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In the absence of direct evidence of new physics, any ultraviolet theory can be reduced to its specific set
of low-energy effective operators. As a case study, we derive the effective field theory for the seesaw
extension of the Standard Model, with sterile neutrinos of mass M > mW . We systematically compute all
Wilson coefficients generated at one loop. Hence, it becomes straightforward to (i) identify the seesaw
parameters compatible with the smallness of neutrino masses, (ii) compute precision lepton observables,
which may be sensitive to scales as large as M ∼ 103 TeV, and (iii) establish sharp correlations among
those observables. We find that the flavor-conserving Wilson coefficients set an upper bound on the flavor-
violating ones. The low-energy limits on μ → e and τ → e; μ transitions suppress flavor violation in Z and
Higgs decays, as well as electric dipole moments, far beyond the experimental reach. The precision
measurements of GF, mW , and Z partial decay widths set more stringent bounds than present and future
limits on τ → e; μ transitions. We also present a general spurion analysis, to compare the seesaw with
different models, thus assessing the discriminating potential of the effective approach.
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I. INTRODUCTION

Precision measurements in the lepton sector allow us to
test the Standard Model (SM) to an exceptional depth.
As no new particles have been detected so far, these
measurements can be fully described in terms of effective
operators involving the SM fields only. In most cases, the
present bounds push the cutoff, Λ, of this effective field
theory (EFT) well beyond the TeV scale. Indeed, the
dimension-five (dim-5) Weinberg operator [1] should have
an extremely small coefficient, to account for the tininess
of the neutrino masses mν. Among dim-6 operators, those
inducing lepton flavor violation (LFV) and CP violation
are also extremely constrained, and even the flavor-
conserving ones are subject to a few stringent bounds,
as we will see.
From a top-down perspective, any theory beyond the SM

is defined by some set of heavy degrees of freedom with
mass ≳Λ, which would surely have an interesting phe-
nomenology if they were directly produced, either in the
early Universe or in the lab. Still, the low-energy predic-
tions of the theory can be fully encoded in a set of Wilson
coefficients (WCs) of the EFT valid below the cutoff Λ. We
would like to argue that by computing such a set of WCs for
a given theory, all unnecessary details of the underlying

class of models are dismissed, thereby offering an optimal
method to compare with other theories. This is not only a
matter of principles: in the lepton sector, there is the
concrete possibility of distinguishing between different
ultraviolet completions, owing to several clean signatures
that may become available in the near future.
To illustrate this program, in this article we focus on the

seesaw scenario [2–5], which amounts to adding to the SM
a set of gauge singlet chiral fermions, the sterile neutrinos.
This model is often dubbed the type-I seesaw mechanism,
to distinguish it from alternative possibilities for inducing
nonzero neutrino masses. The Majorana mass scale of
sterile neutrinos, M, can span a very wide energy range,
consequently, sterile neutrinos may have a remarkable
variety of phenomenological applications if they are
directly produced, e.g., leptogenesis at very high scales
[6,7], collider searches at the TeV scale [8–10], dark matter
searches at the keV scale [11–13], and anomalies in
oscillation experiments at the eV scale [14]. Regrettably,
leptogenesis is in general very difficult to test, and no clear
evidence of sterile neutrino detection in the lab has emerged
so far. Here we will rather focus on the indirect effects
of heavy sterile neutrinos on the phenomenology of
the SM leptons, assuming M is larger than the energy of
the experiment under consideration. Even in this limit the
phenomenology may be extremely rich.
We will demonstrate that the seesaw EFT description

elucidates the correlations among the various observables.
Specifically, it will become straightforward to study the
limiting case, where the sterile neutrinos have masses not
far above the electroweak scale as well as large Yukawa
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couplings, and nonetheless mν remains sufficiently small.
This case encompasses, in particular, the inverse-seesaw
limit [15–17], and it is the most interesting phenomeno-
logically as several lepton observables can be close to the
experimental sensitivity. Studies of various aspects of the
seesaw phenomenology using EFT techniques have pre-
viously been performed in, e.g., [18–23].
In Sec. II, we derive the set of WCs induced by the

seesaw. We present for the first time the full list that arises
at one-loop leading-log order, after specializing the general
formalism of renormalization group equations (RGEs) to
the seesaw case. We also include an important case of one-
loop matching. The results hold for any set of seesaw
parameters, within the regime of validity of the EFT.
Appendix A presents a systematic diagonalization pro-
cedure for the seesaw mass matrix, which is useful to
complement the EFT approach. Appendix B collects the
complete list of relevant effective operators and RGEs.
In Sec. III, we discuss the seesaw predictions for lepton

observables in terms of the seesawWCs. We discuss in turn
Higgs- and Z-boson decays, LFV in charged-lepton tran-
sitions, dipole moments, and corrections to the Fermi
constant. We improved upon existing analyses of several
observables, both fixing errors in the literature and using
more recent data. The EFT approach enables an immediate
comparison of the different processes. Indeed, we identify
some interesting limits and correlations, which were
previously overlooked.
In Sec. IV, we investigate to what extent the seesaw

predictions follow from symmetry considerations only and
how the predictions may be different in other models.
These questions are better addressed with a spurion
formalism, which clarifies the different possible patterns
for flavor-symmetry breaking. We then summarize our
main findings.

II. EFFECTIVE FIELD THEORY
FOR THE SEESAW

Let us consider extending the SM by ns sterile neutrinos
NR, that is, chiral fermions singlet under the SM gauge
interactions,

Lseesaw ¼ LSM þ iNR=∂NR

−
�
1

2
NRMNR

c þ NRYH̃†lL þ H:c:

�
: ð1Þ

Here M is the symmetric ns × ns matrix of sterile neutrino
Majorana masses and Y is the ns × 3 matrix of neutrino
Yukawa couplings. Once the Higgs acquires a vacuum
expectation value, hH0i ¼ v=

ffiffiffi
2

p
≃ 174 GeV, the neutrino

Dirac mass matrix is generated, m≡ Yv=
ffiffiffi
2

p
. While the

entries miα are bound to lie at or below the electroweak
scale, the eigenvalues M1 ≤ M2 ≤ � � � ≤ Mns of the matrix
M can take any value between zero and the cutoff of the

theory. In the limit mia ≪ Mi, the seesaw mechanism is
realized [2–5], and the 3 × 3Majorana mass matrix of light
neutrinos takes the form mν ≃ −mTM−1m. Note that the
seesaw is operative for an extensive range of sterile
masses, mν ∼ 0.1 eV ≪ Mi ≲ v2=mν ∼ 1015 GeV.
In the following we will derive the EFT below the scale

Mi, which trades sterile neutrino interactions for higher-
dimensional operators involving only SM fields. We will
assume for definiteness sterile neutrinos heavier than the
electroweak scale,Mi > mW , but the same EFT techniques
could be applied when (some of) the sterile neutrinos are
lighter. At the scale mW , the EFT involving SM multiplets
will be matched to the EFT with broken electroweak
symmetry.
Parts of this exercise have been presented in previous

literature [1,24–29]. Here we collect and generalize those
results in a systematic fashion. In particular, we will apply
the general RGEs for the SM effective operators to the
seesaw case. In addition, we include the one-loop matching
of the dipole operators at the scales M and mW , which is
necessary to correctly describe the lepton dipole transitions
in the EFT language.
To fix the notation, we write the SM EFT Lagrangian as

LSMEFT ¼ LSM þ 1

Λ
ðCWQW þ H:c:Þ

þ 1

Λ2

X
i

ðCiQi þ H:c:Þ þO
�

1

Λ3

�
; ð2Þ

where QW is the Weinberg operator, defined in Table I,
while Qi form a complete set of dim-6 operators, specifi-
cally we employ the Warsaw basis [30]. The WCs, CW and
Ci, are defined to be dimensionless, with Λ the cutoff of
the EFT, which may be identified for definiteness as the
lightest sterile neutrino mass, M1. It is understood
that the hermitian conjugate is not added to Eq. (2) when
an operator is self-Hermitian, Qi ¼ Q†

i . We will generally
neglect operators with dim > 6, since most of the relevant
observables are induced already by dim-5 and dim-6
operators and we are not interested in subleading correc-
tions. Exceptions will be discussed in due course.

TABLE I. Operators generated by matching the seesaw at the
sterile neutrino mass scale M.

Name Operator

QW;αβ ðlcLαH̃�ÞðH̃†lLβÞ
Qð1Þ

Hl;αβ ðlLαγμlLβÞðH†iDμ
⟷

HÞ
Qð3Þ

Hl;αβ ðlLαγμσAlLβÞðH†iDμ
⟷

σAHÞ
QeB;αβ ðlLασμνeRβÞHBμν

QeW;αβ ðlLασμνeRβÞσAHWAμν
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A. Matching at the sterile neutrino mass scale M

The seesaw Lagrangian (1) can be matched to the SM
EFT (2) by integrating out the sterile neutrinos at their mass
scale Mi. At tree level, it is sufficient to expand the NR
equation of motion in inverse powers of M. This generates
the dim-5 Weinberg operator [1] via the seesaw mecha-
nism, and a linear combination of two dim-6 operators [24],

Ltree
M ¼ 1

Λ
ðCW

αβQW;αβ þ H:c:Þ

þ 1

2Λ2
ðCHlð1Þ

αβ − CHlð3Þ
αβ ÞðQð1Þ

Hl;αβ −Qð3Þ
Hl;αβÞ; ð3Þ

where the explicit form of the operators is provided in
Table I, and the WCs read

2

Λ
CW
αβ ¼ ðYTM−1YÞαβ ¼

2

Λ

X
i

CWi
αβ ¼

X
i

YiαYiβM−1
i ; ð4Þ

2

Λ2
ðCHlð1Þ

αβ − CHlð3Þ
αβ Þ ¼ Sαβ ≡ ðY†M−1�M−1YÞαβ

¼
X
i

Siαβ ¼
X
i

Y�
iαYiβM−2

i ; ð5Þ

where we conveniently introduced the Hermitian matrix S,
and the sums are defined in a basis with M diagonal.
The next order, matching onto dim-7 operators, is also
known [31].
Tree-level matching is not sufficient to describe the all-

important dipole transitions, which are also induced by the
sterile neutrinos. However, we remark that the EFT allows
one to account for these effects consistently by matching
the one-loop contribution of sterile neutrinos onto the
electroweak dipole operators, which are also defined in
Table I. To this end, we computed the relevant diagram,
shown in Fig. 1, which amounts to adding to the EFT
Lagrangian the term

Lloop
M ¼ 1

192π2
ðSY†

eÞαβðg2QeW;αβ − g1QeB;αβÞ þ H:c:; ð6Þ

where g1, g2 are the Uð1ÞY and SUð2ÞL gauge couplings,
respectively, and Ye is the charged-lepton Yukawa matrix,
defined by Eq. (B1). We will often replace it by its diagonal

form, ðYeÞβγ ¼ yβδβγ for β ¼ e, μ, τ. Note that the loop is
finite and therefore does not induce any renormalization-
scale dependence. We checked that our result matches (and
generalizes) a similar calculation of the heavy-neutrino
contribution to lα → lβγ in [32,33], up to corrections
suppressed by additional powers of the active-sterile mix-
ing, which correspond to EFT operators with dim > 6.
The seesaw WCs can be concisely written in terms of the

matrices Y and M if one neglects the difference among the
mass eigenvalues Mi. Strictly speaking, one should choose
the basis where M is diagonal and integrate out each mass
eigenstate, NRi, at scale μ ¼ Mi, that is, the seesaw para-
meters Yiα andMi should be defined at that matching scale.
Still, if the matrices Y andM are defined at the largest seesaw
scale,Mns , and their RGevolution toM1 is neglected, one can
show that the correction to the WCs is subleading.1 On the
other hand, one cannot neglect the RG evolution of the WCs
among the different scalesMi, because this affects theWCs at
leading-logarithm order, as we will see below.

B. Running from M to the electroweak scale mW

Let us discuss the evolution of the EFT Lagrangian from
the sterile neutrino mass scale,Mi, to the electroweak scale,
which we identify for definiteness as the W-boson mass,
mW . The running of the only dim-5 operator, QW , is
independent from dim-6 operators for dimensional reasons.
In contrast, the running of the dim-6 operators may receive
contributions from two insertions of QW . In equations,

dCW

d log μ
¼ γWCW;

dCi

d log μ
¼ γijC

j þ γiWC
W†CW; ð7Þ

where γW , γij, γ
i
W are the operator anomalous dimensions,

and the appropriate contractions of flavor indices are under-
stood. The RGE for the Weinberg operator was calculated
at one loop in [36–38]. A comprehensive compilation of the
dim-6 anomalous dimensions in the SM EFT at one loop,
γij, is provided in [27–29]. We cross-checked a subset of
these coefficients that are relevant for the seesaw. The
mixing of the Weinberg operator (squared) into dim-6
operators, described by the coefficients γiW , was calculated

FIG. 1. One-loopmatching onto the electroweak dipole operators
QeB and QeW at the mass scale Mi of the sterile neutrino NRi.

