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In the absence of direct evidence of new physics, any ultraviolet theory can be reduced to its specific set
of low-energy effective operators. As a case study, we derive the effective field theory for the seesaw
extension of the Standard Model, with sterile neutrinos of mass M > my,. We systematically compute all
Wilson coefficients generated at one loop. Hence, it becomes straightforward to (i) identify the seesaw
parameters compatible with the smallness of neutrino masses, (ii) compute precision lepton observables,
which may be sensitive to scales as large as M ~ 103 TeV, and (iii) establish sharp correlations among
those observables. We find that the flavor-conserving Wilson coefficients set an upper bound on the flavor-
violating ones. The low-energy limits on 4 — e and ¢ — e, u transitions suppress flavor violation in Z and
Higgs decays, as well as electric dipole moments, far beyond the experimental reach. The precision
measurements of G, my, and Z partial decay widths set more stringent bounds than present and future
limits on 7 — e, u transitions. We also present a general spurion analysis, to compare the seesaw with
different models, thus assessing the discriminating potential of the effective approach.
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I. INTRODUCTION

Precision measurements in the lepton sector allow us to
test the Standard Model (SM) to an exceptional depth.
As no new particles have been detected so far, these
measurements can be fully described in terms of effective
operators involving the SM fields only. In most cases, the
present bounds push the cutoff, A, of this effective field
theory (EFT) well beyond the TeV scale. Indeed, the
dimension-five (dim-5) Weinberg operator [1] should have
an extremely small coefficient, to account for the tininess
of the neutrino masses m,. Among dim-6 operators, those
inducing lepton flavor violation (LFV) and CP violation
are also extremely constrained, and even the flavor-
conserving ones are subject to a few stringent bounds,
as we will see.

From a top-down perspective, any theory beyond the SM
is defined by some set of heavy degrees of freedom with
mass 2 A, which would surely have an interesting phe-
nomenology if they were directly produced, either in the
early Universe or in the lab. Still, the low-energy predic-
tions of the theory can be fully encoded in a set of Wilson
coefficients (WCs) of the EFT valid below the cutoff A. We
would like to argue that by computing such a set of WCs for
a given theory, all unnecessary details of the underlying
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class of models are dismissed, thereby offering an optimal
method to compare with other theories. This is not only a
matter of principles: in the lepton sector, there is the
concrete possibility of distinguishing between different
ultraviolet completions, owing to several clean signatures
that may become available in the near future.

To illustrate this program, in this article we focus on the
seesaw scenario [2—-5], which amounts to adding to the SM
a set of gauge singlet chiral fermions, the sterile neutrinos.
This model is often dubbed the type-I seesaw mechanism,
to distinguish it from alternative possibilities for inducing
nonzero neutrino masses. The Majorana mass scale of
sterile neutrinos, M, can span a very wide energy range,
consequently, sterile neutrinos may have a remarkable
variety of phenomenological applications if they are
directly produced, e.g., leptogenesis at very high scales
[6,7], collider searches at the TeV scale [8—10], dark matter
searches at the keV scale [11-13], and anomalies in
oscillation experiments at the eV scale [14]. Regrettably,
leptogenesis is in general very difficult to test, and no clear
evidence of sterile neutrino detection in the lab has emerged
so far. Here we will rather focus on the indirect effects
of heavy sterile neutrinos on the phenomenology of
the SM leptons, assuming M is larger than the energy of
the experiment under consideration. Even in this limit the
phenomenology may be extremely rich.

We will demonstrate that the seesaw EFT description
elucidates the correlations among the various observables.
Specifically, it will become straightforward to study the
limiting case, where the sterile neutrinos have masses not
far above the electroweak scale as well as large Yukawa
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couplings, and nonetheless m, remains sufficiently small.
This case encompasses, in particular, the inverse-seesaw
limit [15-17], and it is the most interesting phenomeno-
logically as several lepton observables can be close to the
experimental sensitivity. Studies of various aspects of the
seesaw phenomenology using EFT techniques have pre-
viously been performed in, e.g., [18-23].

In Sec. II, we derive the set of WCs induced by the
seesaw. We present for the first time the full list that arises
at one-loop leading-log order, after specializing the general
formalism of renormalization group equations (RGEs) to
the seesaw case. We also include an important case of one-
loop matching. The results hold for any set of seesaw
parameters, within the regime of validity of the EFT.
Appendix A presents a systematic diagonalization pro-
cedure for the seesaw mass matrix, which is useful to
complement the EFT approach. Appendix B collects the
complete list of relevant effective operators and RGEs.

In Sec. III, we discuss the seesaw predictions for lepton
observables in terms of the seesaw WCs. We discuss in turn
Higgs- and Z-boson decays, LFV in charged-lepton tran-
sitions, dipole moments, and corrections to the Fermi
constant. We improved upon existing analyses of several
observables, both fixing errors in the literature and using
more recent data. The EFT approach enables an immediate
comparison of the different processes. Indeed, we identify
some interesting limits and correlations, which were
previously overlooked.

In Sec. IV, we investigate to what extent the seesaw
predictions follow from symmetry considerations only and
how the predictions may be different in other models.
These questions are better addressed with a spurion
formalism, which clarifies the different possible patterns
for flavor-symmetry breaking. We then summarize our
main findings.

II. EFFECTIVE FIELD THEORY
FOR THE SEESAW

Let us consider extending the SM by n; sterile neutrinos
Ng, that is, chiral fermions singlet under the SM gauge
interactions,

[’seesaw = ['SM + lN_R@NR

11— - .

Here M is the symmetric n; X n, matrix of sterile neutrino
Majorana masses and Y is the n; x 3 matrix of neutrino
Yukawa couplings. Once the Higgs acquires a vacuum
expectation value, (H°) = v/+/2 ~ 174 GeV, the neutrino
Dirac mass matrix is generated, m = Yv/ \/§ While the
entries m;, are bound to lie at or below the electroweak
scale, the eigenvalues M| <M, <--- <M, of the matrix
M can take any value between zero and the cutoff of the

theory. In the limit m;, < M;, the seesaw mechanism is
realized [2-5], and the 3 x 3 Majorana mass matrix of light
neutrinos takes the form m, ~ —m”M~'m. Note that the
seesaw is operative for an extensive range of sterile
masses, m, ~0.1 eV < M; <v?/m, ~10"° GeV.

In the following we will derive the EFT below the scale
M, which trades sterile neutrino interactions for higher-
dimensional operators involving only SM fields. We will
assume for definiteness sterile neutrinos heavier than the
electroweak scale, M; > my,, but the same EFT techniques
could be applied when (some of) the sterile neutrinos are
lighter. At the scale my, the EFT involving SM multiplets
will be matched to the EFT with broken electroweak
symmetry.

Parts of this exercise have been presented in previous
literature [1,24-29]. Here we collect and generalize those
results in a systematic fashion. In particular, we will apply
the general RGEs for the SM effective operators to the
seesaw case. In addition, we include the one-loop matching
of the dipole operators at the scales M and my,, which is
necessary to correctly describe the lepton dipole transitions
in the EFT language.

To fix the notation, we write the SM EFT Lagrangian as

1
Lsmerr = Lsm + A (CYQw + H.c.)

+ %Z(C’Qi +H.c.) + O(%) (2)

where Qy is the Weinberg operator, defined in Table I,
while Q; form a complete set of dim-6 operators, specifi-
cally we employ the Warsaw basis [30]. The WCs, CV and
C', are defined to be dimensionless, with A the cutoff of
the EFT, which may be identified for definiteness as the
lightest sterile neutrino mass, M. It is understood
that the hermitian conjugate is not added to Eq. (2) when
an operator is self-Hermitian, Q; = QlT We will generally
neglect operators with dim > 6, since most of the relevant
observables are induced already by dim-5 and dim-6
operators and we are not interested in subleading correc-
tions. Exceptions will be discussed in due course.

TABLE I. Operators generated by matching the seesaw at the
sterile neutrino mass scale M.

Name Operator

Ow op () (1)
Q(F}l),a/f (Lea¥ylep) (H'iD"H)
Ol s (Trar,0™1,y) (HY DV oA H)
Ocpap (IaOuers) HB"
Oew.ap (140 ,erps) o HW A
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A. Matching at the sterile neutrino mass scale M

The seesaw Lagrangian (1) can be matched to the SM
EFT (2) by integrating out the sterile neutrinos at their mass
scale M;. At tree level, it is sufficient to expand the Ny
equation of motion in inverse powers of M. This generates
the dim-5 Weinberg operator [1] via the seesaw mecha-
nism, and a linear combination of two dim-6 operators [24],

1
}\l})e:K( (lf)’QWaﬁ+HC)
+

o) (Ol s = Ot (3)

2/\2 (C
where the explicit form of the operators is provided in
Table I, and the WCs read

Wi _
A anﬁ
)= Sy = (M MY),,

=3 Sl = XXM (9

where we conveniently introduced the Hermitian matrix S,
and the sums are defined in a basis with M diagonal.
The next order, matching onto dim-7 operators, is also
known [31].

Tree-level matching is not sufficient to describe the all-
important dipole transitions, which are also induced by the
sterile neutrinos. However, we remark that the EFT allows
one to account for these effects consistently by matching
the one-loop contribution of sterile neutrinos onto the
electroweak dipole operators, which are also defined in
Table I. To this end, we computed the relevant diagram,
shown in Fig. 1, which amounts to adding to the EFT
Lagrangian the term

2
XC(‘;V/}:(YTM Y), ZyiayiﬂM;‘, (4)

HI(3)
A2 (Ca/} - Caﬂ

1
loo
Ly* = 19222 (SYZ)rI/)’(QZQeW,a/} —91Qcpqp) +He., (6)
where ¢, ¢, are the U(1), and SU(2), gauge couplings,
respectively, and Y, is the charged-lepton Yukawa matrix,
defined by Eq. (B1). We will often replace it by its diagonal

B, W
H s W

\
\

\
\ 6
\
\
! I
Ch— o o |
Ng;

FIG. 1. One-loop matching onto the electroweak dipole operators
Q.5 and Q. at the mass scale M; of the sterile neutrino Npg;.

form, (Y,);, = y04, for p = e, p, 7. Note that the loop is
finite and therefore does not induce any renormalization-
scale dependence. We checked that our result matches (and
generalizes) a similar calculation of the heavy-neutrino
contribution to ¢, — £y in [32,33], up to corrections
suppressed by additional powers of the active-sterile mix-
ing, which correspond to EFT operators with dim > 6.
The seesaw WCs can be concisely written in terms of the
matrices Y and M if one neglects the difference among the
mass eigenvalues M;. Strictly speaking, one should choose
the basis where M is diagonal and integrate out each mass
eigenstate, Ng;, at scale 4 = M,, that is, the seesaw para-
meters Y;, and M; should be defined at that matching scale.
Still, if the matrices ¥ and M are defined at the largest seesaw
scale, M), , and their RG evolution to M is neglected one can
show that the correction to the WCs is subleadlng On the
other hand, one cannot neglect the RG evolution of the WCs
among the different scales M, because this affects the WCs at
leading-logarithm order, as we will see below.

B. Running from M to the electroweak scale my,

Let us discuss the evolution of the EFT Lagrangian from
the sterile neutrino mass scale, M, to the electroweak scale,
which we identify for definiteness as the W-boson mass,
my. The running of the only dim-5 operator, Qy, is
independent from dim-6 operators for dimensional reasons.
In contrast, the running of the dim-6 operators may receive
contributions from two insertions of Qy. In equations,

dc
dlogu

ac%
dlogpu

— w
=rw ’

=7iCl Ve, (7)

where yyy, yj-, 74y are the operator anomalous dimensions,

and the appropriate contractions of flavor indices are under-
stood. The RGE for the Weinberg operator was calculated
at one loop in [36-38]. A comprehensive compilation of the
dim-6 anomalous dimensions in the SM EFT at one loop,
y; is provided in [27-29]. We cross-checked a subset of

these coefficients that are relevant for the seesaw. The
mixing of the Weinberg operator (squared) into dim-6
operators, described by the coefficients yy,, was calculated

'One should match the seesaw Lagrangian to an EFT with
ng — 1 sterile neutrinos at the scale 4 = M, , run this EFT down
to 4 =M, _; and perform a new matching, and so on until the
SM EFT is recovered at u = M;. This procedure introduces
corrections to Egs. (3) and (6) proportional to log M;/M ;, which
are suppressed by an extra loop factor and extra couplings. Note
also that below M s the EFT includes operators that combine SM
fields and sterile neutrinos with mass M; < M;. It has been
shown [34,35] that such an EFT contains dim-5 operators with
two sterile neutrinos and dim-6 operators with one or more sterile
states. One can check that, integrating out Ny; at scale M;, these
operators generate only SM operators with dim > 6. Of course, a
detailed treatment of such intermediate-scale effects may be
relevant for a precision reconstruction of the seesaw parameters.
See, e.g., [20] for the case of the Weinberg operator.
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in [25], and one term has recently been corrected in [26].
We cross-checked this computation and agree with the
latter result. The relevant operators and their complete one-
loop RGEs are collected in Appendix B.

