−

m2⊥
E ½iPΣnþarccosΣn�; ðB9Þ

where Σn is given by (51). It is now straightforward to
obtain the prefactor. We just multiply together the con-
tributions from the τ integrals and the Gaussian integrals
around the saddle points for the s and ωi integrals, and
substitute jτi − τjj ¼ 0, s ¼ π

2
þ arccosΣn, ωi ¼ 2mΣn=n,

and Σn from (51) into the rest of the prefactor. For n ¼ 2we
find (43) and (52). For n ¼ 3 we find

2ImΓ3ðωiωj > 0Þ ¼ V3

Z
d3p
ð2πÞ3 e

−
πm2⊥
2E 4Re

×

�
Eε
ω

�
3 27

ffiffiffiffiffiffi
3π

p
E

128m5⊥Σ8
3ν3

9 − 8Σ2
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ν23 þ iν3P
Σ3

q
× e−

m2⊥
E ½iPΣ3þarccosΣ3�: ðB10Þ

From this we can immediately extract the third order
amplitude A3 using (B1) and (30), and the result is the
same as the one we obtained in (62) with the propagator
approach.

APPENDIX C: HIGHER ORDERS FOR A
GAUSSIAN PULSE

After we have performed the Fourier integrals, the
exponent in the amplitude is given by (B9)

An ∼ e−
m2⊥
E ½iPΣnþarccosΣn�: ðC1Þ

Now we can integrate A�
mAn over the momentum with the

saddle-point method. The saddle point for the longitudinal
momentum, Pnm, is determined by ΣnðPnmÞ ¼ Σmð−PnmÞ,
which leads to a purely imaginary (or zero for m ¼ n)
solution given by

Pnm ¼ i
νn − νmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ ðνn þ νmÞ2
p : ðC2Þ

Substituting (C2) into (51) gives

ΣnðPnmÞ ¼
�
1þ

�
νn þ νm

2

�
2
�
−1
2

: ðC3Þ

The perpendicular momentum integrals are dominated by
p⊥ ¼ 0. Substituting these saddle points into the exponent
we finally obtainZ

d3pA�
mAn ∼ exp

�
−
2

E
arctan

νn þ νm
2

�
: ðC4Þ

Consider the Nth order of the probability PN. The
amplitudes that contribute to this have m ¼ N − n and
hence

PN ∼
XN
n¼0

� � � exp
�
−
2

E
arctan

Nν

2nðN − nÞ
�
: ðC5Þ

This is exactly the same as the exponents we found in [8]
using a very different approach; see Eqs. (5.10) and (5.11)
in [8]. In [8] we obtained this exponential from the
worldline representation of the effective action or the
master formulas for N-photon scattering in [31]. Those
approaches give directly the total/integrated probability
with no reference to the amplitude or any momentum
integrals. By rederiving this exponential with the current
approach, we learn that the different saddle points we found
in [8], which are characterized by n in (C5), correspond to
the products of the different amplitude orders, A�

N−nAn,
that contribute to the probability PN at a given order. For
even N we see that the largest contribution comes from
n ¼ N=2, and for odd N the largest contribution comes
from n ¼ ðN � 1Þ=2, i.e., [cf. Eq. (3.7) in [8] ]

N even∶ PN ∼ jAN=2j2 ∼ exp

�
−
2

E
arctan

2ν

N

�
;

N odd∶ PN ∼ 2ReA�
ðN−1Þ=2AðNþ1Þ=2

∼ exp

�
−
2

E
arctan

2Nν

N2 − 1

�
: ðC6Þ
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As we go to higher orders, εN in the prefactor decreases
while the exponential increases, which leads in general to
the existence of a dominant order [8].

APPENDIX D: WICK CONTRACTIONS IN THE
WORLDLINE FORMALISM

To obtain the prefactor for the doubly assisted case,
we have used different methods. In one of them the spin
factor is expressed in terms of a Grassmann path integral

and the prefactor is obtained from Wick contractions.
There are well-known techniques (see e.g., [29]) for
calculating such Wick contractions in arbitrary constant
fields. We collect here the results we need in our case.
The basic ingredients are the worldline Green’s func-
tions, GB and GF, for the x and ψ path integrals, respec-

tively. Let gjjμν ¼ δ0μδ
0
ν − δ3μδ

3
ν, g⊥μν ¼ −δ1μδ1ν − δ2μδ

2
ν, and

F̂μν ¼ δ0μδ
3
ν − δ3μδ

0
ν. The bosonic Green’s function is

given by

GB
μνðτ; τ0Þ ¼ g⊥μνT

�
1

2
½jτ − τ0j − ðτ − τ0Þ2� − 1

12

�
þ gjjμν

−i
2E

�
cos½sð1 − 2jτ − τ0jÞ�

sin s
−
1

s

�

þ F̂μν
ϵðτ − τ0Þ

2E

�
sin½sð1 − 2jτ − τ0jÞ�

sin s
− ð1 − 2jτ − τ0jÞ

�
; ðD1Þ

where s ¼ iET=2. We have GB
μνðτ; τ0Þ ¼ GB

νμðτ0; τÞ, GB
μνð1; τ0Þ ¼ GB

μνð0; τ0Þ, and ð∂2τT − F∂τÞGBðτ; τ0Þ ¼ δðτ − τ0Þ − 1 (the
identity matrix is the Minkowski one, 1μν → gμν). The fermionic Green’s function is given by