1One should match the seesaw Lagrangian to an EFT with
ns − 1 sterile neutrinos at the scale μ ¼ Mns , run this EFT down
to μ ¼ Mns−1 and perform a new matching, and so on until the
SM EFT is recovered at μ ¼ M1. This procedure introduces
corrections to Eqs. (3) and (6) proportional to logMi=Mj, which
are suppressed by an extra loop factor and extra couplings. Note
also that below Mj, the EFT includes operators that combine SM
fields and sterile neutrinos with mass Mi < Mj. It has been
shown [34,35] that such an EFT contains dim-5 operators with
two sterile neutrinos and dim-6 operators with one or more sterile
states. One can check that, integrating out NRi at scale Mi, these
operators generate only SM operators with dim > 6. Of course, a
detailed treatment of such intermediate-scale effects may be
relevant for a precision reconstruction of the seesaw parameters.
See, e.g., [20] for the case of the Weinberg operator.
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in [25], and one term has recently been corrected in [26].
We cross-checked this computation and agree with the
latter result. The relevant operators and their complete one-
loop RGEs are collected in Appendix B.
At the scaleMi, the only nonvanishing WCs are those in

Eqs. (3) and (6). At lower scales, these operators source their
own running and also mix into other operators, inducing
additional nonzero WCs. To illustrate the result compactly,
we take the leading-logarithm approximation and define

Wαβγδ ≡
X
i;j

4CWi�
αγ CWj

βδ

Λ2
log

minðMi;MjÞ
mW

¼
X
i;j

Y�
iαY

�
iγYjβYjδM−1

i M−1
j log

minðMi;MjÞ
mW

; ð8Þ

Rαβ ≡
X
i

Ri
αβ ¼

X
i

Siαβ log
Mi

mW

¼
X
i

Y�
iαYiβM−2

i log
Mi

mW
; ð9Þ

which are generated, respectively, by two insertions of the
WC in Eq. (4) and one insertion of the WC in Eq. (5). In
the approximation where all logarithms are replaced by a
common factor, logðM=mWÞ, then simplyWαβγδ ∝ CW�

αγ CW
βδ

and Rαβ ∝ Sαβ.
2

We find that the seesaw induces at mW five addi-
tional leptonic operators, which were vanishing at M,
with WCs

ðCHlð1Þ
αβ þ CHlð3Þ

αβ ÞðmWÞ
Λ2

≃ −
1

16π2

�
g21 þ 17g22

12
Rαβ þ

g21 − g22
6

trðRÞδαβ −
1

2

X
γ

Wαβγγ

�
; ð10Þ

CHe
αβ ðmWÞ
Λ2

≃
1

16π2

�
1

2
yαRαβyβ −

1

3
g21trðRÞδαβ

�
; ð11Þ

Cll
αβγδðmWÞ
Λ2

≃
1

16π2

�
g21 − g22
24

ðRαβδγδ þ δαβRγδÞ þ
g22
12

ðRαδδγβ þ δαδRγβÞ þ
1

2
Wαβγδ

�
; ð12Þ

Cle
αβγδðmWÞ
Λ2

≃
1

16π2
g21
6
Rαβδγδ; ð13Þ

CeH
αβ ðmWÞ
Λ2

≃
1

16π2

�
2λRαβ þ

1

3
g22trðRÞδαβ −

3

2

X
γ

Wαβγγ þ 2
X
γ;δ

Wγγδδδαβ

�
yβ; ð14Þ

where the indices α, β, γ, δ run over e, μ, τ, and λ is the
quartic Higgs coupling defined in Eq. (B1). Note that we
simplified the full expression of the anomalous dimensions,
found in Appendix B, by neglecting the charged-lepton
Yukawa couplings yα relative to the other relevant SM
couplings, as they are much smaller (for example, yτ ≪ g1;2
even at very high scales [39]). The WCs that are already
nonzero at scale M receive similar corrections, which are
loop suppressed with respect to their leading-order value:
we will neglect those.

The RG evolution also induces two-lepton–two-quark
(2q2l) operators, which are relevant to estimate the μ → e
conversion rate in nuclei (see Sec. III B 3),

Clqð1Þ
αβxyðmWÞ
Λ2

≃ −
1

16π2
Rαβ

�
1

4
ðY†

uYu − Y†
dYdÞxy þ

g21
36

δxy

�
;

ð15Þ

Clqð3Þ
αβxyðmWÞ
Λ2

≃ −
1

16π2
Rαβ

�
1

4
ðY†

uYu þ Y†
dYdÞxy −

g22
12

δxy

�
;

ð16Þ
Clu
αβxyðmWÞ
Λ2

≃ −
1

16π2
Rαβ

�
−
1

2
ðYuY

†
uÞxy þ

g21
9
δxy

�
; ð17Þ

Cld
αβxyðmWÞ
Λ2

≃ −
1

16π2
Rαβ

�
1

2
ðYdY

†
dÞxy −

g21
18

δxy

�
; ð18Þ

2The approximation logðMi=mWÞ ≃ logðM1=mWÞ for Rαβ
and Wαβγδ is tenable only if Mi ≃M1, or if the contribution
of NRi to the WCs is negligible with respect to the one
of NR1. For terms proportional to R, the latter condition reads
jY2

i =M
2
i j logðMi=M1Þ ≪ jY2

1=M
2
1j logðM1=mWÞ, where we have

dropped flavor indices. For terms proportional to W, an analo-
gous condition applies with jY2

i =M
2
i j replaced by jY4

i =M
2
i j.
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where x, y are quark flavor indices, the quark Yukawa
couplings are defined in Eq. (B1), and we adopted the
same simplifications as above. In addition, the seesaw tree-
level operators mix into two operators which modify the
Higgs-boson kinetic term and therefore affect its couplings
(see Sec. III A 1),

CHDðmWÞ
Λ2

≃
1

16π2

�
2

3
g21trðRÞ þ 4

X
γ;δ

Wγγδδ

�
; ð19Þ

CH□ðmWÞ
Λ2

≃
1

16π2

��
1

2
g22 þ

1

6
g21

�
trðRÞ þ 1

2

X
γ;δ

Wγγδδ

�
:

ð20Þ

The additional operators induced by the seesaw and their
RGEs, listed for completeness in Appendix B, have no
impact on the lepton observables that we shall analyze.
Some comments are in order on the quality of our

approximations. The leading-log contributions to the WCs
are expected to dominate over one-loop finite parts as long
as logðMi=mWÞ is significantly larger than one. On the
other hand, dim-6 operators have observable consequences
forMi not too far above mW . When the logarithm becomes
of order one, the leading-log term still gives the correct
order of magnitude, barring possible cancellations. This
issue will be addressed for specific observables in Sec. III.
We will neglect systematically two-loop corrections. In
particular, the running of the dipole operators, QeB;eW ,
and their mixing into other operators are two-loop sup-
pressed, as the dipole WCs are themselves already one-loop
suppressed.
Finally, we have treated the right-hand side of the RGEs

in Eq. (7) as a constant. Of course, it is a function of SM
couplings and WCs, which run at one loop. This induces
two-loop-order corrections to the WCs at mW , which
may be sizeable if logðM=mWÞ is large and the couplings
run quickly. A recent analysis of this effect can be found
in [40]. In the seesaw, we find that such corrections are
typically of order ∼10%, as illustrated at the end of
Appendix B, and we will neglect them. When precision
is needed, one can perform an RGE-improved computation
to account for these corrections, by integrating numerically
the system of RGEs provided in Appendix B together with
the RGEs for the SM parameters, provided for instance
in [39].

C. Matching at mW and running to the
charged-lepton mass scale mα

At the electroweak scale, the SM states with mass
OðmWÞ must be by integrated out, namely, the Higgs,
W, and Z bosons (and the top quark, which plays no
role for the lepton observables). One is left with an EFT
for massive leptons and quarks, with gauge symmetry
SUð3ÞQCD × Uð1ÞQED.

A basis for the operators of such an EFT has been
defined in [41], and the matching of the SM EFTWCs onto
this basis is provided in Appendix C of that reference, up to
terms that are Yukawa-coupling suppressed. As we are
interested in charged LFV processes and dipole moments,
we need only consider the four-fermion operators involving
charged leptons and the electromagnetic dipole operator. In
the low-energy EFT, four-fermion operators are defined as

OA;XY
ψχ;αβγδ ¼ ðψαΓAPXψβÞðχγΓAPYχδÞ; ð21Þ

where ψ ; χ ¼ ν, e, u, d are mass eigenstates, X ¼ L, Rwith
PL;R the chiral projectors, and A ¼ S, V, T with ΓS ¼ 1,
ΓV ¼ γμ, and ΓT ¼ σμν. We restrict ourselves to vector-
vector operators, because scalar-scalar operators are rela-
tively suppressed by two powers of Yukawa couplings and
therefore have negligible effects on the observables of
interest. Four-fermion tensor operators are not generated in
the seesaw at leading-log order.
Let us begin with operators with four charged leptons,

which in the seesaw receive contributions from Eqs. (10)–
(13). The matching conditions at μ ¼ mW read

CV;LL
ee;αβγδ ¼ Cll

αβγδ þ
1

2
ð−1þ 2s2wÞ

h
ðCHlð1Þ

αβ þ CHlð3Þ
αβ Þδγδ

þ δαβðCHlð1Þ
γδ þ CHlð3Þ

γδ Þ
i
; ð22Þ

CV;LR
ee;αβγδ ¼ Cle

αβγδ þ 2s2wðCHlð1Þ
αβ þ CHlð3Þ

αβ Þδγδ
þ ð−1þ 2s2wÞδαβCHe

γδ ; ð23Þ

CV;RR
ee;αβγδ ¼ s2wðCHe

αβ δγδ þ δαβCHe
γδ Þ; ð24Þ

where sw is the sinus of the weak mixing angle. Note that
these equations do not involve ½CHlð1Þ − CHlð3Þ�, therefore
all these WCs are loop suppressed.
The operators with two charged leptons and two quarks,

relevant for μ → e conversion in nuclei, match according to

CV;LL
eu;αβxy ¼ VxwV�

yzðClqð1Þ
αβwz − Clqð3Þ

αβwzÞ

þ
�
1 −

4

3
s2w

�
ðCHlð1Þ

αβ þ CHlð3Þ
αβ Þδxy; ð25Þ

CV;LR
eu;αβxy ¼ Clu

αβxy −
4

3
s2wðCHlð1Þ

αβ þ CHlð3Þ
αβ Þδxy; ð26Þ

CV;LL
ed;αβxy ¼ Clqð1Þ

αβxy þ Clqð3Þ
αβxy

þ
�
−1þ 2

3
s2w

�
ðCHlð1Þ

αβ þ CHlð3Þ
αβ Þδxy; ð27Þ

CV;LR
ed;αβxy ¼ Cld

αβxy þ
2

3
s2wðCHlð1Þ

αβ þ CHlð3Þ
αβ Þδxy; ð28Þ
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where x, y, w, z are quark mass eigenstate indices, and in
Eqs. (15)–(18) we chose a basis where Yd¼diagðyd;ys;ybÞ
and Yu ¼ diagðyu; yc; ytÞV, with V the Cabibbo-
Kobayashi-Maskawa matrix. Even this set of WCs does

not depend on the combination ½Cð1Þ
Hl − Cð3Þ

Hl �, so they all
vanish at tree level.
We will generally ignore operators involving neutrinos,

which are typically less constrained (for a detailed dis-
cussion and special cases see, e.g., [42–45]). One exception
is the operator OV;LL

νe , which corrects μ and τ beta decays
and is induced at tree level. Its matching reads

CV;LL
νe;αβγδ ≃ −2ðCHlð3Þ

αδ δγβ þ δαδC
Hlð3Þ
γβ Þ; ð29Þ

where we neglected subdominant loop-level contributions.
This is relevant to test the universality of the Fermi
coupling, see Sec. III C 3.
Finally, the electromagnetic dipole operator, Oeγ;αβ ≡

eLασμνeRβFμνv=
ffiffiffi
2

p
, receives contributions both fromCeB;eW

and an additional electroweak-scale loop contribution,

Ceγ;αβ ¼ cwCeB
αβ − swCeW

αβ þ CEW−loop
eγ;αβ

¼ −
eΛ2

96π2
ðSY†

eÞαβ þ CEW−loop
eγ;αβ : ð30Þ

Just as one-loop matching was necessary at scale M to
account for the sterile neutrino contribution, at mW it is
necessary to include the active neutrino contribution. We
found four relevant diagrams, displayed in Fig. 2. They
involve two insertions of theWeinberg operator decomposed
into its SUð2ÞL components, in particular, a νν Majorana
mass term and an eνHþ vertex. The diagrams are finite (no
renormalization-scale dependence) and the result of the
matching is

CEW−loop
eγ;αβ

Λ2

vffiffiffi
2

p ¼ −
ev2ðCW†CWY†

eÞαβ
64π2m2

WΛ2

vffiffiffi
2

p

¼ −
e3UαiU�

βim
2
i mβ

256π2s2wm4
W

; ð31Þ

where in the last equality we used CWv2=Λ ≃mν ¼
U�diagðm1; m2; m3ÞU†. Higher-order corrections to the neu-
trino masses and to the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS)matrix,U, are discussed inAppendixA.Note that, in
contrast to CW , the other WC generated at tree level,
½CHlð1Þ − CHlð3Þ�, does not induce a dipole at one loop.
The EFT result of Eq. (31) allows us to reproduce, in
particular, the result of the classical computation of the μ →
eγ decay width, in the SM augmented with light, massive
neutrinos [46–49] (presented in full detail, e.g., in [50]).
To study charged-lepton observables, such as LFVdecays

or dipolemoments, it is necessary, in principle, to include the
RG evolution of the WCs from the electroweak scale to the
mass scale of the heaviest lepton involved in the process,mα.

However, one can convince oneself that in the seesaw this
running has no significant effects. The only interactions
below the electroweak scale are QED and QCD, both of
which are flavor conserving, therefore the structure of flavor
violation is fixed by the matching at mW and it does not
change at lower scales.3 In addition, the potentially large
QCD corrections vanish at leading order for all the WCs in
Eqs. (22)–(30). The quark current in Eqs. (25)–(28) does not
renormalize, up to terms chirally suppressed by quark
masses. Therefore the only effect of the RG evolution from
mW to mα amounts to small QED corrections of order
α=ð4πÞ logðmW=mαÞ ≲ 1%, which can be safely neglected
in our analysis. In models other than the seesaw, the QED

FIG. 2. Relevant diagrams, in the ‘t Hooft-Feynman gauge, for
the one-loop matching of the seesaw EFT above mW onto the
operator Oeγ in the EFT below mW. The shaded square (circle)
vertex stands for the Weinberg-operator component νe−HþhH0i
(ννhH0H0i). The wavy (dashed) lines in the loops stand for a W
boson (Hþ Goldstone boson).

3If the analysis is extended to dim-8 operators, two four-
fermion operators can be combined in a “fish” diagram, which
may induce additional flavor violation. We neglect such sub-
leading effects here.
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and QCD evolution of WCs frommW to the charged-lepton
mass scale can be relevant, see, e.g., the analysis of flavor-
violating observables in [51].