At the scale M;, the only nonvanishing WCs are those in
Egs. (3) and (6). At lower scales, these operators source their
own running and also mix into other operators, inducing
additional nonzero WCs. To illustrate the result compactly,
we take the leading-logarithm approximation and define

. ) M,
R =Ry = 381l
i i w
M.
= ZYZIYlﬂMz_z 10g l s (9)
i My

which are generated, respectively, by two insertions of the
WC in Eq. (4) and one insertion of the WC in Eq. (5). In
the approximation where all logarithms are replaced by a
common factor, log(M /my), then simply W o,5 & Cg,* Cpis

4c¥iCy!  min(M,, M,
Wapys = Z 4 5 b5 log (M, M;) and R,5 Saﬁ.z
ij A Mw We find that the seesaw induces at my five addi-
min(M;, M ;) tional leptonic operators, which were vanishing at M,
= D VXYY sM; M5 log ——E0(8) with WCs
ij w
(Cap |+ Cag) () 1 (g +174 A - 1
A2 o~ — 167[2 |: 12 Raﬂ + tr(R)(‘)'aﬁ - EZWWW} B (10)
v
Clictmy) 1 1 1
af w
A2 = 1677.'2 |:§yaRaﬂyﬁ - gg%tr(R)(saﬂ] ’ (11)
cl (my) 1 2_ 2 2 1
apys\"Mw a1 — 9 9

T { 5q - Rapdys + BapRys) + 5 (Rasbyp + 6asRyp) + 5 Waﬂ75:| : (12)

Cle (m ) 1 )

apys\""W 91
J/AZ = 1671'2 gRaﬂéJ’fs’ (13)

Cof (my) 1 1 3

aff w
A2 ad 167[2 |:21Raﬁ + gg%tl'(R)(Saﬂ - 5 ZWaﬁW + ZZW77555aﬂ:| yﬂ’ (14)
Y 7.6

where the indices a, 3, y, 6 run over e, u, 7, and 4 is the
quartic Higgs coupling defined in Eq. (B1). Note that we
simplified the full expression of the anomalous dimensions,
found in Appendix B, by neglecting the charged-lepton
Yukawa couplings y, relative to the other relevant SM
couplings, as they are much smaller (for example, y, < g »
even at very high scales [39]). The WCs that are already
nonzero at scale M receive similar corrections, which are
loop suppressed with respect to their leading-order value:
we will neglect those.

*The approximation log(M,/my) ~log(M,/my) for Ry
and W, is tenable only if M; ~M,, or if the contribution
of Npg; to the WCs is negligible with respect to the one
of Np;. For terms proportional to R, the latter condition reads
|Y2/M?|log(M;/M,) < |Y3/M3|log(M,/my), where we have
dropped flavor indices. For terms proportional to W, an analo-
gous condition applies with |Y?/M?| replaced by |Y?/M?|.

|

The RG evolution also induces two-lepton—two-quark
(2¢2¢) operators, which are relevant to estimate the 4 — e
conversion rate in nuclei (see Sec. III B 3),

Iq(1) - -
Cp (my) 1 1 2
apxy \""W) | i + g1
A2 —_167[2Raﬂ _Z(YMYM_Yde)xy_F%&ry—’
(15)
Clq(3)(m ) 1 1 2 A
apxy \""W) + + 93
A2 —_167[2Raﬂ _Z(YUYM + Yde)xy_E5xy_ P
(16)
Capay (M) 1 1 2
afxy w + gl
v R |- (v, YD+ s | (a7
A2 167[2 aﬂ|: 2( u )xy+ 95y:| ( )
Clesy (M) 1 1 2
apey (W) i
A2 - 1671'2 R(z/} |:§ (Yde)xy - ﬁaxy] ’ (18)
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where x, y are quark flavor indices, the quark Yukawa
couplings are defined in Eq. (B1), and we adopted the
same simplifications as above. In addition, the seesaw tree-
level operators mix into two operators which modify the
Higgs-boson kinetic term and therefore affect its couplings
(see Sec. IITA 1),

CHD(mw) 1
A2 16 5 |: g%tr +4ZW },55:|

COmy) 1 (1, 1
A2 2167:2[(22+ g'>

The additional operators induced by the seesaw and their
RGEs, listed for completeness in Appendix B, have no
impact on the lepton observables that we shall analyze.

Some comments are in order on the quality of our
approximations. The leading-log contributions to the WCs
are expected to dominate over one-loop finite parts as long
as log(M;/my,) is significantly larger than one. On the
other hand, dim-6 operators have observable consequences
for M; not too far above my,. When the logarithm becomes
of order one, the leading-log term still gives the correct
order of magnitude, barring possible cancellations. This
issue will be addressed for specific observables in Sec. III.
We will neglect systematically two-loop corrections. In
particular, the running of the dipole operators, O,z .w»
and their mixing into other operators are two-loop sup-
pressed, as the dipole WCs are themselves already one-loop
suppressed.

Finally, we have treated the right-hand side of the RGEs
in Eq. (7) as a constant. Of course, it is a function of SM
couplings and WCs, which run at one loop. This induces
two-loop-order corrections to the WCs at my, which
may be sizeable if log(M/my,) is large and the couplings
run quickly. A recent analysis of this effect can be found
in [40]. In the seesaw, we find that such corrections are
typically of order ~10%, as illustrated at the end of
Appendix B, and we will neglect them. When precision
is needed, one can perform an RGE-improved computation
to account for these corrections, by integrating numerically
the system of RGEs provided in Appendix B together with
the RGEs for the SM parameters, provided for instance
in [39].

ZWW&T}

(20)

C. Matching at my and running to the
charged-lepton mass scale m,

At the electroweak scale, the SM states with mass
O(my) must be by integrated out, namely, the Higgs,
W, and Z bosons (and the top quark, which plays no
role for the lepton observables). One is left with an EFT
for massive leptons and quarks, with gauge symmetry

SU(3)QCD X U(I)QED'

A basis for the operators of such an EFT has been
defined in [41], and the matching of the SM EFT WCs onto
this basis is provided in Appendix C of that reference, up to
terms that are Yukawa-coupling suppressed. As we are
interested in charged LFV processes and dipole moments,
we need only consider the four-fermion operators involving
charged leptons and the electromagnetic dipole operator. In
the low-energy EFT, four-fermion operators are defined as

Oz;/j(),(ayﬂyﬁ = WalaPxwp) 0, UaPyxs), (21)

where y, y = v, e, u, d are mass eigenstates, X = L, R with
P; r the chiral projectors, and A =S, V, T with I'¢ =1,
'y =y, and I't = 6,,. We restrict ourselves to vector-
vector operators, because scalar-scalar operators are rela-
tively suppressed by two powers of Yukawa couplings and
therefore have negligible effects on the observables of
interest. Four-fermion tensor operators are not generated in
the seesaw at leading-log order.

Let us begin with operators with four charged leptons,
which in the seesaw receive contributions from Egs. (10)—
(13). The matching conditions at ¢ = my, read

1
V.LL HI(1) HI(3)
Cee apys Cll apys + E (_1 + 2S$‘,) |:(Caﬁ + Ca/} )éyé
+ 6u(Cl3 "V + Cg )] (22)
¢ Hi(1l Hi(3
C‘e/eLaI/‘;yé = Cl afys + 2S (C v + Caﬂ( ))5}/5
+ (=1 4 253) 805 ClY, (23)
Co.b s = St (CHeS5 4+ 8,5CI¢). (24)

where s,, is the sinus of the weak mixing angle. Note that
these equations do not involve [CH!(1) — CH!(3)]  therefore
all these WCs are loop suppressed.

The operators with two charged leptons and two quarks,
relevant for 4 — e conversion in nuclei, match according to

VLL * q(1) lq(3)
Ceu apxy V V (Caﬂwz CzZﬂwz)
4
+ <1 —§s§> BV + s, (25)
4 Hi(1 Hi(3
Chthy = Clyy S 4 5, (26)
V.LL q(1) 49(3)
Ced apxy — Ca/)’xy + Ca/}’xv
2
+ <—1 +3s$‘v> (B + s, (27)
2 Hi(l HI(3
Cliapy = Clbry +350(Clp " + Cop™ o (28)
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where x, y, w, z are quark mass eigenstate indices, and in
Eqgs. (15)—(18) we chose a basis where Y, =diag(y .y, Vs)
and Y, =diag(y,,v.,y,)V, with V the Cabibbo-
Kobayashi-Maskawa matrix. Even this set of WCs does
not depend on the combination [Cgl) - CS,)] so they all
vanish at tree level.

We will generally ignore operators involving neutrinos,
which are typically less constrained (for a detailed dis-
cussion and special cases see, e.g., [42—45]). One exception
is the operator O,;“", which corrects y and 7 beta decays
and is induced at tree level. Its matching reads

V.LL
c’

HI(3 HI(3
ve.afys = _2(C¢16( >57/3 + 6(15Cyﬂ( ))’ (29)

where we neglected subdominant loop-level contributions.
This is relevant to test the universality of the Fermi
coupling, see Sec. III C 3.

Finally, the electromagnetic dipole operator, O,, 4 =
€10 ersF* v/ \/2, receives contributions both from C¢5-W
and an additional electroweak-scale loop contribution,

Copap = €wCE — 5,CH + CL1 P
EAZ + EW—loo
= _W (SYe)aﬁ + Cey,(l[)’ . (30)

Just as one-loop matching was necessary at scale M to
account for the sterile neutrino contribution, at my, it is
necessary to include the active neutrino contribution. We
found four relevant diagrams, displayed in Fig. 2. They
involve two insertions of the Weinberg operator decomposed
into its SU(2), components, in particular, a v Majorana
mass term and an evH ™ vertex. The diagrams are finite (no
renormalization-scale dependence) and the result of the
matching is

Cf}/\il;}loop er? ( cwvicw YZ )aﬂ v

A 2 64> my, N> /2
e3Ua,-U/*5im,2mﬂ

T 256n%samy, (31)

where in the last equality we used CYv?/A=~m, =
U*diag(m,, m,, m3)U". Higher-order corrections to the neu-
trino masses and to the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix, U, are discussed in Appendix A. Note that, in
contrast to C%, the other WC generated at tree level,
[CH!() — CHIB)], does not induce a dipole at one loop.
The EFT result of Eq. (31) allows us to reproduce, in
particular, the result of the classical computation of the y —
ey decay width, in the SM augmented with light, massive
neutrinos [46—49] (presented in full detail, e.g., in [50]).
To study charged-lepton observables, such as LFV decays
or dipole moments, it is necessary, in principle, to include the
RG evolution of the WCs from the electroweak scale to the
mass scale of the heaviest lepton involved in the process, m,,.

€RA €La

T

€RA3 €La

FIG. 2. Relevant diagrams, in the ‘t Hooft-Feynman gauge, for
the one-loop matching of the seesaw EFT above my, onto the
operator O,, in the EFT below my,. The shaded square (circle)
vertex stands for the Weinberg-operator component ve~ H* (H°)
(ww(H°HO)). The wavy (dashed) lines in the loops stand for a W
boson (H™ Goldstone boson).

However, one can convince oneself that in the seesaw this
running has no significant effects. The only interactions
below the electroweak scale are QED and QCD, both of
which are flavor conserving, therefore the structure of flavor
violation is fixed by the matching at my and it does not
change at lower scales.” In addition, the potentially large
QCD corrections vanish at leading order for all the WCs in
Egs. (22)—(30). The quark current in Egs. (25)—(28) does not
renormalize, up to terms chirally suppressed by quark
masses. Therefore the only effect of the RG evolution from
my to m, amounts to small QED corrections of order
a/(4x)log(my/m,) < 1%, which can be safely neglected
in our analysis. In models other than the seesaw, the QED

’If the analysis is extended to dim-8 operators, two four-
fermion operators can be combined in a “fish” diagram, which
may induce additional flavor violation. We neglect such sub-
leading effects here.
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and QCD evolution of WCs from my, to the charged-lepton
mass scale can be relevant, see, e.g., the analysis of flavor-
violating observables in [51].

