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In the dynamically assisted Schwinger mechanism, the pair production probability is significantly
enhanced by including a weak, rapidly varying field in addition to a strong, slowly varying field. In a
previous paper we showed that several features of dynamical assistance can be understood by a perturbative
treatment of the weak field. Here we show how to calculate the prefactors of the higher-order terms, which
is important because the dominant contribution can come from higher orders. We give a new and
independent derivation of the momentum spectrum using the worldline formalism, and extend our WKB
approach to calculate the amplitude to higher orders. We show that these methods are also applicable to

doubly assisted pair production.
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I. INTRODUCTION

Schwinger pair production [1-3] by a slowly varying
electric field will probably not be observed in the near
future, as the probability is too small even for the highest
intensities that will be available. However, by adding to the
slowly varying field a weaker, but rapidly varying field, one
can increase the probability by orders of magnitude [4-10],
and hence significantly reduce the required field strength.
One key aspect of Schwinger pair production is its non-
perturbative dependence on the field strength. When adding
assisting, high-frequency fields, one might like to have a
probability that is still nonperturbative in the field strength,
as such high-frequency fields can lead to perturbative pair
production, which could be produced in experiments
similar to the famous one at SLAC [11]. This does not
mean, though, that the probability has to be nonperturbative
in both fields separately. Indeed, in our previous paper [§]
we showed that the weak field can in many cases be treated
perturbatively, which allows us to find explicit analytical
expressions to study dynamical assistance for a large class
of fields.

Let us first recall some of the most important results
in [8]. Consider a time-dependent electric field given
by E_.(t) = E(fo(t) + ef (1)), where E < 1 is the field
strength of the strong field and f the field shape of the weak
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field, with € < 1. We assume that the weak field is much
faster than the strong field and in most of the calculations
we can set fo~ 1. We use units with 2 = ¢ = 1 as well as
m = 1, where m is the electron mass, and absorb a factor of
the charge into the definition of the background field
eE — E. For example, Schwinger’s critical field is in these
conventions simply E; = m?>/e = 1. In [8] we expanded
the pair production probability as

Pe+67:P0+€P1+82P2+"', (1)

where Py ~ exp(—n/E) gives the ordinary Schwinger pair
production probability [1-3] and the higher-order terms
give dynamical assistance. Despite being suppressed by
higher powers of ¢, in regimes with significant dynamical
assistance the contribution from these higher orders is
much larger than P, thanks to the exponential enhancement
due to photon absorption.

By expressing the weak field in terms of its Fourier
transform we found P, in terms of N Fourier integrals,

Py = / doy - doflan) - flon)Fy.  (2)

where w; are the Fourier frequencies. Fy contains 6(w; +
-+ wy) for a constant strong field. The dominant
contribution to the integrand is given by [8]

2
FNNexp{—E(arccosZ—Z 1—22)}, (3)

where
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1 J
=5 o (4)

i=1

is the sum of the positive frequencies, ordered for simplicity
such that w; > O for 1 <i <J < N for some J, divided by
the energy of a real pair at rest. For even N, the dominant
contribution comes from J = N/2, where half of the w;’s
are positive and the other half negative.

For a Sauter pulse, «sech?(wt), the Fourier transform
scales as f(w;) ~exp(—|w|/w,) for |®;| > w,, where
w, =2w/n. We focus on |w;| > w, because that is the
part of the Fourier integrals which gives the dominant
contribution. By performing the Fourier integrals in (2) we
found [8]

/2
P~exp{—2 <y*21—|—arcsin1> } (5)
EX r Vs

where the normalized Keldysh parameter is given by
Ve =7/Verit» ¥ = @/ E, and for a Sauter pulse y; = 7/2.
For a Sauter pulse, Eq. (5) gives the exponential scaling
of Py for all N > 1, which, since the higher orders are
suppressed by &V, means that already £?P, gives the
dominant contribution (independently of y and E), and
the exponent agrees exactly with the exponent found in [4]
by treating both the strong, constant field and the weak,
Sauter pulse with nonperturbative methods. On a concep-
tual level, this tells us that the dependence on the weak field
is perturbative, which might not be obvious in other
approaches. On a practical level, the fact that the dominant
contribution is already given by &P, allows us to find
analytical expressions for the prefactor, too, which we have
shown agree well with the exact numerical result [8]. This
has the advantage of working also for other fields with
similar Fourier transforms at large frequencies.

In contrast, for a Gaussian pulse and for a monochro-
matic field, we found that P, increases as one goes to
higher orders. Because of the factor of ¢ in the prefactor,
there is in general a dominant order [8], i.e., the order Ny,
which gives the dominant contribution, which in this case
can be Ny, > 2. By treating N as a continuous variable we
found [8]

/12
NGauss 2 X1
dom 2 ’
Ellne| y

(6)

where y ~y/+/|In€| ~y/yui» and by estimating the sum
of all orders with this “saddle point” for N, we recover (5),
but with y.; ~ /| Ing| for a Gaussian pulse (and y.; ~
| In ¢| for a monochromatic field), which agrees with the y.;
found previously in [7]. From (6) we see that below the
threshold (y < y.i ~ +/|In¢|) the dominant order is zero,
which is natural since there is no exponential enhancement
of the higher orders there, and so one basically has an

ordinary power series. As y increases, the dominant order
first increases, and then it reaches a maximum after which it
decreases, which is also natural since at sufficiently high
frequencies already the first order can provide enough
energy to give the dominant contribution. The maximum

dominant order is at y = \/f which is also the most inter-
esting region, because there one can expect the maximum
enhancement compared to both pure Schwinger and purely
perturbative pair production. Apart from the weak, loga-
rithmic dependence on ¢, we see that the most important
parameter determining the dominant order is the field
strength E. Weaker E leads to a higher dominant order,
which is illustrated in Fig. 3 in [8].

Let us put these results into a bigger picture. Consider
pair production in an ensemble of constant energy £. The
exponential part of the probability for this process was
derived in [12] [see Eq. (66) in [12]], which to leading
order' in & can be expressed as

2 E €& A

P~exp{ £ (arccos2 > 1 (2) ) } (7)
By identifying our sum over “absorbed” Fourier frequen-
cies Y w; in (3) with the energy & in (7) we find an exact
agreement. As an aside, we note that the constant energy
result in [12] was obtained by a Legendre transform of a
corresponding result for constant temperature 7', which has
exactly the same functional form as the exponential in (5)
for a Sauter pulse, but with y, — 2mT/(gE); see also [13].
We can understand this as being due to the fact that the
exponential scaling of the Fourier transform of a Sauter
pulse effectively acts as a Boltzmann factor, and so
performing the Fourier integrals with the saddle-point
method effectively corresponds to doing the Legendre
transform in [12] in reverse.

Many aspects in Schwinger pair production have close
analogies in tunneling in semiconductors [14]. In particular,
dynamically assisted Schwinger pair production is analo-
gous to the Franz-Keldysh effect [14—17], where semi-
conductor tunneling in an electric field is assisted by
higher-frequency photons. The Franz-Keldysh effect in
QED was very recently studied in [18]. There exists certain
replacement rules [14] for translating results for semi-
conductor tunneling to Schwinger pair production or vice
versa. To translate our result (3) for Schwinger pair
production to the corresponding result for semiconductor
tunneling we have to replace [14] gE.; — cim? and
T - w/(2m,c?), where ¢, and m, are semiconductor

parameters related to the effective speed of light and the
band gap. The resulting exponential agrees exactly with the

1 . . . . .

The results in [12] also contain higher orders in «, which can
be seen as an invitation to consider such higher orders also in our
case.
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literature on the Franz-Keldysh effect; see Eq. (32) in [19]
or Eq. (C11) in [20] for the first order, and [21] for higher
orders. We will study this analogy further elsewhere [22].

Of course, this does not mean that we can obtain all our
results by just replacing various parameters in existing
literature results. In particular, this does not tell us how
different field shapes affect the probability or how to obtain
the prefactor.

This paper is organized as follows. In [8] we calculated
the prefactor of the momentum spectrum using a WKB
approach; here in Sec. II we rederive those results using a
completely different approach, namely one based on the
worldline formalism. In [8] we calculated the exponential
part of the probability to all orders, but the prefactor only up
to N =2; here in Sec. III we show how to calculate the
prefactor at higher orders and give examples where we go
up to N = 6. In [8] we showed that N = 2 is in general
enough for Sauter-like fields but not always enough for a
Gaussian field, and we gave an example where N = 2 is not
enough for a Gaussian field; here in Sec. III we show that
going to N =4 does give a good agreement for that
example, which is hence an explicit example, with the
prefactor included, where the dominant order is higher than
two. In [8] we calculated the exponentials at higher order
using the worldline formalism; here in Sec. III C we show
how to obtain these using the WKB approach. In Sec. IV
we show how the results in Sec. III for the higher-order
prefactors of the integrated probability can be obtained by
including the prefactor in the worldline approach we used
in [8]. In [23] we introduced a doubly assisted mechanism,
where Schwinger pair production is assisted by both a weak
(coherent) field and a single, on-shell high-energy photon,
which we studied by treating both the strong and the weak
fields with nonperturbative methods; here in Sec. V we
study this mechanism by treating the weak field perturba-
tively, which offers the possibility to obtain the prefactor
e.g., for Sauter-like weak fields.

II. MOMENTUM SPECTRUM FROM THE
WORLDLINE FORMALISM

In this section we rederive the momentum spectrum of
the produced particles using the worldline-momentum
representation of the effective action [24]. To the best of
our knowledge this formalism? has so far been used only in
[24], but we show here that it offers a useful alternative to
the WKB approach for obtaining the momentum spectrum,
including the prefactor. The pair production probability is
given by the imaginary part of the effective action
P+ .- = 2ImI", which in turn is given in the usual worldline
representation by (see e.g., [26-28])

*Note, though, that a similar representation of the propagator
was used in [25].

0660

FIG. 1. The expansion of the one-loop effective action in terms
of the weak field. The bold line represents fermions dressed by
both the strong and the weak fields; the double lines represent
fermions dressed by the strong field alone; and the wiggly lines
represent photons from the weak field (these photons are off-shell
for the fields we focus on here).

o dT
= 2/0 dT%stpine iy 2T+Ax (8)

where x#(0) = x#(1) and the spin factor is in general given
by the trace of a path-ordered exponential

1 T [1
spin = — tr “path order” exp = / o F, 0. (9)
4 4 J,

but, for the one-component fields we consider here,
A, = 53A5(1), it reduces to [24,27]

spin = cos (%Al Ag(r)) (10)

The standard representation (8) gives the total/integrated
probability. To obtain the spectrum, we follow [24]
and rewrite the effective action in a momentum represen-
tation as

dp [edT
r=2v — — ¢ Dt spi
Y S |75 ¢ prspin
Tm? L2 T
xexp{—i( ’;L—l- 2T+2( A)2>}, (11)

where m, =+/1+ p%, p, ={pi,p.}, and where the
integrand of the p-integral gives the momentum spe(:trum.3
We consider a strong constant field £ plus a weak, rapidly
varying field a(¢), A3 = Et + a(t), and expand (11) in the
weak field a ~e < 1,

FIF0+€F1+€2F2+"'. (12)

This expansion is illustrated in Fig. 1. After expressing the
weak field in terms of its Fourier transform,

The effective action gives, of course, the probability of
producing any number of pairs, but this is approximately equal
to the probability of producing a single pair.
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a(t) = /d Leia(w)), (13)

we find Gaussian path integrals which we can perform with
methods similar to those used in [29-31] to calculate
N-photon amplitudes in constant background fields.