III. PHENOMENOLOGICAL IMPLICATIONS

We aim to employ the seesaw EFT, derived in Sec. II,
to compute various leptonic observables at leading order.
Let us comment on the size of the next-to-leading correc-
tions that we neglect. For observables induced at tree level,
the error is relatively suppressed by a loop factor times a
log. Similarly, those induced by finite one-loop diagrams
(the dipoles) receive corrections suppressed by an extra
loop times a log. In contrast, observables generated by the
one-loop RG evolution, and so are at leading-log order,
receive finite one-loop corrections whose relative size is
∼ log−1ðM=mWÞ. Therefore, when M is close to the TeV
scale, the error may become large, as we will discuss in
some specific cases below.
It is instructive to begin with some general consider-

ations on the relative size ofCW
αβ and Sαβ, defined in Eqs. (4)

and (5). The former is bound by the smallness of neutrino
masses, jðmνÞαβj ≃ jCW

αβjv2=ð2ΛÞ≲ 0.1 eV. Consequently,
the contributions to dim-6 WCs proportional to W, defined
in Eq. (8), are too small to have any observable conse-
quence in all processes other than oscillations. Thus, in the
following we will systematically neglect them relative to
the terms proportional to R, defined in Eq. (9).
A complementary question is whether the absolute size

of Sαβ is constrained by the smallness of neutrino masses,
that is to say, whether the limit CW

αβ → 0 imposes some
restriction on the size of Sαβ. This limit can be justified by
an approximate lepton number symmetry, Uð1ÞL, which is
realized, e.g., in the inverse seesaw [15–17]. For phenom-
enological purposes one can even be more general and
consider the limit CW

αβ → 0 as a tuning of the seesaw
parameters, which may or may not be justified by an
underlying symmetry (see, e.g., the discussion in [9]).
Thus, we solve the system of equations

Xns
i¼1

YiαYiβM−1
i ¼ 0; α; β ¼ e; μ; τ: ð32Þ

For ns ¼ 2, the general solution for the neutrino Yukawa
coupling matrix reads

Y ¼
 

1

�i
ffiffiffiffiffi
M2

M1

q !
ð λe λμ λτ Þ ⇒ Sαβ ¼

λαλβ
M2

1

�
1þM1

M2

�
;

ð33Þ

where λe;μ;τ are arbitrary numbers that can be taken as real
and positive, by choosing the phases of lLe;μ;τ. For ns ¼ 3,
the general solution of Eq. (32) reads

Y ¼

0
BBB@

1

z
ffiffiffiffiffi
M2

M1

q
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p ffiffiffiffiffi
M3

M1

q
1
CCCAð λe λμ λτ Þ

⇒ Sαβ ¼
λαλβ
M2

1

�
1þ jzj2M1

M2

þ j1þ z2jM1

M3

�
; ð34Þ

where z is an arbitrary complex number. Thus Eqs. (33) and
(34) give the general analytic result for the dim-6 Wilson
coefficients, Sαβ, in the limit of a vanishing dim-5 operator,
for ns¼2, 3, respectively. To our knowledge, such expres-
sions were not previously stated in the literature. The
contributions of the two (three) sterile neutrinos to S add
constructively, so no cancellation is possible. Since the
general solution for Y is factorized (column times row),
one finds that the matrix S is factorized as well, Sαβ ∝ λαλβ,
so only three entries of S are independent. In particular, the
lepton-flavor-conserving entries determine the lepton-
flavor-violating ones, Sαβ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SααSββ

p
. Note that these

considerations exactly apply to Rαβ as well, since the
factors logðMi=mWÞ affect the overall scale in a flavor-
universal way.
For ns > 3, there exists a factorized solution of Eq. (32)

for Y, which is a straightforward generalization of the
cases ns ¼ 2, 3, with ns − 2 free complex parameters,
z1;…; zns−2, in addition to the three real ones, λe;μ;τ.
However, such a factorized solution is no longer the most
general, for we cannot in general write Y in a compact
form. For instance, the ns terms that contribute to Eq. (32)
may cancel each other within separate subsets. In general,
entries of S obey a Cauchy-Schwarz inequality, jSαβj ≤ffiffiffiffiffiffiffiffiffiffiffiffiffi
SααSββ

p
, since Sαβ is a positive semidefinite matrix. In

particular, a diagonal entry Sαα is zero if and only if Yiα ¼ 0
for i ¼ 1;…; ns, and this implies Sαβ ¼ 0 for any β. In
contrast, the off-diagonal entries can vanish, suppressing
LFV processes, while the diagonal ones are nonzero. These
results hold for Rαβ as well.
An example with ns ¼ 4 where LFV is suppressed is

given by two Dirac pairs of sterile neutrinos with diagonal
mass matrix M ¼ diagðM1;M1;M2;M2Þ. In the limit of
unbroken lepton number Uð1ÞL, one finds

Y ¼

0
BBB@

Y1α

�iY1α

Y2α

�iY2α

1
CCCA⇒ Sαβ ¼

2Y�
1αY1β

M2
1

þ 2Y�
2αY2β

M2
2

; ð35Þ

where only one of Y1α and Y2α can be taken to be real.
Consequently, some off-diagonal entries of S can vanish.
For instance, imposing an additional Uð1Þe symmetry with
qeðN1Þ ¼ 1 and qeðN2Þ ¼ 0, one finds Y1μ ¼ Y1τ ¼
Y2e ¼ 0, which implies Seμ ¼ Seτ ¼ 0, and all other entries
nonvanishing. In this case, LFV occurs only in the μ − τ
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sector. Further imposing a full Uð1Þe ×Uð1Þμ ×Uð1Þτ
symmetry, with, e.g., qeðN1Þ ¼ 1, qμðN2Þ ¼ 1 and other
charges vanishing, only See and Sμμ are nonzero: there is no
LFV and no corrections to the τ − τ channel either.
Trivially, if one takes ns ¼ 6 with three Dirac pairs of
sterile neutrinos, one can make Sαβ ¼ 0 for any α ≠ β,
while keeping Sαα ≠ 0 for each α. In these examples, zeroes
in S correspond to zeroes in R as well, because the
cancellation is enforced by a symmetry. More generally,
it may happen that an accidental cancellation occurs in
some Sαβ but not in Rαβ, or vice versa, and in this case LFV
may appear only in log-enhanced WCs, or only in those
with no logarithms.
We are now ready to discuss, in turn, each lepton

observable that sets constraints on the seesaw parameters.

The EFT framework elucidates the dependence of flavor-
conserving (-violating) observables on the (off-) diagonal
entries of the matrices S or R. Therefore, the EFT approach
enables a quick and direct comparison between bounds on
different observables, in particular between those which
conserve and violate flavor. We will begin in Sec. III A by
discussing electroweak-scale observables, that is, Higgs
and Z decays into leptons. We will then discuss low-energy
processes involving charged leptons: flavor-violating
decays and scatterings in Sec. III B and flavor-conserving
observables (dipole moments and tests of the universality of
the Fermi constant) in Sec. III C. We summarize all the
constraints from flavor-conserving processes in Table II
and all those from flavor-violating ones in Table III, in
terms of upper bounds on the dimensionless parameters

TABLE II. Experimental bounds on the seesaw parameters Ŝαα and R̂αα. For details on each bound see the
relative section.

Observable Experimental value Constraint

BRðZ → ννÞ Nν ¼ 2.9840� 0.0082 [52] 1.05ðŜee þ ŜμμÞ þ Ŝττ ≲ 3.5 × 10−3

mW 80.379� 0.012 GeV [53] Ŝee þ Ŝμμ ≲ 1.3 × 10−3

ΓðZ → eþe−Þ 83.92� 0.12 MeV [52] Ŝee þ Ŝμμ ≲ 0.53 × 10−3

aexpe − aSMe ð−8.7� 3.6Þ × 10−13 [54] Ŝee ≲ 9.3
ΓðZ → μþμ−Þ 83.99� 0.18 MeV [52] Ŝee þ Ŝμμ ≲ 1.4 × 10−3

aexpμ − aSMμ ð2.74� 0.73Þ × 10−9 [55] Ŝμμ ≲ 0.2
ΓðZ → τþτ−Þ 84.08� 0.22 MeV [52] Ŝee þ Ŝμμ ≲ 2.9 × 10−3

Gμτ
F =Geτ

F 1.0018� 0.0014 [56] Ŝee ≲ 2.6 × 10−3

Geτ
F =GF 1.0011� 0.0015 [56] Ŝμμ ≲ 1.0 × 10−3

Gμτ
F =GF 1.0030� 0.0015 [56] Ŝττ ≲ 0.64 × 10−3

TABLE III. Experimental bounds on the seesaw parameters Ŝαβ and R̂αβ for α ≠ β. Bounds in purple are expected
future limits. For details on each bound see the relative section.

Observable Experimental upper limit Constraint

BRðh → eμÞ 3.5ð0.3Þ × 10−4 (95% C.L.) [57,58] jR̂eμj ≲ 81ð24Þ
BRðZ → eμÞ 7.5 × 10−7 (95% C.L.) [59] jR̂eμj ≲ 0.065
BRðμ → eγÞ 4.2ð0.6Þ × 10−13 (90% C.L.) [60,61] jŜeμj ≲ 6.8ð2.6Þ × 10−6

BRðμ → eeeÞ 1.0 × 10−12ð10−16Þ (90% C.L.) [62,63] jR̂eμj≲ 5.6 × 10−5ð5.6 × 10−7Þ
BRðμAu → eAuÞ 7 × 10−13 (90% C.L.) [64] jR̂eμj≲ 9.7 × 10−6

BRðμTi → eTiÞ 4.3 × 10−12ð10−18Þ (90% C.L.) [65–67] jR̂eμj≲ 3.5 × 10−5ð1.7 × 10−8Þ
BRðμAl → eAlÞ 10−16 (90% C.L.) [68] jR̂eμj≲ 2.4 × 10−7

BRðh → eτÞ 6.9ð0.3Þ × 10−3 (95% C.L.) [57,58] jR̂eτj ≲ 22ð4.5Þ
BRðZ → eτÞ 9.8 × 10−6 (95% C.L.) [69] jR̂eτj ≲ 0.24
BRðτ → eγÞ 3.3ð0.5Þ × 10−8 (90% C.L.) [70,71] jŜeτj ≲ 4.5ð1.8Þ × 10−3

BRðτ → eeeÞ 2.7ð0.05Þ × 10−8 (90% C.L.) [71,72] jR̂eτj ≲ 0.022 ð3.0 × 10−3Þ
BRðh → μτÞ 0.014ð3 × 10−3Þ (95% C.L.) [58,73] jR̂μτj≲ 31ð4.5Þ
BRðZ → μτÞ 1.2 × 10−5 (95% C.L.) [74] jR̂μτj ≲ 0.26
BRðτ → μγÞ 4.4ð0.3Þ × 10−8 (90% C.L.) [70,75] jŜeτj ≲ 5.2ð1.4Þ × 10−3

BRðτ → μμμÞ 2.1ð0.1Þ × 10−8 (90% C.L.) [72,75] jR̂μτj≲ 0.019 (4.2 × 10−3)
jdej 1.1 × 10−29 e cm (90% C.L.) [76] jImðŜeμŜeτŜμeÞj≲ 0.02
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Ŝαβ ≡m2
WSαβ; R̂αβ ≡m2

WRαβ: ð36Þ

In Sec. III D we will present summary plots for all the
constraints, assuming the factorized solution for Ŝαβ and
R̂αβ where off-diagonal entries are determined by the
diagonal ones.
Previous analyses of the seesaw phenomenology and the

correlations among the various observables were per-
formed, e.g., in [77–80], without using EFT techniques.
An EFTanalysis setting limits on the individual elements of
Ŝαβ can be found in [21]. The RG evolution of the theory
was neglected, thus fewer observables were considered.
Aspects of seesaw EFT phenomenology have also been
studied in [18–20,22,23]. We generalize and update these
results by including lepton observables generated at leading
log, for arbitrary values of the seesaw parameters, and we
highlight novel correlations that sharply emerge from the
EFT description. Recently improved experimental results
for several observables also enable us to derive more
stringent constraints on the seesaw parameter space than
previous analyses.

A. Electroweak-scale observables

1. Higgs-boson decays into leptons

We focus on Higgs-boson decays into charged leptons
since decays to neutrinos are suppressed by the smallness of
the neutrino mass. Seesaw-induced corrections to flavor-
conservingHiggs decays into quarks are also ignored as they
lead to similar bounds, which are in any case overcome by
more stringent bounds obtained in subsequent sections.
To derive the corrections to the charged-lepton Yukawa

couplings, one should account for the effects of several
dim-6 operators induced by the seesaw at the electroweak
scale mW . On one hand, after electroweak symmetry
breaking the Higgs-boson kinetic term receives corrections
from CHD and CH□ (see, e.g., [29]), therefore one needs a
field redefinition to restore a canonical kinetic term,

hSM ¼
�
1þ

�
CH□ −

1

4
CHD

�
v2

Λ2

�
h: ð37Þ

On the other hand, the operator QeH corrects both the
charged-lepton mass matrix and the charged-lepton
Yukawa couplings,

Leff ⊃ −eLα
��

Ye;αβ − CeH
αβ

v2

2Λ2

�
vffiffiffi
2

p

þ
�
Ye;αβ − CeH

αβ

3v2

2Λ2

�
hSMffiffiffi
2

p
�
eRβ þ H:c:

¼ −eLα
�
mαδαβ þ

� ffiffiffi
2

p
mα

v
δαβ − CeH

αβ

v2

Λ2

�
hSMffiffiffi
2

p
�
eRβ

þ H:c:; ð38Þ

where in the third line we chose a basis where the charged-
lepton masses are diagonal. Combining Eqs. (37) and (38),
one can extract the charged-lepton Yukawa couplings to the
physical Higgs boson, h, in the seesaw,

Yh
e;αβ ≃

�
δαβ þ

�
m2

W

24π2
tr½R�δαβ −

m2
h

16π2
Rαβ

�� ffiffiffi
2

p
mβ

v
;

ð39Þ
where we took the expressions for CHD, CH□, and CeH in
Eqs. (19), (20), and (14), respectively, and expanded to
retain only dim-6 corrections.
We can thus compute, at leading-log order, the Higgs

decay widths. Let us begin with the LFV channels,
h → lþ

α l−
β with α ≠ β.4 Defining Γðh → lαlβÞ≡ Γðh →

lþ
α l−

β Þ þ Γðh → l−
αl

þ
β Þ, one finds, for mh ≫ mβ ≫ mα,

Γðh → lαlβÞ ≃
mh

16π
jYh

e;αβj2

≃
m5

hm
2
β

8πð16π2Þ2v2 jRαβj2: ð40Þ

Our EFT result agrees at leading-log order with an exact
one-loop calculation in the inverse-seesaw model [83], as
expected. In fact [83] the coefficient of the log-enhanced
term is larger than the finite piece of the same order, which
is OðY2=M2Þ, and for jYj≲ 0.3 it is also larger than the
OðY4=M2Þ finite piece. Thus the leading-log estimate is
accurate even for M ∼ TeV. The width of LFV Higgs
decays in the seesaw was also computed in [84,85]. The
LHC set upper bounds on the branching ratio of LFV Higgs
decays [53], assuming that the total Higgs production and
width is SM-like. In the seesaw, the latter receive correc-
tions from dim-6 operators, which thus modifies the LFV
branching ratios at dim-8 order and can thus be neglected.
The corresponding bounds on jR̂αβj are feeble even for
electroweak-scale sterile neutrinos, see Table III.
The Higgs decay width into same-flavor leptons is

Γðh → lþ
α l−

α Þ ≃
mh

16π
jYh

e;ααj2

≃
mhm2

α

8πv2

����1þ 1

16π2

�
2

3
m2

W tr½R� −m2
hRαα

�����2:
ð41Þ

Presently only h → ττ has been observed [86,87], with
branching ratio ½σh · BRðh → ττÞexp� ¼ ð1.12� 0.23Þ½σh ·
BRðh → ττÞSM� [53]. The seesaw modifies not only the
h → τþτ− decay width, but also the Higgs production cross
section σh and its total decay width Γh, both of which enter

4A detailed, model-independent analysis of these channels is
provided in [81,82]: in some cases they can be competitive with
low-energy LFV processes. We will show this is not the case in
the seesaw.
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the experimental result. Even adding these corrections, the
constraint on the linear combination of tr½R̂� and R̂ττ is too
weak to be relevant.