III. PHENOMENOLOGICAL IMPLICATIONS

We aim to employ the seesaw EFT, derived in Sec. II,
to compute various leptonic observables at leading order.
Let us comment on the size of the next-to-leading correc-
tions that we neglect. For observables induced at tree level,
the error is relatively suppressed by a loop factor times a
log. Similarly, those induced by finite one-loop diagrams
(the dipoles) receive corrections suppressed by an extra
loop times a log. In contrast, observables generated by the
one-loop RG evolution, and so are at leading-log order,
receive finite one-loop corrections whose relative size is
~log=!(M/my,). Therefore, when M is close to the TeV
scale, the error may become large, as we will discuss in
some specific cases below.

It is instructive to begin with some general consider-
ations on the relative size of C(‘f;, and S5, defined in Eqs. (4)
and (5). The former is bound by the smallness of neutrino
masses, [(m, )| = |C(‘f;;|1)2/(2A) < 0.1 eV. Consequently,
the contributions to dim-6 WCs proportional to W, defined
in Eq. (8), are too small to have any observable conse-
quence in all processes other than oscillations. Thus, in the
following we will systematically neglect them relative to
the terms proportional to R, defined in Eq. (9).

A complementary question is whether the absolute size
of S, is constrained by the smallness of neutrino masses,
that is to say, whether the limit C(‘;V/} — 0 imposes some
restriction on the size of S,4. This limit can be justified by
an approximate lepton number symmetry, U(1),, which is
realized, e.g., in the inverse seesaw [15—17]. For phenom-
enological purposes one can even be more general and
consider the limit C;‘;} — 0 as a tuning of the seesaw
parameters, which may or may not be justified by an
underlying symmetry (see, e.g., the discussion in [9]).
Thus, we solve the system of equations

nS
Z YiaYi/;'M[_l =0, a,f=e,u,r1. (32)

i=1

For ny = 2, the general solution for the neutrino Yukawa
coupling matrix reads

1 A M
= e | (Ae A, 4 S —1
Y <:|:l %)( e u T):>Saﬁ M% <1+M2>7
(33)

where 4, , . are arbitrary numbers that can be taken as real
and positive, by choosing the phases of /;, , .. For ng = 3,
the general solution of Eq. (32) reads

(Ae Ay Ac )

YWy M, M,
Ses =L 1+ |2P L4 1+ 225 ), (34
= Sap <+IZI M2+\ +z|M3 (34)

where z is an arbitrary complex number. Thus Eqs. (33) and
(34) give the general analytic result for the dim-6 Wilson
coefficients, Sy, in the limit of a vanishing dim-5 operator,
for ny =2, 3, respectively. To our knowledge, such expres-
sions were not previously stated in the literature. The
contributions of the two (three) sterile neutrinos to S add
constructively, so no cancellation is possible. Since the
general solution for Y is factorized (column times row),
one finds that the matrix § is factorized as well, S5 o 1,44,
so only three entries of S are independent. In particular, the
lepton-flavor-conserving entries determine the lepton-
flavor-violating onmes, S5 = \/SyeSps. Note that these
considerations exactly apply to R, as well, since the
factors log(M;/my) affect the overall scale in a flavor-
universal way.

For ng > 3, there exists a factorized solution of Eq. (32)
for Y, which is a straightforward generalization of the
cases n, =2, 3, with n; —2 free complex parameters,
24y ++yZn,—2, In addition to the three real ones, 4, ;.
However, such a factorized solution is no longer the most
general, for we cannot in general write Y in a compact
form. For instance, the n, terms that contribute to Eq. (32)
may cancel each other within separate subsets. In general,
entries of § obey a Cauchy-Schwarz inequality, |S,4| <
/SaaSpp> SinCe S5 is a positive semidefinite matrix. In
particular, a diagonal entry S, is zero if and only if Y;, = 0
for i =1,...,n, and this implies S,; = 0 for any f. In
contrast, the off-diagonal entries can vanish, suppressing
LFV processes, while the diagonal ones are nonzero. These
results hold for R4 as well.

An example with n; =4 where LFV is suppressed is
given by two Dirac pairs of sterile neutrinos with diagonal
mass matrix M = diag(M, M, M5, M,). In the limit of
unbroken lepton number U(1),, one finds

Yla
+iY Y1, Y1 2V3Y
y = B ISP Ll N R
Y2a Ml M2
+iYs,

where only one of Yy, and Y,, can be taken to be real.
Consequently, some off-diagonal entries of S can vanish.
For instance, imposing an additional U(1), symmetry with
g.(Ny)=1 and ¢,(N,) =0, one finds Y, =Y, =
Y5, = 0, which implies S,, = S,, = 0, and all other entries
nonvanishing. In this case, LFV occurs only in the y — 7
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TABLE II. Experimental bounds on the seesaw parameters SW and R,,. For details on each bound see the

relative section.

Observable Experimental value Constraint
BR(Z - w) N, =2.9840 £+ 0.0082 [52] 1.05(8,, + SW) +8,535%x1073
my 80.379 £ 0.012 GeV [53] S,. + SW <13x1073
['(Z—efe) 83.92 +0.12 MeV [52] S,. + SW <0.53x 1073
ag® — aSM (=8.743.6) x 10713 [54] 8,593

[(Z - utu) 83.99 £ 0.18 MeV [52] S,. + SW <14x1073
a;’ — aM (2.74 £0.73) x 107 [55] 8,502
[(Z-rtr) 84.08 £ 0.22 MeV [52] S,. + SW <2.9x 1073
Gy |G 1.0018 + 0.0014 [56] 8,,<26x%x1073

G /Gp 1.0011 £ 0.0015 [56] SW <1.0x1073
G% /Gp 1.0030 £ 0.0015 [56] 8., <0.64x1073

sector. Further imposing a full U(1), x U(1), x U(1),
symmetry, with, e.g., ¢,(N;) =1, q,(N,) = 1 and other
charges vanishing, only S, and S, are nonzero: there is no
LFV and no corrections to the 7 —7 channel either.
Trivially, if one takes n, = 6 with three Dirac pairs of
sterile neutrinos, one can make S,; =0 for any a # f,
while keeping S, # 0 for each a. In these examples, zeroes
in S correspond to zeroes in R as well, because the
cancellation is enforced by a symmetry. More generally,
it may happen that an accidental cancellation occurs in
some Sa/,» but not in R{,ﬁ, or vice versa, and in this case LFV
may appear only in log-enhanced WCs, or only in those
with no logarithms.

We are now ready to discuss, in turn, each lepton
observable that sets constraints on the seesaw parameters.

The EFT framework elucidates the dependence of flavor-
conserving (-violating) observables on the (off-) diagonal
entries of the matrices S or R. Therefore, the EFT approach
enables a quick and direct comparison between bounds on
different observables, in particular between those which
conserve and violate flavor. We will begin in Sec. III A by
discussing electroweak-scale observables, that is, Higgs
and Z decays into leptons. We will then discuss low-energy
processes involving charged leptons: flavor-violating
decays and scatterings in Sec. III B and flavor-conserving
observables (dipole moments and tests of the universality of
the Fermi constant) in Sec. III C. We summarize all the
constraints from flavor-conserving processes in Table II
and all those from flavor-violating ones in Table III, in
terms of upper bounds on the dimensionless parameters

TABLE III.  Experimental bounds on the seesaw parameters S‘Qﬁ and Raﬁ for a # f. Bounds in purple are expected
future limits. For details on each bound see the relative section.

Observable Experimental upper limit Constraint

BR(h — ep) 3.5(0.3) x 107* (95% C.L.) [57,58] |1A?eﬂ\ <81(24)

BR(Z — ep) 7.5x 1077 (95% C.L.) [59] |keﬂ| <0.065

BR(u — ey) 4.2(0.6) x 10713 (90% C.L.) [60,61] 1S, < 6.8(2.6) x 107
BR(y — eee) 1.0 x 10712(107"%) (90% C.L.) [62,63] IR,,| $5.6x1075(5.6 x 1077)

7 % 10713 (90% C.L.) [64]
4.3 x 107'12(107"8) (90% C.L.) [65-67]
1071% (90% C.L.) [68]

IR,,| <9.7x 107
IR,,| <3.5x1075(1.7 x 107%)
R, | <24 %107

BR 6.9(0.3) x 1073 (95% C.L.) [57.58] IR,.| <22(4.5)
BR(Z — et) 9.8 x 107 (95% C.L.) [69] IR,.| <0.24

BR(z = ey) 3.3(0.5) x 1078 (90% C.L.) [70,71] IS,.| <4.5(1.8) x 1073
BR(z — eee) 2.7(0.05) x 1078 (90% C.L.) [71,72] IR,.| £0.022 (3.0 x 1073)
BR(h — pr) 0.014(3 x 1073) (95% C.L.) [58,73] IR,.| <31(4.5)
BR(Z - ur) 1.2x 1075 (95% C.L.) [74] IR,.| <0.26

BR(7 — uy) 4.4(0.3) x 107 (90% C.L.) [70,75] 1S,.| <5.2(1.4) x 1073
BR(7 = puuy) 2.1(0.1) x 1078 (90% C.L.) [72.,75] IR,.| <0.019 (4.2 x 1073)
\d,| 1.1 x 107% ecm (90% C.L.) [76] IIm(S., 8,.S,.)| < 0.02
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Saﬂ = m%VSaﬂ, Raﬂ = m%VRaﬂ. (36)

In Sec. IID we will present summary plots for all the
constraints, assuming the factorized solution for Sa/; and
IAQO,ﬂ where off-diagonal entries are determined by the
diagonal ones.

Previous analyses of the seesaw phenomenology and the
correlations among the various observables were per-
formed, e.g., in [77-80], without using EFT techniques.
An EFT analysis setting limits on the individual elements of
S‘aﬂ can be found in [21]. The RG evolution of the theory
was neglected, thus fewer observables were considered.
Aspects of seesaw EFT phenomenology have also been
studied in [18-20,22,23]. We generalize and update these
results by including lepton observables generated at leading
log, for arbitrary values of the seesaw parameters, and we
highlight novel correlations that sharply emerge from the
EFT description. Recently improved experimental results
for several observables also enable us to derive more
stringent constraints on the seesaw parameter space than
previous analyses.

A. Electroweak-scale observables

1. Higgs-boson decays into leptons

We focus on Higgs-boson decays into charged leptons
since decays to neutrinos are suppressed by the smallness of
the neutrino mass. Seesaw-induced corrections to flavor-
conserving Higgs decays into quarks are also ignored as they
lead to similar bounds, which are in any case overcome by
more stringent bounds obtained in subsequent sections.

To derive the corrections to the charged-lepton Yukawa
couplings, one should account for the effects of several
dim-6 operators induced by the seesaw at the electroweak
scale my. On one hand, after electroweak symmetry
breaking the Higgs-boson kinetic term receives corrections
from CHP and CH" (see, e.g., [29]), therefore one needs a
field redefinition to restore a canonical kinetic term,

1 2
hey = {1 + (cHD 4CHD> Hh (37)

On the other hand, the operator Q¢ corrects both the

charged-lepton mass matrix and the charged-lepton
Yukawa couplings,

Log D —eiq| (Y n ) 2
eff D —€Lq e,aﬂ_ca/j 2/\2 E
302\ h
+< eap — CH ) SM]eRﬂ+Hc

.

=—€Lq |:m(15(1/5 +

+ H.c., (38)

where in the third line we chose a basis where the charged-
lepton masses are diagonal. Combining Eqs. (37) and (38),
one can extract the charged-lepton Yukawa couplings to the
physical Higgs boson, 4, in the seesaw,

2
mh \/—mﬂ
Yg,a/} ~ |:6aﬂ + (24 5 [R]éaﬁ 16 2R ﬂ>:|

v

(39)

where we took the expressions for Cf2, CH5 and C¢¥ in
Egs. (19), (20), and (14), respectively, and expanded to
retain only dim-6 corrections.