GF
μνðτ − τ0Þ ¼ g⊥μν

ϵðτ − τ0Þ
2

þ gjjμν
ϵðτ − τ0Þ

2

cos½sð1 − 2jτ − τ0jÞ�
cos s

þ F̂μν
i
2

sin½sð1 − 2jτ − τ0jÞ�
cos s

; ðD2Þ

which satisfies GF
μνðτ; τ0Þ ¼ −GF

νμðτ0; τÞ, GFð1; τ0Þ ¼ −GFð0; τ0Þ, and ð∂τ − TFÞGFðτ; τ0Þ ¼ δðτ − τ0Þ. These Green’s
functions are the Minkowski versions of the Euclidean ones in e.g., [29,31].
We have integrals in the form

Z
Dx
YI
i¼1

ηbi _xðτbiÞ exp
�
−i
Z

1

0

_x2

2T
þ Et_zþ jx

�
; ðD3Þ

where 1 ≤ bi, I ≤ N, ημ is the polarization vector of either the high-energy photon (ϵ; ϵ0) or the weak field [aðωiÞ], and

jμ ¼ kμδðτ − τNþ1Þ − k0μδðτ − τNþ2Þ þ δ0μ
XN
k¼1

ωkδðτ − τkÞ≕
XNþ2

k¼1

Kk;μδðτ − τkÞ: ðD4Þ

We begin by integrating over the center of mass, xμðτÞ → xμcm þ xμðτÞwhere R 10 x ¼ 0, which gives delta functions. Next we
exponentiate each η_x factor and then perform the resulting Gaussian integrals as described in Secs. II and II B. We thus find

ðD3Þ ¼ ð2πÞ3δ3ðk − k0Þ2πδ
�XN

k¼1

ωk

�
linη exp

�
−
i
2

Z
JGBJ

�
1

ð2πiTÞ2
s

sin s
; ðD5Þ

where (cf. [31])

Z
JGBJ ¼

XN
k;l¼1

Kk½GBðτk − τlÞ − GBð0Þ�Kl − 2iKk
_GBðτk − τlÞηl þ ηkG̈Bðτk − τlÞηl; ðD6Þ

and linη selects the terms that are linear in all the ηbi that appear in the prefactor of (D3) (the other η’s in this sum are zero).

For the Grassmann path integral we find

Z
Dψ

4

YR
r¼1

vrψðτfrÞ exp
�
−
Z

1

0

1

2
ðψ0 _ψ0 − ψ i _ψ iÞ − ETψ3ψ0

�
¼ linξ exp

�
1

2

XR
r;r0¼1

ξμrξνr0G
F
μνðτfr − τfr0 Þ

�
cos s; ðD7Þ
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where vr;μ is either k, κ, ϵ, aðωiÞ, etc., fr is an integer, 1 ≤ fr ≤ N, and where ξr;μ ¼ vr;μξr are Grassmann valued and linξ
selects the terms that are proportional to ξ1ξ2 � � � ξR (the order is important since they are anticommuting). The contractions
come in pairs with two equal τ’s (e.g., τf1 ¼ τf2 ¼ τ1).

Thus, the Wick contractions we need can be obtained from

�YI
i¼1

ημbi _xμðτbiÞ
YR
r¼1

vμrψμðτfrÞ


¼ linη;ξ exp

�XN
k;l¼1

�
−Kμ

k
_GB
μνðτk − τlÞηνl −

i
2
ημkG̈

B
μνðτk − τlÞηνl

�
þ 1

2

XR
r;r0¼1

ξrξr0v
μ
rGF

μνðτlr − τlr0 Þvνr0
�
; ðD8Þ

where ημi and vμi , etc., are the same as above.

1. Prefactor for double assistance

Here we will consider the prefactor for double assistance to second order in the weak field. Our starting point is

Mð2Þ
ϵ;ϵ0 ¼ 2e2

Z
∞

0

dT
T

s cot s
ð2πiTÞ2

Z
dω1

2π

dω2

2π
2πδðω1 þ ω2Þ

Z
1

0

dτ1dτ2dτ3dτ4

�
−1
2

½a_xþ Tκψaψ �ω1;τ1 ½a_x − Tκψaψ �ω2;τ2

× ½ϵ_xþ Tkψϵψ �τ3 ½ϵ0 _x − Tk0ψϵ0ψ �τ4

exp−i

�
T
2
þ 1

2

XN
k;l¼1

Kk½GBðτk − τlÞ − GBð0Þ�Kl

�
; ðD9Þ

where K1 ¼ κ, K2 ¼ −κ, K3 ¼ k, K4 ¼ −k0, and κμ ¼ ω1δ
0
μ. The factor of −1=2 comes from expanding the exponential in

(99) to second order in the weak field. The Wick contractions in h� � �i are obtained from (D8), and the integrals are
performed with the saddle-point method or generalizations thereof, as explained above. We find for high-energy photons
with parallel and perpendicular polarization

Pjj;⊥ ¼ αE
Ω

Z
dω1

2π

jaðω1Þj2
ω2
1Σ

�
4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p

Ω2
;
8ð1 − Σ2Þ þ ω2

1

4m2⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p
��

arccosΣ
�
arccosΣ −

p2
1

m2⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p

Σ

��−1
2

× exp

�
−
2m2⊥
E

ðarccosΣ − Σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Σ2

p
Þ
�
; ðD10Þ

where Σ ¼ ðΩþ ω1Þ=ð2m⊥Þ, m⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

1

p
, and p1 ¼ Ω=2. This prefactor can also be obtained using Feynman’s path-

ordered representation of the spin factor. A third option is to use the WKB approach, i.e., by basically just replacing one =a in
(47) with =ϵe−ikx, and then following the same steps as before. It turns out that for this process the WKB approach actually
allows us to obtain the prefactor with less effort than the worldline approach, because it is easier to calculate the prefactor
using an explicit Dirac matrix representation than to calculate Grassmann Wick contractions.
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