2. Z-boson decays into leptons

We adopt the standard parametrization for Zff̄ vector
and axial couplings,

LZ ¼ −
e

2swcw
ZμfαγμðgVf;αβ − gAf;αβγ5Þfβ: ð42Þ

The SM predicts gVðSMÞ
f;αβ ¼ ½T3ðfLÞ − 2s2wQðfÞ�δαβ and

gAðSMÞ
f;αβ ¼ T3ðfLÞδαβ at tree level. The Z-boson couplings,
gV;A, are corrected by seesaw-induced dim-6 operators
involving fermions. In contrast, the dim-6 operators that
may directly correct gauge couplings and gauge boson
kinetic terms are not induced by the seesaw at one-loop
leading-log order. Still, the Z-boson partial decay widths
are indirectly affected by a tree-level shift of the Fermi
constant, GF. The latter is determined experimentally from
the decay μ → eνeνμ, with GF ¼ 1.166 × 10−5 GeV−2.
Due to the seesaw contribution to low-energy four-fermion
operators (discussed in detail in Sec. III C 3), the measured
quantity is

GF ≃GSM
F −

1

4
ffiffiffi
2

p ðSee þ SμμÞ; ð43Þ

at linear order in Sαβ. The Z partial widths are proportional
to GF and, in addition, they depend on sw, which can be
expressed as a function of α, mZ, and GF. While the
experimental determination of the first two parameters is
not affected by the seesaw, the determination of GF is,
therefore sw is shifted as well. A useful, general discussion
of the electroweak precision constraints on the SM EFT can
be found, e.g., in [88].
Let us first consider Z-boson flavor-conserving decays

to charged leptons. We find that the correction due to the
shift in GF reads

ΓðZ → lþ
α l−

α Þ ≃ ΓðZ → lþ
α l−

α ÞSM

×

�
1þ v2

4

1 − 2s2w − 4s4w
ð1 − 2s2wÞð1 − 4s2w þ 8s4wÞ

ðSee þ SμμÞ
�
;

ð44Þ

where sin2 2θw ≡ ð2 ffiffiffi
2

p
παÞ=ðGFm2

ZÞ.5 Comparing the SM
predictions with the precise partial-width measurements

made at LEP [52], and allowing for a 2σ deviation, one
reaches the stringent bound

Ŝee þ Ŝμμ ≲ 0.53 × 10−3: ð45Þ

As can be seen in Table II, this is the strongest constraint
on the flavor-conserving entries of Ŝ. It comes from
the measurement of ΓðZ → eþe−Þ, while the decays
Z → μþμ−, τþτ− set comparable limits.
Let us discuss next the Z-boson invisible width. The Z

couplings to neutrinos receive a correction from the
WC ½CHlð1Þ − CHlð3Þ�, which is induced at tree level by

the seesaw. The SM values, gVðSMÞ
ν;αβ ¼ gAðSMÞ

ν;αβ ¼ 1
2
δαβ, are

shifted by

δgVν;αβ ¼ δgAν;αβ ¼ −
v2

2Λ2
ðCHlð1Þ

αβ −CHlð3Þ
αβ Þ≃−

v2

4
Sαβ: ð46Þ

Combining this effect with the shift in GF, we find that the
effective number of light neutrinos is given by

Nν ≡
P

αβ ΓðZ → νανβÞ
ΓðZ → lþ

γ l−
γ Þ

ΓðZ → lþ
γ l−

γ ÞSM
ΓðZ → νγνγÞSM

≃ 3 − v2Sττ −
1 − 5s2w þ 11s4w − 12s6w

ð1 − 2s2wÞð1 − 4s2w þ 8s4wÞ
v2ðSee þ SμμÞ;

ð47Þ

at linear order in Sαβ and neglecting one-loop suppressed
seesaw corrections. The coefficient of ðSee þ SμμÞ differs
from the one of Sττ due to the shift in GF. Thus our result is
more accurate than in [89], where a flavor-universal shift in
Nν is derived. We also correct [80], which uses a definition
of Nν different from the experimentally measured ratio of
decay widths. The LEP measurement, Nν ¼ 2.9840�
0.0082 [52], relies on measurements of the Z total width
and decay width into charged fermions. Demanding thatNν

is within the 2σ experimental interval sets a stringent
bound, given in Table II.
The seesaw also induces flavor-violating Z-boson cou-

plings to charged leptons, via the WCs ½CHlð1Þ þ CHlð3Þ�
and CHe, which arise at one-loop via the seesaw RGEs. We
find, for α ≠ β,

gVl;αβ ¼ −
v2ðCHlð1Þ

αβ þ CHlð3Þ
αβ þ CHe

αβ Þ
2Λ2

≃
1

16π2
17þ t2w

6
R̂αβ; ð48Þ

gAl;αβ ¼ −
v2ðCHlð1Þ

αβ þ CHlð3Þ
αβ − CHe

αβ Þ
2Λ2

≃
1

16π2
17þ t2w

6
R̂αβ: ð49Þ

5We have neglected the additional corrections to the Z-boson
couplings to charged leptons, which arise via the seesaw RGEs,
because they are loop suppressed: they will be relevant for
Z-boson flavor-violating decays, see Eqs. (48) and (49).
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The width for LFV decays, defined by adding the Z →
lþ
α l−

β and Z → l−
αl

þ
β channels for α ≠ β, is given by

ΓðZ → lαlβÞ ≃
m3

Z

6πv2
ðjgVl;αβj2 þ jgAl;αβj2Þ

≃
m3

Z

3πv2ð16π2Þ2
�
17þ t2w

6

�
2

jR̂αβj2: ð50Þ

Note that the shift of GF, described by Eq. (43), affects the
LFV width (50) at higher order in S only, thus it can be
ignored. Our result agrees at leading log with a calculation
in the inverse seesaw [90]. The LFV Z-decay width in the
seesaw was also computed in, e.g., [91]. The experimental
bounds [53] translate into upper bounds on R̂αβ, which are
summarized in Table III.
Equations (40) and (50) imply, for mβ ≫ mα,

BRðh → lαlβÞ
BRðZ → lαlβÞ

≃
3m5

hm
2
β

8m3
Zm

4
W

�
6

17þ t2w

�
2 ΓZ

Γh
≃ 0.08

m2
β

m2
τ
;

ð51Þ

which is a sharp prediction of the seesaw at leading-log
order. The two LFV decays are controlled by the same
combination of seesaw parameters, but the Higgs-boson
decays are chirally suppressed. The present experimental
sensitivity to LFV Higgs branching ratios is ∼103 lower
than for the Z, see Table III. We conclude that, in the
seesaw, LFV Higgs decays are completely out of the
experimental reach.
Finally, we note that flavor-conserving Z decays to

quarks are also shifted, due to the seesaw correction to
GF, while flavor-violating Z decays are induced at one
loop, since the WCs CHqð1Þ, CHqð3Þ, CHu, CHd are all
generated at that order. However, decays to quarks are
measured less precisely than leptonic ones, thus the limits
are correspondingly weaker and we neglect them here.

3. W-boson mass

The seesaw correction to GF in Eq. (43) also shifts the
prediction of mW , since the latter can be written as a
function of GF and the other most precisely measured SM
parameters, α and mZ.

6 One finds

mW ≃mSM
W

�
1þ s4w

8παð1 − 2s2wÞ
ðŜee þ ŜμμÞ

�
: ð52Þ

Here the SM prediction, including radiative corrections, is
given by mSM

W ¼ 80.362� 0.008 GeV [92]. Equation (52)
is consistent with [80,89,93], and it should be compared
with the very precise kinematic measurement of mW [53].

The corresponding bound on ðŜee þ ŜμμÞ is reported in
Table II, where we allowed for a 2σ deviation between
theory and experiment.

B. Low-scale flavor-violating observables

1. Charged-lepton radiative decays

As shown in Secs. II A and II C, the seesaw induces a
nonzero electromagnetic dipole WC, Ceγ;αβ, via one-loop
matching at the scales M and mW , respectively. The
branching ratio of charged-lepton radiative decays is
given by

BRðlα → lβγÞ ≃
m3

αv2

8πΛ4Γα
ðjCeγ;αβj2 þ jCeγ;βαj2Þ

≃
αemm5

α

36ð16π2Þ2Γα
jSαβj2; ð53Þ

where Γα is the total width of lα, and in the second equality
we replaced Eq. (30) in the limit CW

αβ → 0. Our result
reproduces the original computation [32,33] at the lowest
order in the matrix ϵ≡M−1Yv=

ffiffiffi
2

p
, that is, in the limit

where mν vanishes and the active-sterile mixing is approxi-
mated by ϵ (see Appendix A for a systematic derivation of
higher orders, corresponding to higher-dimensional oper-
ators in the EFT). The experimental bounds set very
stringent constraints on jŜαβj for α ≠ β, which we report
in Table III. The strongest one, BRðμ → eγÞ < 4.2 × 10−13

at 90% C.L. [60], is expected to improve by an order of
magnitude in the future [61], while radiative τ decays have
branching ratios constrained to the 10−8 level.
It is interesting to study the correlation between charged-

lepton radiative decays and LFV Z decays discussed in
Sec. III A 2, which are log enhanced. Indeed, Eqs. (50) and
(53) imply

BRðZ → lαlβÞ
BRðlα → lβγÞ

≃
m3

Zm
4
Wð17þ t2wÞ2

3πv2αemm5
α

Γα

ΓZ

jPi S
i
αβ log

Mi
mW

j2
jPi S

i
αβj2

≃
m3

Zm
4
Wð17þ t2wÞ2Γα

3πv2αemm5
αΓZ

log2
M
mW

≃ log2
M
mW

×

�
0.12ðα ¼ τÞ
0.02ðα ¼ μÞ ; ð54Þ

where the second equality is accurate only in some limits,
e.g., for Mi ≃M for all i, or for jSiαβj ≫ jSjαβj for all j ≠ i
(in this case M ¼ Mi). The present experimental bounds
imply that, in the e − μ (e − τ, μ − τ) channel, the con-
straint on jR̂αβj from Z decays is about 4 (2) orders of
magnitude weaker than the constraint on jŜαβj from μ → eγ
(τ → eγ, τ → μγ), see Table III. The only way to avoid this
conclusion is to invoke a cancellation in

P
iS

i
αβ, while

different values of logðMi=mWÞ avoid the cancellation in
6We acknowledge Enrique Fernandez-Martinez for drawing

our attention to this observable.
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the Z-decay amplitude. As discussed below Eqs. (33)–(35),
this is possible only for ns > 3.

2. Lepton decays into three leptons

Another well-known flavor-violating process generated
by the seesaw is l−

α → l−
βl

þ
β l

−
β decays. The general expres-

sion for thebranching ratio inEFTisgiven in [94]. In termsof
WCs generated by the seesaw after matching at mW (see
Sec. II C), we find, up to chirally suppressed terms,

BRðl−
α → l−

β l
þ
β l

−
β Þ ≃

m5
α

96πð16π2ÞΛ4Γα

�
8jCV;LL

ee;βαββj2 þ jCV;LR
ee;βαββj2 þ

32e2

m2
α

�
log

m2
α

m2
β

−
11

4

�����Ceγ;βα
vffiffiffi
2

p
����2

þ 8e
mα

Re

�
C�
eγ;βα

vffiffiffi
2

p ð4CV;LL
ee;βαββ þ CV;LR

ee;βαββÞ
��

≃
m5

αð27 − 96s2w þ 128s4wÞ
36πv4ð16π2Þ3Γα

jR̂αβj2; ð55Þ

where in the final equality we neglected the contributions
involving the dipole, as they are not log enhanced (we
checked that the log-enhanced terms dominate even for
M ∼ TeV, and in any case we did not compute consistently
the one-loop finite parts for the other WCs), and we used
Eqs. (22) and (23). This result agrees at leading log with the
highly nontrivial one-loop seesaw calculation of [95] in the
limit where mν vanishes. The corresponding bounds are
collected in Table III. The processes τ → eðμþμ−Þ and τ →
μðeþe−Þ give very similar bounds to τ → 3e and τ → 3μ,
respectively. Decays which violate flavor by two units,
τ− → μþe−e− and τ− → eþμ−μ−, are not generated at
leading-log order by dim-6 operators.
These rare decays are clearly correlated with other LFV

decays, in particular,

BRðZ → lαlβÞ
BRðl−

α → l−
βl

þ
β l

−
β Þ

≃
m3

Zv
2

m5
α

16π2ð17þ t2wÞ2
3ð27 − 96s2w þ 128s4wÞ

Γα

ΓZ

≃
�
3.2ðα ¼ τÞ
0.57ðα ¼ μÞ : ð56Þ

The experimental bounds on three-body decay branching
ratios are much stronger (especially in the e − μ sector)
than those from Z decays, which are therefore completely
out of reach as long as the leading-log approximation is
accurate. Comparing with Eq. (54), one notices that
BRðlα → 3lβÞ can be as large as BRðlα → lβγÞ for
logðM=mWÞ ∼ 5. The expected future limit BRðμ → 3eÞ <
10−16 [63], 4 orders of magnitude tighter than the current
bound [62], should overcome the μ → eγ constraint, see
Table III. The only more stringent bound may come from
μ → e conversion in nuclei, to which we turn now.

