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The Lorentz-Abraham-Dirac (LAD) equations may be the most commonly accepted equation
describing the motion of a classical charged particle in its electromagnetic field. However, it is well
known that they bear several problems. In particular, almost all solutions are dynamically unstable, and
therefore, highly questionable. As shown by Spohn et al., stable solutions to LAD equations can be
approximated by means of singular perturbation theory in a certain regime and lead to the Landau-
Lifshitz equation. However, for two charges there are also counterexamples, in which all solutions to
LAD equations are unstable. The question remains whether better equations of motion than LAD
equations can be found to describe the dynamics of charges in the electromagnetic fields. We present an
approach to derive such equations of motions, taking as input the Maxwell equations and a particular
charge model only, similar to the model suggested by Dirac in his original derivation of LAD equations in
1938. We present a candidate for new equations of motion for the case of a single charge. Our approach is
motivated by the observation that Dirac’s derivation relies on an unjustified application of Stokes’s
theorem and an equally unjustified Taylor expansion of terms in his evolution equations. For this purpose,
Dirac’s calculation is repeated using an extended charge model that does allow for the application of
Stokes’s theorem and enables us to find an explicit equation of motion by adapting Parrott’s derivation,
thus avoiding a Taylor expansion. The result are second-order differential delay equations, which describe
the radiation reaction force for the charge model at hand. Their informal Taylor expansion in the radius of
the charge model used in the paper reveals again the famous triple dot term of LAD equations but
provokes the mentioned dynamical instability by a mechanism we discuss and, as the derived equations
of motion are explicit, is unnecessary.
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I. THE LORENTZ-ABRAHAM-DIRAC EQUATION

Finding an equation of motion for a classical charged
particle in its classical radiation field is a very old problem;
see the exhaustive references in [1–4]. Since point particles
lead to divergences within classical electrodynamics, differ-
ent remedies have been explored. One approach is to
modify Maxwell’s equations as has been done by Born
and Infeld [5] or Podolsky and Schwed [6], both of which
recently regained attention, see e.g., [7]. Another approach
is to introduce an extended charge model as has been
done by Abraham [8], Lorentz [9], and many others [10].
Besides their tension with regard to Lorentz invariance,
very early it was realized that such models introduce an
electrodynamic inertial mass for which Dirac proposed his
famous mass renormalization program to investigate the
corresponding point-charge limit [11]; see [12] for a recent
approach in controlling such a point-charge limit. An entirely

different approach was taken byWheeler and Feynman [13],
who were able to derive an radiation reaction equation from
an action-at-a-distance principle at the cost of introducing
advanced and retarded delays in the equations of motion.
Besides the problem of self-interaction, it is interesting to
note that in the case of more than one interacting point
charge there are further difficulties connected to the emer-
gence of singular fronts in the solutions to the Maxwell
equations [14].
Although all these approaches are quite different, the

Lorentz-Abraham-Dirac (LAD) equations of motion almost
always appear as a limiting case. Hence, whatever the
fundamental equations of motion for a classical charged
particle in its radiation field are, the general consensus
would likely be that a connection to the LAD equations
should be possible in a certain limit. At this point it is
interesting to note, as pointed out in [3], that there is no
experiment that could measure the radiative corrections to
the corresponding charge trajectories introduced by any of
the candidates of radiation reaction equations with suffi-
cient precision even though, in a large regime, the phe-
nomenon of radiation reaction is a purely classical effect.
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However, recently radiation reaction has attracted new
attention [15–17], which gives hope that accurate exper-
imental data will be provided in the future. The LAD
equations are given by

maα ¼ qFαβðzÞuβ þ
2q2

3

�
da
dτ

α
þ aβaβuα

�
; ð1Þ

where zαðτÞ, uαðτÞ, and aαðτÞ denote the relativistic
position, velocity, and acceleration four-vectors of the
charge under examination, respectively, with τ being the
world-line parameter, e.g., the proper time. Moreover, m
denotes its effective inertial mass, q its charge, and Fαβ the
field-strength tensor of the electromagnetic fields of all
other particles that may also include an additional external
field. Throughout the paper we set the speed of light to
c ¼ 1. Hence, the first expression on the right-hand side of
Eq. (1) is the Lorentz force due to all other charges and the
external field. The second expression on the right-hand side
describes the so-called self-interaction, i.e., the interaction
of the charge under consideration with its own radiation
field. Since this term involves a third derivative of the world
line zαðτÞ one also refers to it as the radiation friction term.
There is no straightforward way to arrive at expression (1).
In Dirac’s paper [11] it is the zero-order term of the total
self-force, i.e., the Lorentz force on the charge through its
own Maxwell field, expanded in a Taylor series about the
radius ϵ of the charge distribution. In Dirac computation,
there is also a term of order ϵ−1. This term is proportional to
the acceleration. It is usually brought to the left side of
Eq. (1) and absorbed in the mass coefficient such that

mren ¼ mþ q2

2ϵ
; ð2Þ

wherem is the bare inertial mass of the charged particle and
mren the renormalized one. The usual argument in the
textbooks is that the bare inertial mass and the inertial mass
originating from the field energy cannot be separated by
any experiment and only their sum can be observed. While
this is surely a sensible argument, it has to be emphasized
that for ϵ smaller than the classical electron radius
e2=ð4πϵ0mec2Þ the argument implies that the bare mass
m has to be negative in order to ensure that the electron
attains the inertial mass known from experiments. It has
been emphasized that this implication even holds true for
any extended charge model and is not just an artifact of the
limit ϵ → 0.
Although this renormalization procedure has been the

reason for some concern it seems to be unavoidable if one is
not willing to modify Maxwell equations or the Lorentz
force and still wants to describe a relativistic particle as
light and small as the electron seems to be. It is also
important to note that there is no easy way out, e.g., by

claiming that on such scales quantum electrodynamics
(QED) would have to be invoked to describe the pheno-
menon of radiation reaction. First, QED has been plagued
by exactly the same problem of infinities through
self-interaction—there called the ultraviolet divergence
of the photon field, which has prevented the formulation
of a mathematically well-defined Schrödinger-type equa-
tion for the dynamics ever since. And second, in a large
regime the quantum corrections do not seem to play an
important role. For ultrastrong electromagnetic back-
grounds, however, observable signatures of the nonlinear
quantum vacuum as well as a subtle interesting interplay
with radiation reaction are to be expected [18]. Due to
recent progress in technology (CALA, ELI) the correct
formulation of both the classical and quantum dynamics of
radiation reaction has regained high priority.
All higher-order terms in ϵ in Dirac’s computation

depend on assumptions about the geometry of the current
distribution and usually are neglected by taking the limit
ϵ → 0. By all means, it is justified to worry if taking the
limit ϵ → 0 leads to a well-behaved equation of motion.
Foremost, this limit is taken at a fixed instant in time only.
However, to control the difference of potential solutions for
varying ϵ, bounds at least uniform on a time interval are
required. Dirac himself pointed out that even for the case of
a single particle in the absence of external fields there is but
one physical sensible LAD solution, namely the straight
line, while all other solutions describe charges that accel-
erate increasingly in time.
An example of how neglecting higher-order terms in a

Taylor series can lead to unstable solutions is given in
Sec. I C. One example of such a solution of Eq. (1) is

uαðτÞ ¼

0
BBBBB@

coshðe 3m
2q2

τÞ
0

0

sinhðe 3m
2q2

τÞ

1
CCCCCA; ð3Þ

which are obviously highly questionable. They are referred
to as runaway solutions. Believing in the physical relevance
of the LAD equations implies finding a way to rule out
runaway solutions. Since the LAD equations are third-order
equations, the initial value problem admits points from a
nine-dimensional manifold, i.e., position, momentum, and
acceleration three-vectors at one time instant. One approach
is using singular perturbation theory in the leading part of
the second term of Eq. (1) in the approximation of slowly
varying external fields, which results in the Landau-
Lifschitz (LL) equation; see [3] for an extensive overview.
In the perturbative regime and for the case of a single
charge it can be shown that all stable solutions of the LAD
equations have initial values on a six-dimensional sub-
manifold, i.e., comprising position and momentum three-
vectors at an instant of time only from which the “correct”
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initial acceleration can in principle be computed. The stable
solutions of the LAD equations are then approximated by
the solutions of the LL equations; see [19] for an exact
solution. The LL equations are therefore dynamically well
behaved and also useful for practical calculations in their
range of validity. Strictly speaking, however, they are in
character more an approximation rather than fundamental
equations. The strategy to simply select the correct initial
acceleration fails in more complicated systems. This is
shown by Eliezer [20] by giving a counterexample. Eliezer
considers two oppositely charged particles moving towards
each other in a symmetric fashion and proves that for all
initial accelerations, the particles turn around at some point
before they collide and fly apart with ever increasing
acceleration. His result implies that there exist cases in
which the LAD equations do not seem to give a satisfactory
answer. The example by Eliezer is elaborately discussed by
Parrott in [21]. At the very least for those cases, new
equations of motion are needed, but also in general, having
access only to stable approximate solutions does not seem
to be entirely satisfactory.
This present unsatisfactory situation is the main moti-

vation for our work. We will reconsider Dirac’s and Parrot’s
derivations of radiation reaction equations and by adapting
and extending them propose new exact equations of
motion, i.e., without making use of a Taylor expansion.