We can thus compute, at leading-log order, the Higgs
decay widths. Let us begin with the LFV channels,
h— ¢5¢5 with a # p.* Defining T'(h — £,¢5) =T(h —
£ats) +T(h— €5¢5), one finds, for my, > my; > m,,

m
F(h’ - fafﬂ) = é |Y£l.(l/3|2
i
~ 8x(167)20? Repl™ (40)
Our EFT result agrees at leading-log order with an exact
one-loop calculation in the inverse-seesaw model [83], as
expected. In fact [83] the coefficient of the log-enhanced
term is larger than the finite piece of the same order, which
is O(Y?/M?), and for |Y| < 0.3 it is also larger than the
O(Y*/M?) finite piece. Thus the leading-log estimate is
accurate even for M ~ TeV. The width of LFV Higgs
decays in the seesaw was also computed in [84,85]. The
LHC set upper bounds on the branching ratio of LFV Higgs
decays [53], assuming that the total Higgs production and
width is SM-like. In the seesaw, the latter receive correc-
tions from dim-6 operators, which thus modifies the LFV
branching ratios at dim-8 order and can thus be neglected.
The corresponding bounds on |kaﬂ| are feeble even for
electroweak-scale sterile neutrinos, see Table III.
The Higgs decay width into same-flavor leptons is

m%RW>

(41)

P(h = £560) = e [V
T

2

mpniy 2

+—1 2 2[R
“m _
1672 \3 "

T 8w

Presently only & — 7z has been observed [86,87], with
branching ratio [o), - BR(h — 77)**P] = (1.12 + 0.23)]0,

BR(h — 77)5M] [53]. The seesaw modifies not only the
h — 77~ decay width, but also the Higgs production cross
section oy, and its total decay width I';,, both of which enter

*A detailed, model-independent analysis of these channels is
provided in [81,82]: in some cases they can be competitive with
low-energy LFV processes. We will show this is not the case in
the seesaw.
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the experimental result. Even adding these corrections, the
constraint on the linear combination of tr[R] and R,, is too
weak to be relevant.

2. Z-boson decays into leptons
We adopt the standard parametrization for Zff vector
and axial couplings,

e
28,Cy

L;=- Z"f_ay,, (g}/‘:aﬁ - g?,a/;YS)fﬂ- (42)

The SM predicts g;(aSﬂM) = [T5(f1) — 2530(f)]|8,s and

g?f}d ) = T5(f1)d4p at tree level. The Z-boson couplings,

gV, are corrected by seesaw-induced dim-6 operators
involving fermions. In contrast, the dim-6 operators that
may directly correct gauge couplings and gauge boson
kinetic terms are not induced by the seesaw at one-loop
leading-log order. Still, the Z-boson partial decay widths
are indirectly affected by a tree-level shift of the Fermi
constant, Gr. The latter is determined experimentally from
the decay u — ev,v,, with Gr=1.166x 107> GeV~2.
Due to the seesaw contribution to low-energy four-fermion
operators (discussed in detail in Sec. III C 3), the measured
quantity is

1
Gr~ G§"M - m (S€€ + S/m)’ (43)

at linear order in S,. The Z partial widths are proportional
to Gy and, in addition, they depend on s,,, which can be
expressed as a function of a, my, and Gp. While the
experimental determination of the first two parameters is
not affected by the seesaw, the determination of Gy is,
therefore s, is shifted as well. A useful, general discussion
of the electroweak precision constraints on the SM EFT can
be found, e.g., in [88].

Let us first consider Z-boson flavor-conserving decays
to charged leptons. We find that the correction due to the
shift in G reads

0(Z - ¢it;)=T(Z - ¢ ¢7)M
o 1+1}2 1 —2s2 — 45t
4 (1-2s2)(1 —4s2 + 8s})

(See + S/m) ’
(44)

where sin?26,, = (2v/2za)/(Gpm%).” Comparing the SM
predictions with the precise partial-width measurements

*We have neglected the additional corrections to the Z-boson
couplings to charged leptons, which arise via the seesaw RGEs,
because they are loop suppressed: they will be relevant for
Z-boson flavor-violating decays, see Egs. (48) and (49).

made at LEP [52], and allowing for a 2¢ deviation, one
reaches the stringent bound

See +8,, <053 x 107, (45)

As can be seen in Table II, this is the strongest constraint
on the flavor-conserving entries of S. It comes from
the measurement of I'(Z — ete™), while the decays
Z — utp~, T set comparable limits.

Let us discuss next the Z-boson invisible width. The Z
couplings to neutrinos receive a correction from the
WC [cHU) — cHIG)], which is induced at tree level by

the seesaw. The SM values, gl‘//,EISﬁM) = gfﬁf}” = 15,5, are
shifted by

g = g =~ (M _ ) g 4
Gv.ap = u.aﬁ__m( afp T “ap )__Z ap ( )

Combining this effect with the shift in G, we find that the
effective number of light neutrinos is given by

v = S T2~ v NZ = 6o

v D(Z-=2¢t;) T(Z-v0)su

1 —5s52 + 11s% — 1255,
(1 =2s2)(1 —4s2 + 8s%)

~3—02S,, —

V?(See + Syp)
(47)

at linear order in S,; and neglecting one-loop suppressed
seesaw corrections. The coefficient of (S,, +S,,) differs
from the one of S, due to the shift in G. Thus our result is
more accurate than in [89], where a flavor-universal shift in
N, is derived. We also correct [80], which uses a definition
of N, different from the experimentally measured ratio of
decay widths. The LEP measurement, N, = 2.9840 +
0.0082 [52], relies on measurements of the Z total width
and decay width into charged fermions. Demanding that N,
is within the 20 experimental interval sets a stringent
bound, given in Table II.

The seesaw also induces flavor-violating Z-boson cou-
plings to charged leptons, via the WCs [CH{!) 4 CHIO)]
and C*¢, which arise at one-loop via the seesaw RGEs. We
find, for a # f,

HI(1 HI(3 e
UZ(C(I/}( ) + C{l/}( : + CZ})

g‘f{,aﬂ == A2
1 17+ .
L Uiy 48
1622 6 7 (48)
Hi(1 HI(3 .
gA o UZ(Ca/j< ) + Caﬁ( ) _ Cglﬁ)
Caf 2A2
1 17+12 .
o g (49)

1622 6

095040-10



EFFECTIVE APPROACH TO LEPTON OBSERVABLES: THE ...

PHYS. REV. D 99, 095040 (2019)

The width for LFV decays, defined by adding the Z —
£yt and Z — £,¢;; channels for a # f3, is given by

3
m
F(Z - f(ll’ﬂ[)’) 2?12)2 (|g:’{,aﬂ|2 + |g?.a[i|2)

N m}, 17412
" 3av*(167°)? 6

2
) Rl (50)

Note that the shift of G, described by Eq. (43), affects the
LFV width (50) at higher order in S only, thus it can be
ignored. Our result agrees at leading log with a calculation
in the inverse seesaw [90]. The LFV Z-decay width in the
seesaw was also computed in, e.g., [91]. The experimental
bounds [53] translate into upper bounds on IAQ,,ﬁ, which are
summarized in Table IIL
Equations (40) and (50) imply, for mz > my,,

BR(h = £,t5) 3mymg (6 \2TY, 0.08 m}
BR(Z - ¢,¢5) 8mymy, \17+1%) T}y, m?’

(51)

which is a sharp prediction of the seesaw at leading-log
order. The two LFV decays are controlled by the same
combination of seesaw parameters, but the Higgs-boson
decays are chirally suppressed. The present experimental
sensitivity to LFV Higgs branching ratios is ~10° lower
than for the Z, see Table III. We conclude that, in the
seesaw, LFV Higgs decays are completely out of the
experimental reach.

Finally, we note that flavor-conserving Z decays to
quarks are also shifted, due to the seesaw correction to
Gr, while flavor-violating Z decays are induced at one
loop, since the WCs CHa(l)  CHaB) CHu CHA are all
generated at that order. However, decays to quarks are
measured less precisely than leptonic ones, thus the limits
are correspondingly weaker and we neglect them here.

3. W-boson mass

The seesaw correction to G in Eq. (43) also shifts the
prediction of myy, since the latter can be written as a
function of G5 and the other most precisely measured SM
parameters, a and mZ.6 One finds

4

s oA
— (S S (52
87ra(1—2sfv)( ce S |- (32)

Here the SM prediction, including radiative corrections, is
given by mjM = 80.362 + 0.008 GeV [92]. Equation (52)
is consistent with [80,89,93], and it should be compared
with the very precise kinematic measurement of my, [53].

We acknowledge Enrique Fernandez-Martinez for drawing
our attention to this observable.

The corresponding bound on (S‘ee + S‘W) is reported in
Table II, where we allowed for a 20 deviation between
theory and experiment.

B. Low-scale flavor-violating observables

1. Charged-lepton radiative decays

As shown in Secs. II A and II C, the seesaw induces a
nonzero electromagnetic dipole WC, C,, .4, via one-loop
matching at the scales M and my, respectively. The
branching ratio of charged-lepton radiative decays is
given by

m3e?

BR(fa - fﬂV) zm(‘ce}/,aﬂlz + |Cey.ﬁa|2)
aemmg

~__emTa g2 53
36(167:2)2Fa| ol (53)

where I, is the total width of Z,, and in the second equality
we replaced Eq. (30) in the limit C;‘;} — 0. Our result
reproduces the original computation [32,33] at the lowest
order in the matrix e = M~'Yv/ /2, that is, in the limit
where m,, vanishes and the active-sterile mixing is approxi-
mated by € (see Appendix A for a systematic derivation of
higher orders, corresponding to higher-dimensional oper-
ators in the EFT). The experimental bounds set very
stringent constraints on |S‘a,;| for a # f, which we report
in Table III. The strongest one, BR(u — ey) < 4.2 x 10713
at 90% C.L. [60], is expected to improve by an order of
magnitude in the future [61], while radiative = decays have
branching ratios constrained to the 1078 level.

It is interesting to study the correlation between charged-
lepton radiative decays and LFV Z decays discussed in
Sec. III A 2, which are log enhanced. Indeed, Egs. (50) and
(53) imply
BR(Z = £4fy) _mimiy(17 + 2)2 T, | Zi Spglog it

BR<fa - fﬂy) B 37”}2aemmg 1—‘Z | Zi S;ﬂ|2
N mym3, (17 + 12)*T, log? M
3nv’a,,m', my
M 0.12(a =
~ log? — x { (@=7) , (54)
my 1 0.02(a = )

where the second equality is accurate only in some limits,
e.g., for M; ~ M for all i, or for |S] ;| > |S{lﬂ| forall j #1i
(in this case M = M;). The present experimental bounds
imply that, in the e —y (e — 7, u —7) channel, the con-
straint on |R,4| from Z decays is about 4 (2) orders of
magnitude weaker than the constraint on |§aﬁ| from u — ey
(t — ey, T — uy), see Table III. The only way to avoid this
conclusion is to invoke a cancellation in ZiS;ﬂ, while
different values of log(M;/my,) avoid the cancellation in
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the Z-decay amplitude. As discussed below Egs. (33)—(35),
this is possible only for n > 3.

2. Lepton decays into three leptons

Another well-known flavor-violating process generated
by the seesaw is £, — ¢4 f; ¢ decays. The general expres-
sion for the branching ratio in EFT'is given in [94]. In terms of
WCs generated by the seesaw after matching at my, (see
Sec. I1 C), we find, up to chirally suppressed terms,

|

mS
BR(¢, = £5¢5¢5) 5

8e

a

where in the final equality we neglected the contributions
involving the dipole, as they are not log enhanced (we
checked that the log-enhanced terms dominate even for
M ~ TeV, and in any case we did not compute consistently
the one-loop finite parts for the other WCs), and we used
Egs. (22) and (23). This result agrees at leading log with the
highly nontrivial one-loop seesaw calculation of [95] in the
limit where m, vanishes. The corresponding bounds are
collected in Table III. The processes 7 — e(u*u~) and 7 —
u(ete™) give very similar bounds to 7 — 3e and 7 — 3y,
respectively. Decays which violate flavor by two units,
7~ > ute e and ™ — ey u~, are not generated at
leading-log order by dim-6 operators.

These rare decays are clearly correlated with other LFV
decays, in particular,

BR(Z = Culy)  my®  162°(17+15)* T,
BR(¢; = £5¢5¢5)  m3 3(27—96s;, + 1285),) T,

32(a=71)

B { 0.57(a=u)’

(56)

The experimental bounds on three-body decay branching
ratios are much stronger (especially in the e — u sector)
than those from Z decays, which are therefore completely
out of reach as long as the leading-log approximation is
accurate. Comparing with Eq. (54), one notices that
BR(¢, = 3£4) can be as large as BR(Z, — ¢py) for
log(M/my,) ~ 5. The expected future limit BR( — 3e) <
10716 [63], 4 orders of magnitude tighter than the current
bound [62], should overcome the y — ey constraint, see
Table III. The only more stringent bound may come from
1 — e conversion in nuclei, to which we turn now.

3. The u — e conversion in nuclei

The seesaw generates at one loop 2¢2¢ operators, as
well as the electromagnetic dipole operator, which both

~ ICV-LL 2 4 |CVLR
9671'(1671'2)A4Fa{ (Coc pappl” + |

% v V.LL
+ m_ Re (Ce}/.ﬁa ﬁ (4Ceeﬁaﬂﬂ

TABLE IV. Nuclear form factors and capture rate for relevant
nuclei [96].