3. The μ → e conversion in nuclei

The seesaw generates at one loop 2q2l operators, as
well as the electromagnetic dipole operator, which both

contribute to μ → e conversion in nuclei. Recall that
we neglect 2q2l scalar operators, as they are Yukawa
suppressed, and retain only vector ones, see Sec. II C.
The μ → e conversion rate, ΓN ≡ σðμN → eNÞ, is given
by [96,97]

ΓN ¼ m5
μ

16Λ4

����DNCeγ;eμvffiffiffi
2

p
mμ

þ 4
X
i¼p;n

Vi
N

X
X¼L;R

ðfuViCV;LX
eu;eμuu þ fdViC

V;LX
ed;eμddÞ

����2; ð57Þ

where the nucleon vector form factors are simply fuVp ¼ 2,
fdVp ¼ 1, fuVn ¼ 1, fdVn ¼ 2, while the nuclear form factors
DN and Vp;n

N are given in Table IV, for the nuclei that are
most relevant for current or future bounds. The matching in
Sec. II C gives

CV;LL
eu;eμuu

Λ2
þ CV;LR

eu;eμuu

Λ2
≃

1

8π2
64s2w − 27

9v2
R̂eμ; ð58Þ

CV;LL
ed;eμdd

Λ2
þ CV;LR

ed;eμdd

Λ2
≃

1

8π2
27 − 32s2w

9v2
R̂eμ; ð59Þ

whileCeγ;eμ is given in Eq. (30) and is subleading as it is not
log enhanced.
Our result agrees at leading-log order with the explicit

seesaw calculation performed in [79], which was derived
assuming all heavy-neutrino masses are equal. As pointed
out in [79], the one-loop finite part is accidentally large and
may cancel the log part for a tuned, nucleus-dependent
value of M, typically around the TeV scale, e.g., M ¼
4.7 TeV for a 27

13Al nucleus. Only in this special case does
the leading-log result give a poor estimate of the rate.
One can define a branching ratio, BRðμN → eNÞ≡

ΓN=Γ
capt
N , where Γcapt

N ≡ σðμN → νμN0Þ is the muon capture

TABLE IV. Nuclear form factors and capture rate for relevant
nuclei [96].

197
79 Au

27
13Al

48
22Ti

DN 0.189 0.0362 0.0864
Vp
N 0.0974 0.0161 0.0396

Vn
N 0.146 0.0173 0.0468

Γcapt
N [GeV] 8.7 × 10−18 4.6 × 10−19 1.7 × 10−18
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rate. As shown in Table III, the present experimental
constraints on μ → e conversion already give the strongest
bound on jR̂eμj, which is very close to the bound on jŜeμj
from μ → eγ. The limits from future μ → e conversion
experiments [66–68] are expected to be the most stringent
ones. As usual, a cancellation in jR̂eμj and not in jŜeμj, or
vice versa, cannot be excluded in the nonminimal scenarios
with ns > 3; see the discussion below Eq. (35).

C. Low-scale flavor-conserving observables

1. Magnetic dipole moments

The shift in the charged-lepton anomalous magnetic
dipole moment, aα, is related to the electromagnetic dipole
WC by

Δaα ≡ 4mαvffiffiffi
2

p
eΛ2

ReðCeγ;ααÞ ≃ −
m2

αSαα
24π2

; ð60Þ

where we replaced Eq. (30) neglecting the loops of active
neutrinos, which vanish as m2

ν. Our EFT result agrees with
the seesaw one-loop computation of [98]. Besides the loop-
level contribution of sterile neutrinos given by Eq. (60), there
may be indirect corrections to aα due to shifts induced by the
seesaw on SM parameters, specifically the Yukawa cou-
plings given in Eq. (39). In the SM computation of the
magnetic moment, a Higgs-boson exchange enters at one-
loop order, inducing a shift Δaα ∼O½m2

αRββ=ð16π2Þ2�. This
correction is loop-suppressed compared to Eq. (60). More-
over, as the consistency of the EFT requires R̂ββ ≲ 1, this
correction is smaller than the current experimental precision
on Δaα for α ¼ e, μ, τ, thus we can safely ignore it.
Equation (60) implies that the seesaw predicts a negative

shift in the magnetic dipole moment of charged leptons,
which is the opposite direction with respect to the ðg − 2Þμ
anomaly, aexpμ − aSMμ ¼ ð2.74� 0.73Þ × 10−9 [55] (see also
[99]). A seesaw contribution of Ŝμμ ≃ 0.1k worsens the
anomaly by ∼kσ: in Table II we display the bound obtained
taking k ¼ 2. As the measurement of Z → νν̄ imposes
the constraint Ŝμμ ≲ 3.5 × 10−3, the seesaw correction to
ðg − 2Þμ is negligible.
Recent improvements in the measurement of the fine-

structure constant [100] and in the theoretical prediction for
ðg − 2Þe [101] has led to a 2.4σ discrepancy in ðg − 2Þe,
aexpe − aSM ¼ ð−8.7� 3.6Þ × 10−13. This anomaly would
be reduced by 1σ for Ŝee ≈ 2.1 and it would fit for
Ŝee ≈ 5.1: in Table II we display the very weak 2σ upper
bound on the seesaw contribution. However these large
corrections are ruled out by other constraints, most notably
Z → νν̄. The size of the effect is rather suggestive of
(nonseesaw) new physics close to or below the electroweak
scale. Finally, the value of aτ is poorly measured due to the
very small τ lifetime, and it does not set any relevant
constraint on Ŝττ.

2. Electric dipole moments

The electric dipole moment (EDM) of charged leptons,
dα, is related to the electromagnetic dipole WC by

dα ≡
ffiffiffi
2

p
v

Λ2
ImðCeγ;ααÞ: ð61Þ

In the seesaw, the one-loop contribution to Ceγ;αα, given by
Eqs. (6), (30), and (31), is real, therefore the EDM vanishes
at one loop. Even beyond the dim-6 EFT approximation,
the one-loop contribution remains real. We checked that
two-loop diagrams contributing to the EDM must be finite.
Indeed, applying the RGEs of [27–29] twice to the seesaw
WCs computed in Sec. II does not induce terms of order
∼ðα=4πÞ2 log2ðM=mWÞ in Ceγ . The EFT contributions to
the dipole of order ∼ðα=4πÞ2 logðM=mWÞ are identified in
[102] and are not generated by the seesaw.7 Given the very
stringent experimental constraint on de [76], finite two-loop
contributions to the EDM may be phenomenologically
relevant, and we estimate them below.
To find the leading contribution to the EDM, we must

identify the shortest chain of Yukawa couplings that
matches the transformation properties of the dipole bilinear,
ðlLσμνeRÞ, and whose diagonal entries have a nonzero
imaginary part. The anti-Hermitian part of such a chain is
purely imaginary on the diagonal and thus gives the
parametric form of the EDM. The minimal combina-
tion that satisfies these requirements is the commutator
½Y†YY†

eYeY†Y; Y†Y�Ye [103,104]. For Dirac neutrinos
(M ¼ 0), this is the whole story, however, in the seesaw
each pair Y†Y is associated with a sterile neutrino
exchange, which is integrated out at scale M, therefore
one must take the familiar replacement Y†Y →
Y†M�−1M−1Y ¼ S. It is an instructive exercise to check
diagrammatically that out of the nine Higgs lines associated
with the nine Yukawa couplings, at least four must be
connected to form two loops. Thus, we obtain an estimate
for the finite two-loop contribution to the electron EDM,

jdej ∼
2e

ð16π2Þ2
�

vffiffiffi
2

p
�

4

Imð½SY†
eYeS; S�eeÞme

¼ 2emev2

ð16π2Þ2 ðm
2
τ −m2

μÞImðSeτSτμSμeÞ

≃ 5.7 × 10−28ImðŜeτŜτμŜμeÞ e cm: ð62Þ
To our knowledge, this is the most accurate analytic
estimate of the seesaw contribution to the electron EDM
available in the literature. It corresponds to a dim-10
operator in the seesaw EFT. The experimental upper bound

7This is consistent with the renormalizability of the seesaw
Lagrangian: the lowest-order contribution to the EDM must be
finite, as there is no counterterm to cancel its presumed
divergence.
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on de leads to the mild constraint jImðŜeμŜeτŜμτÞj ≲ 0.02,
reported in Table II. The charged-lepton EDMs were
calculated in the seesaw in [105], although it is difficult
to compare our analytical estimate with their numerical
results.
The stringent constraints on the flavor-violating param-

eters jŜαβj, imply a severe suppression of this seesaw-
induced EDM, jdej ≲ 10−37 e cm, comparable with the SM
contribution jdSMe j ∼ 10−38 e cm [106,107]. We note that
for ns ¼ 2, 3 sterile neutrinos, in the limit where light-
neutrino masses vanish, the matrix S is real [see Eqs. (33)
and (34)], therefore the above contribution to the EDM
vanishes. Then a contribution to dα not suppressed by mν

can only be achieved via higher loops involving quarks,
which are further Jarlskog suppressed, as in the SM.
By contrast, for ns ≥ 4 the anti-Hermitian commutator
½SY†

eYeS; S�αα can be nonzero.

3. Universality of lepton decays
and the W-boson mass

The four-fermion Lagrangian which describes general
lδ → lγνβνα decays is

L ⊃ −
4GSM

Fffiffiffi
2

p ðναγρPLlαÞðl̄βγ
ρPLνβÞ

þ CV;LL
νe;αβγδ

Λ2
ðναγρPLlδÞðl̄γγ

ρPLνβÞ; ð63Þ

with CV;LL
νe;αβγδ ¼ CV;LL�

νe;βαδγ. This low-energy WC receives a
tree-level contribution from the seesaw, given by Eq. (29),
which takes the form

CV;LL
νe;αβγδ

Λ2
≃
1

2
ðSαδδγβ þ δαδSγβÞ: ð64Þ

We will neglect seesaw one-loop corrections in the follow-
ing. The neutrino flavor is not detected in experiments, thus
the Fermi constant measured in μ → eνν̄ decays is

G2
F ≃

����GSM
F −

1

4
ffiffiffi
2

p ðSee þ SμμÞ
����2

þ 1

32
ð2jSeμj2 þ jSeτj2 þ jSμτj2Þ: ð65Þ

This result was already displayed in Eq. (43) at linear order
in Sαβ. Similarly, the effective Fermi constants for τ → eν̄ν
and τ → μν̄ν decays are, respectively,

ðGeτ
F Þ2 ≃

����GSM
F −

1

4
ffiffiffi
2

p ðSee þ SττÞ
����2

þ 1

32
ð2jSeτj2 þ jSeμj2 þ jSμτj2Þ; ð66Þ

ðGμτ
F Þ2 ≃

����GSM
F −

1

4
ffiffiffi
2

p ðSμμ þ SττÞ
����2

þ 1

32
ð2jSμτj2 þ jSeμj2 þ jSeτj2Þ: ð67Þ

Bounds on the universality of lα → lβν̄ν decays
give [56]

Gμτ
F

Geτ
F
− 1 ≃

See − Sμμ
4
ffiffiffi
2

p
GF

¼ 0.0018� 0.0014; ð68Þ

Geτ
F

GF
− 1 ≃

Sμμ − Sττ
4
ffiffiffi
2

p
GF

¼ 0.0011� 0.0015; ð69Þ

Gμτ
F

GF
− 1 ≃

See − Sττ
4
ffiffiffi
2

p
GF

¼ 0.0030� 0.0015; ð70Þ

where we retained only terms linear in Sαβ. In Table II we
report the bounds on each Ŝαα from universality constraints,
assuming the other entries are vanishing. Since there is a 2σ
discrepancy with the SM in Eq. (70), we conservatively use
3σ intervals from Eqs. (68)–(70) to set our bounds. It turns
out that GF universality is a powerful constraint on Ŝαα,
comparable to or even slightly more stringent than the
measurements ofmW and Z-boson partial widths. Note that
the constraint is relaxed for Ŝee ≃ Ŝμμ ≃ Ŝττ.
Lepton universality can be tested with comparable

accuracy in pion and kaon leptonic decays [56]. These
bounds were exploited to constrain the seesaw parameters,
e.g., in [80]. Here we restrict ourselves to purely leptonic
observables, as the hadronic bounds are either weaker or of
the same order.

D. Summary plots

In order to graphically compare the various constraints,
we assume Sαβ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SααSββ

p
and Rαβ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RααRββ

p
, which

hold in general when ns ¼ 2 or 3. Our results in the e − μ,
e − τ, and μ − τ sector are summarized in Figs. 3–5,
respectively. We plot the bounds as a function of R̂αα

and R̂ββ, setting R̂γγ ¼ 0, where α ≠ β ≠ γ are the three
flavors. For ns > 3, the off-diagonal entries satisfy
jRαβj ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RααRββ

p
; see the discussion around Eq. (35).

This means that the bounds from LFV observables shown
in the figures can be relaxed to an arbitrary extent, relative
to those from flavor-conserving observables.
In order to determine Ŝαβ as a function of R̂αβ, in the plots

we fix the log factors by taking a unique seesaw scale,
Mi ¼ 1 TeV for all i ¼ 1;…; ns. This allows one to
compare log-enhanced observables with those that do
not carry a log. As Mi increases, the bounds with no log
enhancement become relatively weaker. Equation (9)
implies
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jR̂αβj ≃ 0.016

����X
ns

i¼1

Y�
iαYiβ

����≲ 0.016 · ns;

ðMi ¼ 1 TeV for i ¼ 1;…; nsÞ; ð71Þ
where the inequality is a conservative perturbativity bound,
jYiαj≲ 1. Sterile neutrinos with mass below 1 TeVare also
problematic in our approximation, as the one-loop leading-
log corrections become comparable to the one-loop finite
parts that we neglected. Hence, in the figures the region
jR̂αβj > 0.016 is shaded in gray, as the computability of our
EFT becomes questionable.
For the e − μ sector (Fig. 3), the strongest bounds come

from the various μ → e transitions, as long as both R̂ee,
R̂μμ ≳ 10−7. Under the specified assumptions, the best limit
comes from μ → e conversion in gold and the strongest
expected future bound is from μ → e conversion in
titanium. Constraints from flavor-conserving processes
become dominant for R̂ee, R̂μμ ≲ 10−7. In this case the
bound from Z → eþe− is the tightest one.
For the e − τ (Fig. 4) and μ − τ (Fig. 5) sectors, we reach

the striking conclusion that flavor-conserving bounds set
the best limits on the seesaw parameters over the whole
parameter range. This agrees qualitatively with the con-
clusions of [80]. Our figures show that even the future
sensitivity of LFV τ decays is surpassed by present
constraints from GF universality and Z → eþe−. The
dominance of flavor-conserving bounds is due to a combi-
nation of several factors: the flavor-conserving observables
are induced at tree level, while LFV decays proceed at loop

FIG. 3. Constraints on the seesaw EFT, in the R̂ee–R̂μμ plane,
assuming R̂eμ ¼ ðR̂eeR̂μμÞ1=2, R̂ατ ¼ 0, and Mi ¼ 1 TeV. The
purple, dark blue, blue, and green solid lines represent bounds
from LFV observables: Z → eμ, μ → eee, μ → eγ, and μ → e
conversion, respectively. The dashed lines of the same colors
represent corresponding future sensitivities, where available. The
orange, pink, brown, and red lines represent bounds from flavor-
conserving observables: Z → eþe−, GF universality, mW , and
Z → νν̄, respectively. As one enters the gray-shaded region, the
validity of the EFT description becomes questionable.