A. Dirac’s original derivation

To obtain “better” equations of motion, as compared to
LAD equations, it is important to understand the short-
comings in their derivation. Dirac makes use of a point
particle as the model of a charged particle. His approach has
the advantage that he does not need to be concerned about
the inner structure of the particle. The disadvantage,
however, is that the Lorentz force cannot be used right
away because the fields are singular in the vicinity of the
point charge. Instead of using the Lorentz force to infer the
equation of motion, Dirac uses the concept of energy-
momentum conservation as a starting point since the
change in momentum of the charge can be expressed by
means of energy-momentum tensor

4πTαβ ¼ FαγFβ
γ þ 1

4
ηαβFγδFγδ: ð4Þ

In (4) the quantity ηαβ is the metric tensor having the
signature η ¼ diagð1;−1;−1;−1Þ. Now let Vðτ1; τ2Þ be a
smooth space-time region, which encompasses an interval
of the world line of the charge given by zα with the entry
and exit space-time points zαðτ1Þ and zαðτ2Þ, respectively.
Dirac implicitly argues in the spirit of Stokes’s theorem that
the volume integral over Vðτ1; τ2Þ of the divergence of Tαβ

equals the surface integral over the boundary ∂Vðτ1; τ2Þ of
the energy-momentum flow out of the volume. Thus, we
obtain

Pαðτ2Þ−Pαðτ1Þ¼
Z

τ2

τ1

dτFαðzðτÞÞ

¼
Z

τ2

τ1

dτqFαβðxÞuβðτÞ

¼
Z
Vðτ1;τ2Þ

d4x
Z
dτqFαβðxÞuβðτÞδ4ðzβðτÞ−xβÞ

¼
Z
Vðτ1;τ2Þ

d4xFαβðxÞjβðxÞ

¼−
Z
Vðτ1;τ2Þ

d4x∂βTαβðxÞ

¼−
Z
∂Vðτ1;τ2Þ

d3xβTαβðxÞ; ð5Þ

where the difference Pαðτ2Þ − Pαðτ1Þ in (5) is the total
change of momentum of the point charge along the world
line zαðτÞ. The surface measure times the normal four-
vector nβðxÞ on the boundary ∂Vðτ1; τ2Þ is denoted by
d3xβ. In (5) use has been made of the definition of the
current density of a point particle

jαðxÞ ¼ q
Z

dτuαðτÞδ4ðzβðτÞ − xβÞ: ð6Þ

Unfortunately, Stokes’s theorem is not applicable in the
context of the assumptions made by Dirac as the fields Fαβ

that enter Tαβ are not smooth but singular on Vðτ1; τ2Þ due
to the point-charge model. As a matter of fact, neither the
left- nor the right-hand side of Eq. (5) is well defined. In the
expressions on the right-hand side, however, the field
divergences appear only at the points where the particle
enters and leaves the integration volume Vðτ1; τ2Þ. In order
to treat the integrations there Dirac introduced a cutoff to
remove the divergent contributions. The definition and
physical meaning of a cutoff is discussed in Sec. I B. Dirac
argues that the shape of the integration volume does not
influence the final result since the divergence of the energy-
momentum tensor vanishes at points with no charge
present. Hence, only the amount of the charge inside the
volume matters and not its shape. However, we will see that
this is not true for the point-charge model assumed by Dirac
and that the shape of the volume actually matters at the
points where the world-line penetrates the surface of the
volume. Next, Dirac picks as the volume Vðτ1; τ2Þ a four-
dimensional tube consisting of the union of spheres with
radii of the size of the cutoff parameter ϵ in each rest frame
between the two fixed entry and exit space-time points at
zαðτ1Þ and zαðτ2Þ. Dirac's tube is discussed and visualized
in Sec. II. C. Dirac divides the surface integration into two
parts, an integration over the lateral surface of his tube
and an integration over the caps. While Dirac presents an
explicit calculation of the contribution of the lateral surface
to the energy-momentum tensor, he is not performing the
cap integrations, which would diverge for the point particle.
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Instead, he guesses that the cap integrals are equivalent to
the kinetic term maα. Dirac’s guess in fact implies a cutoff
in the fields since the contribution of the cap integrals to
the energy-momentum tensor is assumed to be zero. The
remaining integral over the lateral surface of the tube is
always close to the world line. For the evaluation of the
fields at the lateral surface of the tube Dirac needs the
retarded proper time. An explicit expression of the latter,
however, is generally not available. Hence, Dirac introduces
a Taylor series in the cutoff parameter ϵ and assumes that all
higher-order terms of the latter only give negligible con-
tributions to the dynamics provided the cutoff parameter is
small enough.Dirac’s assumption, however, is unjustified as
we will discuss later by means of a counterexample. By
differentiation of Eq. (5) with respect to τ2 Dirac obtains an
expression for the Lorentz force at time τ2. To calculate the
surface integrals implied in Eq. (5), Dirac determines the
corresponding Liénard-Wiechert potentials and calculates
the field-strength tensor. Finally, he computes the energy-
momentum tensor and carries out the integrations as dis-
cussed. After all these steps and absorbing terms of the order
ϵ−1 into the bare inertial mass according to Eq. (2), he arrives
at Eq. (1).
These issues and how to circumvent them will be the

content of the next sections. The outline of the paper is as
follows. In Sec. I B it is discussed that the assumption of a
cutoff and the requirement of consistency with the Maxwell
equations imply an extended charge model. In Sec. I C it is
shown that the Taylor series mentioned before cannot be
used. In Sec. I D the approach pursued by Parrott is
discussed, which allows us to avoid the Taylor series. In
the same section a constraint that seems to be missing in
Parrott’s calculation on the tube geometry is also discussed,
which arises from the fact that the total self-force on the
particle is given by integration over the Lorentz force
density acting on the extended particle. This leads to the
conclusion that the caps of the tube have to be hyperplanes
of simultaneity in the comoving reference frame of the
charge. In Sec. II an expression for the radiation reaction
force is derived, which is the first main result of this paper.
In Sec. III new equations of motion and a discussion of the
resulting radiation reaction force are given, which repre-
sents the second main result of this work.

B. Interpretation of the cutoff

There is no obvious reason why the cap integrals of the
energy-momentum tensor appearing in Eq. (5) at τ1 and τ2
with radius ϵ can be neglected. Nomatter how small ϵ is, the
corresponding integrals give infinite contributions, which in
view of Stokes’s theorem also depend on the geometry of the
corresponding cutoff (for ϵ → 0 also on the mode of
convergence) and therefore cannot be ignored. In Dirac’s
derivation the cap contributions are dropped, nevertheless.
However, it is possible to give a reasonable interpretation of
Dirac’s cutoff even without taking the limit.We note that the

cap integrations at τ1 and τ2 correspond to integrations over
spheres at τ1 and τ2. Obviously, the integrals over a sphere
with radius ϵ can be ignored if and only if the value of the
sum of the integrands for the spheres at τ1 and τ2 is zero.
This is not the case for a point particle but it is certainly the
case for a specific class of charge current distributions. The
simplest example of such a distribution is one which has
no fields inside of such a sphere. Thus, dropping the cap
integrals in Eq. (5) implies that the original field-strength
tensor of a point charge is replaced by a field-strength tensor
which is zero inside a cutoff region and identical to the field-
strength tensor of the point particle outside of it. The
corresponding distribution can be calculated with the help
of Maxwell’s equations

∂αF
αβ
ϵ ¼ 4πjβϵ ; ð7Þ

where jβϵ is the new distribution due to the cutoff ϵ. Stokes’s
theorem shows that this distribution is located on the surface
of the sphere. But it is not necessarily homogeneous and,
hence, does not imply that the introduction of such a cutoff is
anything else than replacing the original point charge by an
extended current distribution on a sphere and that taking the
limit ϵ → 0 means shrinking the radius of the distribution
down to zero. In contrast, the general situation ismore subtle
as even the limit ϵ → 0 involves a choice, i.e., the mode of
convergence of the particularly chosen current model to the
point-charge limit.
Throughout this work we will, however, keep ϵ > 0.

Since the field-strength tensor of such a current distribution
is free of divergences, Stokes’s theorem can be applied in
the argument in Eq. (5).

