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We recalculate the chiral anomaly in the Abelian gauge model in which a spin- 1
2
field is directly coupled

to a Rarita-Schwinger spin- 3
2
field, using the extended theory in which there is an exact fermionic gauge

invariance. Since the standard gauge fixing and ghost analysis applies to this theory, the ghost contribution
to the chiral anomaly is −1 times the standard chiral anomaly for spin- 1

2
. Calculation of the fermion loop

Feynman diagrams contributing to the coupled model anomaly gives a result of 6 times the standard
anomaly, so the total anomaly is 5 times the standard anomaly. This agrees with the result obtained from the
unextended model taking the ghost contribution there as 0, corresponding to a nonpropagating ghost arising
from exponentiating the second class constraint determinant, together with the fermion loop anomaly
contribution in the unextended model of 5 times the standard anomaly.

DOI: 10.1103/PhysRevD.99.095037

I. INTRODUCTION

In this paper we continue an ongoing investigation of
whether Rarita-Schwinger spin- 3

2
theory can be consis-

tently gauged when not coupled to supergravity. For the
minimal gauged spin- 3

2
theory, Adler [1] showed that by

introducing an auxiliary field the theory can be extended to
have an exact fermionic gauge invariance. A subsequent
study of this model by Adler, Henneaux, and Pais [2]
showed that when gauge-fixed in radiation gauge, the
extended theory has an auxiliary field Dirac bracket that
is singular for small gauge fields, ruling out a perturbative
analysis. Motivated in part by this, Adler [3] then studied a
model in which a Rarita-Schwinger field is directly coupled
to a spin- 1

2
fermion field, in which the weak field singularity

is removed, and a perturbation theory calculation of the
chiral anomaly is possible. For this coupled model, the
chiral anomaly arising from fermion triangle diagrams was
found to be 5 times the standard spin- 1

2
anomaly. Since the

constraints in the extended model are second class instead
of first class, the familiar Faddeev-Popov (FP) analysis for
gauge-fixed first class constraints does not apply, raising

questions as to how the ghost contribution to the anomaly
should be calculated. If one proceeds in analogy with the
FP method by introducing a ghost field to exponentiate the
second class constraint determinant, one finds a non-
propagating ghost with an anomaly contribution of 0.
On the other hand, if one adopts a heuristic limiting
procedure which supplies a kinetic term to this ghost,
making it a propagating ghost, then an anomaly contribu-
tion of −1 is obtained. The paper [3] did not attempt a
definitive choice as to which of these two possible answers
for the ghost contribution to the coupled model anomaly is
the correct one.
The purpose of this paper is to combine ideas of [1,3], by

adding an auxiliary field to the coupled model, giving an
extended coupledmodel in which there is an exact fermionic
gauge invariance. The standard Rartita-Schwinger fer-
mionic gauge fixing can then be applied, with the ghost
contribution giving an anomaly contribution of−1 times the
standard spin- 1

2
chiral anomaly. The Feynman rules now

include vertices linking the spin- 3
2
and spin- 1

2
fermion

fields to the auxiliary field, and propagators for these fields,
giving rise to new Feynman diagrams not encountered in the
unextended coupled model. We find that the one Feynman
diagram in the extended model that is analogous to the
anomalous triangle in the unextendedmodel has an anomaly
of 6 times the standard spin- 1

2
chiral anomaly, while the new

diagrams not encountered before in [3] all have zero
anomalies, giving a total anomaly of 5 times the standard
spin- 1