Two typical fields are the Sauter and the Gaussian pulses.
The Sauter pulse is given by

E
a(t) = P8 anhwr —
®

Eg ﬂ:i 1 Eg o]
m ~ sign(w; )2xi Ee o, (14)

where we have introduced w, = 2w/x to make it easier to
generalize to other fields that have exponentially decaying
Fourier transforms for Fourier frequencies above the
characteristic frequency, i.e., |w;| > @ (recall that this
gives the dominant contribution). The Gaussian pulse is
given by

a(t) = E\/TEf:rf(a)t) -

(0]

EEI\/_ H]

a(w;) = @ W

(15)

A. Zeroth order I'y
We begin with I'. This gives, of course, the well-known
constant field result [1-3], but it allows us to check the
overall normalization constant, which is the same for the
higher orders. Changing from Minkowski to Euclidean
variables

T——iT, t——it+2 (16)

gives us

dBp [edT ET
Iy =2iv — — ¢ Dt —
o 3/(27:)% 7{ 2

Tm? 12T
xexp—< 2J‘+ 2T—2(Et)> (17)

We separate the center of mass t, from the time variable
t(r) = to + t(z), Fourier expand

7) = Z a, cos2znt + b, sin2znr, (18)

n=1

and calculate the path integral by multiplying together
all the eigenvalues. The path integral is normalized accord-
ing to

12 1
Dt exp — — = , 19
]{ P A 2T \2xT (19)

so, by dividing by the free integral (cf. [26]), we obtain

/dtoj{Dt exp {—%/ 1[-0% - (ET)Z]I}

27m i
= , 20
\/2;; }:[1 27n)? T)>  2sins (20)

where s = ET/2 and the product can be obtained, e.g.,
from Eq. (1.431.1) in [32]. The integration contour for s
goes over the poles and gives an imaginary part to the
effective action. To leading order we find

d? o d
2ImIy = —2Im V3 ﬁ/ & ot s emmi/E
T 0 N
d3p o E2 .
%2‘/3\/(2”)36 T l/E: V4@€ E, (21)

This is, of course, the leading term in the well-known
Schwinger formula. We can thus confirm that the normali-
zation factor in (17) is correct.

B. First order I';
The first order I'; corresponds to the cross term between

the zeroth and first order amplitudes, 2Re2(;2(,, which we
calculated in [8] using a WKB approach. Here we find by

expanding (11)
dr ET
/ %D cosl
Tm|

€F1:2V3/
12T
X expy —i + + — Et 2)}
p{ <2 ) o7 o P ED
dw 1 iT
x/z—ﬂ]a(a)l)A d717€

X <iw1 tang +2[ps — Et(rl)]>, (22)

—iwt(ty)

where the first two lines are the same as for ['; and hence
have the same normalization. We change to Euclidean
variables according to (16).

To make the exponent quadratic in ¢ we make a
replacement ¢t — 7 + ¢. Since the “classical” solution 7
takes the same form for all orders, I'y, we consider
temporarily general N. We find 7, by expanding its
equation of motion,

(0 + (ETP)ta(x) =Ty wd(z—7;),  (23)
i=1

in terms of Fourier modes, which yields
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2mn(-t 7;)
=T
Zw n;oo (27”,1)2
1 cos[s(1 —2|1—T,»|)]
B ﬁz;wi sin s ' (24)

where the sum over n can be performed using Eq. (1.445.2)
or (1.445.9) in [32]. With the linear term removed from the
exponent, the #-integral is now the same for all orders and is
given by (20).

Returning to N = 1, the 7z;-integral is trivial, and we find

d3 ood sm
8F1__V3/ﬁ/ —sCotse_E
7 s

@2
/_ (@) 2——PL_ pmHlimon+geots)  (25)

-t

Esinscoss

Performing this p; integral simply gives a delta function
5(w) which reduces the exponential in I'; to the constant
field case, and then there is nothing to compensate for the
small prefactor, a < 1, which means that I'; only gives a
small correction to the integrated probability. Note though
that this delta function does not automatically make the
prefactor zero, since —iw,a(w )|, —o = [drd'(r), which
can be nonzero depending on how the total field is
separated into a strong and a weak field. In any case,
we are not interested here in such small corrections to the
constant field result. We are instead interested in higher-
order terms that come from nonzero Fourier frequencies
and that, due to exponential enhancement, can be much
larger than the zeroth order/constant field probability.
While eI'; gives a negligible contribution to the integrated
probability, it can give important interference effects in the
spectrum.

We perform the proper-time s integral with the saddle-
point method. We define for convenience X = |w;|/(2m).
The saddle-point equation sin’s = X? has two solutions in
the region 0 < s < z. Although the first saddle point s =
arcsinX (0 < s < x/2) gives a larger exponential, the
Gaussian integral around it is real so, since the Fourier
integral is also real, this saddle point does not contribute to
the imaginary part of the effective action. Thus, only the
second saddle point

S, = g + arccos (26)

(z/2 < s, < m) is relevant here. Let 6s = s — s, be the
perturbation around this saddle point, and then for small ds

the exponent is given by exp {m% —Vlz_y 5s2}. The first part

*To recover the prefactor obtained by replacing E — E +
f a'/V, in the constant field result, the last expression in (21),
and expanding in a’, one has to remember that converting the ps-
integral into a volume factor also leads to a field-dependent factor.

of the integration contour follows the real axis from s = 0
to the saddle point (26) and gives a purely real contribution
to the integral. The second part of the contour starts at the
saddle point and follows the steepest descent where the
imaginary part of the exponent is zero. Since the second
part starts perpendicular to the real axis, it gives us an
imaginary contribution to I'. Recalling that the initial
contour followed what now corresponds to the imaginary
axis, we have ds « +i near the saddle point. The Gaussian
integral around this saddle point hence gives

i [zE £ 2 .
/ds f(s) = % [Zi_i\/li——ﬁz} f(s,) + “something real,”
(27)

where a factor of 1/2 comes from having only half of a
Gaussian integral. Collecting all the terms we find

2Imel,

d

X exp { mE L + 2iPX + arccos T — XV 1 — Zz] }

(28)
where P = p3/m . Clearly, the saddle-point method that
we have used to derive (28) is only valid for 0 < £ < 1 or
0 < |@,| < 2m . Fortunately, the @, integral has in general
a saddle point in this range, and we are interested in regimes
where the dominant contribution comes from such saddle
points. So, the integration limits should in fact be restricted
to regions that are sufficiently close to the saddle points, but
we do not explicitly write out these integration limits. The
same holds for other Fourier integrals below.

To compare (28) with our results in [8], we first recall
that in [8] the momentum spectrum was obtained from the
amplitude, A, as

d3
Pe*e’ :V3/—p32[0+82[1+822[2+"' 2, (29)
(27)
where the zeroth order amplitude is given by
oy = 5,y expd — LT L 4 p) (30)
= r €X _—— e N
0 5,8 p E 2 E

and, from Egs. (2.7), (4.14), and (4.23) in [8], the first order
amplitude can be expressed as
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FIG. 2. A diagrammatic illustration of (32). One of the
diagrams on the right-hand side represents the complex conjugate
of the corresponding amplitude.

wexp {2 $(P)}

°°da)1
2A =0,y N~ —i
B /0 2z @)= VE(L =32
2
X exp {—% (2iPX + arccos X — Zﬁ)}’
(31)

where the restriction to @; > 0 is due to the fact that this
gives the dominant contribution, and £ = w;/(2m ). Here
s and s" describe the spin of the electron and positron, and
the 6, ¢ means that the sum over spins simply gives a factor
of 2 [the phase i¢h(P) is completely irrelevant and is due to
an arbitrary choice in the WKB solutions]. Thus, we find
perfect agreement between the worldline-momentum
approach and the WKB approach, i.e.,

d3
2imel, = V; / (2_”3221«:2[582[,, (32)
T

) spin

where I'y, 2, and A, are given by (28), (30), and (31),
respectively. This relation is illustrated in Fig. 2.

We have demonstrated this equivalence without having
to specify the shape of the weak field. To make this
agreement more explicit, we consider in the next two
subsections the Sauter and the Gaussian pulses.

1. Sauter pulse

To obtain the spectrum we now have only the Fourier
integral left, and to perform it we need to specify the shape
of the weak field. We begin with the Sauter pulse (14). We
perform the Fourier integral with the saddle-point method.
There are two saddle points with opposite signs that give
complex conjugate contributions. We can therefore without
loss of generality focus on Re w; > 0. The saddle point for
w; is given by Z(w;) = /1 + #3=:#) = my/m,, where
73 = (p3 —i/y,)/m  can be thought of as the “physical”
momentum of an electron in a constant electric field at an
imaginary time, and y, = w,/E is the combined Keldysh
parameter suitably normalized. Notice that this saddle point
corresponds to a Fourier frequency of w; = 2z, which is
on the order of the electron mass even for a characteristic
frequency @ < 1. The exponential suppression of the
Fourier transform at such high frequencies (we assume
@ < 1) contributes to the overall exponential behavior of
the pair production probability. Collecting everything we
finally find

3 m2
d&'p 2R6271'E€le_—5l[’2—’+i¢(ﬁ3)]’ (33)
(2r)3 w® 7

21m8F1 = 2V3/

which agrees with what we found in our previous paper [8]
for the cross term between the zeroth and first order
amplitudes 2Re2;U;.

2. Gaussian pulse

As a second example we consider a Gaussian weak field
(15). The saddle point for the @, integral is given by

V1412 + P2 —ivP

2(0)1) = 1 +y2

) (34)

where P = p;/m, and v = E/w*. Notice that for this
Gaussian pulse the results are conveniently expressed in
terms of v instead of the usual Keldysh parameter y (at least
when considering different orders separately). We hence
find

d3 E juP|
21mgr1_2v3/—p2 ¢ \/f[ w ] ’
2m o X

142+ 2
2y ° RS

2
X exp {_% (g + iPX + arccos Z) } (35)

where X is given by (34). This is again exactly the same as
our result for 2Re2;2; in [8] where we used a WKB
approach. This follows immediately from the expressions
for the zeroth (30) and first order amplitudes [8]

Eey/mw 1 iPv] =
A =8y |1+ 12 +—
&1 5 2mla)22{ T Z]

X exp {— mle [iPX + arccos X — i¢(P)]}. (36)

C. Second order I',

At second order there are two different contributions,
which in the WKB approach are given by the square of the
first order amplitude |2(,|?> and the cross term between the
zeroth and second order amplitudes 2Re2(;2,. As we will
see, we can obtain both of these contributions with the
worldline-momentum approach; cf. Fig. 3. By expanding

(11) to second order we find
2
9Tm = )wm + 2Re ( m
A diagrammatic illustration of the relation between the

FIG. 3.
effective action and the amplitude at second order.
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d3p oods xmi 1
T :_v/—/ ot ‘T/d a
E71 5 3 (27[)3 o s se A 7147,

dw, dw 51?2 oo
2—7;2—71_2a(a)1>a(0)2){|:i:| [%—ZEztltz

— tan s(letz + 0)2E[1):| —%6(’[1 - ’[2)}

wjwycoss(1-2/z)—15);
2 i 1

sin s R (37)

. w2+a)2
% e—lE[lp3[wl+w2] L2 cot s+

where 1} = 51— (@, cos s + w cos[s(1 = 2[z; — 73])])
and 1, = t;(w; <> m,). We divide I'; into two parts, one
where the two Fourier frequencies have opposite signs and
the other where they have the same sign, which we treat
separately.