C. Taylor expanding in the cutoff

From the discussion in Sec. I B we conclude that an
extended current distribution has to be considered. We
assume that the current distribution is spherical with the
cutoff radius ϵ > 0. This choice implies that the radiation
reaction force will then involve a delay due to the finite
speed of light of the field propagating through the extended
particle. This delay is a shared feature of all extended
charge models as can be seen in [22,10], or [23].
It is shown in this paper that the radiation reaction force

indeed leads to second-order delay-differential equations
and that the third-order derivative daα=dτ in Eq. (1)
originates from a Taylor expansion in ϵ of the delayed
radiation reaction force. Dropping all higher-order terms in
ϵ to obtain Eq. (1) can lead to a severe change in the
corresponding space of solutions as can be demonstrated by
the following simple example:

zðtÞ ¼ zðt − ϵÞ: ð8Þ

The solutions to Eq. (8) are obviously periodic func-
tions with period length ϵ. Taylor expanding informally
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the right-hand side of Eq. (8) up to second order and
truncating the rest gives

zðtÞ ¼ zðtÞ − ϵ_zðtÞ þ ϵ2

2
̈zðtÞ: ð9Þ

One solution of this equation is

zðtÞ ¼ e
2t
ϵ : ð10Þ

This is clearly no solution to the original equation (8).
It exhibits a behavior much like the unstable solutions of
the LAD equation, the so-called runaway solutions. The
reason why a Taylor expansion of Eq. (8) in ϵ fails can be
explained as follows. Although the right-hand sides of the
two equations (8) and (9) for comparable initial conditions
and at a fixed instant in time differ only by a term of the
order of ϵ3 the implication is not that also the two respective
solutions remain close to each other for other times. For the
latter one needs a uniform estimate of the difference of the
respective right-hand sides of Eqs. (8) and (9) on at least a
time interval, e.g., in the spirit of Grönwall’s lemma.
For our simple example we can readily compute the

contribution coming from the neglected higher-order terms.
They are

X∞
n¼3

ð−ϵÞn
n!

zðnÞðtÞ ¼ ðe−2 − 1ÞzðtÞ: ð11Þ

Thus, the smallness of higher-order terms does not directly
depend on ϵ but on the norm of the corresponding solution
zðtÞ. The latter will in general depend on ϵ but in a much
more subtle way. Controlling it in ϵ therefore requires a
careful mathematical analysis. It is not sufficient to simply
control the right-hand side of Eq. (8) at one instant in time.
The emergence of runaway solutions such as Eq. (10) after
a Taylor expansion neglecting higher orders in our simple
example shows that higher-order terms in ϵ cannot be
ignored in general.
The conclusion is that we have to repeat Dirac’s

calculation taking the terms to all orders into account.
This appears not to be feasible for the tube Dirac has
chosen. However, the calculation can be carried out as
outlined by Parrott [21] for a tube suggested by Bhabha.
In Sec. I D the result of Parrott’s calculation and the need
for modifications of the tube at the caps used in our paper
are discussed.

D. Meaningful caps

In his book Parrott [21] repeats Dirac’s calculation
without the Taylor expansion that Dirac uses. We argue
shortly why Parrott’s calculation still has to be modified in
order to lead to a meaningful candidate for an equation of
motion with radiation damping.

Parrott evaluates the time integral over the force in
Eq. (5), which equals the time integral over the Larmor
formula

Z
τ2

τ1

dτFαðzðτÞÞ ¼
Z

τ2

τ1

dτð2q2=3ÞðaβaβuαÞðτÞ: ð12Þ

Parrott does not carry out the time derivative of the
expression

R
τ2
τ1
dτFαðzðτÞÞ in Eq. (12), which cannot be

computed for the tube used by Parrott. A valid force, as we
argue, is however only obtained by performing the time
derivative of

R
τ2
τ1
dτFαðzðτÞÞ. As a consequence, Parrott’s

result may not be interpreted easily as a force, which also
manifests itself in the fact that the Larmor term is in general
not orthogonal to the four-velocity. Instead, Parrott argues
that the times τ1 and τ2 are somehow special. He requires
that the accelerations at τ1 and τ2 are zero. According to
him, this is a necessary condition if the result of the
calculation must not depend on the form of the caps. As a
consequence, the time derivative in Parrott’s case is only
possible for time regions with zero acceleration, but for
zero acceleration there is no radiation reaction force. Since
for aαðτ1Þ ¼ 0 and aαðτ2Þ ¼ 0 one finds that

Z
τ2

τ1

dτ
2q2

3

d
dτ

aαðτÞ ¼ 0 ð13Þ

holds, Dirac’s and Parrott’s results agree when integrating
Dirac’s force over time with the acceleration conditions
above. Also Dirac’s result for the radiation reaction force
depends on the choice of the caps since Stokes’s theorem
cannot be applied the way Dirac argues, as we have
outlined in Sec. I A.
The problem with Stokes’s theorem can be illustrated

nicely with the help of an analogy. Let us consider the
example of a point charge resting at the origin of the co-
ordinate system for which the fields are only the Coulomb
fields. An integration of the flow of the electric field over
the entire sphere around the origin gives 4πq, where q is
the charge at the origin. On the other hand, an integration
over a sector of the sphere gives Ωq, where Ω is the solid
angle of the spherical sector. The lateral walls of the
spherical sector do not contribute since their normal vector
is orthogonal to the electric field. According to Stokes’s
theorem, as used in Dirac’s derivation, it is expected that
volumes containing the same amount of charge yield the
same surface integrals of the flow of the fields. Apparently,
for a point charge on the surface the application of Stokes’s
theorem does not yield unique results, in contrast to what is
expected. To proceed with the analogy we cut off the field
the way Dirac does and as we have outlined in Sec. I B.
According to Eq. (7) this implies that the point charge in its
rest frame is replaced by a homogeneously charged hollow
sphere with radius ϵ. On its outside the hollow charge
distribution generates the same fields as a point charge
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while there are no fields inside of it. For the hollow charge
the integral over the entire sphere yields the total charge
4πq and the integral over a spherical sector the fraction Ωq
as before. In contrast to the situation of a point charge the
integration volumes now contain different amounts of
charge in agreement with Stokes’s theorem as illustrated
in Fig. 1. Apparently, the theorem of Stokes can be applied
after the introduction of the cutoff. The implication is that
the amount of charge contained in the tubes depends on the
choice of the caps as is illustrated with the help of Fig. 2.
Now we try to determine which amount of charge the

tube should contain. Since we are dealing with an extended
current distribution, Eq. (5) describes an integral over a
force density which should be equal to the momentum
difference Pαðτ2Þ − Pαðτ1Þ, where PαðτÞ is the total

momentum of the extended particle. Performing the
derivative of the force integral in Eq. (5) with respect to
τ2 leads to

dPαðτÞ
dτ

¼ FαðτÞ: ð14Þ

To obtain the correct total force Fα and total momentum Pα

in Eq. (14) from the force and momentum densities in
Eq. (5) the correct integration regions have to be used. To
obtain them and hence the correct tube geometry, we
consider the nonrelativistic limit

P⃗ðtÞ ¼
Z
V
d3rp⃗ðt; r⃗Þ; ð15Þ

where p⃗ðt; r⃗Þ is the momentum density. The naive relativ-
istic generalization

PαðτÞ ¼
Z

dx1 ∧ dx2 ∧ dx3pαðxβÞ ð16Þ

is not a Lorentz vector since the integration region, given by
the three form dx1 ∧ dx2 ∧ dx3, is not a Lorentz scalar.
The reason for this is that equal time surfaces get tilted
under Lorentz transformations. To find a relativistic gen-
eralization an expression for the integration region is
needed which is a Lorentz scalar and reduces to
Eq. (16) in the comoving coordinate frame in the non-
relativistic limit. We consider the normal vector of the
integration region in Eq. (16). Formally it can be obtained
with the help of the Hodge dual and has the simple form
(1, 0, 0, 0) corresponding to dt. Since uαdxα is a Lorentz
scalar, which reduces to dt in the comoving coordinate
frame, a good candidate for the integration region is given
by the Hodge dual of −uαdxα. This implies that the
integration in Eq. (5) should be performed over hyper-
planes of simultaneity in the rest frame.
The time derivative in Eq. (14) can be interpreted as the

limit τ1 → τ2. Since in this limit the tube is only allowed
to contain charge located on a hyperplane of simultaneity
in the rest frame at time τ2, the caps also have to be
hyperplanes of simultaneity in their own rest frames, as can
be seen in Fig. 3. By this line of reasoning we conclude that
Dirac’s choice of the caps is the right one and Parrott’s extra
condition aαðτiÞ ¼ 0 is not needed for Dirac’s and our caps.
In Sec. II we explain how to construct a tube in such a

way that both Parrott’s approach and Dirac’s caps can be
used to give a consistent derivation of a meaningful force.
It is worth mentioning that the results in the next sections
hold for any finite value of ϵ and that the limit ϵ → 0 is
never required for explicit calculations.

FIG. 1. (Left panel) The flow of the Coulomb field of a resting
point charge through a sphere and a spherical sector, respectively.
(Right panel) The same situation for a charge corresponding to
Coulomb fields with a cutoff at radius ϵ, which implies a charge
model of a hollow sphere of radius ϵ in the rest frame.

FIG. 2. Due to the cutoff, the charge is distributed around the
world line given by the blue solid line. The distributed charge is
represented by the dashed lines. Even though the red and blue
tubes start and end at the same points of the world line they
contain different amounts of charge, as is highlighted by the
circles. Note that the time axis is vertical and the space axis
horizontal. Also note that for any given definition of the caps due
to the theorem of Stokes the tube radius is irrelevant as long as it
is at least equal to or larger than ϵ. In the paper we set the latter
equal to ϵ contrary to the sketch in the figure since then the cap
contributions are identical to zero.
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II. THE RADIATION REACTION FORCE

In this section we present the first main result of the
paper, which in part is based on Dirac’s and Parrot’s
work but also goes beyond it by avoiding the issues
discussed in Sec. I A. We provide a new force candidate
for the dynamics describing a charge in its radiation field.
The corresponding equations of motions will be formu-
lated and discussed in the next section, Sec. III. For this
purpose we go back to Dirac’s starting point given in
Eq. (5), namely that the change in momentum of the
charge PϵðτÞ can be inferred from the energy-momentum
flow of its field

∂τPα
ϵ ðτÞ ¼ ∂τ

Z
∂Vðτ1;τÞ

d3xβT
αβ
ϵ ðxÞ: ð17Þ

Contrary to Dirac’s consideration, we read this equation
in terms of our charge model defined by the ϵ-dependent
cutoff tube given in Fig. 7 below. To emphasize this
difference, we add to all entities such as the momentum
and electromagnetic field derived from our charge model
a subscript ϵ, while those derived from the point-charge
model will not carry this subscript.
The first goal is to compute the right-hand side of

Eq. (17). This is carried out in Secs. II A–IV B. The final
result (38) is given below. In order to infer a dynamical
system that couples the world line τ ↦ zαðτÞ to this
computed momentum in a self-consistent way, a relation
between change of momentum and change of velocity _zαðτÞ
has to be established. This final step is carried out in
Sec. III.