17Au 1Al 8Ti
Dy 0.189 0.0362 0.0864
1%¢ 0.0974 0.0161 0.0396
v 0.146 0.0173 0.0468
™ [GeV] 8.7 x 10718 4.6 x 1071 1.7 x 10718

2

2328 (g Yo
ee.fapp m2 gm% 4 e‘y,/)'a\/z

a

Levir )] & my(27 — 9652 + 128s,)
copapp 36704 (167%)°T,

|Rap’ 2

, (55)

|

contribute to y — e conversion in nuclei. Recall that
we neglect 2¢g2¢ scalar operators, as they are Yukawa
suppressed, and retain only vector ones, see Sec. IIC.
The u — e conversion rate, ['y = 6(uN — eN), is given
by [96,97]

5
ny,

| p— DNCey.eﬂ”
AT

V2m,

. 2
HAD VST (A Clili + FHCLE )| - (57)

X=L.R

i=p,n

where the nucleon vector form factors are simply fy,, = 2,
v, =L fi, = 1, f{, = 2, while the nuclear form factors

Dy and V§;" are given in Table IV, for the nuclei that are
most relevant for current or future bounds. The matching in
Sec. I C gives

Clitk  CULR, 1 6452 -27 .
VZ” .2” z_2SVt172Reﬂ’ (58)
A A 8 9v
Ciitopaa  Cedropaa |, 1 27=3283 59)
A? A T8z 92 T
while C,, ., is given in Eq. (30) and is subleading as it is not

log enhanced.

Our result agrees at leading-log order with the explicit
seesaw calculation performed in [79], which was derived
assuming all heavy-neutrino masses are equal. As pointed
out in [79], the one-loop finite part is accidentally large and
may cancel the log part for a tuned, nucleus-dependent
value of M, typically around the TeV scale, e.g., M =
4.7 TeV for a 7]Al nucleus. Only in this special case does
the leading-log result give a poor estimate of the rate.

One can define a branching ratio, BR(uN — eN) =

Ty /T, where Ty™ = 6(uN — v,N') is the muon capture
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rate. As shown in Table III, the present experimental
constraints on g — e conversion already give the strongest
bound on |IA€6M|, which is very close to the bound on \S'eﬂ|
from u — ey. The limits from future y — e conversion
experiments [66—68] are expected to be the most stringent
ones. As usual, a cancellation in |R,,| and not in |S,,|, or
vice versa, cannot be excluded in the nonminimal scenarios
with n; > 3; see the discussion below Eq. (35).

C. Low-scale flavor-conserving observables

1. Magnetic dipole moments

The shift in the charged-lepton anomalous magnetic
dipole moment, a,, is related to the electromagnetic dipole
WC by

247%

4dmyv

Aaa = mRe(Cey,aa) =

(60)

where we replaced Eq. (30) neglecting the loops of active
neutrinos, which vanish as m2. Our EFT result agrees with
the seesaw one-loop computation of [98]. Besides the loop-
level contribution of sterile neutrinos given by Eq. (60), there
may be indirect corrections to a, due to shifts induced by the
seesaw on SM parameters, specifically the Yukawa cou-
plings given in Eq. (39). In the SM computation of the
magnetic moment, a Higgs-boson exchange enters at one-
loop order, inducing a shift Aa, ~ O[m3Rzs/(167%)?]. This
correction is loop-suppressed compared to Eq. (60). More-
over, as the consistency of the EFT requires Rﬁﬁ < 1, this
correction is smaller than the current experimental precision
on Aa, for a = e, u, 7, thus we can safely ignore it.
Equation (60) implies that the seesaw predicts a negative
shift in the magnetic dipole moment of charged leptons,
which is the opposite direction with respect to the (g —2),
anomaly, a; " — a;™ = (2.74 £ 0.73) x 107 [55] (see also
[99]). A seesaw contribution of S‘W ~ 0.1k worsens the
anomaly by ~ko: in Table II we display the bound obtained
taking k = 2. As the measurement of Z — v imposes

A

the constraint S, < 3.5 X 1073, the seesaw correction to
(9—2), is negligible.

Recent improvements in the measurement of the fine-
structure constant [ 100] and in the theoretical prediction for
(9—2), [101] has led to a 2.4¢ discrepancy in (g —2),,
ag® — a™ = (=8.7 + 3.6) x 107'3. This anomaly would

be reduced by lo for :S'eez2.1 and it would fit for

A

See ®5.1: in Table Il we display the very weak 2¢ upper
bound on the seesaw contribution. However these large
corrections are ruled out by other constraints, most notably
Z — vi. The size of the effect is rather suggestive of
(nonseesaw) new physics close to or below the electroweak
scale. Finally, the value of a, is poorly measured due to the
very small 7 lifetime, and it does not set any relevant

constraint on S,.

2. Electric dipole moments

The electric dipole moment (EDM) of charged leptons,
d,, is related to the electromagnetic dipole WC by

2

da = %Im(ce%aa)' (61)
In the seesaw, the one-loop contribution to C,, .4, given by
Egs. (6), (30), and (31), is real, therefore the EDM vanishes
at one loop. Even beyond the dim-6 EFT approximation,
the one-loop contribution remains real. We checked that
two-loop diagrams contributing to the EDM must be finite.
Indeed, applying the RGEs of [27-29] twice to the seesaw
WCs computed in Sec. II does not induce terms of order
~(a/4r)*log*(M/my) in C,,. The EFT contributions to
the dipole of order ~(a/4r)?log(M/my,) are identified in
[102] and are not generated by the seesaw.” Given the very
stringent experimental constraint on d, [76], finite two-loop
contributions to the EDM may be phenomenologically
relevant, and we estimate them below.

To find the leading contribution to the EDM, we must
identify the shortest chain of Yukawa couplings that
matches the transformation properties of the dipole bilinear,
(I,6"eg), and whose diagonal entries have a nonzero
imaginary part. The anti-Hermitian part of such a chain is
purely imaginary on the diagonal and thus gives the
parametric form of the EDM. The minimal combina-
tion that satisfies these requirements is the commutator
[YTyyly,y'y,YtyY]Y, [103,104]. For Dirac neutrinos
(M = 0), this is the whole story, however, in the seesaw
each pair Y'Y is associated with a sterile neutrino
exchange, which is integrated out at scale M, therefore
one must take the familiar replacement Y'Y —
Y'M~'M~'Y = S. It is an instructive exercise to check
diagrammatically that out of the nine Higgs lines associated
with the nine Yukawa couplings, at least four must be
connected to form two loops. Thus, we obtain an estimate
for the finite two-loop contribution to the electron EDM,

i ~—2 () m((syiv.s.5)..)
~N o oovn\ A el e, 0], )M,
© (167’ \v2
2em,v? 5 5
= (1671’2)2 (m‘r - mM)Im(Se‘rSmSﬂe)

~5.7 x 1078Im(S,,S

S ye) €Ccm. (62)
To our knowledge, this is the most accurate analytic
estimate of the seesaw contribution to the electron EDM
available in the literature. It corresponds to a dim-10

operator in the seesaw EFT. The experimental upper bound

"This is consistent with the renormalizability of the seesaw
Lagrangian: the lowest-order contribution to the EDM must be
finite, as there is no counterterm to cancel its presumed
divergence.
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on d, leads to the mild constraint |Im(3‘e,,3‘m§m)| <0.02,
reported in Table II. The charged-lepton EDMs were
calculated in the seesaw in [105], although it is difficult
to compare our analytical estimate with their numerical
results.

The stringent constraints on the flavor-violating param-
eters |3‘aﬁ|, imply a severe suppression of this seesaw-
induced EDM, |d,| < 10737 e cm, comparable with the SM
contribution |dSM| ~ 1073 ecm [106,107]. We note that
for ny =2, 3 sterile neutrinos, in the limit where light-
neutrino masses vanish, the matrix § is real [see Eqgs. (33)
and (34)], therefore the above contribution to the EDM
vanishes. Then a contribution to d, not suppressed by m,,
can only be achieved via higher loops involving quarks,
which are further Jarlskog suppressed, as in the SM.
By contrast, for n; >4 the anti-Hermitian commutator

[SY}Y,S.S],, can be nonzero.

3. Universality of lepton decays
and the W-boson mass

The four-fermion Lagrangian which describes general
Cs — €, Vpv, decays is

4GM -
LD VR (UarpPLE o) (€ 7" PrLug)
CVLL
v (Gay ,PLEs) (C P P 63
+ A2 (l/a}/p L 5)( yy Ll//)’)’ ( )
with Cfe’zzyé = Cl/e‘%j;y. This low-energy WC receives a

tree-level contribution from the seesaw, given by Eq. (29),
which takes the form

V.LL
ve.afys 1

A2 - 5 (Sa&(syﬁ + 5(15Sy/})' (64)
We will neglect seesaw one-loop corrections in the follow-
ing. The neutrino flavor is not detected in experiments, thus
the Fermi constant measured in ¢ — evi decays is

1 2
G2 ~ GSM - See + S
F F 4\/5( ﬂﬂ)

1
+§(2|Se/4|2+ |Ser|2+ |S/41|2)' (65)
This result was already displayed in Eq. (43) at linear order

in 4. Similarly, the effective Fermi constants for 7 — e
and 7 — ubv decays are, respectively,

1 2
(G%T)z = G§7M - m (See + STT)

1
+ 3_2(2|Ser|2 + |Se/4|2 + |Sm'|2)ﬂ (66)

. 1 2
(Glllf )2 = G%M - m <S;t/4 + Srr)

1
+ ﬁ (2|Sﬂ‘l’|2 + |Se/4|2 + |Sef|2)' (67)

Bounds on the universality of ¢, — £giv decays
give [56]

G[;T ~ See = SW

G¥  42Gp

=0.0018 £ 0.0014,  (68)

G¥ . Su—Sa
GF B 4\/ZGF

= 0.0011 £ 0.0015, (69)

G'* S, — S
F_ 12 "7 —0.0030£0.0015,  (70)
Gr 42G

where we retained only terms linear in S,4. In Table II we

report the bounds on each Saa from universality constraints,
assuming the other entries are vanishing. Since there is a 20
discrepancy with the SM in Eq. (70), we conservatively use
30 intervals from Egs. (68)—(70) to set our bounds. It turns
out that G universality is a powerful constraint on S,,,
comparable to or even slightly more stringent than the
measurements of my, and Z-boson partial widths. Note that
the constraint is relaxed for S‘ee o~ S‘W ~ S‘r‘r'

Lepton universality can be tested with comparable
accuracy in pion and kaon leptonic decays [56]. These
bounds were exploited to constrain the seesaw parameters,
e.g., in [80]. Here we restrict ourselves to purely leptonic
observables, as the hadronic bounds are either weaker or of
the same order.

D. Summary plots

In order to graphically compare the various constraints,
we assume Syps = /SeeSpp and Ryp = /Ry Ry, Which
hold in general when n; = 2 or 3. Our results in the e — y,
e—1, and u—7 sector are summarized in Figs. 3-5,
respectively. We plot the bounds as a function of R,
and fiﬁ/}, setting IAiw = 0, where a # f # y are the three
flavors. For n, > 3, the off-diagonal entries satisfy
|Rus| < \/RoaRpp: see the discussion around Eg. (35).
This means that the bounds from LFV observables shown
in the figures can be relaxed to an arbitrary extent, relative
to those from flavor-conserving observables.

In order to determine S'aﬁ as a function of Raﬁ, in the plots
we fix the log factors by taking a unique seesaw scale,
M; =1TeV for all i=1,...,n,. This allows one to
compare log-enhanced observables with those that do
not carry a log. As M; increases, the bounds with no log
enhancement become relatively weaker. Equation (9)
implies
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FIG. 3. Constraints on the seesaw EFT, in the R,,—R lane,
ee n

assuming R,, = (R,.R,,)"? R, =0, and M; =1 TeV. The
purple, dark blue, blue, and green solid lines represent bounds
from LFV observables: Z — ey, uy — eee, p — ey, and u — e
conversion, respectively. The dashed lines of the same colors
represent corresponding future sensitivities, where available. The
orange, pink, brown, and red lines represent bounds from flavor-
conserving observables: Z — ete™, G universality, my, and
Z — vi, respectively. As one enters the gray-shaded region, the
validity of the EFT description becomes questionable.
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FIG. 4. Constraints on the seesaw EFT, in the R,,—R,, plane,
assuming R,, = (R,.R..)"?, R,, =0, and M; =1 TeV. The
conventions are the same as in Fig. 3.