We begin with the region where @@, < 0, which gives
the dominant contribution. Because of the translation
symmetry/periodicity in 7 (see e.g., [29]), the integrand
becomes independent of 7, after changing variables from 7,
to 7} = 7, — 7. We perform the remaining 7/-integral by
expanding around the saddle point 7j = 1/2. Next we
perform the s-integral, for which the exponential part of the
integrand is given by

2
exp{—m_El(s+ [r? + 3] cots +2r1r2cscs)}, (38)

where r; = w;/2m . The saddle point is given by

SzzarCCOS\/% [l—rlrz— (l—r%)(l—rg)], (39)

where the sign in front of the square root has been
determined by demanding that the integral around the
saddle point gives a factor of i (as only such a saddle
point contributes to ImI"). At the saddle point we find’

2

(38) - exp{—% (7[ —sign(r; —r,)

x [arCSinﬁ‘Hl\/ 1 —r%—arcsinrz—rz,/l_r%}},

(40)

We have assumed that w,w, < 0. Without loss of general-
ity we consider w, < 0 and multiply with a factor of 2 to
account for the other case. Changing variable w, - —®»,
this contribution to the second order becomes

One can show this e.g., by studying the derivative of the
exponent with respect to r; and r,.

2Im &2, (0, w, < 0)

B &Ep n alwy)
- [ o 1

/ >do, a(w)
o 27 /r[l-rl

2

m

1y ' )
e—T(ZlPr1+arccosr1—r1 1-r7)

2
. (41)

where P = ps;/m . It is now clear that (41) agrees with
|82[1 |2, i.e.,

d*p
ZImezrz(a)lwz < O) = V3/W2|82[1
spin

(42

where I, (w;w, < 0) and A, are given by (41) and (31),
respectively.

Next we consider the second region, where m;w, > 0.
For the term without §(z; — 7,) we use translation invari-
ance to set 7, = 1/2. The exponent is maximized at
7; = 1/2. For wyw, < 0 we could neglect the term with
6(r; — 1), but this time we need it as it leads to the
same exponential as the other terms. The exponential for

the s-integral becomes exp {— m_Ei (s +X?cots)}, where

= %TZI This is the same exponential as in (25) for

the first order, except that X is now given by the sum of two
Fourier frequencies. The saddle point and the integral
around it are therefore given by (26) and (27). The
contribution from w;, @, < 0 is the complex conjugate
of that from w;, w, > 0, and hence

2Im 82F2(a)1w2 > 0)

d*p
==-2V ——=2R
3/ @ny
7 2m, (1-32)s

x A 2 27 a0\ g
2
X exp {_m <ﬂ + 2iPX + arccos T — XV 1 — 22> }

2
(43)

Given the first order result, this looks like it could be the
cross term between the zeroth and second order amplitudes
2Re2;A,. To show that this is indeed the case, we first
have to obtain 2,, which we do in the next section.

Although X is here given by the sum of two Fourier
frequencies, for Sauter-like fields (43) still leads to the
same exponential as in (33) for I';, and then there is nothing
to compensate for the extra factor of the weak field strength
a ~ ¢ < 1, which means that this second order contribution
(43) can be neglected. This is why we in [8] did not have to
calculate 2, in order to find good agreement with exact/
numerical results for Sauter-like fields. As we showed in
[8], though, for e.g., Gaussian pulses, higher orders can be
important.

096002-7



GREGER TORGRIMSSON

PHYS. REV. D 99, 096002 (2019)

5,8

FIG. 4. The expansion of the pair production amplitude in terms
of the weak field, with the same notation as in Fig. 1.

— e + - + ..

III. USING THE PROPAGATOR IN A
CONSTANT ELECTRIC FIELD

In this section we show how to extend the WKB
approach in [8] to obtain the amplitude at higher orders.
To do so, we use the fermion propagator in a constant
electric field. The propagator is defined by6

(0, out| T¥,,(x)¥4(x")|0, in)
(0, out|0, in)

=:iGyp(x, X') (44)

and satisfies
(iD, —m)G(x,x') = 6(x — x'), (45)

where D, = 0, + iA,. The propagator can be obtained
from, e.g., [3,33,34]

G(x, x') —E(z—z’)(wt’)/ d4q —ig(x—x') /oo d
x,xX)=—e2 e S
(27)* 0

tan(Es)
X exp {—smi + (45— 43) T}

X f +m+i(r°qs +rqo) tan(Es)]
x [1 — iy’ tan(Es)]. (46)

With the standard ie-prescription m?> — m? — ie, the con-

tour for the s-integral can be taken along the imaginary axis
from s = 0 to s = ico or rotated toward the real axis, but
not all the way since there are singularities there due
to tan s.

A. Second order 2,

The second order amplitude is given by (note that
(0, 0ut|0,in) ~ 1)

(271-)353(13 T p1)822[2 = (_i)z / d*x d4x'17!s,p(l)eip/-xf
X A0 (5, (£
(47)

This second-order part of the amplitude is represented
by the last diagram in Fig. 4. We begin with the trivial
spatial integrals, which give the momentum conservation

®See [33] for a detailed discussion of different types of
propagators.

delta function and a second delta function that we use to
perform three of the Fourier integrals in the propagator,
in particular g3 = p; — E(t + ¢')/2. The last term comes
from the holonomy factor in the propagator. The reason
we cannot neglect this term for £ < 1 is that the saddle
points for the time integrals turn out to be on the order
of t~1/E.

Next we turn to the proper-time s integral. In the
previous sections we used the saddle-point method to
perform proper-time integrals in order to obtain the
imaginary part of the effective action. For the propagator
considered here, though, both its real and imaginary
parts contribute to the amplitude and the dominant
contribution comes from s=0. Upon expanding to
lowest order in s one finds that the field-dependent
propagator reduces to the free propagator times the
holonomy factor. This means that the factors from the
last exponential in (46) do not affect the saddle points for
the 7, ¢, and g,-integrals, they only affect the prefactor.
So, to a first approximation the propagator only gives a
field-dependent contribution via the holonomy factor.
This approximation leads to results that agree with the
approximations we obtain with the worldline formalism
in Secs. II, IV, and B, where s =0 corresponds to
7, = 71, for the 7 variables that correspond to w,w; > 0;
see also [8,35].

We approximate the exact wave functions with the
WKB approximations u — U and v — V as in [8] (see
Appendix A), which leads to the following exponent for the
time integrals:

t I3
exp{l/ ﬂo—iwlt—qu(t—t/)—ia)zt/+i/ 71'0}.
0 0

(48)

We perform the integrals over ¢, ¢, and g, with the saddle-
point method. The saddle point is determined by
mo(t) —w; —qo =0, (') —w, +qo =0, and 1 — ¢ =0,
which give Et =Ef = p3+im;V1—X? where =
(0, + w,)/(2m ), and ¢y = (0, —®;)/2. To lowest
order in E the proper-time integral simply gives
Jeo ds e = —L_ Since most of this integral comes

wywy"

from the region with s < 1/(ww,), we see that our
approximation Es < 1 requires E/(w,@,) < 1. For, e.g.,
a Gaussian or a Sauter pulse, a'(1) ~ e~ or sech?wt,
the Fourier integrals are dominated by high-frequency
components (w; > w with @ <« 1) with the saddle points
on the order of w; ~ 1, which agrees with E/(w,@,) < 1 as
E < 1. For a monochromatic field ~ cos wt we only have
photons with frequency w, and then one might want to keep
o < 1 for experimental reasons. However, one is never-
theless forced to consider larger @ in the monochromatic
case if one wants significant dynamical assistance compa-
rable to the Gaussian or Sauter cases. So, for frequencies

096002-8



PERTURBATIVE METHODS FOR ASSISTED ...

PHYS. REV. D 99, 096002 (2019)

that give significant enhancement this should be a good first
approximation.

The final piece comes from the spinor structure in the
prefactor, which we calculate using the spinor repre-
sentation in [8]. This leads to U, ,y° (¢ +m)y*Vy_, —
—0,¢2m, Z—z Collecting all the terms we finally find

o dw; d
622[2 = _5s,.v’/ ﬂﬂa(a)l)a<w2)
0

2r 2r;
1
2 VI=Z (im?
x L\ Z exp N (P)
(Y05 E 2z E

2
X exp {—m—EL (2iPX + arccos £ — XV 1 — 22)},
(49)

where £ = (w; + @,)/(2m ). With the zeroth order ampli-
tude given by (30) [note that it contains the same irrelevant
phase as in (49)] we immediately see that the cross term
between the zeroth and second order amplitudes gives
exactly (43), i.e.,

d3
2Im €20, (0w, > 0) = V4 / ﬁZZReQISeZQIz,

spin

(50)

where I, (w;w, > 0), 2, and €29, are given by (43), (30),
and (49), respectively, and where the sum over spin simply
gives a factor of 2.

In fact, having obtained the second order amplitude, we
can now use it to calculate also the prefactor of the
dominant contribution to P3 and P, (from 2ReA;2, and
|2,|?, respectively).

B. Second order 2, for a Gaussian pulse

Since the first orders dominate for Sauter-like pulses, we
turn directly to a Gaussian pulse, for which the dominant
contribution can come from higher orders. To perform the
Fourier integrals in (49), we change variables to £ = (w; +
®,)/(2m, ) and 0 = (w; — w,)/(2m ) and perform the
integrals with the saddle-point method. The saddle point is
given by 0§ =0 and X = X,, where

V1+1v2+ P2 —iy,P

PI—
" 1+03

, (51)

v, =v/n, and v = E/w* (these definitions of v, and I,
also apply to higher orders). The X integral is formally the
same as in the first-order case (34) after replacing v with v,.
Thus, the second-order amplitude for a Gaussian pulse is
given by

0.0 0.2 0.4 0.6 0.8 1.0 1.2
b3
FIG. 5. The momentum spectrum as a function of the longi-

tudinal momentum ps/m for p, = 0. The field parameters are
chosen as in the right plot of Fig. 3 in [8]; i.e., E = 0.033E;,
e = 1073,y = 3.8, and, for the numerical results, the strong field is
a slowly varying Sauter pulse with ygon, = 0.2. The red dotted
curve corresponds to the strong field alone |2,|?, the orange
dashed curve is given by |2, + 2, |?, and the black solid curve is
given by |2, + 2, + 2, |2 The blue dots show the result obtained
in [8] by numerically solving the Riccati equation using the code
from [36]. It is obvious that for these parameter values we need the
second-order amplitude to obtain a good approximation of the
probability. (For the weak field alone the spectrum at p; = 0 is
~10~* and quickly becomes much smaller for larger ps.)