A. Light-cone coordinates

To carry out the calculation, the explicit shape of
Vðτ1; τÞ, the expression for TαβðxÞ, and the normal vector

nβðxÞ, encoded in the surface measure d3xβ, are needed.
Instead of the usual Cartesian coordinates xα ¼
ðt; x1; x2; x3Þ it is more convenient to employ the so-called
light-cone coordinates ðτ; r; θ;ϕÞ, which are introduced
now. Given the space-time point xα and a timelike world
line zα of the charge there exists a unique proper time τ,
such that zαðτÞ lies in the backward light cone of xα, i.e., τ
is the unique solution of

ðxα − zαðτÞÞðxα − zαðτÞÞ ¼ 0 ð18Þ

satisfying x0 ≥ z0ðτÞ. The so-called retarded proper time
τ represents the first light-cone coordinate. The forward
light cone of zαðτÞ can be viewed as consisting of
spheres with different radii. The radius r of the sphere
on which xα lies is the second light-cone coordinate.
Since the distances in time and in space of two points on
the light cone for c ¼ 1 are equal, the coordinate r can
be calculated by taking the zero component of the four-
vector xα − zαðτÞ in the rest frame at the retarded proper
time τ. Since the four-velocity of the charge in the rest
frame at the retarded proper time τ equals uαðτÞ ¼
ð1; 0; 0; 0Þ we obtain

r ¼ ðxα − zαðτÞÞuαðτÞ: ð19Þ

To parametrize the points on the sphere in the rest
frame defined by τ and r the spherical angles θ and ϕ
are used, which represent the third and fourth light-cone
coordinates.
The four-vector xα − zα can now be split into spacelike

and timelike components

xα − zαðτÞ ¼ rðuαðτÞ þ wαðτÞÞ; ð20Þ

where the timelike component in Eq. (20) is given by the
four-velocity uα while the spacelike component is given by
the four-vector wα, which is always spacelike, of length 1,
i.e., wαwα ¼ −1, and orthogonal to the four-velocity, i.e.,
wαuα ¼ 0. In the rest frame wαðτÞ takes the form

FIG. 3. The current distribution is represented by the vertical
dashed lines. After taking the limit represented by the arrows only
charge on the hyperplane of simultaneity in the comoving frame
of reference represented by the horizontal dashed line must be
contained inside the tube. This charge is marked by the two
circles for better visibility. Hence, the caps are hyperplanes of
simultaneity in the comoving reference frame as can be seen from
the plot.

FIG. 4. Representation of zα, uα, r, and wα.
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wαðθ;ϕÞ ¼

0
BBB@

0

sin θ cosϕ

sin θ sinϕ

cos θ

1
CCCA: ð21Þ

It is now possible to express xα uniquely as a function
of τ, r, θ, and ϕ. We obtain

xα ¼ zαðτÞ þ rðuαðτÞ þ wαðτ; θ;ϕÞÞ: ð22Þ

These light-cone coordinates are illustrated in Fig. 4.
Next, the new coordinates are used to parametrize the
Liénard-Wiechert potential Aα, the field-strength tensor
Fαβ ¼ ∂αAβ − ∂βAα, and the energy-momentum tensor
4πTαβ ¼ FαγFβ

γ þ 1
4
ηαβFγδFγδ. Furthermore, the paramet-

rizations of the tube Vðτ1; τ2Þ and its normal vector nβðxÞ
are introduced.
From here on we will use the light-cone coordinates

without further notice. For the sake of readability, we will
suppress arguments of functions whenever there is no
ambiguity. It is understood that fields are evaluated at
xα, partial derivatives ∂α are meant with respect to argu-
ment xα, and four-vectors derived from the world line zα of
the charge are evaluated at τ.

B. The energy-momentum tensor

The Liénard-Wiechert potential is given by

Aα ¼ q
uα

r
: ð23Þ

On several occasions, e.g., for the field-strength tensor, the
derivatives

∂αAβ ¼ q

�
aβ∂ατ

r
−
uβ∂αr
r2

�
ð24Þ

need to be calculated. Hence,

∂αr ¼ ∂αððxβ − zβÞuβÞ
¼ uα þ xβaβ∂ατ − uβuβ∂ατ − zβaβ∂ατ ð25Þ

and ∂βτ are needed. The defining relation of the retarded
time ðxα − zαÞðxα − zαÞ ¼ 0 is employed to compute

∂βðxαxα − 2xαzα þ zαzαÞ ¼ 0; ð26Þ

2xβ − 2zβ − 2xαuα∂βτ þ 2zαuα∂βτ ¼ 0; ð27Þ

∂βτ ¼ xβ − zβ

ðxα − zαÞuα
¼ xβ − zβ

r
¼ uβ þ wβ: ð28Þ

For the field-strength tensor the abbreviation aα⊥ ¼ aα þ
aβwβwα is used, which is orthogonal to the vectors uα, wα

implying aα⊥wα ¼ 0 and aα⊥uα ¼ 0. The field-strength
tensor Fαβ ¼ ∂αAβ − ∂βAα is then given by

Fαβ ¼ q
r2
ðwαuβ−uαwβÞþq

r
ððuαþwαÞaβ⊥−aα⊥ðuβþwβÞÞ:

ð29Þ
The first line in Eq. (29) is the boosted Coulomb field
contribution and the second the radiation field contribution.
The associated energy-momentum tensor 4πTαβ ¼
FαγFβ

γ þ 1
4
ηαβFγδFγδ is given by

4πTαβ ¼ q2

r4

�
uαuβ − wαwβ −

1

2
ηαβ

�

þ q2

r3
ðaβ⊥ðuα þ wαÞ þ aα⊥ðuβ þ wβÞÞ

−
q2

r2
aγ⊥a⊥γðuα þ wαÞðuβ þ wβÞ: ð30Þ

The derivation of the expressions (22), (29), (30) and the
coordinates can be found in [21] or [1].

C. Parametrization of the tube V(τ1;τ2) in
light-cone coordinates

As an introduction we first review how Parrott and Dirac
define their tubes. Both use an implicit definition over the
lateral surface of their tubes.
The explicit expressions for those three-dimensional

lateral hypersurfaces is given in terms of the coordinates
τ, θ, and ϕ, while τ1 ≤ τ ≤ τ2. Setting r ¼ ϵ the lateral
surface of Parrott’s tube is obtained

tαðτ; θ;ϕÞ ¼ zαðτÞ þ ϵðuαðτÞ þ wαðτ; θ;ϕÞÞ; ð31Þ

which is one of the simplest and at first sight natural
choices first employed by Bhabha. Parrot’s tube is illus-
trated in Fig. 5. The big advantage is that in the limit
τ1 → τ2 the retarded time τ for all points on this surface is

FIG. 5. Parrott’s tube. It is defined by moving the length ϵ along
the light cone in all directions between τ1 and τ2.
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the same. The disadvantage is that an integration over this
area does not lead to a total force, as has been discussed in
Sec. I D. The lateral surface of Dirac’s tube is given by

tαðτ; θ;ϕÞ ¼ zαðτÞ þ ϵwαðτ; θ;ϕÞ: ð32Þ

This tube is illustrated in Fig. 6. One has to be careful with
the meaning of the argument τ here, since the retarded time
corresponding to some point tα is not τ. This is the case
because this representation of the surface does not respect
the usual form of light-cone coordinates (22). The advan-
tage is, however, that the caps are hyperplanes of simul-
taneity in the rest frames as necessary for the integration.
The choice of Vðτ1; τ2Þ used in our derivation originates

from the ones of Dirac and Parrott. We now parametrize
Dirac’s cap at τ1 in such a way that τ still is the retarded
time. An arbitrary point xα lies in the cap if and only if the
vector xα − zαðτ1Þ is orthogonal to the normal vector of the
cap. The normal vector is nothing else than uαðτ1Þ. So we
demand

ðxα − zαðτ1ÞÞuαðτ1Þ ¼ 0: ð33Þ

Next, we use the light-cone coordinates (22) for xα. We
follow Parrott’s approach and treat the radius r not as a
coordinate but as some function of the coordinates τ, θ,
and ϕ. This leads to the equation