[R5 ~0.016 <0.016 - n,,

n,\'
Z Yifa Yiﬂ
i=1

(M; =1 TeV

fori=1,...,ny), (71)

where the inequality is a conservative perturbativity bound,
|Yq| < 1. Sterile neutrinos with mass below 1 TeV are also
problematic in our approximation, as the one-loop leading-
log corrections become comparable to the one-loop finite
parts that we neglected. Hence, in the figures the region
|R,,ﬁ| > 0.016 is shaded in gray, as the computability of our
EFT becomes questionable.

For the e — pu sector (Fig. 3), the strongest bounds come
from the various y — e transitions, as long as both R,,,
RW > 1077. Under the specified assumptions, the best limit
comes from p — e conversion in gold and the strongest
expected future bound is from g — e conversion in
titanium. Constraints from flavor-conserving processes
become dominant for R,,, IA?W <1077, In this case the
bound from Z — eTe™ is the tightest one.

For the e — 7 (Fig. 4) and u — 7 (Fig. 5) sectors, we reach
the striking conclusion that flavor-conserving bounds set
the best limits on the seesaw parameters over the whole
parameter range. This agrees qualitatively with the con-
clusions of [80]. Our figures show that even the future
sensitivity of LFV ¢ decays is surpassed by present
constraints from Gy universality and Z — e*e™. The
dominance of flavor-conserving bounds is due to a combi-
nation of several factors: the flavor-conserving observables
are induced at tree level, while LFV decays proceed at loop
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FIG. 5. Constraints on the seesaw EFT, in the Rw—ﬁn plane,

assuming R, = (R, R.,)'?, R, =0, and M; =1 TeV. The
conventions are the same as in Fig. 3.
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level; the seesaw Lagrangian implies that off-diagonal R
cannot be larger than R,,; and the latter interferes with the
SM couplings, while the off-diagonal R4 do not. Indeed,
only the extraordinary experimental precision of searches
for 4 — e transitions (4-5 orders of magnitude stronger
than in corresponding searches of 7 — e, y transitions, see
Table III) enables flavor-violating bounds to become
dominant in part of the R,, — IAQW plane.

We recall that our plots assume only two nonzero diagonal
entries in R. Suppose that the third is also nonzero. In this
case, the bound from Z — v becomes stronger, since this
observable constrains a weighted sum of the diagonal ele-
ments. The bounds from my, and Z — £/ £, in Figs. 4 and 5
also become stronger with nonzero R,, and R,,, respec-
tively, as can be deduced from Table II. The bound from G
becomes weaker, however, since it probes the difference of
the diagonal entries. In particular, if all three diagonal entries
were equal, the G p-universality constraint would disappear.
On the contrary, constraints from flavor-violating observ-
ables are unaffected by the third diagonal entry.

Note that the bounds on R and § entries can be translated
into a bound on the seesaw scales M;, for any given choice
of the matrix Y. If, for instance, one assumes that Y is a
matrix of order one numbers and that there is a unique
seesaw scale, M, then y — e conversion in gold (titanium)
places the strongest current (expected future) bound,
M = 67(2000) TeV.

IV. SPURION ANALYSIS AND PERSPECTIVE

A. Implications of the seesaw flavor symmetry

We would like to investigate which predictions of the
seesaw EFT can be derived by symmetry considerations
only and which depend on details of the matching and
running procedure or on numerical accidents. To this end, it
is enlightening to perform a spurion analysis.

As is well known, the lepton kinetic terms of the
SM Lagrangian respect a large flavor symmetry, G; =
SU(3), xU(1),, xSU(3),, xU(1),,. Once the charged-
lepton Yukawa matrix Y, is introduced, G; is broken to the
product of lepton flavor numbers, U(1), x U(1), x U(1),.
The full symmetry is restored when Y, is treated as a
spurion field, which transforms under G, as Y, ~ (3_,.3,),
where our notation is (R [/, ], Rp[eg]), with R the SU(3)
representations and Q the U(1) charges. In the seesaw
with n; sterile neutrinos, the lepton flavor symmetry is

TABLE V. Transformation of lepton fields and couplings under
the seesaw flavor symmetry.

lL €p NR Ye Y M

SU(3)1L X U(I)ZL 31 10 10 3,1 3_1 10
SU(3),, x U(1),, 1, 3 1 3 1, 1
SU(ng )y, xU()y, 1o 1o F 1y F, S,

extended by an additional factor SU(n,)y, x U(1)y,. The
spurion transformation of the neutrino Yukawa coupling is
Y~ (5_1 , 1y, F,), while the Majorana mass term transforms
according to M ~ (1y,1,,S,), where F (S) stands for the
fundamental (two-index symmetric) representation of
SU(ny)y,, whose dimension is n [ng(n, +1)/2]. The
flavor symmetry assignments of fields and couplings are
collected in Table V.

The EFT operators Q; involving leptons transform non-
trivially under G, . By requiring that C'Q; is invariant under
G, one can derive the spurion transformation of the WCs C'
and, in turn, their parametric dependence on Y,, Y, and M.
Some general rules apply. Each coefficient C'/A" must
contain n powers of M~! for dimensional reasons, where
n = dim(Q;) — 4. As the entries of Y, are much smaller than
one, only the lowest order in Y, is relevant. If the entries of ¥
are sufficiently smaller than one, a perturbative expansion in
powers of Y is also meaningful. Note that powers of ¥ come
necessarily in pairs, corresponding to the “creation” and
“annihilation” of the sterile neutrino that is integrated out. In
addition, since the EFT applies at low energy, i.e., for
momenta k < M, every propagating sterile neutrino must
cost at least one power of M~!. This means that the
contraction (Y'Y),, is not allowed, and the sterile index
in Y,, must necessarily be contracted with a factor Mjfil.

In Table VI we display the representations of lepton
bilinears, and the associated operators. Let us start
by applying the above prescriptions to lepton-number-
violating operators involving the bilinear /;[;. It is easy
to show that C¥ ~ YTM~'Y is the unique dim-5 combi-
nation consistent with the seesaw flavor symmetry. This
reproduces the EFT result of Eq. (3), up to the combina-
torial factor 1/2. At O(M~3Y?), there is one spurion that
transforms as ~(6_,,1;), namely, Y'M~'M-“M-'y,
however, it is associated with dim-7 operators with two
derivatives and so does not contribute to m,. At O(M=3Y*),
there is CH/A> ~[YTM7'YYIM~VUM7'Y + (.07,
which is associated with the dim-7 operator, Q;y =
Qw(HH) [108,109]. Note that we have symmetrized in
flavor space because the representation 6 is symmetric.

TABLE VI. Lepton bilinears and their transformation under the
SM lepton flavor symmetry G;. In the third column we list the
dim-5 and dim-6 operators which contain each bilinear.

Lepton Gp

bilinear representation SM EFT operators

EZL (10’ 10)9 (80’ 10) Q[[, Q)(L}f)a Qle, QE(II:;)a Qlua Q]d
lL ¢R (3_1 ’ 31) QeH7 QeB? Q(’,W’ Qledqv leqz)
€rer (107 10)’ (_107 80) QHE’ Qee’ Qle’ Qeus Qed? Qqe
Il (65, 1p), (32, 1p) Ow, O

e (31731) B O

eReg (15, 6,), (15.3,) O
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This induces a correction to the neutrino mass matrix,
Amy, ~ (v*/4)CH /A3, The result fully agrees with the
diagonalization of the seesaw mass matrix at O(M~3),
which we derived in Appendix A, up to an overall factor
1/2, see Eq. (A12).

Turning to lepton-number-conserving operators, let us
first consider the bilinear , I,, which transforms either as
(19, 1y) or (8y,1y) under G, corresponding to the trace
over flavor indices and the traceless part, respectively.
The lowest-order seesaw spurion with these transforma-
tion properties is S,z = (Y'M~"*M~'Y),,, introduced in
Eq. (5). The spurion S has been extensively discussed in the
seesaw literature, see, e.g., [21,23,104]. In Sec. II, we
showed that WCs associated with [, [, are indeed propor-
tional to S, or tr(S)d,, or their log-enhanced versions, R
or tr(R)3,s. The bilinear I ex transforms as (3_;,3,). The
corresponding WCs receive a contribution C'/A% ~ S Y!or

RYZ, with a SM chiral suppression. The egep bilinear
transforms as (1y,1;) or (1y,8y), with WCs which are
doubly chiral suppressed, C'/A> ~Y,SY i or Y.RY .

At the next order in powers of ¥, namely, Y*M~2, there is
only one possible combination that transforms as Sz,
4(CVICY) 5/ N2 = (YIM~1Y*YTM'Y),,.° This spurion,
or rather its log-enhanced version, ZyW(,/,W, appears in
various loop-suppressed WCs of Sec. IIB, sometimes
contracted with Y, for operators involving ep. Recall that,
even for Y ~ 1, this spurion is necessarily very small as it is
proportional to m2.

Four-lepton operators transform as the product of
two bilinears, for instance Q ~ [(1o,1y) + (8¢, 1p)] x
[(19,1p) + (89, 1y)]. At leading order, C! ~ (RS + 6R),
which is reflected in Eq. (12). At the next order in powers
of Y and/or M~! there are pieces which transform under
larger representations of SU(3),, specifically the 10, 10,
and 27. One example is provided by the W,z term in
Eq. (12). These are negligible for our phenomenological
purposes. A similar discussion applies for the other four-
lepton operators, Q;, and Q,,.

Finally, WCs of operators without leptons may be
generated by the seesaw via a flavor-independent combi-
nation of spurions, (1, 1y). At O(M~2), this invariant is
obtained from R4 or W5, by tracing over pairs of lepton
indices, see, e.g., Egs. (19) and (20).

Note that the leading-order dim-6 spurion S,z is
Hermitian, so its diagonal entries are necessarily real.
One can show that this is the case for dim-8 spurions as
well, and complex flavor-diagonal WCs only appear at
dim-10, and only for n, > 3. We have shown this explicitly
for the dipole operator in Sec. III C 2. Diagonal phases are

¥Note that we discount the spurion Y'YY'M~"*M~1Y, which
has the correct transformation properties, since a Y'Y contraction
is forbidden in the EFT below M, as already explained.

present in lepton-number-violating WCs, such as COV['; or
dim-7 WCs, but their overall size is generally suppressed
by the smallness of m,.

We remark that the spurion analysis does not determine
whether a given WC arises at tree level or at one loop, with
or without log enhancement, or at higher order. This is
independent of the flavor symmetry: it depends on the gauge
and Lorentz properties of the associated operator. For
example, from symmetries one expects that Z-boson cou-
plings to charged and neutral leptons are shifted at the same
order. In reality, only the couplings to neutrinos are shifted at
tree level, because the couplings to charged leptons acci-
dentally cancel in the combination [CH/(1) — CHIG)],

B. Bottom-up analysis of lepton operators

Let us now enlarge our analysis from the seesaw case to a
generic new physics contribution to lepton operators. We
will assume that the ultraviolet theory induces one (or
more) spurion(s) in a definite representation of the SM
flavor symmetry, G;, and derive the main phenomenologi-
cal implications. These predictions will be common to any
model that generates the given spurion. We do not aim for a
general classification, but will rather choose some exam-
ples that have an intersection with the seesaw case, to allow
a comparison with the results of the previous sections.

We begin by postulating the existence of a dimensionless
spurion, X ~ (3, 1), amounting to a coupling between a
single SM lepton doublet and some new physics operator,
X1, Oy. Notice that Oy can carry a lepton number (in the
seesaw, Ny can be assigned lepton number one), therefore
the total lepton number Ly of the spurion X is arbitrary in
general. In particular, a WC for the Weinberg operator,
CZ‘;} ~ XX}, is allowed only for Ly = 1, and in this case,
the size of the spurion is determined, X? ~ m,A/v>. In
contrast, for Ly # 1, one needs an insertion of an additional
G -singlet spurion, in order to match the lepton number of
Cy (e.g., in the seesaw, M carries lepton number two). In
this case, the size of X is not determined by m,. On the
other hand, the WCs of lepton-number-conserving oper-
ators are independent of Ly. For the (1, 1;) representation,
one has Cflﬁ ~ X;X,8,5, while for the (8. 1), one finds
Ciy~ (XiXy —5X;X,645). The (3_;.3;) can also be
induced, as szﬁ ~X{*,Xij,ﬂy. These dim-6 WCs can all
lead to observable consequences for a sizeable X, i.e.,
X ~ A/TeV. Their flavor structures are strongly correlated
to each other. For example, processes that require a chirality
flip, such as ¢, — ¢4y, are necessarily Y, suppressed,
while those controlled by (8, 1), such as 7, — 3¢, are
not. Also, flavor-conserving and violating channels are

(XX%)aa(XXT)ﬂﬂ'
Flavor violation by one unit, AF = 1, arises at O(X?),

while AF = 2 processes arise at O(X*) and thus may be
suppressed for small background values of the spurion. One

strongly correlated, as [(XX"),; =
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may generalize these considerations to the case of more
than one spurion in the same G; representation,
X;~ (31,1j). Indeed, at least two are needed to induce
realistic neutrino masses, as the matrix CO% should have

rank two or larger.