FIG. 4. Constraints on the seesaw EFT, in the R̂ee–R̂ττ plane,
assuming R̂eτ ¼ ðR̂eeR̂ττÞ1=2, R̂αμ ¼ 0, and Mi ¼ 1 TeV. The
conventions are the same as in Fig. 3.

FIG. 5. Constraints on the seesaw EFT, in the R̂μμ–R̂ττ plane,
assuming R̂μτ ¼ ðR̂μμR̂ττÞ1=2, R̂αe ¼ 0, and Mi ¼ 1 TeV. The
conventions are the same as in Fig. 3.
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level; the seesaw Lagrangian implies that off-diagonal Rαβ

cannot be larger than Rαα; and the latter interferes with the
SM couplings, while the off-diagonal Rαβ do not. Indeed,
only the extraordinary experimental precision of searches
for μ → e transitions (4–5 orders of magnitude stronger
than in corresponding searches of τ → e; μ transitions, see
Table III) enables flavor-violating bounds to become
dominant in part of the R̂ee − R̂μμ plane.
We recall that our plots assume only two nonzero diagonal

entries in R̂. Suppose that the third is also nonzero. In this
case, the bound from Z → νν̄ becomes stronger, since this
observable constrains a weighted sum of the diagonal ele-
ments. The bounds frommW and Z → lþ

α l−
α in Figs. 4 and 5

also become stronger with nonzero Rμμ and Ree, respec-
tively, as can be deduced from Table II. The bound from GF
becomes weaker, however, since it probes the difference of
the diagonal entries. In particular, if all three diagonal entries
were equal, the GF-universality constraint would disappear.
On the contrary, constraints from flavor-violating observ-
ables are unaffected by the third diagonal entry.
Note that the bounds on R and S entries can be translated

into a bound on the seesaw scalesMi, for any given choice
of the matrix Y. If, for instance, one assumes that Y is a
matrix of order one numbers and that there is a unique
seesaw scale, M, then μ → e conversion in gold (titanium)
places the strongest current (expected future) bound,
M ≳ 67ð2000Þ TeV.

IV. SPURION ANALYSIS AND PERSPECTIVE

A. Implications of the seesaw flavor symmetry

We would like to investigate which predictions of the
seesaw EFT can be derived by symmetry considerations
only and which depend on details of the matching and
running procedure or on numerical accidents. To this end, it
is enlightening to perform a spurion analysis.
As is well known, the lepton kinetic terms of the

SM Lagrangian respect a large flavor symmetry, GL¼
SUð3ÞlL ×Uð1ÞlL ×SUð3ÞeR ×Uð1ÞeR . Once the charged-
lepton Yukawa matrix Ye is introduced, GL is broken to the
product of lepton flavor numbers, Uð1Þe ×Uð1Þμ ×Uð1Þτ.
The full symmetry is restored when Ye is treated as a
spurion field, which transforms underGL as Ye ∼ ð3̄−1; 31Þ,
where our notation is ðRQ½lL�;RQ½eR�Þ, with R the SUð3Þ
representations and Q the Uð1Þ charges. In the seesaw
with ns sterile neutrinos, the lepton flavor symmetry is

extended by an additional factor SUðnsÞNR
×Uð1ÞNR

. The
spurion transformation of the neutrino Yukawa coupling is
Y ∼ ð3̄−1; 10;F1Þ, while the Majorana mass term transforms
according to M ∼ ð10; 10;S2Þ, where F (S) stands for the
fundamental (two-index symmetric) representation of
SUðnsÞNR

, whose dimension is ns [nsðns þ 1Þ=2]. The
flavor symmetry assignments of fields and couplings are
collected in Table V.
The EFT operators Qi involving leptons transform non-

trivially underGL. By requiring that CiQi is invariant under
GL, one can derive the spurion transformation of theWCsCi

and, in turn, their parametric dependence on Ye, Y, and M.
Some general rules apply. Each coefficient Ci=Λn must
contain n powers of M−1 for dimensional reasons, where
n ¼ dimðQiÞ − 4. As the entries ofYe aremuch smaller than
one, only the lowest order in Ye is relevant. If the entries of Y
are sufficiently smaller than one, a perturbative expansion in
powers of Y is also meaningful. Note that powers of Y come
necessarily in pairs, corresponding to the “creation” and
“annihilation” of the sterile neutrino that is integrated out. In
addition, since the EFT applies at low energy, i.e., for
momenta k ≪ M, every propagating sterile neutrino must
cost at least one power of M−1. This means that the
contraction ðY†YÞαβ is not allowed, and the sterile index
in Yiα must necessarily be contracted with a factor M−1

ji .
In Table VI we display the representations of lepton

bilinears, and the associated operators. Let us start
by applying the above prescriptions to lepton-number-
violating operators involving the bilinear lLlL. It is easy
to show that CW ∼ YTM−1Y is the unique dim-5 combi-
nation consistent with the seesaw flavor symmetry. This
reproduces the EFT result of Eq. (3), up to the combina-
torial factor 1=2. At OðM−3Y2Þ, there is one spurion that
transforms as ∼ð6̄−2; 10Þ, namely, YTM−1M−1�M−1Y,
however, it is associated with dim-7 operators with two
derivatives and so does not contribute tomν. AtOðM−3Y4Þ,
there is CLH=Λ3 ∼ ½YTM−1YY†M−1�M−1Y þ ð…ÞT �,
which is associated with the dim-7 operator, QLH ≡
QWðH†HÞ [108,109]. Note that we have symmetrized in
flavor space because the representation 6̄ is symmetric.

TABLE V. Transformation of lepton fields and couplings under
the seesaw flavor symmetry.

lL eR NR Ye Y M

SUð3ÞlL × Uð1ÞlL 31 10 10 3̄−1 3̄−1 10
SUð3ÞeR ×Uð1ÞeR 10 31 10 31 10 10
SUðnsÞNR

×Uð1ÞNR
10 10 F1 10 F1 S2

TABLE VI. Lepton bilinears and their transformation under the
SM lepton flavor symmetry GL. In the third column we list the
dim-5 and dim-6 operators which contain each bilinear.

Lepton
bilinear

GL
representation SM EFT operators

lLlL ð10; 10Þ, ð80; 10Þ Qll; Q
ð1;3Þ
Hl ; Qle; Q

ð1;3Þ
lq ; Qlu; Qld

lLeR ð3̄−1; 31Þ QeH;QeB;QeW;Qledq; Q
ð1;3Þ
lequ

eReR ð10; 10Þ, ð10; 80Þ QHe;Qee;Qle; Qeu;Qed; Qqe

lLlL (62; 10), ð3̄2; 10Þ QW , Qll
lLeR ð31; 31Þ Qle
eReR (10; 62), ð10; 3̄2Þ Qee
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This induces a correction to the neutrino mass matrix,
Δmν ∼ ðv4=4ÞCLH=Λ3. The result fully agrees with the
diagonalization of the seesaw mass matrix at OðM−3Þ,
which we derived in Appendix A, up to an overall factor
1=2, see Eq. (A12).
Turning to lepton-number-conserving operators, let us

first consider the bilinear lLlL, which transforms either as
ð10; 10Þ or ð80; 10Þ under GL, corresponding to the trace
over flavor indices and the traceless part, respectively.
The lowest-order seesaw spurion with these transforma-
tion properties is Sαβ ¼ ðY†M−1�M−1YÞαβ, introduced in
Eq. (5). The spurion S has been extensively discussed in the
seesaw literature, see, e.g., [21,23,104]. In Sec. II, we
showed that WCs associated with lLlL are indeed propor-
tional to Sαβ or trðSÞδαβ or their log-enhanced versions, Rαβ

or trðRÞδαβ. The bilinear lLeR transforms as ð3̄−1; 31Þ. The
corresponding WCs receive a contribution Ci=Λ2 ∼ SY†

e or
RY†

e, with a SM chiral suppression. The eReR bilinear
transforms as ð10; 10Þ or ð10; 80Þ, with WCs which are
doubly chiral suppressed, Ci=Λ2 ∼ YeSY

†
e or YeRY

†
e.

At the next order in powers of Y, namely, Y4M−2, there is
only one possible combination that transforms as Sαβ,
4ðCW†CWÞαβ=Λ2 ¼ ðY†M−1�Y�YTM−1YÞαβ.8 This spurion,
or rather its log-enhanced version,

P
γWαβγγ , appears in

various loop-suppressed WCs of Sec. II B, sometimes
contracted with Ye for operators involving eR. Recall that,
even for Y ∼ 1, this spurion is necessarily very small as it is
proportional to m2

ν.
Four-lepton operators transform as the product of

two bilinears, for instance Qll ∼ ½ð10; 10Þ þ ð80; 10Þ�×
½ð10; 10Þ þ ð80; 10Þ�. At leading order, Cll ∼ ðRδþ δRÞ,
which is reflected in Eq. (12). At the next order in powers
of Y and/or M−1 there are pieces which transform under
larger representations of SUð3Þl, specifically the 10, 10,
and 27. One example is provided by the Wαβγδ term in
Eq. (12). These are negligible for our phenomenological
purposes. A similar discussion applies for the other four-
lepton operators, Qle and Qee.
Finally, WCs of operators without leptons may be

generated by the seesaw via a flavor-independent combi-
nation of spurions, ð10; 10Þ. At OðM−2Þ, this invariant is
obtained from Rαβ or Wαβγδ, by tracing over pairs of lepton
indices, see, e.g., Eqs. (19) and (20).
Note that the leading-order dim-6 spurion Sαβ is

Hermitian, so its diagonal entries are necessarily real.
One can show that this is the case for dim-8 spurions as
well, and complex flavor-diagonal WCs only appear at
dim-10, and only for ns > 3. We have shown this explicitly
for the dipole operator in Sec. III C 2. Diagonal phases are

present in lepton-number-violating WCs, such as CW
αβ or

dim-7 WCs, but their overall size is generally suppressed
by the smallness of mν.
We remark that the spurion analysis does not determine

whether a given WC arises at tree level or at one loop, with
or without log enhancement, or at higher order. This is
independent of the flavor symmetry: it depends on the gauge
and Lorentz properties of the associated operator. For
example, from symmetries one expects that Z-boson cou-
plings to charged and neutral leptons are shifted at the same
order. In reality, only the couplings to neutrinos are shifted at
tree level, because the couplings to charged leptons acci-
dentally cancel in the combination ½CHlð1Þ − CHlð3Þ�.

B. Bottom-up analysis of lepton operators

Let us now enlarge our analysis from the seesaw case to a
generic new physics contribution to lepton operators. We
will assume that the ultraviolet theory induces one (or
more) spurion(s) in a definite representation of the SM
flavor symmetry, GL, and derive the main phenomenologi-
cal implications. These predictions will be common to any
model that generates the given spurion. We do not aim for a
general classification, but will rather choose some exam-
ples that have an intersection with the seesaw case, to allow
a comparison with the results of the previous sections.
We begin by postulating the existence of a dimensionless

spurion, X ∼ ð31; 10Þ, amounting to a coupling between a
single SM lepton doublet and some new physics operator,
XlLOX. Notice that OX can carry a lepton number (in the
seesaw, NR can be assigned lepton number one), therefore
the total lepton number LX of the spurion X is arbitrary in
general. In particular, a WC for the Weinberg operator,
CW
αβ ∼ X�

αX�
β, is allowed only for LX ¼ 1, and in this case,

the size of the spurion is determined, X2 ∼mνΛ=v2. In
contrast, for LX ≠ 1, one needs an insertion of an additional
GL-singlet spurion, in order to match the lepton number of
CW (e.g., in the seesaw, M carries lepton number two). In
this case, the size of X is not determined by mν. On the
other hand, the WCs of lepton-number-conserving oper-
ators are independent of LX. For the ð10; 10Þ representation,
one has Ci

αβ ∼ X�
γXγδαβ, while for the ð80; 10Þ, one finds

Ci
αβ ∼ ðX�

αXβ − 1
3
X�
γXγδαβÞ. The ð3̄−1; 31Þ can also be

induced, as Ci
αβ ∼ X�

αXγY�
e;βγ . These dim-6 WCs can all

lead to observable consequences for a sizeable X, i.e.,
X ∼ Λ=TeV. Their flavor structures are strongly correlated
to each other. For example, processes that require a chirality
flip, such as lα → lβγ, are necessarily Ye suppressed,
while those controlled by ð80; 10Þ, such as lα → 3lβ, are
not. Also, flavor-conserving and violating channels are

strongly correlated, as jðXX†Þαβj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXX†ÞααðXX†Þββ

q
.