ðzα þ rðuα þ wαÞ − zαðτ1ÞÞuαðτ1Þ ¼ 0 ð34Þ

for r. The result is

r ¼ ðzαðτ1Þ − zαÞuαðτ1Þ
ðuα þ wαÞuαðτ1Þ

: ð35Þ

We now have the desired parametrization for the cap

cαðτ; θ;ϕÞ ¼ zα þ ðzαðτ1Þ − zαÞuαðτ1Þ
ðuα þ wαÞuαðτ1Þ

ðuα þ wαÞ; ð36Þ

where τ1 − ϵ ≤ τ ≤ τ1. The next step is to find a tube which
has such caps. The easiest way is to connect two caps by a
smooth transformation. The boundary of the cap at τ1 is
defined by τ ¼ τ1 − ϵ. By shifting τ1 to τ2 the desired
hypersurface is obtained. All that has to be done is to
replace τ1 − ϵ by τ in Eq. (36). With this replacement we
get the equation for the tube surface

tαðτ; θ;ϕÞ ¼ zα þ ðzαðτ þ ϵÞ − zαÞuαðτ þ ϵÞ
ðuα þ wαÞuαðτ þ ϵÞ ðuα þ wαÞ;

ð37Þ

where now τ1 − ϵ ≤ τ ≤ τ2 − ϵ holds. This tube is illus-
trated in Fig. 7. As a word of caution it has to be
mentioned that the definition of the tube surface breaks
down for high accelerations. Hyperplanes of simultaneity
in the rest frame at different times always intersect
somewhere if the velocities are different at those times.
It can happen that this intersection area is closer to the
world line than the radius ϵ if the acceleration is bigger
than 1=ϵ between these times. This is a general phe-
nomenon in special relativity and not specific to our
definitions.
The actual calculation of the energy-momentum flow

through the tube (37) is rather long, so it is given in the
Appendix. The flow is obtained by first evaluating an
explicit expression for the normal vector on the tube (37),
and second integrating the contraction of the energy-
momentum tensor (30) and the normal vector over the
tube surface as in Eq. (5). The next section discusses the
result of this calculation.

D. The new radiation reaction force

The radiation reaction force is given by

FIG. 7. Our tube. It is defined first taking the cut between the
hyperplane of simultaneity in the rest frame at zαðτÞ and the
forward light cone originating from zαðτ − ϵÞ, and second taking
the union of all those cuts between τ1 and τ2.

FIG. 6. Dirac’s tube. It is defined by moving the length ϵ along
the hyperplane of simultaneity in the rest frame in all directions
between τ1 and τ2.
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∂τPα
ϵðτÞ ¼ −

q2

6½ðzγ − zγðτ − ϵÞÞuγ�2
f½uα − 4uαðτ − ϵÞuβuβðτ − ϵÞ�½1 − uδuδðτ − ϵÞ þ ðzρ − zρðτ − ϵÞÞaρ�g

−
q2

6ðzγ − zγðτ − ϵÞÞuγ
f4uαðτ − ϵÞ½aτðτ − ϵÞuτ þ uζðτ − ϵÞaζ� þ 4aαðτ − ϵÞuϑðτ − ϵÞuϑ − aαg

þ 2q2

3
aφðτ − ϵÞaφðτ − ϵÞuαðτ − ϵÞ ð38Þ

≕Lα
ϵ ðτÞ: ð39Þ

To our knowledge, Lα
ϵ ðτÞ is the first explicit expression

for the radiation reaction force for an extended charged
particle in contrast to the approximations in terms of Taylor
series in ϵ which, as we have argued, can be a source
dynamical instability.
Nevertheless, it is interesting to perform a Taylor

expansion nonetheless in order to see if our expression,
at least in lowest orders of ϵ, agrees with the right-hand side
of the LAD equation which as found in various compu-
tations in the classical literature.
To do this, we make use of uαuα ¼ 1, aαuα ¼ 0,

and _aαuα ¼ −aαaα. For the terms starting with the first
fraction in Eq. (38), it is enough to examine the following
bracket:

1 − uδuδðτ − ϵÞ þ ðzρ − zρðτ − ϵÞÞaρ ¼ Oðϵ3Þ: ð40Þ

This fraction does not contribute in the limit ϵ → 0 term
since the nominator is of order Oðϵ2Þ. The first bracket
following the second fraction also does not contribute in
this limit since

4uαðτ − ϵÞ½aτðτ − ϵÞuτ þ uζðτ − ϵÞaζ� ¼ Oðϵ2Þ: ð41Þ

The remaining terms reduce to the well-known LAD force

ð38Þ ¼ −
q2

6

�
4aαðτ − ϵÞuϑðτ − ϵÞuϑ − aα

ðzγ − zγðτ − ϵÞÞuγ
− 4aφðτ − ϵÞaφðτ − ϵÞuαðτ − ϵÞ

�

¼ −
q2

2ϵ
aα þ 2q2

3
ð _aα þ aφaφuαÞ þOðϵÞ; ð42Þ

which requires a mass renormalization procedure to get rid
of the first Oðϵ−1Þ term by absorbing it into the inertial
mass. However, as argued above, this expansion in ϵ is not
helpful for arriving at a sensible dynamics as it is the source
of dynamical instabilities.

III. EFFECTIVE EQUATIONS OF MOTIONS

In this final section we draw from the previously
established result (38), which describes the change of total

momentum of our charge distribution. In order to formulate
a self-consistent dynamics we still need to establish a
relation between this change of momentum and the
corresponding change of velocity of the world line
τ ↦ zαðτÞ. Here, we face the problem that Pα

ϵðτÞ is the
total change of momentum of the charge distribution
defined by our ϵ-depending tube, as given in Fig. 7. In
fact, at this point we would need to compute jαϵ ðxÞ from
Eq. (7) and establish the desired relation in view of Dirac’s
argument (5) by

Lα
ϵ ðτÞ ¼ ∂τPα

ϵ ðτÞ ¼ ∂τ

Z
Vðτ1;τÞ

d4xFαβ
ϵ ðxÞjϵβðxÞ: ð43Þ

Note that for point charges the right-hand side simply
reduces to the well-known Lorentz force exerted by
the electromagnetic field on the charge; see Eq. (5). In
order to avoid this step we make the following model
assumption:

Pα
ϵ ðτÞ ¼ mϵðτÞ_zαðτÞ ð44Þ

for mϵðτÞ being a proportionality factor that for the sake
of generality may depend on τ. At this point the explicit
dependence on τ may appear strange, however, it will turn
out that this additional degree of freedom will be helpful to
arrive at a concept of total inertial mass taking account of
the one that is effectively created by the backreaction of the
electromagnetic field. By contracting the equality

Lα
ϵ ðτÞ ¼ ∂tmϵðτÞ_zαðτÞ þmϵðτÞ̈zαðτÞ ð45Þ

with _zαðτÞ and, exploiting _zαðτÞ_zαðτÞ ¼ 1 and _zαðτÞ×
̈zαðτÞ ¼ 0, we infer

∂tmϵðτÞ ¼ Lα
ϵ ðτÞ_zαðτÞ: ð46Þ

Defining the relativistic force

Fα
ϵ ðτÞ ≔ Lα

ϵ ðτÞ − _zαLβ
ϵðτÞ_zβðτÞ ð47Þ

that is four-orthogonal to _zαðτÞ, we arrive at the dynamical
system
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d
dτ

0
B@

zαϵ ðτÞ
uαϵðτÞ
mϵðτÞ

1
CA ¼

0
B@

uαϵðτÞ
1

mϵðτÞ ðFα
ϵ ½z�ðτÞ þ Fα

extðτÞÞ
uϵαðτÞLα

ϵ ½z�ðτÞ

1
CA; ð48Þ

where for the discussion below we introduced an additional
external force Fα

extðτÞ acting on the charge that is four-
orthogonal to _zαðτÞ. This system couples the world line
τ ↦ zαðτÞ to the change of momentum computed in
Eq. (38) caused by the electromagnetic field that, in turn,
is produced by the charge itself. Here, the argument [z] in
square brackets is to remind us that these terms are
functionals of the world line t ↦ zαðτÞ. In fact, inspecting
the expression (38) reveals that the system (48) effectively
turns out to be a system nonlinear and neutral delay
equations. The delay stems form the fact that the charge
has the extension of our ϵ tube and the speed of light is
finite and is therefore expected. Note that the initial value
of the proportionality factor mð0Þ is an additional degree
of freedom. Based on the general theory of delay equations,
it is to be expected that the initial values of this system
are twice continuously differentiable trajectory strips
zα∶½−ϵ; 0� → R4 together with the value mϵð0Þ ∈ R.
To understand this system of equations (48) better, we

consider the simple case of an external force Fα
ext that is

tuned to force the charge into a uniform acceleration, say,
along the z coordinate for τ ∈ Λ. If it was not for the
expected radiation reaction force we are interested in, this
setting could be thought of a charge in a constant electric
field. Here, however, it is important to keep in mind that the
considered external force also compensates for possible
friction, e.g., due to the radiation reaction, to keep the
acceleration constant. In this case the world line is given by

zαðτÞ ¼ 1

g
ðsinhðgτÞ; 0; 0; coshðgτÞÞ; ð49Þ

where g is the constant acceleration on the interval τ ∈ Λ.
The change in momentum due to the backreaction, com-
puted from (38), has the correspondingly simple form

Lα
ϵ ðτÞ ¼ −

q2g
2 sinhðgϵÞ a

αðτÞ ð50Þ

for τ ∈ Λ. In view of the equation of motion (48) we obtain
_mϵðτÞ ¼ 0, and hence,