Consider now a spurion with the quantum numbers of a
lepton bilinear. The possibilities are listed in the second
column of Table VI. If one assumes that only the spurion
B, ~ (1y,1y) is present, no LFV is induced. Still, dim-6
WCs proportional to B; are constrained by flavor-conserving
observables, especially Z couplings to leptons and G-
universality tests. The imaginary part of B; is strongly
constrained by lepton EDMs, as the dipole operators are
proportional to B, Y!. As this spurion is a G singlet, it can
induce nonleptonic processes as well. Conversely, the
spurion Bg ~ (8y,1j) induces LFV, which strongly con-
strains its off-diagonal entries. Lepton flavor-conserving
processes are subject to the condition of a traceless By,
for instance Eq. (47) implies N, >3 when tr[S] = 0 (see
Sec. III for other phenomenological consequences). The
vanishing trace also implies no corrections to nonleptonic

operators. A spurion Bs;~ (3;,3_;) directly generates
operators containing the bilinear /; e, without any chiral
suppression. Dipole transitions strongly constrain the Bsj
entries: the off-diagonal ones induce radiative charged-
lepton decays and the diagonal ones correct magnetic and
electric dipole moments.

Coming to lepton-number-violating bilinears, a
spurion Bg~ (6_,,1,) may directly generate the
Weinberg operator, provided its total lepton number is
Lp, = —2. In this case, its entries must be tiny to reproduce
neutrino masses. If L # —2, one needs the insertion of an
additional spurion to generate C", and Bg entries may be
large. Then it becomes relevant to consider dim-6 WCs

associated with two pairs of lepton doublets, C' ~ Bg’aﬂBw{;,
one pair, C'~ (B{Bg),s and no pairs, C'~ tr[B}Bg).
Finally, the spurion B; ~ (3_,,1;) is antisymmetric in its
lepton doublet indices and therefore does not contribute to
neutrino masses at leading order. However, one can build
C" ~[ByYY, 4 (...)T], which may induce neutrino
masses with a double chiral suppression. The combination
B§B3 can induce dim-6 WCs with a distinctive flavor
structure.

Let us discuss how this bottom-up approach compares
with the seesaw. We showed that the two leading com-
binations of seesaw parameters that are singlets of
SU(ny)y, x U(1)y, are C" and S. Since C% ~ (6_,.1,),
it can be considered a spurion of type Bg with total lepton
number —2. It is indeed constrained by neutrino masses to
be extremely tiny, therefore its effects on dim-6 operators,
suppressed as BgBﬁ, are negligible. The spurion § trans-
forms as a special combination of (1,1y) and (8, 1y).
More precisely, recognizing that Y,, ~ X7, ~3_, under

1

SU(3), x U(1),, where X; are n spurions, one identifies
the transformation properties

v o~ X X

aff iatipe Saﬂ ~ XiwaX;'F,ﬁ‘ (72)

For ny > 1 there can be cancellations among the n;
contributions to C", possibly due to an approximate lepton
number symmetry, while S remains large. Indeed, it is this
observation which drives our phenomenological analysis in
Sec. III. An interesting inequality holds, |(X I-Xj)aﬁ| <

\/ (XiX]) (X :XT) - that reproduces the inequality [S,| <

/SaaSpp discussed at the start of Sec. IIl. Finally, in the
seesaw case the spurions that transform nontrivially under
SU(3),, x U(1),, are necessarily proportional to one or
more powers of Y,.

We have shown that the seesaw model corresponds to
a very specific set of spurions under the SM lepton flavor
symmetry, G;. Moreover, these spurions are not indepen-
dent, rather they are specific combinations of the same set
of Yukawa couplings and sterile neutrino masses. The cor-
relations are strictest for a small number of sterile neutrinos
n,. If a few deviations from the SM are discovered, besides
neutrino oscillations, this pattern of correlations could be
tested with some degree of confidence.

Alternative ultraviolet completions of the SM manifest
themselves at low energy as different sets of spurions and
correlations, therefore a qualitative comparison is possible
without performing a detailed matching and running
procedure. However, a precise comparison of two theories
requires a computation of the full set of WCs, as we have
done in this paper for the seesaw.

A partial EFT treatment of alternative models of neutrino
mass generation is available in the literature. For the type-II
and type-III seesaw, the tree-level EFT can be found in [21].
In the context of theories that address the gauge hierarchy
problem, new physics close to the TeV scale may have a
nontrivial interplay with neutrino mass generation and
LFV. Such interplay has been studied with EFT and/or
spurion techniques, for supersymmetric models, e.g., in
[110-115], or in the compositeness scenario, e.g., in
[116-119]. We believe it will be fruitful to apply our
approach to these or other well-motivated models of new
physics in the lepton sector, by performing a systematic
comparison of the corresponding WCs.

C. Summary of results

We developed the EFT of the seesaw in Sec. II by
implementing tree-level matching and one-loop running of
dim-5 and dim-6 operators from the sterile neutrino mass
scale, M, down to the energy scales of the observables. The
WCs are given in the leading-log approximation, but in
Appendix B we display the one-loop RGEs, which may be
used for a more accurate analysis of the running. We also
computed the WCs of the dipole operators by performing
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one-loop matching at the scales M and my,. This is essential
to complete the EFT treatment of the seesaw.

This systematic EFT approach enabled us, in Sec. III, to
consistently compute all relevant lepton observables at
leading order. We started by demonstrating that the small-
ness of neutrino masses implies a very specific form of the
neutrino Yukawa couplings, which in turn restricts the
possible structures of the WCs: there is an upper bound on
the flavor-violating channels as a function of the flavor-
conserving ones. The bound is saturated for two or three
sterile neutrinos, while flavor violation can be arbitrarily
suppressed for ng > 3.

We identified which operators provide the leading
contribution to each observable and confronted the seesaw
predictions with present and future experimental limits.
The EFT computation is arguably simpler than previous,
direct one-loop computations. The bounds are summarized
in Tables II and III, as well as in Figs. 3-5. The present
experimental constraints are so tight that they completely
exclude the gray-shaded region in those figures: this
confirms the validity of our EFT approximations.

The EFT analysis highlights the correlations among
the various observables. On the LFV front, radiative and
three-body decays of charged leptons give comparable
constraints and completely overcome searches for LFV in
Higgs and even Z decays. Limits on y — e conversion in
nuclei are even tighter than LFV muon decays, especially
in the long term. Amusingly, LFV bounds also imply that
the electron EDM must be extremely suppressed, as CP
violation is tied to flavor off-diagonal WCs.

Coming to flavor-conserving observables, besides the
well-known bound from Z — v (for which we fix some
existing errors in the literature), we find even stronger
constraints from Z — £} ¢ decays, tests of G universality
in charged-lepton decays, and the precision measurement
of my. The primacy of the Z — e*e~ bound on S,, and
S,u> as illustrated in Figs. 3-5, has not been previously
stated, to our knowledge. These are the most stringent
bounds on the seesaw parameters in the y —7 and e — 7
sectors, where they overcome even future LFV searches. In
the e — u sector, the LFV probes are extremely sensitive,
but the seesaw parameter space permits strong suppression
of all WCs involving the electron with respect to the muon
ones, or vice versa: in this case, Z — e*e~ becomes the
ruling bound.

With a vast experimental program expected to test lepton
observables on many fronts, an understanding of the
complementarity between them is very important to iden-
tify the ultraviolet theory from its low-energy footprints. In
Secs. IVA and IV B we investigated to what extent these
footprints may allow one to distinguish the seesaw from a
different model. We presented a detailed analysis of flavor
symmetries, comparing the seesaw spurions with the most
general ones, in order to underline the peculiarities of the
seesaw EFT. This illustrates the discriminating potential of

our effective approach and provides motivation to apply it
to other models.
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APPENDIX A: SEESAW DIAGONALIZATION

In this Appendix we will provide a systematic procedure
for moving from the basis of active and sterile neutrinos,
belonging to SU(2), doublets and singlets, respectively,
to the basis of light- and heavy-mass eigenstates. The
diagonalization of the seesaw matrix beyond the leading
order has been already discussed using slightly different
methods, e.g., in [120] (which develops on [85,121]), and
our results agree where they intersect.

Besides the general convenience of an accurate diago-
nalization to study neutrino phenomenology, there are
nontrivial connections with the EFT obtained by integrating
out the sterile neutrinos, described in Sec. II. It will be
apparent that the tree-level WCs of operators with dim =
4 + n are related to the diagonalization matrices at order
(M~'m)". Moreover, the diagonalization is needed to com-
pare the EFT prediction for a given observable, expressed
in terms of operators involving only active neutrinos, and a
computation of the same observable by Feynman diagrams
that involves mass eigenstate neutrinos.

Let us begin by rewriting the mass terms in Eq. (1) as

1—— /0 m v
L, =—=w°N +He, (Al
sarvo() ) (o) (A1)

for an arbitrary number n, (n,) of active (sterile) neutrinos.
We define a block diagonalization of this symmetric mass
matrix by

m’ .
> — DU
M

V. WN\*/m, O V. WN\T
= , (A2)
X Y 0 my/\X Y
where the dimensions of the blocks are (n, x n,) for V and
m,, (ng; x n,) for m, X, and W7, and (n, x n,) for M, Y,
and my. Here U/ is unitary, and the light- and heavy-mass
matrices, m, and my, are diagonalized as
m, = U;d,Uj,

my = UydyUL, (A3)
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with d,, and dy diagonal, real and positive, and U, and Uy
unitary. Working in the basis where the charged-lepton
masses are diagonal, the PMNS matrix, which describes the
relation between active flavor eigenstates and light-mass
eigenstates, v;, = (Upyns ) 4iVLi» takes the form

Upmns = VU, (Ad)

where V is not unitary in general. Note that the diagona-
lization occurs in two steps: a unitary rotation U/, followed
by a second one given by diag(U,, Uy). This partition
contains a degree of arbitrariness. It is natural to remove
this ambiguity by requiring that / and D can be separately
expanded in powers of m and M only. This convention
guarantees, e.g., that the light-neutrino mass matrix at
leading order is given by the canonical seesaw relation,
m, = —-m"M'm.

To ease the diagonalization procedure, one can treat the
various matrix blocks as spurions of the chiral symmetry
U(n,) x U(ng), which acts on the active and sterile
neutrinos as v;, — U,v; and Ny — U Ny (do not confuse
these symmetry transformations with the physical unitary
matrices involved in the diagonalization). The correspond-
ing spurion transformations are
M- UMUT.

m— USmUZ, (A5)

In the convention where the matrices / and D of Eq. (A2)
can be separately expanded in powers of m and M,
their blocks have to transform under U(n,) X U(ny)
according to

V> U,VU,.
Y > UYUT,

W - UWU, X - UXU,
my — UmyUT.

(A6)

m, — UZmDUZ,

These relations restrict the possible combinations of m and
M that can appear in the expansion of these blocks. Under
the seesaw hypothesis, where the eigenvalues of M are
much larger than the entries of m, it is meaningful to
determine the matrices V, W, X, Y as well as m,, my by an
expansion in the dimensionless matrix (spurion)

e=M"'m, €— UfﬁeUZ. (A7)
It is then possible to solve Eq. (A1) order by order in €, by
taking into account the unitarity condition /U' = 1 and by
requiring the spurion transformations of Eq. (A6) to hold.

For vanishing e one has trivially

V=1, W =0, X =0,
Y=1, m, =0, my =M. (A8)
At order e, the active-sterile mixing appears,
W =¢f, X = —e. (A9)

At order €2, nonunitary corrections to the PMNS matrix are
generated, as well as the leading contribution to light-
neutrino masses,

1 1
V=1 —56"'6, Y =1 —Eee"',

1
m, = —e! Me, my =M + 3 (Mee" + €™ M).

(A10)

Note that even if one started with a basis where M is
diagonal, my is no longer diagonal at this order, therefore
Uy is no longer the identity. Note also the correspondence
with the EFT of Sec. II: e'e = Sv?/2 and e'Me =
CVv?/A.