Flavor violation by one unit, ΔF ¼ 1, arises at OðX2Þ,
while ΔF ¼ 2 processes arise at OðX4Þ and thus may be
suppressed for small background values of the spurion. One

8Note that we discount the spurion Y†YY†M−1�M−1Y, which
has the correct transformation properties, since a Y†Y contraction
is forbidden in the EFT below M, as already explained.
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may generalize these considerations to the case of more
than one spurion in the same GL representation,
Xi ∼ ð31; 10Þ. Indeed, at least two are needed to induce
realistic neutrino masses, as the matrix CW

αβ should have
rank two or larger.
Consider now a spurion with the quantum numbers of a

lepton bilinear. The possibilities are listed in the second
column of Table VI. If one assumes that only the spurion
B1 ∼ ð10; 10Þ is present, no LFV is induced. Still, dim-6
WCs proportional toB1 are constrained by flavor-conserving
observables, especially Z couplings to leptons and GF-
universality tests. The imaginary part of B1 is strongly
constrained by lepton EDMs, as the dipole operators are
proportional to B1Y

†
e. As this spurion is a GL singlet, it can

induce nonleptonic processes as well. Conversely, the
spurion B8 ∼ ð80; 10Þ induces LFV, which strongly con-
strains its off-diagonal entries. Lepton flavor-conserving
processes are subject to the condition of a traceless B8,
for instance Eq. (47) implies Nν ≥ 3 when tr½S� ¼ 0 (see
Sec. III for other phenomenological consequences). The
vanishing trace also implies no corrections to nonleptonic
operators. A spurion B33̄ ∼ ð31; 3̄−1Þ directly generates
operators containing the bilinear lLeR, without any chiral
suppression. Dipole transitions strongly constrain the B33̄

entries: the off-diagonal ones induce radiative charged-
lepton decays and the diagonal ones correct magnetic and
electric dipole moments.
Coming to lepton-number-violating bilinears, a

spurion B6 ∼ ð6̄−2; 10Þ may directly generate the
Weinberg operator, provided its total lepton number is
LB6

¼ −2. In this case, its entries must be tiny to reproduce
neutrino masses. If LB6

≠ −2, one needs the insertion of an
additional spurion to generate CW , and B6 entries may be
large. Then it becomes relevant to consider dim-6 WCs
associated with two pairs of lepton doublets,Ci ∼ B†

6;αβB6;γδ,

one pair, Ci ∼ ðB†
6B6Þαβ, and no pairs, Ci ∼ tr½B†

6B6�.
Finally, the spurion B3 ∼ ð3−2; 10Þ is antisymmetric in its
lepton doublet indices and therefore does not contribute to
neutrino masses at leading order. However, one can build
CW ∼ ½B3Y

†
eYe þ ð…ÞT �, which may induce neutrino

masses with a double chiral suppression. The combination
B†
3B3 can induce dim-6 WCs with a distinctive flavor

structure.
Let us discuss how this bottom-up approach compares

with the seesaw. We showed that the two leading com-
binations of seesaw parameters that are singlets of
SUðnsÞNR

×Uð1ÞNR
are CW and S. Since CW ∼ ð6̄−2; 10Þ,

it can be considered a spurion of type B6 with total lepton
number −2. It is indeed constrained by neutrino masses to
be extremely tiny, therefore its effects on dim-6 operators,
suppressed as B†

6B6, are negligible. The spurion S trans-
forms as a special combination of ð10; 10Þ and ð80; 10Þ.
More precisely, recognizing that Yiα ∼ X�

i;α ∼ 3̄−1 under

SUð3Þl ×Uð1Þl, where Xi are ns spurions, one identifies
the transformation properties

CW
αβ ∼ X�

i;αX
�
i;β; Sαβ ∼ Xi;αX�

i;β: ð72Þ

For ns > 1 there can be cancellations among the ns
contributions to CW , possibly due to an approximate lepton
number symmetry, while S remains large. Indeed, it is this
observation which drives our phenomenological analysis in
Sec. III. An interesting inequality holds, jðXiX

†
i Þαβj ≤ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXiX
†
i ÞααðXiX

†
i Þββ

q
, that reproduces the inequality jSαβj ≤ffiffiffiffiffiffiffiffiffiffiffiffiffi

SααSββ
p

discussed at the start of Sec. III. Finally, in the
seesaw case the spurions that transform nontrivially under
SUð3ÞeR ×Uð1ÞeR are necessarily proportional to one or
more powers of Ye.
We have shown that the seesaw model corresponds to

a very specific set of spurions under the SM lepton flavor
symmetry, GL. Moreover, these spurions are not indepen-
dent, rather they are specific combinations of the same set
of Yukawa couplings and sterile neutrino masses. The cor-
relations are strictest for a small number of sterile neutrinos
ns. If a few deviations from the SM are discovered, besides
neutrino oscillations, this pattern of correlations could be
tested with some degree of confidence.
Alternative ultraviolet completions of the SM manifest

themselves at low energy as different sets of spurions and
correlations, therefore a qualitative comparison is possible
without performing a detailed matching and running
procedure. However, a precise comparison of two theories
requires a computation of the full set of WCs, as we have
done in this paper for the seesaw.
A partial EFT treatment of alternative models of neutrino

mass generation is available in the literature. For the type-II
and type-III seesaw, the tree-level EFT can be found in [21].
In the context of theories that address the gauge hierarchy
problem, new physics close to the TeV scale may have a
nontrivial interplay with neutrino mass generation and
LFV. Such interplay has been studied with EFT and/or
spurion techniques, for supersymmetric models, e.g., in
[110–115], or in the compositeness scenario, e.g., in
[116–119]. We believe it will be fruitful to apply our
approach to these or other well-motivated models of new
physics in the lepton sector, by performing a systematic
comparison of the corresponding WCs.

C. Summary of results

We developed the EFT of the seesaw in Sec. II by
implementing tree-level matching and one-loop running of
dim-5 and dim-6 operators from the sterile neutrino mass
scale,M, down to the energy scales of the observables. The
WCs are given in the leading-log approximation, but in
Appendix B we display the one-loop RGEs, which may be
used for a more accurate analysis of the running. We also
computed the WCs of the dipole operators by performing
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one-loop matching at the scalesM andmW . This is essential
to complete the EFT treatment of the seesaw.
This systematic EFT approach enabled us, in Sec. III, to

consistently compute all relevant lepton observables at
leading order. We started by demonstrating that the small-
ness of neutrino masses implies a very specific form of the
neutrino Yukawa couplings, which in turn restricts the
possible structures of the WCs: there is an upper bound on
the flavor-violating channels as a function of the flavor-
conserving ones. The bound is saturated for two or three
sterile neutrinos, while flavor violation can be arbitrarily
suppressed for ns > 3.
We identified which operators provide the leading

contribution to each observable and confronted the seesaw
predictions with present and future experimental limits.
The EFT computation is arguably simpler than previous,
direct one-loop computations. The bounds are summarized
in Tables II and III, as well as in Figs. 3–5. The present
experimental constraints are so tight that they completely
exclude the gray-shaded region in those figures: this
confirms the validity of our EFT approximations.
The EFT analysis highlights the correlations among

the various observables. On the LFV front, radiative and
three-body decays of charged leptons give comparable
constraints and completely overcome searches for LFV in
Higgs and even Z decays. Limits on μ → e conversion in
nuclei are even tighter than LFV muon decays, especially
in the long term. Amusingly, LFV bounds also imply that
the electron EDM must be extremely suppressed, as CP
violation is tied to flavor off-diagonal WCs.
Coming to flavor-conserving observables, besides the

well-known bound from Z → νν̄ (for which we fix some
existing errors in the literature), we find even stronger
constraints from Z → lþ

α l−
α decays, tests ofGF universality

in charged-lepton decays, and the precision measurement
of mW . The primacy of the Z → eþe− bound on See and
Sμμ, as illustrated in Figs. 3–5, has not been previously
stated, to our knowledge. These are the most stringent
bounds on the seesaw parameters in the μ − τ and e − τ
sectors, where they overcome even future LFV searches. In
the e − μ sector, the LFV probes are extremely sensitive,
but the seesaw parameter space permits strong suppression
of all WCs involving the electron with respect to the muon
ones, or vice versa: in this case, Z → eþe− becomes the
ruling bound.
With a vast experimental program expected to test lepton

observables on many fronts, an understanding of the
complementarity between them is very important to iden-
tify the ultraviolet theory from its low-energy footprints. In
Secs. IVA and IV B we investigated to what extent these
footprints may allow one to distinguish the seesaw from a
different model. We presented a detailed analysis of flavor
symmetries, comparing the seesaw spurions with the most
general ones, in order to underline the peculiarities of the
seesaw EFT. This illustrates the discriminating potential of

our effective approach and provides motivation to apply it
to other models.
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APPENDIX A: SEESAW DIAGONALIZATION

In this Appendix we will provide a systematic procedure
for moving from the basis of active and sterile neutrinos,
belonging to SUð2ÞL doublets and singlets, respectively,
to the basis of light- and heavy-mass eigenstates. The
diagonalization of the seesaw matrix beyond the leading
order has been already discussed using slightly different
methods, e.g., in [120] (which develops on [85,121]), and
our results agree where they intersect.
Besides the general convenience of an accurate diago-

nalization to study neutrino phenomenology, there are
nontrivial connections with the EFTobtained by integrating
out the sterile neutrinos, described in Sec. II. It will be
apparent that the tree-level WCs of operators with dim ¼
4þ n are related to the diagonalization matrices at order
ðM−1mÞn. Moreover, the diagonalization is needed to com-
pare the EFT prediction for a given observable, expressed
in terms of operators involving only active neutrinos, and a
computation of the same observable by Feynman diagrams
that involves mass eigenstate neutrinos.
Let us begin by rewriting the mass terms in Eq. (1) as

Lm ¼ −
1

2
ðνLc NRÞ

�
0 mT

m M

��
νL

NR
c

�
þ H:c:; ðA1Þ

for an arbitrary number na (ns) of active (sterile) neutrinos.
We define a block diagonalization of this symmetric mass
matrix by

M≡
�

0 mT

m M

�
¼ U�DU†

≡
�
V W

X Y

���mν 0

0 mN

��
V W

X Y

�†
; ðA2Þ

where the dimensions of the blocks are ðna × naÞ for V and
mν, ðns × naÞ for m, X, and WT , and ðns × nsÞ for M, Y,
and mN . Here U is unitary, and the light- and heavy-mass
matrices, mν and mN , are diagonalized as

mν ¼ U�
νdνU

†
ν; mN ¼ U�

NdNU
†
N; ðA3Þ
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with dν and dN diagonal, real and positive, and Uν and UN
unitary. Working in the basis where the charged-lepton
masses are diagonal, the PMNSmatrix, which describes the
relation between active flavor eigenstates and light-mass
eigenstates, νLa ≡ ðUPMNSÞaiνLi, takes the form

UPMNS ¼ VUν; ðA4Þ
where V is not unitary in general. Note that the diagona-
lization occurs in two steps: a unitary rotation U, followed
by a second one given by diagðUν; UNÞ. This partition
contains a degree of arbitrariness. It is natural to remove
this ambiguity by requiring that U and D can be separately
expanded in powers of m and M only. This convention
guarantees, e.g., that the light-neutrino mass matrix at
leading order is given by the canonical seesaw relation,
mν ¼ −mTM−1m.
To ease the diagonalization procedure, one can treat the

various matrix blocks as spurions of the chiral symmetry
UðnaÞ ×UðnsÞ, which acts on the active and sterile
neutrinos as νL → UaνL and NR → UsNR (do not confuse
these symmetry transformations with the physical unitary
matrices involved in the diagonalization). The correspond-
ing spurion transformations are

m → UsmU†
a; M → UsMUT

s : ðA5Þ
In the convention where the matrices U and D of Eq. (A2)
can be separately expanded in powers of m and M,
their blocks have to transform under UðnaÞ ×UðnsÞ
according to

V → UaVU
†
a; W → UaWUT

s ; X → U�
sXU

†
a;

Y → U�
sYUT

s ; mν → U�
amνU

†
a; mN → UsmNUT

s :

ðA6Þ
These relations restrict the possible combinations of m and
M that can appear in the expansion of these blocks. Under
the seesaw hypothesis, where the eigenvalues of M are
much larger than the entries of m, it is meaningful to
determine the matrices V,W, X, Y as well as mν, mN by an
expansion in the dimensionless matrix (spurion)

ϵ≡M−1m; ϵ → U�
sϵU

†
a: ðA7Þ

It is then possible to solve Eq. (A1) order by order in ϵ, by
taking into account the unitarity condition UU† ¼ 1 and by
requiring the spurion transformations of Eq. (A6) to hold.
For vanishing ϵ one has trivially

V ¼ 1; W ¼ 0; X ¼ 0;

Y ¼ 1; mν ¼ 0; mN ¼ M: ðA8Þ
At order ϵ, the active-sterile mixing appears,

W ¼ ϵ†; X ¼ −ϵ: ðA9Þ

At order ϵ2, nonunitary corrections to the PMNS matrix are
generated, as well as the leading contribution to light-
neutrino masses,

V ¼ 1 −
1

2
ϵ†ϵ; Y ¼ 1 −

1

2
ϵϵ†;

mν ¼ −ϵTMϵ; mN ¼ M þ 1

2
ðMϵϵ† þ ϵ�ϵTMÞ:

ðA10Þ
Note that even if one started with a basis where M is
diagonal, mN is no longer diagonal at this order, therefore
UN is no longer the identity. Note also the correspondence
with the EFT of Sec. II: ϵ†ϵ ¼ Sv2=2 and ϵTMϵ ¼
CWv2=Λ.
At order ϵ3, one finds the next-to-leading correction to

active-sterile mixing,

W ¼ −X† ¼ ϵ† −
1

2
ϵ†ϵϵ† − ϵ†M�ϵ�ϵTM−1�: ðA11Þ

At order ϵ4, it turns out that the separation between U andD
is not uniquely defined. A unique solution is obtained by
requiring that V and Y are Hermitian, which is always
possible by an appropriate choice of Uν and UN , respec-
tively. In other words, the anti-Hermitian correction to V
and Y can be traded for a correction to mν and mN , of the
same order in ϵ. We find

V ¼ 1 −
1

2
ϵ†ϵþ 3

8
ϵ†ϵϵ†ϵþ 1

2
½ϵ†M�ϵ�ϵTM−1�ϵþ ð…Þ†�;

Y ¼ 1 −
1

2
ϵϵ† þ 3

8
ϵϵ†ϵϵ† þ 1

2
½ϵϵ†M�ϵ�ϵTM−1� þ ð…Þ†�;

mν ¼ −ϵTMϵþ 1

2
½ϵTMϵϵ†ϵþ ð…ÞT �;

mN ¼ M þ 1

2

�
Mϵϵ† −

1

4
Mϵϵ†ϵϵ†

−Mϵϵ†M�ϵ�ϵTM−1� þ ð…ÞT
�
þ 1

4
ϵ�ϵTMϵϵ†:

ðA12Þ

This provides, in particular, the next-to-leading contribu-
tion to light-neutrino masses, corresponding to a dim-7
operator in the EFT. If the Oðϵ2Þ contribution to mν

vanishes, then the Oðϵ4Þ one vanishes as well. In fact, it
is remarkable that the condition ϵTMϵ≡mTM−1m ¼ 0 is
equivalent to the requirement rankðMÞ ¼ ns, and therefore
it implies that na neutrinos are massless at all orders. By
contrast, if ϵ†ϵ vanishes, V can still depart from the identity
because ϵϵ† may be nonzero. The Oðϵ4Þ corrections to V
correspond to dim-8 operators in the EFT.
Let us note that the dimensionless matrix ϵ may have

entries not much smaller than one, e.g., forM ∼ 1 TeV and
m ∼ 100 GeV, one has ϵ ∼ 0.1. Therefore, next-to-leading
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corrections can be significant. They may also be the
dominant effect if the leading contribution vanishes and
the next one does not, as for the off-diagonal entries in V
and Y. We have derived above the next-to-leading correc-
tion for each block of the seesaw matrices, thus we refrain
from displaying even higher orders in ϵ.
Finally, we remark that, in the spirit of the EFT, the

seesaw diagonalization should be performed at the largest
mass scale, μ ¼ Mns , where M should be evaluated. After
the heaviest sterile neutrino has been integrated out, one
should run down to μ ¼ Mns−1 and repeat the procedure,
and so on and so forth. These threshold corrections to M,
due to the RG evolution from Mns to M1, are loop
suppressed and proportional to logðMi=MjÞ. While they
are a subleading correction for the lowest-order WCs, they
may become significant compared to the higher powers of ϵ
considered above.