�
mϵð0Þ þ

q2g
2 sinhðgϵÞ

�
aαðτÞ ¼ Fα

extðτÞ; ð51Þ

which gives rise to the following total inertial mass when
measured with respect to the external force:

mtot ¼ mϵð0Þ þ
q2g

2 sinhðgϵÞ : ð52Þ

Two properties of Eq. (52) can be observed: First, as in
Eq. (42), the correction to the inertia originating from the
electromagnetic field in leading order as ϵ → 0 equals
q2=2ϵ:

mtot ¼ mϵð0Þ þ
q2

2ϵ
−
q2g2

12
ϵþOðϵ2Þ: ð53Þ

And second, the higher-order corrections in Eq. (53)
explicitly depend on the dynamics itself, in this case on the
acceleration parameter g. To illustrate the dependence on
the dynamics even more clearly, we consider eigentimes
0 < τ1 < τ2 with τ2 − τ1 > 2ϵ and define Λ1 ¼ ½0; τ1Þ,
Λ ¼ ½τ1; τ2Þ, and Λ2 ¼ ½τ2;þ∞Þ. We assume that the
external force Fα

ext is tuned such that the effective accel-
eration in Λ1 ∪ ½τ1; τ1 þ ϵÞ and ½τ2 − ϵÞ ∪ Λ2 is constant
and equal to g1 and g2, respectively, where g1 ≠ g2.
Furthermore, we assume that in the intermediate interval
½τ1 þ ϵ; τ2 − ϵÞ the acceleration of the charge changes
smoothly from g1 to g2, obeying _mϵðτÞ ¼ 0 for τ ∈ Λ.
By virtue of Eq. (48) we observe that

zαi ðτÞ ¼
1

gi
ðsinhðgiτÞ; 0; 0; coshðgiτÞÞ for τ ∈ Λi ð54Þ

solves Eq. (48) for i ¼ 1, 2, which, by Eq. (52), implies that
the corresponding total inertial mass mtot depends on the
eigentime τ, more precisely it holds

mtot ¼ mϵð0Þ þ

8>><
>>:

q2g1
2 sinhðg1ϵÞ

for τ ∈ Λ1

q2g2
2 sinhðg2ϵÞ

for τ ∈ Λ2

: ð55Þ

It is therefore to be expected that the total inertial mass is a
dynamical quantity. The concept of a time-dependent total
inertial mass is not new but is also observed in other
theories treating backreaction, e.g., in Bopp-Podolsky’s
generalized electrodynamics [24]. For our system (48) the
time dependency is foremost due to the time-dependent
shape of our ϵ tube.

IV. CONCLUSION

Whether ϵ is kept finite or a limit ϵ → 0 is considered, in
our approach the inertial mass is an emerging phenomenon
that originates from the backreaction on the charge exerted
by its own electromagnetic field. Thus, a general procedure
is needed to gauge the inertial mass to the one observed in
the experiment. In view of Eq. (53), the renormalization
procedure mϵð0Þ ¼ mexp − q2=2ϵ for mexp being the exper-
imentally measured inertial mass, as also employed by
Dirac, is appropriate as long as the time-dependent terms
are subleading. However, we emphasize again that the
higher-order terms in Eq. (53) may not simply be neglected
in a limiting procedure ϵ → 0 as the Taylor expansion of
solutions zαðτÞ on the right-hand side of the equations of
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motion (48) cannot be controlled uniformly on time
intervals. The neglect of higher-order terms may provoke
the so-called runaway solutions, as illustrated with the
counterexample given in Sec. I C. The virtue of our
approach is therefore that no Taylor expansion has been
employed when formulating the law of motion (48).
Instead, we are left with an explicit expression (38) that
can readily be studied analytically or numerically in various
settings. One imminent question is whether the dynamical
system (48) is stable and does in particular not lead to the
notorious runaway solutions. A thorough analysis of this
question is left for a forthcoming paper.
The only assumptions involved in the derivation of

system (48) were the following:
(1) Energy-momentum conservation between the ki-

netic and the field degrees of freedom as expressed
in differential form in change of momentum as given
by Eq. (43).

(2) The special form of the ϵ tube that allows the explicit
evaluation of the integrals involved in computing the
momentum change in Appendix A. 2.

(3) The assumption (44) that allows one to relate the
change of momentum to the change of velocity
which is a pathology of the extended charge model.

While assumption 1 seems rather natural, assumption 2
arises out of the mathematical necessity to introduce a
cutoff in the electromagnetic fields as the solutions of the
Maxwell equations are ill defined on the world line for
point charges. Of course, in other settings, as the above-
mentioned generalized electrodynamics, this point can
potentially be avoided at the cost of replacing Maxwell’s
equations with a more regular version of the latter. This may
be a valid approach but is not our focus here. Moreover, one
may wonder how much information of the particular shape
of the employed ϵ tube enters the law ofmotion (48). In view
of the Stokes theorem employed in the derivation of the
momentum change, recall Eq. (5), only the geometric
properties of the caps of the tube enter in expression
Eq. (38). Assumption 3 is certainly the most ad hoc one.
Indeed, amore subtle analysis of Eq. (43) is required to argue
for the validity of the given approximation (44) in a certain
regime. However, this goes beyond the scope of this work.
Furthermore, the explicit form of the law of motion (48)
allows the exploration of example settings, such as the
synchrotron setting, in which a charge moves in a constant
magnetic field perpendicular to the motion, for which
already other approaches, such as the Landau-Lifschitz
equations, make predictions. Based on an understanding
in these settings, a sensible renormalization procedure has to
be developed. It is our hope that the additional degree of
freedom inmϵðτÞ can compensate for the time dependencies
of our ϵ tube to some extent so that in a regime of sufficiently
small ϵ the renormalized solutions to Eq. (48) become rather
independent of the cutoff. Both of these open points will be
addressed in a follow-up article which is in preparation.
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APPENDIX A: COMPUTATION OF THE FORCE

1. The normal vector on the tube

The direct way to calculate the normal vector nα is to
make use of the fact that there exists only one unit vector
which is orthogonal to all the tangent vectors of the tube tα

up to the sign. The three tangent vectors are given by the
derivatives of tα with respect to τ, θ, and ϕ. The contraction
of those three vectors with the epsilon tensor gives a vector
which is automatically orthogonal to the tangent vectors.
In some sense the epsilon tensor is the generalization of
the cross product to higher dimensions. In the language of
differential geometry, the normal vector nα is the Hodge
dual of the wedge product of the tangent vectors. It follows
that the normal vector nα is given by

nα ¼ ϵαβγδ∂τtβ∂θtγ∂ϕtδ: ðA1Þ

Its length is the volume spanned by a unit normal vector
and the three tangent vectors, which is nothing else than the
Jacobian determinant. Hence, we do not even need to adjust
it. The tangent vectors are

∂τtα ¼ uα þ ∂τrðuα þ wαÞ þ rðaα þ ∂τwαÞ; ðA2Þ
∂θtα ¼ ∂θrðuα þ wαÞ þ rð∂θwαÞ; ðA3Þ
∂ϕtα ¼ ∂ϕrðuα þ wαÞ þ rð∂ϕwαÞ: ðA4Þ

The derivatives of r are lengthy expressions. So it makes
sense not to calculate a complete expression for the normal
vector but instead state only its components in a useful
orthonormal basis. For this basis we choose

uα; wα; θα ¼ ∂θwα; ϕα ¼ ∂ϕwα

sin θ
; ðA5Þ

and

nα ¼ nβuβuα − nβwβwα − nβθβθα − nβϕβϕ
α: ðA6Þ

We start with the term nβuβ on the right-hand side of
Eq. (A6), which yields

C. BILD, D.-A. DECKERT, and H. RUHL PHYS. REV. D 99, 096001 (2019)

096001-12



nδuδ ¼ ϵαβγδ∂τtα∂θtβ∂ϕtγuδ

¼

�����������

1þ ∂τr − raβwβ ∂θr ∂ϕr 1

∂τr − raβwβ ∂θr ∂ϕr 0

−raβθβ − r∂τwβθβ r 0 0

−raβϕβ − r∂τwβϕβ 0 sin θr 0

�����������
¼ −ðr2 sin θð∂τr − raβwβÞ þ r2∂ϕrðaβϕβ þ ∂τwβϕβÞ
þ r2 sin θ∂θrðaβθβ þ ∂τwβθβÞÞ; ðA7Þ

where use has been made of uαwα ¼ 0 leading to uα∂τwα ¼
−aαwα. To obtain the term nβwβ in Eq. (A6) the “1”

showing up in the last column of the determinant in
Eq. (A7) has to shifted down by one row. This yields

nαwα ¼ r2 sinθð1þ∂τr− raβwβÞþ r2∂ϕrðaβϕβþ∂τwβϕβÞ
þ r2 sinθ∂θrðaβθβþ∂τwβθβÞ: ðA8Þ

The contractions of nα with θα and ϕα are obtained in the
same way by shifting the “1” further down. This gives

nαθα ¼ −r sin θ∂θr; ðA9Þ
nαϕα ¼ −r∂ϕr: ðA10Þ

The derivatives of the radius in Eq. (37) are given by

∂τr ¼ ð½ðuαðτ þ ϵÞ − uαÞuαðτ þ ϵÞ þ ðzαðτ þ ϵÞ − zαÞaαðτ þ ϵÞ�ðuβ þ wβÞuβðτ þ ϵÞ
− ðzβðτ þ ϵÞ − zβÞuβðτ þ ϵÞ½ðaα þ ∂τwαÞuαðτ þ ϵÞ þ ðuα þ wαÞaαðτ þ ϵÞ�Þ=½ðuα þ wαÞuαðτ þ ϵÞ�2; ðA11Þ

∂θr ¼ −ðzαðτ þ ϵÞ − zαÞuαðτ þ ϵÞ½∂θwβuβðτ þ ϵÞ�=½ðuα þ wαÞuαðτ þ ϵÞ�2; ðA12Þ
∂ϕr ¼ −ðzαðτ þ ϵÞ − zαÞuαðτ þ ϵÞ½∂ϕwβuβðτ þ ϵÞ�=½ðuα þ wαÞuαðτ þ ϵÞ�2: ðA13Þ

Now the contraction of the energy-momentum tensor (30) with the normal vector nα can be calculated. The corresponding
calculations and integrations are carried out in the next section.