At order €, one finds the next-to-leading correction to
active-sterile mixing,

W=-X"=¢ - %e*eeT —e'M*ere"M~*.  (All)
Atorder €4, it turns out that the separation between I/ and D
is not uniquely defined. A unique solution is obtained by
requiring that V and Y are Hermitian, which is always
possible by an appropriate choice of U, and Uy, respec-
tively. In other words, the anti-Hermitian correction to V

and Y can be traded for a correction to m, and my, of the
same order in €. We find

1 3 . 1
V=1 —EeTe —I—geTee’e +§[€TM*6*€TM‘1*6 + (.07,
1,03 1 .
Y=1 —EeeT —l—geeTeeT —|—§[€€TM*€*€ M~ 4+ (L)1,
1
m, = —e' Me +5 [e"MeeTe + (...)T],
1 1
my = M+§ Mee' —ZMeeTeeT

1
—Mee"M*e*e" M~ + (..)T] + Ze*eTMeeT.
(A12)

This provides, in particular, the next-to-leading contribu-
tion to light-neutrino masses, corresponding to a dim-7
operator in the EFT. If the O(e?) contribution to m,
vanishes, then the O(e*) one vanishes as well. In fact, it
is remarkable that the condition e’ Me = m"M~'m = 0 is
equivalent to the requirement rank (M) = n, and therefore
it implies that n, neutrinos are massless at all orders. By
contrast, if e'e vanishes, V can still depart from the identity
because e’ may be nonzero. The O(e*) corrections to V
correspond to dim-8 operators in the EFT.

Let us note that the dimensionless matrix ¢ may have
entries not much smaller than one, e.g., for M ~ 1 TeV and
m ~ 100 GeV, one has € ~ 0.1. Therefore, next-to-leading
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corrections can be significant. They may also be the
dominant effect if the leading contribution vanishes and
the next one does not, as for the off-diagonal entries in V
and Y. We have derived above the next-to-leading correc-
tion for each block of the seesaw matrices, thus we refrain
from displaying even higher orders in e.

Finally, we remark that, in the spirit of the EFT, the
seesaw diagonalization should be performed at the largest
mass scale, u = M,, , where M should be evaluated. After
the heaviest sterile neutrino has been integrated out, one
should run down to 4 = M,, _; and repeat the procedure,
and so on and so forth. These threshold corrections to M,
due to the RG evolution from M, to M,, are loop
suppressed and proportional to log(M;/M ;). While they
are a subleading correction for the lowest-order WCs, they
may become significant compared to the higher powers of €
considered above.

APPENDIX B: RGEs FOR THE SEESAW
EFFECTIVE OPERATORS

Here we present the one-loop RGEs for the WCs of
dim-5 and dim-6 operators which are induced by the type-I
seesaw. The operators themselves are defined in Table VII.
The running of the Weinberg operator was derived in
[36-38], the mixing of Weinberg squared into d =6
operators is taken from [26], and we utilized [27-29] for
the mixing among d = 6 operators. We adopt the con-
ventions of the latter set of references, in particular, the SM
Yukawa couplings and Higgs potential are defined by

Lsm D —CraY e apH 15— d_RaYd,aﬂH "q1p

- 1 2
_TR(zYu.aﬁHTCILﬂ _)“<HTH _§U2> s (Bl)

and the sign convention for the covariant derivatives is
D,l; = [0, +ig1(=1/2)B, + ig,(c“/2)W§]l,, and simi-
larly for the other fields. The RGEs are calculated using
dimensional regularization in the MS scheme, as it is
customary in EFT [122]. We note that the one-loop
anomalous dimensions are scheme independent (as long
as the chosen basis of operators is not redundant). Scheme
dependence can arise at two-loop order (see, e.g.,
[123,124]), which is beyond our scope.

In the type-I seesaw, the ultraviolet boundary conditions
for the WCs are set by Eq. (3), that is, the only WCs
different from zero are C" and [CH'D — CHIG)]. We
neglect the RGE running induced by the dipole operators
|

TABLE VII. List of the SM EFT operators induced by the
seesaw, either at tree level or at one loop.

Name Operator

Ow.ap (I H*)(H )

oy of (Ia¥ulip) (HTiD"H)
QHl,zx/j (E?’WAIL/})(H”D”GAH)
QeB.a/} (E weRﬂ)HBlw

QeW.(lﬁ (Z_ E‘R/;)GAHWA”D
Oetiap (I H eRﬂ)(HTH)

QHe.a/} (a eRﬂ)(HrlDﬂH)
Qui.apys (Teaulip) (T, 7" 1s)
Qle,a/}yﬁ (l (lyﬂlLﬁ)(eR}’y eRé)

On (H'H)?

Oup (H'D,H)"(H'D'H)
Ono (H'H)O(H'H)

Qg;?a/jxy (l ayylL/i)(qL,\y l]L})
Q;;.aﬁxy (lLayﬂo-AlL/)’)(quy (FAQL}’)
Qlu,aﬂxy (fyﬂlLﬁ)(TMy MR))
Old.apry (Ina¥ulrp) (drer*dgy)
QuH,xy (QLx H uRy)(H H)

QdH.xy (q HdR})(H H)

Ohig.ay (GLx7uqLy)(H'iD*H)
QH‘IJC,V (qu},ﬂaAqu)(HTlDllaAH)
Otiuxy (Ugyy uR))(HTlD”H)
Q. (dietdr,) (H'iDAH)

because it is a two-loop effect. Then, the RGE for the
Weinberg WC is given by

acl, 3

3
162 —2b — _—(cVyly,) , —=(v:YTcW 4"
T dlogﬂ 2( L’)ab 2( e” e )ab+ ab
=3g3CY +24CY (B2)
where we defined
=3V Y, +3Y Y, +YiY,]~3y?.  (B3)

The RGEs for the dim-6 operators involving leptons are

4ctm 9 9
162 1;2, - VLY CHI) 3 (VY CF1) 1y 4 2(CHDYLY ) gy 45 (CTOVIY, )y + 22 Cp
1 2
+391Co" + ZCM 15,5~ 6(CVICY), . (B4)
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HI(3)

dc 3 3
2 ap ¥ Hi(1l i Hi(3 Hi(1) yt HI(3 1(3)
167 m—E(YeYeC ( ))aﬂ+(YeYeC ( >)aﬂ+§(c ( )YeY ) (C Ye e)aﬂ"’z}{Cuﬂ
2 17 !
+3B(C6, — = BC,Y +4(CVTCY) (B5)
16 2 4Ce5. = 42(CHy] 4 3¢HIG) 2(CHIMYTY YY) 5 — 63(CHY] 4 CHIG)Y
n? leg/l - + )(1/)’ + ( ap — O] )a/)’
— 4r[CTOYLY (YD) gy + = 92 Y)ptr[CHO)] 4+ 6(CVICVY,) 5 — B[CVICY) (YD) 5 (B6)
dCHe 4
1622 — = 2(v,CHY]) 5 + = gr[CH V] B7
ﬂ dlogﬂ ( EC )aﬂ+3gl r[C ] aﬁ’ ( )
dc” 1 1
apys Hi(3 Hi Hi
16” legy/l E(C(l/}( ) - C(t[)’< ))(YTY ) - Cafi( >(YTY )yﬁ 6 (QQC(I/}( ) 2Ca[)’< ))575
e HI(3)  ~HI(1 HI(3 Hi(1 HI(3
(VL) () — ) — (v1y,) O = 25, ( GO 1 GO
2
+Z (Vo + € V8) — 2T Cl, (B8)
dCéf 5 HI 247
162 logyﬂ =200y, i), - 5 ciiVs,s. (B9)
This set of WCs controls Higgs- and Z-boson decays to dCdH
leptons, as well as charged-lepton decays into three leptons, 1672 —= —4tr[CHI®)y ] e 3 g%tr[CHl( )]YLW
and corrections to Gy universality. For 2¢g2Z WCs, the dlogn 3
RGEs read (B15)
29Ca ) e vy 9T ey 2 0
16?2 =C . (Y,Y, =YY Cos 'S5, Rt 2r[CHI
a dlog,u af ( d d)75 9 af 7o 6 dlog,u 9gltr[c ]6xy’ (B16)
B1
(10 dcii® o
1) 1672 dl:jg 3 gr[Cs,.,, (B17)
,dC H ’
1672 — P — i (yiy, + Yiy C s,
ﬂ leg/l ( * d>}/5 + 3 Hu
, dCY 8 o i)
(Bll) 167° dlog,u = —§gltr[c }5}(},, (BIS)
dC’“ 44 dCHd 4
16 apys 2CHI(1) y YI, _1CHI(1)5 . (BI2 _ T 2 HI(1)
n? dlogﬂ aff (Y, )}’5+ 9 78 ( ) dlog 9gltr[c ]5xy' (B19)
dcly 20 These WCs ind Il shift in the Higgs- and
DCaprs _ o HI) + g1 ~HI(1) ese s induce a small shift in the Higgs- an
167 dlog u Caﬁ (YaY d)r Tcaﬁ Oy (BI3) Z-boson couplings to quarks, which we neglected as

which are relevant to estimate y — e conversion on nuclei.
For operators with Higgs and quark fields, the RGEs are
given by

acii

167*
4 dlogu

4 .
—4tr[CHIOYTY Yy + 3 g[CHONY] 4,

(B14)

they are typically less constraining than their lepton
counterparts.

Finally, the RGEs for operators with Higgs fields and
derivatives only are

dct 16
p = — Agatr[CHIB)] —
dloguy 3

— 322tr[Ci Y],

St[CHOYly,]

(B20)
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1677 acv —8tr[CHVyly,] - 8 grr[CHI)]
dlogpu chel 3l
— 16tr[CV Y], (B21)
1622 dct- = —2tr[(3CHI) 4 YTy,
dlogu e
2
+ 2g3tr[CHIO)] — 3 gir[CHI)]
- 8tr[cVi V). (B22)

Our result for the last term of Eq. (B20) is a factor of 2
smaller than the corresponding term in [26].

Note that dim-6 operators may also mix into dim-4
operators, as the SM contains a dim-2 operator, H TH. Con-
sequently, the nonzero [CS} - CS}] generated at tree level
by the seesaw introduces corrections to the f functions of
the SM parameters 4 and Y,. These effects are subleading
since they are suppressed by v?/M? < 1 [27].

The set of RGEs presented in this Appendix, together
with the RGEs for the SM couplings (see, e.g., [39]), are of
course coupled to each other. Therefore, during the
evolution from M to myy, the running of each WC is
affected, at next-to-leading order, by the running of the SM
couplings and the other WCs. Let us roughly estimate the
size of these corrections in the seesaw. The largest and
fastest-running couplings in the SM are y, and g3, which do
not enter into the most relevant WCs, see Egs. (10)—(20)
(the 2¢g2¢ WCs pertinent for 4 — e conversion do not
involve the top quark). The most relevant running is that
of the Higgs quartic coupling, with S, = di/dlogu ~
—3y?/(8%%). The running of g, g, is much weaker,
B,~g’/(16x%). The seesaw tree-level WC, CH'=

[CcHI() — CHIG))/2, has also a strong scale dependence,

. HI(1 HI(3 HI(1 HI3
smce  yg = [7[1[51; +7’ng3§ _71-1123; _}/1-11213]/2:3%2/(8”2)’

where the anomalous dimensions are defined by Eq. (7).

To estimate the dominant correction to the value of the
WCs at my,, let us consider the running of C’ due to C*/,
with the assumption that 7%, does not depend on rapidly
running SM couplings. Then, the solution of Eq. (7) reads

. . log M .
Cllmy) =€) = [ dlogur, ")

log my,

. c(m) i
~ CI(M) — / dcHi it (B23)
C

H (my) VHI

where  CH'(my,) =~ CH(M)(my /M), A perturbative
expansion gives

Ci(my) = C(M) — yi,,CH! (M) log— (1 —I—@log—)
my 2 My

+ ... (B24)
where the term in brackets is the correction to the leading-
log approximation, induced by the scale dependence
of CH!, For, e.g., M =10 TeV, this represents a ~10%
correction, while for M = 10'> GeV it corresponds to a
~50% correction.

In contrast, if 7%, contains a term proportional to 4, the
running of 4 may dominate for CH! sufficiently small,
because f,/4 > yg;. In the seesaw, this case may occur for
C' = C°H, see Eq. (14). Then, taking the opposite approxi-
mation of constant C*! and scale-dependent 74y (u), one
finds that the running of A induces a slightly larger
correction to the leading-log approximation, ~30% for
M =10 TeV and O(1) for M = 10" GeV.
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