P

2o — 5 |EE]PVAER - 1T as
2 s,8 m324 N i P 1
1% (143 + 2]

X exp {_%i [iPX, + arccos X, — iqﬁ(P)]}. (52)

In Fig. 5 we return to an example which we in [8] used to
demonstrate that |2, + 2(;|? is not always enough to obtain
a good approximation of the spectrum for these fields.
Figure 5 shows that |2, + 2; + 2,|?, on the other hand,
does lead to good agreement with the exact/numerical
solution of the Riccati equation that was obtained in [8],
especially given that the parameter values in this example
have not been optimized but are simply the ones we
considered in [8], and the strong field is actually not a
constant field but a slowly varying Sauter pulse. As
mentioned, the dominant order is given by (6), which
reaches its maximum at y = ﬂ For ¢ = 1073 this corre-
sponds to y = 3.72, which is close to the value we have
chosen in Fig. 5. For this example (6) gives Nyom ~ 4,
which agrees with the fact that we need 2, to find a good
agreement. We can increase the dominant order by decreas-
ing E, but this also makes the probability much smaller.

Together with the first order amplitude (36) and with the
saddle point for the longitudinal momentum given by (C2)
we find that the total probability at third order is given by
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d*p
Py =V, /WZZR&S%[’{SZ?[Z

spin
Ee)® [Ep3(1+i2) 2

:V3( ) \/:1/2( JH/_)zeXp ——arctan p,
6 7z arctanp E

(53)

where 0 = %1/ =3v/4 = (v; +1,)/2. From the square

of the second-order amplitude we obtain

/ 3 Z|822{2|2

spin
/EI/E(] + 1)
= Va(Ee)4y | — 22 = 7277
3(Ee) 27 2arctan v, X

Compare (53) and (54) with Eq. (2.18) in [8] for the
second-order term, which can be expressed as

Ee)? [Ev(1 +12) 2
Py =V ( \[=— — —arct .
& 33 27 arctanv “xp Earc anv

Both (53) and (54) are in perfect agreement with 2Im '3
and 2ImTy, respectively, which we show using the world-
line formalism (not in the momentum representation) in
Sec. IV.

Recall that to obtain the zeroth order, Py ~ ¢~/ from a
perturbative series, it is necessary to use Borel resummation
techniques [37,38]. The saddle-point results (53)—(55) can
be expanded in a Taylor series in E (by keeping @ in v =
E/w” fixed) and then directly reconstructed without using,
e.g., Borel resummation. However, this does not mean that
one can obtain (53)—(55) in the region v~ 1 from an
ab initio perturbative treatment of the strong field.

2
p —Earctanuz .

(54)

(55)

C. Higher orders 2,

We will now use the propagator from the previous
section to obtain the exponentials of higher order ampli-
tudes. We obtain the nth order amplitude from

(27)’8°(p+p')e"A, N/d4x1 . .d4xn17¢(t1)eip,-x{
X ¢(tl)G(x1 ,x2)¢(t2)G(x2,x3) e
X (1,1 )G (g, ) (1) 0(2,) €75
(56)

The spatial integrals give delta functions which we use to
perform the integrals over qV/) for each propagator. The
proper-time integrals from the propagators are again
dominated by s; ~0 and do not affect the exponential

behavior of the probability, which means that, when
performing the time integrals with the saddle-point method,
the exponential is a relatively simple generalization of
the second order case above. Using (A8) and shifting the
time variables, 7, — f;, + p3/E, to make the simple p;-
dependence manifest, we find

A, ~ /Hdwkdtka ) quo
xexpi —&Zwk—l—ﬂ(ﬁ ﬂ _iwktk
E — 2F m =1
Et,
- t t 57
ZQO(k k1) 2E¢{ }}» (57)

where the ellipses stand for factors that do not affect the
exponential behavior of the probability [and we have
omitted the term in (A8) with ¢(p3/m ) since it cancels
anyway when squaring the amplitude]. We perform the #,
integral with the saddle—point method where the saddle

\/mL 1))2

<m, ). We can now perfoml

point is given by Er( %

(assuming 0 < w; + q(() )

(1)

the g,  integral also with the saddle-point method.

Although tl(q(()n) now depends on q(()l), the saddle-point

equation for q(()l) is simply given by ¢, (qgl)) = t,,and we do

not even have to find the explicit solution for qél) in order to
obtain the exponential part of the probability. We can now
perform the integrals over f, and qéz) in exactly the same
way, the only difference is w; — w; + w,. This in turn
leads to similar integrals for 73 and q(()3), with
@ = w] + W, + w3, and so on. The last time integral is

similar to the previous ones, and the saddle point is given
_ s _ 32 _ 1 n

by Et, = im V1 — X% where X = 5 - > %, . The sum

over Fourier frequencies is the only difference between the

resulting exponent and the one for n = 1. We can therefore

immediately write down the result for arbitrary n using the
first order results in [8]. We hence find

e"A, N/ﬁdwka(wk) . ,,e—Ti[ZzPZ—&-arccosZ V1= 22
=1
(58)

where P = p3/m |,
LI (59)

and the ellipses stand for factors that do not affect the
exponential.
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In fact, this exponential part of the amplitude can also be
obtained from the worldline-momentum approach: The nth
order of the imaginary part of the effective action, ImT,,
corresponds to the sum of products of different orders of the
amplitude. For example, ImT’; contains |20,|%, Re20;2As,
and Re2;2(,. The nth order amplitude 2, can be obtained
from the term in ImI", in which all Fourier frequencies
have the same sign, because this corresponds to the cross
term 2Re2A; A, and 2 has a simple exponential that is easy
to separate out. In this case the exponential is given by

cos[s(1-2[r;—7;|)]
—_ <2lPZ+S+—2 Z _1 (CHON bmxl ! )
e s

(60)
which for w;w; > 0is maximized by |z; — 7;| = 0, 1, which
leads to

m2
exp{—5(2iP2+s+22cots)} (61)

with the same X as in (59). Performing the s integral with
the saddle-point method as in (27) gives the same expo-
nential for 2, as in (58). See Appendix B for more details
on this approach.

Upon squaring the amplitude, the Nth order terms in the
probability are given by 2y_, 2, with 0 <n < N. Since
p3 only enters in the linear term in the exponential, the
integral over ps gives a delta function §(X' — X), with X and
Y for Ay_, and A, respectively. This is the same as in
Eq. (5.1) in [8], and we immediately recover the exponent
in Eq. (5.5) in [8], which we there obtained with a
completely different approach. Thus, for the total/inte-
grated probability, we can stop at this point; after repro-
ducing Eq. (5.5) in [8], which holds for quite general field
shapes of the weak field, the rest of the calculation is
identical to that in [8]. See though Appendix C for a
different approach.

D. Third order 2; for a Gaussian pulse

Having obtained the saddle points at arbitrary orders, it is
now straightforward to calculate the prefactors. In this
section we do so for the third order amplitude for a
Gaussian pulse. The calculation is similar to the one above
for 2, so we simply state the results. We find

3 Ee]® 27\/3zE 9 -8%3
& 2[3 = 5s.s’ — 5 v8
1281’1’“_231/3 /1 4 1/ + w;P

®
X exXp {— m—Ei [iPX; + arccos X3 — igh(P)] }, (62)

where 23 is given by (51). We show in Appendix B how to
obtain (62) with the worldline-momentum approach. From
(62) and (52) we obtain the dominant contribution to Ps
and Pg,

ePs = V3/ 2 ZZResWIEﬁ?[;

spin

A= =3 —2\2 —
_ V3<E€) 243 3El/2(1 + 1/2)2(1 + 91/2) e—%arctanl_/’

640 arctan o

(63)

where 7 = 5v/12, and

eSPg = / 27 Z|£22[ |?

spin

59049 [Eus (1 +13)%(1 +913)
= Viy(E
(B 31073\ 2 arctan ”
% e—%arctanv3‘ (64)

For the example in Fig. 5 we can now check that 23
indeed gives a negligible contribution to the spectrum,
and from (55), (53), (54), (63), and (64) we find that eV P),
increases from N =0 to N =4 and then decreases, so
for this particular example we do not have to calculate
more terms.

E. Cos-Gaussian pulse

So far we have focused on fields with a single maximum
in t. However, since it is the Fourier transform of the weak
field that is most important here, it is relatively easy to
generalize the results in the previous sections to oscillating
fields. As an example we consider a sinusoidal field with a
Gaussian envelope

d' (1) = Eecos(Qt + p)e™ @)’ (65)

The Fourier transform is similar to the simple Gaussian
pulse,

. Q .
e ag(w) — Q) +———e%ag(w, +Q),

(66)

where ag(w;) is the Fourier transform for Q =¢ =0
given by (15). If we assume that Q is not too small, then one
can neglect ag(w; + Q) compared to ag(w; — Q). We can
perform the integrals with the same methods as before, so
we simply state the final results here. We find

e "Ee \/m
20 2m 32

m?

e—TJ-[Alvl (A1 =2)+iPZ, +arccos X —ig(P)]
X . (67)

\/1+1/1 +’§’1"

A = s
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FIG. 6. The p; spectrum [2A> at p, =0 for (65) with
E=0.05¢e=1073 o = 1.5E,Q = 0.75, and ¢ = 0. The strong
field is a Sauter pulse with frequency E/15. The red dashed curve
gives |2,|?, the orange dashed curve |2, + 2, |?, and the black
curve |y + A; + A, |2, where A, and A, are obtained from (67)
and (68). The blue dotted lines give the exact result obtained by
solving the Riccati equation numerically [39] with the approach
in [36], i.e., by using the TIDES differential equation solver [40]
and the multiple-precision library MPFR [41]. The lower blue
and the dashed black curves show the spectrum for the weak
field alone, where the dashed black curve is given by
|2, + A, + As|?, with A; from (71)—(73). This weak spectrum
is dominated by 2, for p; < 0.4 (except close to p; = 0 where
A, =0) and by A; for p; = 0.5, while A; is completely
negligible.

e Ee|? \/nEv A iP
822[2 =0y |:—:| 3 42 (1 ——2+—>
Tl 20 my 2o L, X
e‘é[/\zl’z(A—Zz)+iPZz+arccos22—i¢(P)]
X , (68)
\/ 1+03(1-%2) + ”;’;2
~Ee]3 27\/3nE
WAy =6, [e ‘1 i (9 —8%3)
' 2w 128mL23IJ3
e‘é[/\ﬂ{%(A3—23)+i1’23+arccos23—1‘(/;(P)]
x (69)

_ A sz; ’
\/ 1+ u3 23 23

where v, = v/n,

Anv% - - A%y% + 2iPA, v,

’

iPv, +\/1+ 12+ P2

Yy, =
" 1+22

(70)

and A,, = nQ/(2m). In Fig. 6 we compare these terms with
the exact numerical result. In this example |2, + 2, |? is
not enough, not even qualitatively. However by including

the second order amplitude, |2, + 2, + 2 |*, we find a
good agreement.