2. Computation of the change of the momentum

We start with Eq. (5) and the domain of Eq. (37) to obtain

∂τPα
ϵ ðτÞ ¼ −∂τ

Z
∂Vðτ1;τÞ

d3xβT
αβ
ϵ ¼ −∂τ

Z
τ−ϵ

τ1−ϵ
dτ

Z
π

0

dθ
Z

2π

0

dϕnβTαβ: ðA14Þ

In the following we also consider the integral domains given in Eq. (A14) and suppress their reference in our notation.
Due to the cutoff, the cap integrals vanish since Tαβ

ϵ ¼ 0 within the tube and only the integral over the lateral surface of the
tube remains, where Tαβ

ϵ ¼ Tαβ holds. First, the angle integration is performed and also a factor of 4π=q2 is introduced for
convenience. To carry out the calculations, we make use of ηαβ ¼ uαuβ − wαwβ − θαθβ − ϕαϕβ and Eq. (30) for Tαβ and
Eqs. (A7)–(A10) for nβ. This leads to

Z
dθdϕnβ

4π

q2
Tαβ ¼

Z
dθdϕnβ

�
uαuβ−wαwβþθαθβþϕαϕβ

2r4
þaβ⊥ðuαþwαÞþaα⊥ðuβþwβÞ

r3
−
aγ⊥a⊥γðuαþwαÞðuβþwβÞ

r2

�

¼
Z

dθdϕ

�
−uα sinθ

2r2
∂τr

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{i

−
wα sinθ
2r2

∂τr

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{ii

þuα sinθ
2r

aβwβ

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{iii

þwα sinθ
2r

aβwβ

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{iv

−
wα sinθ
2r2

zfflfflffl}|fflfflffl{v

−
uα

2r2
aβϕβ∂ϕr

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{via

−
uα sinθ
2r2

aβθβ∂θr

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{vib

−
wα

2r2
aβϕβ∂ϕr

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{viia

−
wα sinθ
2r2

aβθβ∂θr

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{viib

−
uα

2r2
∂τwβϕβ∂ϕr

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{viiia

−
uα sinθ
2r2

∂τwβθβ∂θr

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{viiib

−
wα

2r2
∂τwβϕβ∂ϕr

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{ixa

−
wα sinθ
2r2

∂τwβθβ∂θr

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{ixb

−
sinθθα

2r3
∂θr

zfflfflfflfflfflffl}|fflfflfflfflfflffl{xa

−
ϕα

2r3
∂ϕr

zfflfflffl}|fflfflffl{xb

þ sinθaα⊥
r

zfflfflffl}|fflfflffl{xi

þ sinθðuαþwαÞ
r2

aβθβ∂θr

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{xiia

þuαþwα

r2
aβϕβ∂ϕr

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{xiib

−aγ⊥a⊥γðuαþwαÞsinθ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{xiii �

: ðA15Þ
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As is seen from Eq. (A15) only angle integrations remain
to be carried out. Since the integral (A15) is a Lorentz
vector the integrations can be carried out in the rest frame.
The original expressions are then obtained by transforming
back to lab frame. It is worth noting that only the vectors
wα, θα, and ϕα depend on the angles θ and ϕ. The quantities
θα and ϕα only appear in the combination θαθβ þ ϕαϕβ. In
the rest frame

θα0θ
β
0 þ ϕα

0ϕ
β
0 ¼ mαβ − wα

0w
β
0 ðA16Þ

holds, where

mαβ ¼

0
BBB@
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA; wα

0 ¼

0
BBB@

0

sinθcosϕ

sinθ sinϕ

cosθ

1
CCCA: ðA17Þ

Making use of Eq. (A16) and pulling angle independent
terms out of the integrals in Eq. (A15), all remaining terms
are only integrals over powers of wα

0 . The following
integrals are needed:Z

dθdϕ sin θ ¼ 4π; ðA18Þ
Z

dθdϕwα
0 sin θ ¼ 0; ðA19Þ

Z
dθdϕwα

0w
β
0 sin θ ¼ 4π

3
mαβ; ðA20Þ

Z
dθdϕwα

0w
β
0w

γ
0 sin θ ¼ 0; ðA21Þ

Z
dθdϕwα

0w
β
0w

γ
0w

δ
0 sin θ

¼ 4π

15
ðmαβmγδ þmαγmβδ þmαδmγβÞ: ðA22Þ

The transformation of mαβ back to the lab frame is what
remains to be done. To determinate the necessary Lorentz
matrix Λα

β we make use of

mαβ ¼ δα0δ
β
0 − ηαβ ðA23Þ

and Λα
0 ¼ Λ0

α ¼ uα. We obtain

Λα
γmγδΛβ

δ ¼ Λα
γ ðδγ0δδ0 − ηγδÞΛβ

δ ¼ uαuβ − ηαβ: ðA24Þ

With the help of Eqs. (A18)–(A22) and Eq. (A24), the
integrations i–xiii in Eq. (A15) are straightforward. We
obtain for integral i

i ¼
Z

dθdϕ
− sin θuα

2r2
∂τr

¼
Z

dθdϕ
− sin θuα

2½ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ�2 ð½1 − uδuδðτ þ ϵÞ þ ðzμðτ þ ϵÞ − zμÞaμðτ þ ϵÞ�ðuβ þ wβÞuβðτ þ ϵÞ

− ðzνðτ þ ϵÞ − zνÞuνðτ þ ϵÞ½ðaλ þ ∂τwλÞuλðτ þ ϵÞ þ ðuκ þ wκÞaκðτ þ ϵÞ�Þ

¼ −2πuα

½ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ�2 ð½1 − uδuδðτ þ ϵÞ þ ðzμðτ þ ϵÞ − zμÞaμðτ þ ϵÞ�uβuβðτ þ ϵÞ

− ðzνðτ þ ϵÞ − zνÞuνðτ þ ϵÞ½aλuλðτ þ ϵÞ þ uκaκðτ þ ϵÞ�Þ: ðA25Þ

For integral ii , we obtain

ii ¼
Z

dθdϕ
− sin θwα

2r2
∂τr

¼
Z

dθdϕ
− sin θwα

2½ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ�2 ð½1 − uδuδðτ þ ϵÞ þ ðzμðτ þ ϵÞ − zμÞaμðτ þ ϵÞ�ðuβ þ wβÞuβðτ þ ϵÞ

− ðzλðτ þ ϵÞ − zλÞuλðτ þ ϵÞ½ðaκ þ ∂τwκÞuκðτ þ ϵÞ þ ðuν þ wνÞaνðτ þ ϵÞ�Þ

¼ −2π
3½ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ�2 ð½1 − uδuδðτ þ ϵÞ þ ðzμðτ þ ϵÞ − zμÞaμðτ þ ϵÞ�uβðτ þ ϵÞðuαuβ − ηαβÞ

− ðzλðτ þ ϵÞ − zλÞuλðτ þ ϵÞ½aνðτ þ ϵÞðuαuν − ηανÞ þ uκðτ þ ϵÞ∂τΛκ
ρΛα

χmρχ �Þ: ðA26Þ
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To simplify Eq. (A26) further we need an expression for
∂τΛκ

ρΛα
χmρχ . With the help of Eq. (A23) for mαβ this yields

aγuα for the term that contains the two Kronecker deltas. To
evaluate the term containing ηαβ we go into the comoving
frame. The required Lorentz matrix is just a unit matrix
while its derivative contains only accelerations in the time-
space part as can be understood by considering the non-
relativistic limit. We find

∂τΛ
γ
δΛα

μη
δμ ¼

0
BBB@

0 −a1 −a2 −a3

a1 0 0 0

a2 0 0 0

a3 0 0 0

1
CCCA

¼ aγuα − aαuγ: ðA27Þ

We note that in the rest frame the well-known Thomas
precession is absent. With both terms combined we get
∂τΛ

γ
δΛα

μmδμ ¼ uγaα. For integral iii we obtain

iii ¼
Z

dθdϕ
sin θuα

2r
aβwβ

¼
Z

dθdϕ
sin θuαðuδ þ wδÞuδðτ þ ϵÞaβwβ

2ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ

¼ 2πuαuδðτ þ ϵÞaβðuβuδ − ηβδÞ
3ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ

¼ −2πuαuδðτ þ ϵÞaδ
3ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ ; ðA28Þ

while integral iv can be recast into

iv ¼
Z

dθdϕ
sin θwα

2r
aβwβ

¼
Z

dθdϕ
sin θwαðuδ þ wδÞuδðτ þ ϵÞaβwβ

2ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ

¼ 2πuδuδðτ þ ϵÞaβðuαuβ − ηαβÞ
3ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ

¼ −2πaαuδuδðτ þ ϵÞ
3ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ : ðA29Þ

Integrals v and via give

v ¼
Z

dθdϕ
− sin θwα

2r2

¼
Z

dθdϕ
− sin θwα½ðuβ þ wβÞuβðτ þ ϵÞ�2
2½ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ�2

¼ −4πuβuβðτ þ ϵÞuδðτ þ ϵÞðuαuδ − ηαδÞ
3½ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ�2 ðA30Þ

and

via ¼
Z

dθdϕ
−uα

2r2
∂ϕraβϕβ

¼
Z

dθdϕ
uα sin θϕδuδðτ þ ϵÞaβϕβ

2ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ : ðA31Þ

Integral vib can be evaluated similarly, only ϕα and θα are
exchanged. Integrals via and vib yield together

via þ vib ¼ uαuδðτ þ ϵÞaβ
2ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ

×

�
4πðuβuδ − ηβδÞ − 4π

3
ðuβuδ − ηβδÞ

�

¼ −4πuαuδðτ þ ϵÞaδ
3ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ : ðA32Þ

The result (A32) can be obtained by pulling a common angle
independent term in via and vib in front of the integrals.
The remaining term ϕγϕβ þ θγθβ has been replaced by
mαβ − wαwβ. After angle integration essentially only mαβ

remains, which can be evaluated to uαuβ − ηαβ. The same
situation is encountered for all remaining integrals with
labels a and b in Eq. (A15). If we go through viia þ viib
zero is obtained because there are only odd powers of wα in
the expressions. The remaining integrals are

viiia þ viiib ¼
Z

dθdϕ
uα sinθuδðτþϵÞ∂τwβðϕβϕδþθδθβÞ

2ðzγðτþϵÞ−zγÞuγðτþϵÞ
¼0 ðA33Þ

and

ixa þ ixb ¼
Z

dθdϕ
wα sinθuχðτþϵÞ∂τwβðϕβϕχþθχθβÞ

2ðzγðτþϵÞ−zγÞuγðτþϵÞ

¼uχðτþϵÞΛα
σΛ

β
νΛχ

ξηβδ∂τΛδ
ρ

2ðzγðτþϵÞ−zγÞuγðτþϵÞ
�
4π

3
mσρmνξ

−
4π

15
ðmσρmνξþmσνmρξþmσξmνρÞÞ

¼ uχðτþϵÞηβδ
2ðzγðτþϵÞ−zγÞuγðτþϵÞ

�
4π

3
aαuδðuβuχ−ηβχÞ

−
4π

15
aαuδðuβuχ−ηβχÞþðuαuβ−ηαβÞaχuδ

þðuαuχ−ηαχÞaβuδÞ¼0 ðA34Þ

and

RADIATION REACTION IN CLASSICAL ELECTRODYNAMICS PHYS. REV. D 99, 096001 (2019)

096001-15



xa þ xb ¼
Z

dθdϕ
−θα sinθ∂θr−ϕα∂ϕr

2r3

¼
Z

dθdϕ
sinθðθαθβþϕαϕβÞuβðτþ ϵÞuδðτþ ϵÞ

2½ðzγðτþ ϵÞ− zγÞuγðτþ ϵÞ�2
× ðwδþuδÞ

¼ 4πuβðτþ ϵÞuδuδðτþ ϵÞðuαuβ−ηαβÞ
3½ðzγðτþ ϵÞ− zγÞuγðτþ ϵÞ�2 ðA35Þ

and

xi ¼
Z

dθdϕ
sinθðaαþaδwδwαÞ

r

¼
Z

dθdϕ
sinθðaαþaδwδwαÞðuβþwβÞuβðτþϵÞ

ðzγðτþϵÞ−zγÞuγðτþϵÞ

¼ 4πaαuβuβðτþϵÞ
ðzγðτþϵÞ−zγÞuγðτþϵÞþ

4πaδuβuβðτþϵÞðuαuδ−ηαδÞ
3ðzγðτþϵÞ−zγÞuγðτþϵÞ

¼ 8πaαuβuβðτþϵÞ
3ðzγðτþϵÞ−zγÞuγðτþϵÞ ðA36Þ

and

xiia þ xiib ¼
Z

dθdϕ
uα þ wα

r2
ðaβθβ sin θ∂θrþ aβϕβ∂ϕrÞ

¼
Z

dθdϕ
− sin θðuα þ wαÞaβuδðτ þ ϵÞðθδθβ þ ϕδϕβÞ

ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ

¼ −8πuαaβuδðτ þ ϵÞðuδuβ − ηδβÞ
3ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ ¼ 8πuαaδuδðτ þ ϵÞ

3ðzγðτ þ ϵÞ − zγÞuγðτ þ ϵÞ ðA37Þ

and

xiii ¼
Z

dθdϕ sin θð−ðuα þ wαÞ½aγaγ þ ðaγwγÞ2�Þ ¼ −
8π

3
aγaγuα: ðA38Þ

Not surprisingly Eq. (A38) is the well-known term contained in Larmor’s formula. Now let us combine all terms.
Equation (A15) hence readsZ

dθdϕnβ
4π

q2
Tαβ ¼ 2π

3½ðzγðτþ ϵÞ−zγÞuγðτþ ϵÞ�2f−3u
α½1−uδuδðτþ ϵÞþðzρðτþ ϵÞ−zρÞaρðτþ ϵÞ�uβuβðτþ ϵÞ

þ3uαðzμðτþ ϵÞ− zμÞuμðτþ ϵÞ½aνuνðτþ ϵÞþuσaσðτþ ϵÞ�− ½1−uχuχðτþ ϵÞþðzξðτþ ϵÞ−zξÞaξðτþ ϵÞ�
×uλðτþ ϵÞðuαuλ−ηαλÞþðzκðτþ ϵÞ− zκÞuκðτþ ϵÞ½aζðτþ ϵÞðuαuζ −ηαζÞþuσðτþ ϵÞuσaα�
−2uπuπðτþ ϵÞuψðτþ ϵÞðuαuψ −ηαψÞþ2uωðτþ ϵÞuιuιðτþ ϵÞðuαuω−ηαωÞg

þ 2π

3ðzγðτþ ϵÞ− zγÞuγðτþ ϵÞf−u
αuηðτþ ϵÞaη−aαuυuυðτþ ϵÞ−2uαuτðτþ ϵÞaτþ4uαaouoðτþ ϵÞ

þ4aαuϑuϑðτþ ϵÞg−8π

3
aφaφuα: ðA39Þ

After further simplification one arrives at the right-hand side of Eq. (A39) at

2π

3½ðzγðτþ ϵÞ− zγÞuγðτþ ϵÞ�2f½u
αðτþ ϵÞ−4uαuβuβðτþ ϵÞ�½1−uδuδðτþ ϵÞþðzρðτþ ϵÞ− zρÞaρðτþ ϵÞ�g

þ 2π

3ðzγðτþ ϵÞ− zγÞuγðτþ ϵÞf3u
α½aνuνðτþ ϵÞþuσaσðτþ ϵÞ�þaζðτþ ϵÞðuαuζ−ηαζÞþuσðτþ ϵÞuσaα

þuαuτðτþ ϵÞaτþ3aαuϑuϑðτþ ϵÞg−8π

3
aφaφuα

¼ 2π

3½ðzγðτþ ϵÞ− zγÞuγðτþ ϵÞ�2f½u
αðτþ ϵÞ−4uαuβuβðτþ ϵÞ�½1−uδuδðτþ ϵÞþðzρðτþ ϵÞ− zρÞaρðτþ ϵÞ�g

þ 2π

3ðzγðτþ ϵÞ−zγÞuγðτþ ϵÞf4u
α½aτuτðτþ ϵÞþuζaζðτþ ϵÞ�þ4aαuϑuϑðτþ ϵÞ−aαðτþ ϵÞg−8π

3
aφaφuα: ðA40Þ

C. BILD, D.-A. DECKERT, and H. RUHL PHYS. REV. D 99, 096001 (2019)

096001-16



This equation is not yet the final result. One step is still missing. The effect of the time derivative and the time integral in
Eq. (A14) also have to be taken into account. Their combined effect is the coordinate shift τ → τ − ϵ. After reintroducing
the factor −q2=4π, the full electromagnetic force is given by

∂τPα
ϵ ðτÞ ¼ −

q2

6½ðzγ − zγðτ − ϵÞÞuγ�2
f½uα − 4uαðτ − ϵÞuβuβðτ − ϵÞ�½1 − uδuδðτ − ϵÞ þ ðzρ − zρðτ − ϵÞÞaρ�g

−
q2

6ðzγ − zγðτ − ϵÞÞuγ
f4uαðτ − ϵÞ½aτðτ − ϵÞuτ þ uζðτ − ϵÞaζ� þ 4aαðτ − ϵÞuϑðτ − ϵÞuϑ − aαg

þ 2q2

3
aφðτ − ϵÞaφðτ − ϵÞuαðτ − ϵÞ ðA41Þ

≕Lα
ϵ ðτÞ: ðA42Þ
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