APPENDIX B: RGEs FOR THE SEESAW
EFFECTIVE OPERATORS

Here we present the one-loop RGEs for the WCs of
dim-5 and dim-6 operators which are induced by the type-I
seesaw. The operators themselves are defined in Table VII.
The running of the Weinberg operator was derived in
[36–38], the mixing of Weinberg squared into d ¼ 6
operators is taken from [26], and we utilized [27–29] for
the mixing among d ¼ 6 operators. We adopt the con-
ventions of the latter set of references, in particular, the SM
Yukawa couplings and Higgs potential are defined by

LSM ⊃ −eRαYe;αβH†lLβ − dRαYd;αβH†qLβ

− uRαYu;αβH̃†qLβ − λ

�
H†H −

1

2
v2
�

2

; ðB1Þ

and the sign convention for the covariant derivatives is
DμlL ≡ ½∂μ þ ig1ð−1=2ÞBμ þ ig2ðσa=2ÞWa

μ�lL, and simi-
larly for the other fields. The RGEs are calculated using
dimensional regularization in the MS scheme, as it is
customary in EFT [122]. We note that the one-loop
anomalous dimensions are scheme independent (as long
as the chosen basis of operators is not redundant). Scheme
dependence can arise at two-loop order (see, e.g.,
[123,124]), which is beyond our scope.
In the type-I seesaw, the ultraviolet boundary conditions

for the WCs are set by Eq. (3), that is, the only WCs
different from zero are CW and ½CHlð1Þ − CHlð3Þ�. We
neglect the RGE running induced by the dipole operators

because it is a two-loop effect. Then, the RGE for the
Weinberg WC is given by

16π2
dCW

ab

d log μ
¼ −

3

2
ðCWY†

eYeÞab −
3

2
ðY�

eYT
eCWÞab þ 4λCW

ab

− 3g22C
W
ab þ 2χCW

ab; ðB2Þ

where we defined

χ ≡ tr½3Y†
uYu þ 3Y†

dYd þ Y†
eYe� ≃ 3y2t : ðB3Þ

The RGEs for the dim-6 operators involving leptons are

16π2
dCHlð1Þ

αβ

d log μ
¼ 2ðY†

eYeCHlð1ÞÞαβ þ
9

2
ðY†

eYeCHlð3ÞÞαβ þ 2ðCHlð1ÞY†
eYeÞαβ þ

9

2
ðCHlð3ÞY†

eYeÞαβ þ 2χCHlð1Þ
ab

þ 1

3
g21C

Hlð1Þ
αβ þ 2

3
g21tr½CHlð1Þ�δαβ − 6ðCW†CWÞαβ; ðB4Þ

TABLE VII. List of the SM EFT operators induced by the
seesaw, either at tree level or at one loop.

Name Operator

QW;αβ ðlcLαH̃�ÞðH̃†lLβÞ

Qð1Þ
Hl;αβ ðlLαγμlLβÞðH†iDμ

⟷
HÞ

Qð3Þ
Hl;αβ ðlLαγμσAlLβÞðH†iDμ

⟷
σAHÞ

QeB;αβ ðlLασμνeRβÞHBμν

QeW;αβ ðlLασμνeRβÞσAHWAμν

QeH;αβ ðlLαHeRβÞðH†HÞ
QHe;αβ ðeRαγμeRβÞðH†iDμ

⟷
HÞ

Qll;αβγδ ðlLαγμlLβÞðlLγγμlLδÞ
Qle;αβγδ ðlLαγμlLβÞðeRγγμeRδÞ
QH ðH†HÞ3
QHD ðH†DμHÞ�ðH†DμHÞ
QH□ ðH†HÞ□ðH†HÞ
Qð1Þ

lq;αβxy
ðlLαγμlLβÞðqLxγμqLyÞ

Qð3Þ
lq;αβxy

ðlLαγμσAlLβÞðqLxγμσAqLyÞ
Qlu;αβxy ðlLαγμlLβÞðuRxγμuRyÞ
Qld;αβxy ðlLαγμlLβÞðdRxγμdRyÞ
QuH;xy ðqLx H̃ uRyÞðH†HÞ
QdH;xy ðqLxHdRyÞðH†HÞ
Qð1Þ

Hq;xy ðqLxγμqLyÞðH†iDμ
⟷

HÞ
Qð3Þ

Hq;xy ðqLxγμσAqLyÞðH†iDμ
⟷

σAHÞ
QHu;xy ðuRxγμuRyÞðH†iDμ

⟷
HÞ

QHd;xy ðdRxγμdRyÞðH†iDμ
⟷

HÞ
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16π2
dCHlð3Þ

αβ

d log μ
¼ 3

2
ðY†

eYeCHlð1ÞÞαβ þ ðY†
eYeCHlð3ÞÞαβ þ

3

2
ðCHlð1ÞY†

eYeÞαβ þ ðCHlð3ÞY†
eYeÞαβ þ 2χCHlð3Þ

αβ

þ 2

3
g22tr½CHlð3Þ�δαβ −

17

3
g22C

Hlð3Þ
αβ þ 4ðCW†CWÞαβ; ðB5Þ

16π2
dCeH

αβ

d log μ
¼ 4λðCHlð1ÞY†

e þ 3CHlð3ÞY†
eÞαβ þ 2ðCHlð1ÞY†

eYeY
†
eÞαβ − 6g21ðCHlð1ÞY†

e þ CHlð3ÞY†
eÞαβ

− 4tr½CHlð3ÞY†
eYe�ðY†

eÞαβ þ
4

3
g22ðY†

eÞαβtr½CHlð3Þ� þ 6ðCW†CWYeÞαβ − 8tr½CW†CW �ðY†
eÞαβ; ðB6Þ

16π2
dCHe

αβ

d log μ
¼ −2ðYeCHlð1ÞY†

eÞαβ þ
4

3
g21tr½CHlð1Þ�δαβ; ðB7Þ

16π2
dCll

αβγδ

d log μ
¼ 1

2
ðCHlð3Þ

αβ − CHlð1Þ
αβ ÞðY†

eYeÞγδ − CHlð3Þ
αδ ðY†

eYeÞγβ −
1

6
ðg22CHlð3Þ

αβ þ g21C
Hlð1Þ
αβ Þδγδ

þ 1

2
ðY†

eYeÞαβðCHlð3Þ
γδ − CHlð1Þ

γδ Þ − ðY†
eYeÞαδCHlð3Þ

γβ −
1

6
δαβðg21CHlð1Þ

γδ þ g22C
Hlð3Þ
γδ Þ

þ g22
3
ðCHlð3Þ

αδ δγβ þ CHlð3Þ
γβ δαδÞ − 2CW†

αγ CW
βδ; ðB8Þ

16π2
dCle

αβγδ

d log μ
¼ 2CHlð1Þ

αβ ðYeY
†
eÞγδ −

2g21
3

CHlð1Þ
αβ δγδ: ðB9Þ

This set of WCs controls Higgs- and Z-boson decays to
leptons, as well as charged-lepton decays into three leptons,
and corrections to GF universality. For 2q2l WCs, the
RGEs read

16π2
dClqð1Þ

αβγδ

d log μ
¼ CHlð1Þ

αβ ðY†
uYu − Y†

dYdÞγδ þ
g21
9
CHlð1Þ
αβ δγδ;

ðB10Þ

16π2
dClqð3Þ

αβγδ

d log μ
¼ −CHlð3Þ

αβ ðY†
uYu þ Y†

dYdÞγδ þ
g22
3
CHlð3Þ
αβ δγδ;

ðB11Þ

16π2
dClu

αβγδ

d log μ
¼ −2CHlð1Þ

αβ ðYuY
†
uÞγδ þ

4g21
9

CHlð1Þ
αβ δγδ; ðB12Þ

16π2
dCld

αβγδ

d log μ
¼ 2CHlð1Þ

αβ ðYdY
†
dÞγδ −

2g21
9

CHlð1Þ
αβ δγδ; ðB13Þ

which are relevant to estimate μ → e conversion on nuclei.
For operators with Higgs and quark fields, the RGEs are
given by

16π2
dCuH

xy

d log μ
¼ −4tr½CHlð3ÞY†

eYe�Y†
u;xy þ 4

3
g22tr½CHlð3Þ�Y†

u;xy;

ðB14Þ

16π2
dCdH

xy

d log μ
¼ −4tr½CHlð3ÞY†

eYe�Y†
d;xy þ

4

3
g22tr½CHlð3Þ�Y†

d;xy;

ðB15Þ

16π2
dCHqð1Þ

xy

d log μ
¼ −

2

9
g21tr½CHlð1Þ�δxy; ðB16Þ

16π2
dCHqð3Þ

xy

d log μ
¼ 2

3
g22tr½CHlð3Þ�δxy; ðB17Þ

16π2
dCHu

xy

d log μ
¼ −

8

9
g21tr½CHlð1Þ�δxy; ðB18Þ

16π2
dCHd

xy

d log μ
¼ 4

9
g21tr½CHlð1Þ�δxy: ðB19Þ

These WCs induce a small shift in the Higgs- and
Z-boson couplings to quarks, which we neglected as
they are typically less constraining than their lepton
counterparts.
Finally, the RGEs for operators with Higgs fields and

derivatives only are

16π2
dCH

d log μ
¼ 16

3
λg22tr½CHlð3Þ� − λ

π2
tr½CHlð3ÞY†

eYe�

− 32λtr½CW†CW �; ðB20Þ
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16π2
dCHD

d log μ
¼ −8tr½CHlð1ÞY†

eYe� −
8

3
g21tr½CHlð1Þ�

− 16tr½CW†CW �; ðB21Þ

16π2
dCH□

d log μ
¼ −2tr½ð3CHlð3Þ þ CHlð1ÞÞY†

eYe�

þ 2g22tr½CHlð3Þ� − 2

3
g21tr½CHlð1Þ�

− 8tr½CW†CW �: ðB22Þ

Our result for the last term of Eq. (B20) is a factor of 2
smaller than the corresponding term in [26].
Note that dim-6 operators may also mix into dim-4

operators, as the SM contains a dim-2 operator, H†H. Con-

sequently, the nonzero ½Cð1Þ
Hl − Cð3Þ

Hl � generated at tree level
by the seesaw introduces corrections to the β functions of
the SM parameters λ and Ye. These effects are subleading
since they are suppressed by v2=M2 ≪ 1 [27].
The set of RGEs presented in this Appendix, together

with the RGEs for the SM couplings (see, e.g., [39]), are of
course coupled to each other. Therefore, during the
evolution from M to mW , the running of each WC is
affected, at next-to-leading order, by the running of the SM
couplings and the other WCs. Let us roughly estimate the
size of these corrections in the seesaw. The largest and
fastest-running couplings in the SM are yt and g3, which do
not enter into the most relevant WCs, see Eqs. (10)–(20)
(the 2q2l WCs pertinent for μ → e conversion do not
involve the top quark). The most relevant running is that
of the Higgs quartic coupling, with βλ ¼ dλ=d log μ≃
−3y4t =ð8π2Þ. The running of g1, g2 is much weaker,
βg ∼ g3=ð16π2Þ. The seesaw tree-level WC, CHl≡
½CHlð1Þ − CHlð3Þ�=2, has also a strong scale dependence,

since γHl≡ ½γHlð1Þ
Hlð1Þ þγHlð3Þ

Hlð3Þ−γHlð1Þ
Hlð3Þ−γHlð3Þ

Hlð1Þ�=2≃3y2t =ð8π2Þ,
where the anomalous dimensions are defined by Eq. (7).
To estimate the dominant correction to the value of the

WCs at mW , let us consider the running of Ci due to CHl,
with the assumption that γiHl does not depend on rapidly
running SM couplings. Then, the solution of Eq. (7) reads

CiðmWÞ ≃ CiðMÞ −
Z

logM

logmW

d log μγiHlC
HlðμÞ

≃ CiðMÞ −
Z

CHlðMÞ

CHlðmWÞ
dCHl γ

i
Hl

γHl
; ðB23Þ

where CHlðmWÞ ≃ CHlðMÞðmW=MÞγHl . A perturbative
expansion gives

CiðmWÞ ≃ CiðMÞ − γiHlC
HlðMÞ log M

mW

�
1þ γHl

2
log

M
mW

�
þ…; ðB24Þ

where the term in brackets is the correction to the leading-
log approximation, induced by the scale dependence
of CHl. For, e.g., M ¼ 10 TeV, this represents a ∼10%
correction, while for M ¼ 1015 GeV it corresponds to a
∼50% correction.
In contrast, if γiHl contains a term proportional to λ, the

running of λ may dominate for CHl sufficiently small,
because βλ=λ > γHl. In the seesaw, this case may occur for
Ci ¼ CeH, see Eq. (14). Then, taking the opposite approxi-
mation of constant CHl and scale-dependent γiHlðμÞ, one
finds that the running of λ induces a slightly larger
correction to the leading-log approximation, ∼30% for
M ¼ 10 TeV and Oð1Þ for M ¼ 1015 GeV.
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