One advantage of this approach is that it gives the correct
results in the limits where either the weak or the strong field
vanishes. The limit € — 0 gives trivially the zeroth order
Py, which only depends on the strong field. In the other
limit we can directly obtain the results by taking £ — 0
with Ee fixed in (67)-(69), which gives

\/—mLEs —iw—w
4o

82[1 = S (71)
4 plw
29, = \/; 7%1)3(&) 2 ()
22 po@
S, — 8137 (9m3 — 8p0)ml(Ee) W—( P wsm 73)

1024 piw '

where po = +/m3 + p3. Figure 6 shows one example
where the dominant contribution comes from 2, in one

part of the spectrum and from 2; in the other, and the
agreement with the exact numerical result is excellent. In
the limit of a long pulse w — 0 these terms become
proportional to §(2p, — nQ2) as expected.

IV. HIGHER-ORDER PREFACTORS FOR
THE INTEGRATED PROBABILITY

In this section we show how to obtain higher orders
of the integrated probability, including the prefactors,
using the worldline formalism. We show in particular
how to use this method to obtain (53)—(55), (63), and
(64). Our starting point is (8) with the spin factor given by
(10). However, as we in this section only calculate the
integrated probability, we do not go over to the worldline-
momentum representation. This is a generalization of the
approach we used in [8]. We expand the effective action
in the weak field as in (12), where now

do odl (1
NFN_/H k k)/o T[; dek%DXWN

T X
xexp{—i<2+;w,¢ / +Etz>}

(74)

and the prefactor Wy (7, w;,z(7;)) is obtained from the
expansion of

2 cos (% [E+ A la'(z)D exp (—i A 1 az> (75)

in the field strength a. We start with the path integral.
The transverse integrals simply give
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foreo( [ o) -ty 0o

where d is the number of transverse dimensions. We
separate the time integral into a “center of mass” plus
oscillating terms, #(z) — 7. + t(z), where the new ¢ obeys
Jot=0. The f. integral gives a delta function for the
Fourier frequencies [dt. — 278(w; + - - - + wy). For the
fields we consider here it is natural to switch to Euclidean
variables, t — —it and T — —iT. It turns out to be
convenient to use s = ET/2 instead of 7. Selecting the
Nth order from (75) and exponentiating the resulting
products (cf. [29]) give

N
Wy = linear, — {exp [zs — Z €k< —lwk)]

k=1

Fexp [—is - zNjek <Z(rk) —%iwkﬂ } (77)

k=1

where linear, selects all the terms that are linear in all ek.7
The path integral is now a relatively simple Gaussian. We
remove the terms in the exponent that are linear in z by
making a shift in the integration variables, z — 74 + z,
where the “classical” part is given by

ta(r) ==ETt=TY eld(c—7)—1].  (78)

k=1

The z integral is now free and gives a volume factor Az,

%Dz exp( /2T) \/Z_T (79)

For the remaining ¢ integral we again make the exponent
quadratic by shifting the integration variable, t — 7, + ¢,
where the “classical” part is obtained by expanding its
equation of motion [cf. (23)],

N
(02 + 2sP)1a(7) = T (@ = 25€,) (8., = 1), (80)
k=1

in terms of Fourier modes, which yields [cf. (24)]

"Note that ¢, (k=1,...,N) are just temporary, nonphysical
parameters, which are introduced as a mathematical tool.

€2Jrin(‘r—1k)

— (27n)?

1 & cos[s(1 =2|t—1;])] 1
—ﬁkZ(a)k—%ek){ sin s s

where the sum over n can be performed using Eq. (1.445.2)
in [32]. We perform the Gaussian path integral by Fourier
expanding ¢ as in (18) and then multiplying the eigenvalues
as in (20), which gives

th exp(—/t(_ag 2_T(2S)2)t> = \/21;1-—Tsirsls' (82)

The prefactor Wy is now given by
N s 5
Wy =2 mlineare cos{s ~E kzz; eka)k} exp{E ; €ér

N
s cos[s(1 = 2|z — 7])]
TE Z et [57”’ o sin s '

k=1

(83)

where

N
cos|s(1 = 2|z, —7y|)| — cos s
P S LUk i ) T

With the path integral performed, we now have
. N T, N
I'y=-V —_— 27d
2y ==y [T |5 aton) 225 )
4+1
d do, W
XA S[4ﬂs] sms/ H N

cos[s(1-2|z;—7|)]—cos s
X e ES+Z —1 W;W; 45inx/ >. (85)

Equation (85) complements Eq. (5.1) in [8] by providing
the prefactor, and so gives the exact I'y for arbitrary N.
In deriving (85) we have used the fact that w; +---+
wy = 0. For I'y, though, one has to be more careful since
a(w;)w;5(w;) leads to a nonzero contribution. However, as
mentioned, we are not interested in terms like I'; (integrated
over the momentum), which have the same exponential as
I'y and therefore only give small corrections.

We also perform the 7; and s integrals for general weak
field a. Let us first consider the zeroth order as a check of
e.g., signs and factors of 2. To zeroth order the prefactor is
given by W, = 2coss, the delta function gives a volume
factor 275(0) = Az, and we recover the well-known
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Euler-Heisenberg action for a constant electric field; see
e.g., [42],

o E 151 2cos s
Ihy=-V ds|—| ———=e/E 86
0 4A sLnJ sins © (86)

The integration over the first pole gives the leading order of
the imaginary part of the effective action as in (21).

A. ImT,

As a more nontrivial check of (85), we compare with
previous results for I';. In order to compare with the exact
expression in [34] for the polarization tensor in a constant
electric field, we make a partial integration in 7 to replace
the delta function in (83); cf. [31]. Using the translation
invariance we put 7, = 0 in the integrand. To facilitate
comparison with [34], we change variable from 7| to v =
27, — 1. We find

dw & 1151 [E]5!
e, = —V3/2—ﬂ1|w1a(a)1)|QA ds {E} [;]

I coss —cos(sv cos(sv)cos
x / dp S35 T COS(Y) |yt gy

! sin®s

For d = 2, Eq. (87) is identical to the expression we used in
[8] to obtain P, from the exact polarization tensor in [34].
So we already know that performing the integrals in (87)
with the saddle-point method leads to a result that agrees
with the WKB-based approach we used in [8]. However,
we go through the calculation here to prepare for the
calculation of higher-order terms. For a Gaussian weak
field, the w; integral is Gaussian and can be performed
exactly at this stage. However, since we want to make as
much progress as possible for general pulse shapes, we
keep the w; integral and perform the other integrals first.
The saddle point for the 7, integral is 7; = 1/2. The
exponential for the s-integral is now given by

exp{—% (%—22 tan%)}, (88)

where X = |w;|/2. As performing this proper-time integral
with the saddle-point method is similar to what we did
for (25), we just state the results here. The saddle point is
given by

s = 2arccos X, (89)

and the Gaussian integral around it is similar to (27). After
performing all integrals except for the one over w;, we find

2Am T, =V /dw‘ ( )|2[ E]d :
el = —a(o)|* |—| ——
P 23V1 -3

4rs
2 2
X expy =4 (arccosX — XV 1—-%%) 5,  (90)

where s is given by (89) and X = |w;|/2. It is now
straightforward to check that this agrees with the WKB
result: Just square the first order amplitude 2, given by
(31), and integrate over the momenta as in (41). The p;
integral gives a delta function setting the Fourier frequency
in A7} equal to that in 2, and the perpendicular momentum
integrals are Gaussian around p,; ~0 and give the
[E/(47s)]%? factor in (90).

For a Gaussian field (15), we find for the @, integral two

saddle points given by |w,| = 2X, where
o (1)
I+

The saddle point (91) is relevant also at higher orders, but
with v depending on the order. With these two saddle points
we find 2ImI’, = P, with P, given by (55) (for d = 2).

B. ImT;

Now we turn to the first nontrivial odd term, I'5, which is
illustrated by the fourth diagram on the right-hand side in
Fig. 1. Because of 6(w; + w, + w3), one of the three w,
must have opposite sign compared to the other two. We
assume without loss of generality that w; and @, have the
same sign, and we multiply with a factor of 3 to account
for the other two equivalent regions. We have two different

contributions to W3 = ng) + W;z): one (ng)) without
delta functions, and the other (Wgz)) with delta functions.

For W;l) we use translation invariance [29] to set 73 = 0.
Looking at the behavior of the exponential, we find that
the dominant contribution comes from the integration
region near 7; = 7, = 1/2. We expand around this point,
7, =1/2+ 67, and 7, = 1/2 4 6t,. We change variable
from 67, to 67, = dr, — 67;. The leading order perturbation
around the “saddle point” is given by

c 1 [((2%s)?
/ dérldéf’zexp{—ic s) 5r%+swlw2|5r’2|>}.

o sin s

(92)

From this we see that 6z, ~E while 67, ~ E, which
means that to leading order we can neglect terms like
51,87, ~ E*/? or 677 ~ E?. Note that while the 5z, integral
is Gaussian around the saddle point, the exponent behaves
as |675| rather than 672, so we are dealing here with a
generalization of the ordinary saddle-point method. The
resulting integrals are still elementary though. At higher
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orders we have more terms where the fluctuation, § say,
around some ‘“saddle point” for the 7 integrals behaves as
|5] rather than 82. Of the three terms in Wg2), we can neglect
those with &, .. and &,, ., since they give exponentially

smaller contributions. The term with 6, , = §(7;) leads

to the same exponential as the terms in ng)

(92) that compared to the integrals in ng) this delta
function gives

. We see from

Sw1wy

8(67) ,
(675) — 2F

(93)

which means that also the prefactor part of this contribution

is on the same order as ng).

The s-dependent part of the exponential is now given by
(88) with X given by X = |@; + @,|/2, and the saddle point
is given by (89). The contribution from w;, @, < 0 is equal
to minus the complex conjugate of the contribution from
w1, w, > 0. We hence find

dw, d
2Im &’T3 _4V3Im/ﬂﬂa(a}1) (wr)a(—w, — )

Elf 1
X |— e
drs| wiwr,Z

where w; > 0, w, > 0, and £ = (0| + @,)/2. It is now
straightforward to check that (94) agrees with our WKB
results for the amplitude: Just take 2[; and 2[, from (31) and
(49), and integrate 2Re2 A, as in (53). The momentum
integrals are similar to the previous section, and we hence
find

2(arccos T—XV 1-X2) , (94)

2Im e’ ~ V5 / 3 ZZRGS%[* %Ay (95)

( ”) spin

(Note that we have ~ because the exact relation between the
effective action and the amplitude at this order also includes
the subleading term with 2Re2;%;.)

C. Im F4

The effective action at fourth order, I'y, is represented by
the fifth diagram on the right-hand side in Fig. 1. The
dominant contribution to I'y comes from the region where
two w;’s are positive and the other two are negative.
Without loss of generality we assume w;, w, > 0 and
w3, wy < 0, and we multiply with a factor of 6 to account
for the other equivalent regions. We again use the trans-
lation invariance to put 74, = const := 7, and for definite-
ness we choose 0 <7y <1/2. Then the dominant
contribution comes from the region around 7, = 7, = 7 +
1/2 and 73 = 7. Expanding around this point, 7, , = 7y +
1/2 + 671, and 73 = 7 + d73, we find two integrals with
the |5|-type of fluctuation and one Gaussian integral,

1074+

1078 |

10—12 L

10—16 L

kL L L L L 1 L L L L 1 L L L L 1 L L L L 1 L L L L 1 w
0.5 0.6 0.7 0.8 0.9 1.0

FIG. 7. 2ImTI} for | = 0w, = —w3 = —w4; = @ and without
the factor of V3 [TT¢_, (%% a(w;)]226(3"}_, @;). The dots are
obtained by numerically mtegratmg (85), and the line shows the

analytical approximation (97), which is only valid for w < 1
where the result is exponentially suppressed.

1 /(2%s)?
exp {_E <(sins) 871 + 5w 0,|67h| + sw3w4|613|> }

(96)

where 67, = 61, — 67;. The exponential for the s integral
has the same form as before, Eq. (88), and hence the saddle
point is given by (89), where X = (o, + @,)/2. W, is
giVen by (83) with 51 = 52 = —63 = —54 =-2V1- 22.
We can calculate the delta function terms in W, by
reexpressing the delta functions using partial integration,
but it is easier to use the delta functions to perform z-
integrals. We first note that, to leading order in E, we can
take €x€/(0;, ;- -] = €x€0;, ;, in (83), and we only need to
consider the terms with 6, . and & which contribute
similarly to (93), since the other delta functions lead to
exponentially smaller contributions. We hence find

2Im €T, = V4 / H {—a wy) }2;;5(24:@,() L—isr

k=1

(3]

73,742

N 41 -32 o—Rarccos E-5VI-F7) (97)

2(01(02(1)3 Wy ’
where the integrals are restricted to the region with w; , > 0
and w34 <0, and £ = (w; + @,)/2. It is now straightfor-
ward to check that (97) agrees with our WKB results for the
amplitude. We again perform the momentum integral as
before and find

20Im Ty ~ Vs / & > |, 2, (98)

spin

with 2, given by (49). (Note again that we have an
approximate sign because we have neglected the sublead-
ing terms with 2Re2;2, and 2ReA;A;.)
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FIG. 8.

The expansion of the polarization tensor. The bold and double lines again represent fermions dressed by both fields and only

the strong field, respectively. The horizontal photon lines represent the single high-energy photon, and the vertical photon lines represent
photons from the weak field. The pair production probability is obtained by applying the optical theorem.

Thus, we have now obtained the same P5 and P, using
two completely different approaches, and without choosing
a particular field shape of the weak field. For a Gaussian
weak field (15), performing the remaining Fourier integrals
with the saddle point method gives (53) and (54) (for d = 2
transverse dimensions).

The integrals in (85) can also be performed numerically.
One approach is to first perform the s-integral by integrat-
ing along e.g., a C-shaped contour that passes vertically
through the saddle point, which depends on z;, or a similar
contour in regimes where the result is not exponentially
suppressed. Then one can perform the z; integrals on a real
N — 1 dimensional unit hypercube 0 < 7; < 1. In Fig. 7 we
show the results of such a numerical integration for I'y and
W = w, = —w3 = —w4 = w. Of course, even for a mono-
chromatic field we have N integrals to perform for I'y, and
the integrand becomes more complicated at higher N
because of the increase in the number of terms in the
prefactor Wy, which can make a numerical integration time
consuming at high orders.

As a straightforward generalization of the above calcu-
lations we can also obtain higher orders. We already have
the saddle points. What remains is to find some suitable
integration variables and their scaling with respect to E,
and then expand the integrand in E. We find exactly the
same results as from the amplitude approach, i.e.,
2Im &5 = (63) and 2Im T = (64).

As yet another approach, we have also derived (94)
and (97) by calculating the corresponding loop diagrams
in Fig. 1 using the electron propagator in (46) [or rather
the single-integral representation obtained by first per-
forming the momentum integrals in (46)]. The prefactor
can then be obtained by choosing a representation for the
Dirac matrices. This might at first seem like a simpler
approach, but we found it much simpler to obtain (94)
and (97) with the path-integral approach described in this
section.

V. DOUBLE ASSISTANCE

So far we have considered a strong constant field assisted
by a single weak field. In [23] we proposed and studied a
doubly assisted generalization, where the strong field is
assisted by both a weak field [4] as well as a real/on-shell

high-energy photon [43]. In [23] we treated the weak
field with nonperturbative methods. Here we will show that
one can treat it with our perturbative approach. The
inclusion of the high-energy photon basically corresponds
to adding a third field in the shape of a plane wave, which
is treated to lowest order. The pair production probability
can be obtained from the polarization tensor using the
optical theorem. Its weak field expansion is illustrated in
Fig. 8. The polarization tensor can be obtained from the
following worldline representation of the effective action
(see e.g., [29,31,44]):

o dT Dy [1
er_)kle/:2ez/ —j[Dx/—"’/ dr,dr,
T o T 4 Jo

x [ex + Thkyey], [€'x—Tkye'y], e~ ") +ikx()

xexp—l{ /—+ x——l//u/—f—zy/TFy/}

(99)

where v, () is an anticommuting Grassmann variable with
antisymmetric boundary conditions, (1) = —w(0),
F,=0,A,-90,A, and k, and ¢, are the momentum
and polarization of the high-energy photon. We consider
again Az = a(r) + Et and treat the weak field perturba-
tively using its Fourier transform (13). This expansion
makes the path integrals Gaussian and the prefactor is
obtained from various Wick contractions as described in
e.g., [29,44]; we have included the formulas we need in
Appendix D. The spatial homogeneity leads to the con-
servation of the photon momentum,
TChemr e = (2n)38 (K = k)iM . (100)

The optical theorem now gives the pair production prob-
ability P,:,- = ;-ImM,. For the high-energy photon we
choose k, = Q(1,sinf,0,cosf) and two orthogonal
polarization vectors ¢, = = (0, —co0s 0,0, sin @) and eff) =
(0,0,1,0), which obey ke = 0 and €*> = —1.

We focus on the perpendicular case, k3 = 0, since this
gives the largest probability and the simplest results. After
performing the path integrals we find
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0 N N N+2
ENPN = Im/ dT/ H dw,a(w,)é(Z a)i> / H dTl‘
0 i=1 i=1

i=1

. e—i(ng%Zﬁlfl Kk[glz(Tk—fl)—gs(o)]](l)7 (101)

where K; , = 8w; fori =1,....N, Ky 1, =k, Ky, =
—k;, Gp is a worldline Green’s function given by (D1), and
the ellipses stand for subdominant prefactor terms (see
below), which are obtained from Wick contractions as
described in (D8). We begin by finding the values of z; that
maximize the exponential. This is similar to the case
without the high-energy photon, and we again find that
either |7; — 7;| = O or |7; — 7;| = 1/2. The T-integral is also
similar to what we had in the previous sections. Using
methods similar to the ones described above, we hence find

pe [ Homatars(0)

i=1

2 2
-~~exp{—%(arccos£—2 1—22)}, (102)

where X is again the sum of the positive frequencies, but
this time divided by an effective mass that depends on the
frequency of the high-energy photon,

1 d ) Q]2
- § . -1 o° 1
z 5 <S2+ ' a),), m + [2] , (103)

i=1

where 0 < J < N is an integer that characterizes different
saddle points. For even N the dominant contribution
comes from J = N/2, and for a monochromatic field half
of the Fourier frequencies must be positive implying
Z{Zl ®; = Nw/2. Compare (102) with (3) for the case
without the high-energy photon. The main difference is a
heavy effective mass m | > 1 that comes from the spatial
components of the high-energy photon momentum, which
is similar to the results in [9] for singly assisted pair
production with a weak field in the shape of a plane wave.
Note that, even if the characteristic frequency w, of the
weak field is much smaller than Q and the electron mass,
the dominant contributions for Gaussian and Sauter-like
pulses still come from Fourier frequencies on the order of
the electron mass w; ~ 1, similar to the case in the previous
sections.

A. Sauter pulse

For a Sauter pulse (14), we find after performing the
Fourier integrals

2m3 Q -1 1
Py ~expq— o —mM+ 7 +arcsm)? ,

(104)

where y = m vy, and y, = w,/E. Note that all orders have
the same exponential for these Sauter-like fields. That is
what we found for ordinary dynamical assistance in [8],
and now we can see that this is also the case with the
addition of a high-energy photon. Note also that (104),
which is obtained by treating the weak field perturbatively,
is exactly the same as the exponential we found in [23] by
treating the weak field nonperturbatively.

B. Gaussian pulse

For a Gaussian field (15) the results are conveniently
expressed in terms of v = E/w? and A =Q/(2m ).
Performing the Fourier integrals with the saddle-point
method leads to

2m2l _
Py ~exp —T(aICCOSZ—Ay(Z—A)) . (105)

where
A+ V1 + 07— D2A2 N
s CATVIEVZPA o Y (106)
14+0 2J(N =)

The exponential is a strictly decreasing function of v (which
is natural since increasing v corresponds to decreasing o).
Thus, the dominant contribution comes from the value of J
that gives the smallest o, which is J = N/2 for even N and
J=(N=+1)/2 for odd N. For A - 0 we recover our
results for single assistance. For A < 1 we have

2
2ml

Py~e F

o_2Ap
(arctan D 1+52) ’

A< 1: (107)
which shows that the additional photon leads to a further
reduction of the exponential suppression. For v <1 the
field strength drops out in the leading term in the exponent,
and we find for even N

N5 (141 -AJ7)

PN ~ e No s

v<1: (108)
where the leading term is what one expects from N factors
of the Fourier transform evaluated at the minimum Fourier
frequency needed to add up to the necessary energy, i.e.,
(N/2)w; =2m, — Q.

As without the high-energy photon, the exponential
increases while the prefactor decreases as we go to higher
orders. As in [8] we can estimate the probability by
exponentiating €V from the prefactor and approximating
the sum over all orders with the “saddle point” for N, which
we find to be

1
Niow™ ~2¢(Z=A) where = [1-5. (109)

096002-17



GREGER TORGRIMSSON

PHYS. REV. D 99, 096002 (2019)

x=v./\/|In¢,andy;, = m, y. As A — O this reduces to
the estimate in [8] of the dominant order in the singly
assisted case. A nonzero Q hence leads to a lower dominant
order. Substituting the dominant order into Py gives us

2

(e VA it
Pdom ~e E myx' 2 z
ete”

(110)

Curiously, this exponential has the same form as for a
Sauter pulse (104), but with y =y, /v Where yeq ~

\/|Inge| in the Gaussian case. This generalizes a similar
result in [8] to the case with an additional high-energy
photon. A better agreement with the instanton exponent can
be achieved by exponentiating a factor of y together with ¢,

so that y.4 = +/|In(ce/y)|, where ¢ is (to a first approxi-
mation) a constant obtained by matching; see [9]. It might
look like (110) has a threshold at y = 1, but N§2 > 0 [in
(109)] implies y > m | so the threshold is given by y /7y =
1 and not y| /¥ = 1. We can also confirm this by noting
that at y = m | the weak field drops out and we recover
Eq. (5) in [43], which gives the exponential for the case
where the strong constant field is only assisted by a high-
energy photon.

C. Sinusoidal field

Our third example is a sinusoidal field a() o sin(w?).
For this field we have T = 5 —(Q + ). Estimating the

dominant order as above we find results similar to the
Gaussian case (109),

4 1
Neos =Z"L(£_A) where T=/1-—, (111)
® V" x

and y =y, /|Ine|. We again recover the result for the
singly assisted case [8] as  — 0. The threshold is again
given by y = m . Substituting the dominant order into the
exponential gives us (110); i.e., we again find the same
form as in the Sauter case and the corresponding estimate
for the Gaussian pulse, but with y$9° ~ | In ¢|. We note that
for y > y.i we have

2 -Q
Pe*e' ~ exXp {2 s lnf}, (112)

o 4

which is simply the amplitude of the weak field ¢/y to the
power of the number of photons from the weak field that are
needed to add up to twice the electron (effective) mass.

To understand why we obtain (110) for a sinusoidal field,
notice that with @ := Nw/2 the sum over all orders N can
be expressed as

2

LT
Py~ 26—2%—%(21100% -TV1-3?) ) (1 13)
10}

where £ = (Q + @)/(2m ), so, by formally identifying &
with the Fourier frequency in the second order case, we see
that the In e-term in (113) behaves as the exponential decay
(14) of the Fourier transform of a Sauter pulse with an
effective frequency @, = w/|In¢|. Thus, estimating the
sum in (113) with the “saddle point” for N leads to the
Sauter exponential with y.4 ~ | Iné|.

VI. CONCLUSIONS

This paper is a continuation of [8] where we study
dynamically assisted Schwinger pair production by
expanding the probability in a power series in the field
strength of the weak field ~¢ < 1. This approach allows us
to obtain analytical approximations for a large class of
fields, and hence provides a useful alternative to e.g.,
treating the total field with instanton methods. We can
therefore learn more about the analytical structure of the
probability, which is particularly important when assisting
Schwinger pair production with high-energy photons.

The Keldysh parameter of the weak field alone is large,
w/(eE) > 1, and so the weak field is sometimes associated
with the multiphoton regime. However, for weak fields
with sufficiently wide Fourier transforms, such as the
exponentially decaying Fourier transform of a Sauter pulse,
the dominant contribution comes already from the first
order amplitude, P, ,- ~ |¢2|?, i.e., from the absorption
of a single photon. This means that both the exponential
and the prefactor parts of the probability can be calculated
analytically for this class of fields [8]. For a Gaussian pulse
the Fourier transform decays more rapidly and, although
for some field parameters we still have P+, ~ [¢2(,]?, in
general one has to include higher orders in the ¢ expansion,
because the dominant contribution can come from one of
the higher orders.

One of our main objectives in this paper is to show how
to calculate the prefactor of higher-order terms in this
expansion. We have showed how to use either WKB or
worldline methods. We have for example derived the
momentum spectrum using the worldline formalism [24].
To the best of our knowledge, this is the first time that the
preexponential factor of the momentum spectrum is derived
using this formalism.

As an example, we chose in [8] two sets of parameter
values for a Gaussian field, one for which the exact/
numerical results agree with |2, + 2|, and another with
a weaker E for which |20, + 2, |? is clearly not enough. In
this paper we have calculated 2, and showed that by
including it we obtain a good approximation also for the
second set of parameters. This agrees with our estimate of
the dominant order [8] [see (6)], which says that a weaker E
increases the dominant order. This is an explicit example of
the fact that, although |2(, + 2, |? is not enough for all field
shapes or in all parameter regimes, one can nevertheless
treat the weak field perturbatively, one just has to go to
higher orders. Here we have obtained the prefactor up to Pg
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(or 2A3), which was enough for a good approximation for
the particular example just mentioned. In general the
dominant contribution can, of course, come from even
higher orders. It might become tedious at some point, but at
least in principle one should be able to use the methods
presented in this paper to obtain the prefactor of these
higher orders as well. In fact, as (6) shows, the dominant
order is mainly increased by a reduction of E, but a weaker
E also makes the probability much smaller (because of the
exponential scaling), so for the most relevant parameter
values one can quite generally expect the dominant order
to still be low enough to not make the calculations
impractical.

One advantage of our approach, where the weak field is
expressed in terms of its Fourier transform, is that it
becomes clear what frequency components are responsible
for the dominant contribution. We have found that, e.g.,
for a Sauter pulse xsech?(wr) or Gaussian e~ (@)’ the
dominant contribution tends to come from Fourier frequen-
cies on the order of the electron mass, even for w < m.
If one insists on restricting the relevant frequencies to be
below the electron mass, e.g., for experimental reasons,
then one might be led to consider monochromatic fields,
e.g., coswt. However, as the Fourier transform only has
support at @, one then needs larger @, compared to the
characteristic frequency of a Gaussian or a Sauter pulse, to
obtain a significant enhancement; see e.g., [9]. So, in the
parameter regime considered here it seems that for signifi-
cant enhancement one is naturally led to consider frequen-
cies that might be rather large compared to what near-future
lasers can provide, but at least these higher frequencies
make it easier to obtain simple approximations with the
methods described here.

In this paper we have focused on linearly polarized
electric fields that only depend on time. This allows us to
find simple, explicit analytical approximations. As shown
in [7,45], purely time-dependent fields can, at least in
some regimes, be used to give good quantitative approx-
imations. It is also useful to start with such fields because it
allows us to compare with the exact result obtained with
well-developed numerical methods such as solving the
Riccati equation, which can be done to high precision [36],
or the Wigner/quantum kinetic theory, which could be used
for e.g., rotating fields [46,47]. However, our perturbative
approach can also be useful for studying weak fields with
more complex spacetime structure and/or strong fields with
e.g., a nonzero magnetic component. For example, in [9]
we applied our perturbative approach to a weak field in the
shape of a plane wave, i.e., a case where the total field is an
exact solution to Maxwell’s equation in vacuum. We again
found good agreement with results obtained with other
methods. We found qualitatively similar behavior as for
purely time-dependent fields, e.g., the existence of a
dominant order, which provides further motivation for
studying purely time-dependent electric fields.

To further demonstrate the usefulness of this perturbative
approach, we have also applied it to doubly assisted pair
production [23], where a high-energy photon is added to
ordinary dynamical assistance. For Sauter-like weak fields
we again find that the dominant contribution to the
probability is quadratic in the weak field and its exponential
part is exactly the same as the one obtained in [23] by
treating both the strong and the weak fields with non-
perturbative methods. As in the singly assisted case [23],
we again find that a Gaussian or monochromatic weak field
can lead to a higher dominant order. Although we have for
simplicity assumed that both the (coherent) fields are
purely time dependent, the high-energy photon is on-shell,
so this is another multidimensional example, and here we
have showed that it is still possible to calculate the
prefactor.

When extending the methods presented here to more
complex, spacetime dependent fields, one might have to
perform some steps numerically, e.g., to find the saddle
points. Although the approximation would then not be
completely analytical, one would still see the analytical
dependence on some of the parameters, and it could be very
useful for quickly obtaining estimates in cases where an
exact numerical treatment would be challenging or time
consuming. This could be useful for searching for prom-
ising parameter values for maximizing the enhancement of
the probability for future experiments, before turning to a
fully numerical treatment [10,48-51]. Moreover, as dem-
onstrated in [45,52], knowing the saddle points for some
simpler fields can be very useful for finding the corre-
sponding ones for complex fields that can be reached via a
continuous deformation, which gives further motivation for
working out all the details for simple fields as a start.
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APPENDIX A: INGREDIENTS FOR THE
WKB APPROACH

In this Appendix we collect some of the main ingredients
needed in the WKB approach. The WKB approximations
are given by (see e.g., [53,54])

U,(t.q) = (Y°ng + y'm; + 1)G* (t,q)R,.,

V. (t,—q) = (=Y’my + y'm; + 1)G(t.q)R,, (A1)

where R,, r = 1, 2, are eigenspinors y'y’R, = R,, and
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| 1
G*(t,q) = [27¢(my £ 73)] 2 exp [:F i/ dt’rto(t’)],
Ty
(A2)
where 73(f) = p3 —A(t) and 7y = \/m3 + #3(1). We

arbitrarily choose 7y, = 0. These WKB approximations
are eigenstates of the Hamiltonian (cf. e.g., [33])

H=7"(=iy'd; + A+ 1), (A3)

HePX U1, p) = mo(1)e™P¥ U(1,p),  (A4)
HeP¥V(t,p) = = (1) 4s€* V(1,p).  (AS)

It follows from y°/°R, = R, that R{y°R, = R};*R, =

—(*R,)'R, = —RIy°R, = 0 and similarly R{y°y1R, =0.
Using these equations it is straightforward to show that

Ui(t.q)U,(t.q) = Vi(t.q)V,(t.q) =5,  (A6)

and

Ui(1,q)V,(1,—p) = 0. (A7)

For a constant strong field A = Et, the integral in the
exponent is given by

! mi P3— Ef} {P3 })
mg == —p|->| ). (A8
/) "7 T2k < { my my (A8)
where the second term is irrelevant and cancels upon
squaring the amplitude to obtain the probability, and

= u\/'1+ u? + arcsinh u. (A9)
For the first order amplitude we also readily find
_ 3 m
Us(p)}/\ Vs’(_p) = 533’ ”_e (AlO)

APPENDIX B: 2, FROM T,

In this section we will show how to generalize the
method in Sec. II to higher orders. The idea is that to
leading order we have

&p .
V3/(—322R62[08"2[n =2ImT, (0;0; > 0),  (Bl)

2][) spin

where I, (w;0; > 0) is the contribution to I', in which all
Fourier frequencies have the same sign. We can use (B1) to
check that the methods in Secs. II and III give the same
results, but since 2/ is so simple [see (30)] we can actually

use (B1) to extract A, from I',. This is useful because
from 2, we obtain the dominant contribution to P,,, and
[, (w;0; > 0) is simpler to calculate than I',,. Note that
[, (w;w; > 0) does not give the dominant contribution to
I',, which instead involves both positive and negative ;.
We calculate I',, (w;w; > 0) here in order to extract 2,,. The
starting point is again (11), which we expand in e. This
leads to three different factors in the preexponential part of

the integrand,
1 .
/ dz;a’( / dr; /—a(a) )(—iw;)e~ "),
0
(B2)

| it - Exteplate(r,)
/ dr; / [m—lE%] e~®i!m)  (B3)

J

da)j da)k

1
/(; dedi E—a(wj)a(wk)

T

S—
o
S
|
Q
[ %)
—
-~
—
\!‘\
S~—
S—
Il

E . )
X ;5(Tj _ Tk)e—let(fj)—’wkt(fk)'
(B4)

The ¢ path integral is now Gaussian and can be performed
by removing the linear terms in the exponent with #(z) —
() + t4(z) where t is given by (24), and the resulting
Gaussian integral gives (20). The term in (B3) becomes

0 ,- "
p3 — IE——|e P D i
cos[s(1-2|zrg=7)]

x el T R (n)e. (BS)
The terms with e.g., 0ty(7;)/0w; can be neglected to
leading order in E. For w;w; > 0 the exponent is maxi-
mized by |z; —7;| =0, 1 for i, j = 1,...,n. We substitute
this into the prefactor and expand the exponent to leading
order. This gives terms with e~*®®il%=%l/E which lead to
elementary 7 integrals. There is one 7 integral that is trivial
because of translation invariance. The other, nontrivial =
integrals each gives a factor of E, which means that the
E5(z; — 7;) term in (B4) is on the same order of magnitude
as the other terms. We now have the exponent in (61). We
can therefore perform the s integral in exactly the same way
as for n = 1. So, the saddle point is given by (26) and the
contribution to the prefactor is given by (27). The exponent
is now given by

2

2
e—%e—%[ZtPZ-&-drccos 2-2V1 22

(B6)
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The first part of the exponent comes from 2, [see (30)] and
the second part is the same as the one we obtained in
Sec. III for A, [see (58)].

We now only have the Fourier integrals left, which
we can perform with the saddle-point method for a
Gaussian weak field. The exponential contribution from
the Fourier transform depends on the w; variables sepa-
rately, while the exponent in (B6) only depends on their
sum via £ =Y ;/(2m ). One option is to free the X
variable so that we can use it as an integration variable,
which can be achieved by inserting the following into the
integrand:

(B7)

da a( s ,-)
lz/dZ/—e z my l—lm .
2

It is now simple to perform the ®; integrals with the saddle-
point method, which gives a Gaussian A integral. Instead
of introducing the A integral one can change variable
e.g., from ®; to £ and then perform the remaining w;
integrals with the saddle-point method. The exponent is
now given by

2

m2
e o lnE +2iPEtarccos 2-2V1-57]
’

m

(B8)

where v, = E/(nw?). We also perform the final integral
with the saddle-point method. The saddle point for X is
given by (51). The final exponent for the momentum
spectrum is given by

m m

2 2
Lz __Lf;
e Ehe T [iPX,+arccos 3, . (B9)

where X, is given by (51). It is now straightforward to
obtain the prefactor. We just multiply together the con-
tributions from the 7 integrals and the Gaussian integrals
around the saddle points for the s and w; integrals, and
substitute |7; —7,[ =0, s = 5 4 arccos X, w; = 2mX, /n,
and X, from (51) into the rest of the prefactor. Forn = 2 we
find (43) and (52). For n = 3 we find

am2

&p 7
2Imr3(a),a)j > O) = V3/W€_ 2 4Re

y [ﬁr 27V3zE 9 —8%2

w | 128m3 8, /l—l—v%—i—%

"12
x e~ 7 1iPEstarccos X3] (B 1 O)

From this we can immediately extract the third order
amplitude 25 using (B1) and (30), and the result is the
same as the one we obtained in (62) with the propagator
approach.

APPENDIX C: HIGHER ORDERS FOR A
GAUSSIAN PULSE

After we have performed the Fourier integrals, the
exponent in the amplitude is given by (B9)
2[’1 ~ e—é[iPZ,,ﬂaIccos Z,,]‘ (Cl)
Now we can integrate 20,2, over the momentum with the
saddle-point method. The saddle point for the longitudinal
momentum, P,,,, is determined by X,(P,,,) = Z,,(=P )
which leads to a purely imaginary (or zero for m = n)
solution given by

Up = VUp

P,,=1 . (C2)
VA + v+ )
Substituting (C2) into (51) gives
27 -1
(o) = [1 + <%) ] . (C3)

The perpendicular momentum integrals are dominated by
p, = 0. Substituting these saddle points into the exponent
we finally obtain

+ v,

2
/ d*pA;, A, ~ exp {— Farctan Yn 3

b

Consider the Nth order of the probability Pp. The
amplitudes that contribute to this have m = N —n and
hence

P XN: ex —%arctanL
VLS T ET (v

—n)
This is exactly the same as the exponents we found in [8]
using a very different approach; see Egs. (5.10) and (5.11)
in [8]. In [8] we obtained this exponential from the
worldline representation of the effective action or the
master formulas for N-photon scattering in [31]. Those
approaches give directly the total/integrated probability
with no reference to the amplitude or any momentum
integrals. By rederiving this exponential with the current
approach, we learn that the different saddle points we found
in [8], which are characterized by 7 in (C5), correspond to
the products of the different amplitude orders, 2y _, 2.
that contribute to the probability Py at a given order. For
even N we see that the largest contribution comes from
n=N/2, and for odd N the largest contribution comes
from n = (N +1)/2, i.e., [cf. Eq. (3.7) in [8]]

}. (C5)

2 2v
N . Py~ A 2 — tan— o,
even N~ |y ja|” ~exp { retan N}
N odd: Py~ ZRGQIE‘N_I)/ZQ[(NHVZ

2 2N
~ exp {—Earctan Nz——l/l} (Co)
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As we go to higher orders, £V in the prefactor decreases
while the exponential increases, which leads in general to
the existence of a dominant order [8].

APPENDIX D: WICK CONTRACTIONS IN THE
WORLDLINE FORMALISM

To obtain the prefactor for the doubly assisted case,
we have used different methods. In one of them the spin
factor is expressed in terms of a Grassmann path integral

|

1
(5. ) = g7 (31l =1 = (= 7 -

and the prefactor is obtained from Wick contractions.
There are well-known techniques (see e.g., [29]) for
calculating such Wick contractions in arbitrary constant
fields. We collect here the results we need in our case.
The basic ingredients are the worldline Green’s func-
tions, Gy and G, for the x and y path integrals, respec-

tively. Let g, = 8080 — 8353, g = —615) — 6262, and
F,, =085 —55). The bosonic Green’s function is
given by

+ =i (cos[s(1 =2z =7])] 1
g”DZE sin s s

+F,

2F sin s

. e(r—17) <sin[s(1 — 2|t —7|)]

e —2|r—r/|>), (1)

where s = iET/2. We have G5, (z,7') = G5, (7. 7), G5, (1.7) = G5,(0,7'), and (%— FO,)Gp(r,7) = 8(z —7') — 1 (the
identity matrix is the Minkowski one, 1,, — g,,). The fermionic Green’s function is given by

- e(r—17)

| €(r—7")cos[s(l = 2|t —7')] LB

i sinfs(1 —2|T—T/|>]’ (D2)

e T

which satisfies G,

COS § i) COS §

1 (7.7) = -GL(7. 1), G'(1.7)=-G"(0,7), and (9, —TF)G"(z,7) = 6(r —7'). These Green’s

functions are the Minkowski versions of the Euclidean ones in e.g., [29,31].

We have integrals in the form

1 1)‘62
Dx x(z, )exp ] —i — + Etz+ jx 7,
/ ,1:[1%' (75,) p{ A 7 j }

(D3)

where 1 < b;, I <N, n* is the polarization vector of either the high-energy photon (e, €’) or the weak field [a(w;)], and

N
Ju = k(T =Ty 1) = kS(T =Ty y0) + ) Zwkfs(f — ) = Z Ky u0(t — 7).
P =

N+2 (D4)

We begin by integrating over the center of mass, x*(t) — xtm + x*(t) where fol x = 0, which gives delta functions. Next we
exponentiate each #x factor and then perform the resulting Gaussian integrals as described in Secs. II and II B. We thus find

N

(D3) = (27)38% (k — K')276 (Z Wy

k=1

where (cf. [31])

N
/JQBJ = Y KilGs(zi — 7)) = G(0)]K; = 20K, Gy (vic — 71)m; + meGp (v — )i,
=

i 1 s
li —— [ Jg - _°
)mnexp{ 2/ BJ} (2ri )zsi S’

(D5)

(D6)

and lin, selects the terms that are linear in all the #,, that appear in the prefactor of (D3) (the other #’s in this sum are zero).

For the Grassmann path integral we find

DI// R 'l . . . 1 £ v
[T T vwtes s {= [ o) - E1wswo } =tinc exp{3 3 eyt —13,) feoss. (07

rr/=1
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where v, is either k, k, €, a(w;), etc., f, is an integer, 1 < f, < N, and where &, , = v, ,&, are Grassmann valued and lin;
selects the terms that are proportional to £;&, - - - & (the order is important since they are anticommuting). The contractions
come in pairs with two equal 7’s (e.g., 7, = 74, = 7))

Thus, the Wick contractions we need can be obtained from

<H'7’z§ X, (T, ﬁ”l;wﬂ Ty, >

N .
. . i .
—tincexp{ S (=KIG (5 w0t - k0o = ) + 1Y et (=)o) O8)
k=1 rr’l

where 7 and ¢/, etc., are the same as above.

1. Prefactor for double assistance

Here we will consider the prefactor for double assistance to second order in the weak field. Our starting point is

dar t dw; d 1 -1
Mfg, = 2€2A ;;?Ts /2(0”12(022715 wy + a)z)/ d11d12d73d74<2 lax + Txkyay],, . lax — Txyayl,, .

x [ex + Thyey], [€'% - Tk’we’w],4> exp —l( 2 Z Ki[Gp(ty — 1) — QB(O)]K,> , (D9)

where K| = «, K, = —x, K3 = k, K, = —k/, and K, = wlég. The factor of —1/2 comes from expanding the exponential in
(99) to second order in the weak field. The Wick contractions in (---) are obtained from (D8), and the integrals are
performed with the saddle-point method or generalizations thereof, as explained above. We find for high-energy photons
with parallel and perpendicular polarization

, /da)l a(@n)? (4VI-F 8(1-2) + o}
I+ ="Q 2r 22 Q? 4mJ_m

2m?
X exp{—%(arccosZ—Z\/ 1 —22)},

2 /17 52\

} {arccos > <arccos > — p;lZ) }
m] X

(D10)

where £ = (Q + w;)/(2my), m; = /1 + p}, and p; = Q/2. This prefactor can also be obtained using Feynman’s path-
ordered representation of the spin factor. A third option is to use the WKB approach, i.e., by basically just replacing one ¢ in
(47) with ¢e~**, and then following the same steps as before. It turns out that for this process the WKB approach actually
allows us to obtain the prefactor with less effort than the worldline approach, because it is easier to calculate the prefactor

using an explicit Dirac matrix representation than to calculate Grassmann Wick contractions.
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