2
chiral anomaly. This agrees with the answer obtained
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in [3] from a nonpropagating ghost, and rules out the
alternative answer obtained also in [3] from the heuristic
limiting procedure corresponding to a propagating ghost.
This paper is organized as follows. In Sec. II we give the

covariant and left chiral forms of the action in the extended
coupled model, and show that the constraint bracket
vanishes, as expected for first class constraints. In
Sec. III we give the path integral for this action, discuss
the Nielsen [4] gauge fixing and ghost anomaly calculation,
expand the Lagrangian density in powers of the gauge
coupling g, and relate this to the formally conserved
Noether currents. In Sec. IV we give the Feynman rules
for propagators and vertices of the extended coupled
model. In Sec. V we enumerate the types of Feynman
diagrams contributing to the total three point function for
the left chiral current in the model, and sketch the strategy
for our evaluation of them. In Sec. VI we calculate the
anomaly associated with the triangle in which three leading
order Noether currents appear at the vertices, and show that
it is equal to 6 times the standard spin- 1

2
chiral anomaly, and

that it is exactly independent of both the gauge fixing
parameter ζ and the coupling massm appearing in the action.
Thus the calculation can also be done by dropping terms
which vanish as ζ → ∞ and m → ∞, rather than verifying
that these cancel among themselves, and keeping only terms
which have a finite remainder in this double limit. In Sec. VII
we apply this idea to the new diagrams that appear in the
extended coupled model, and show that the only terms which
survive in the double limit vanish by the identity given in
Eq. (72) of [3], and so the new diagrams add 0 to the total
anomaly. Brief conclusions are given in Sec. VIII. Our
metric and gamma matrix conventions, and some useful
identities, are given in the Appendix.

II. COVARIANT AND LEFT CHIRAL ACTIONS

The covariant form of the action for the extended
coupled model will be used to derive path integrals. It is

S¼
Z

d4xL¼Sðψ ;ΛÞþSðλÞþSinteraction;

Sðψ ;ΛÞ¼ i
Z

d4xϵμηνρ½ψ̄μγ5γηDνψρþðg=2Þ

×ð−Λ̄γ5γηFμνψρþ ψ̄μγ5γηFνρΛ−Λ̄γ5γηFνρDμΛÞ�

SðλÞ¼−
Z

d4xλ̄γνDνλ;

Sinteraction¼m
Z

d4xðλ̄γνψν− ψ̄νγ
νλþ λ̄γνDνΛ−Λ̄D⃖νγ

νλÞ;

ð1Þ

where Dν ¼ ∂ν þ gAν, D⃖ν ¼ ∂⃖ν − gAν, so that A is
antiself-adjoint, and Fμν ¼ ∂μAν − ∂νAμ. Here ψρ is the
Rarita-Schwinger field, λ is the spin- 1

2
field to which the

Rarita-Schwinger field is coupled with coupling mass m,
and Λ is the auxiliary field introduced in [1] that restores
exact fermionic gauge invariance.
The corresponding left chiral form is convenient for

studying the constraint structure; it is

S ¼ SðΨ; LÞ þ SðlÞ þ Sinteraction;

SðΨ; LÞ ¼
Z

d4x½−Ψ†
0σ⃗ · D⃗ × Ψ⃗þ Ψ⃗†

· ðσ⃗ × D⃗Ψ0 þ D⃗ × Ψ⃗ − σ⃗ ×D0Ψ⃗Þ
− igΨ⃗† · C⃗Lþ igL†C⃗ · Ψ⃗þ igΨ†

0σ⃗ · B⃗L

− igL†σ⃗ · B⃗Ψ0 þ igL†C⃗ · D⃗L − igL†σ⃗ · B⃗D0L�;

SðlÞ ¼ i
Z

d4xl†ðD0 − σ⃗ · D⃗Þl;

Sinteraction ¼ im
Z

d4x½−l†Ψ0 þ l†σ⃗ · Ψ⃗þΨ†
0l

− Ψ⃗† · σ⃗l − l†D0Lþ l†σ⃗ · D⃗L

þ L†D⃖0l − L†D⃖ · σ⃗l�; ð2Þ

where Ψμ¼PLψμ, l¼PLλ, and L¼PLΛ, with PL¼1
2
ð1þ

γ5Þ the left chiral projector, and with C⃗ ¼ B⃗þ σ⃗ × E⃗.
Writing S ¼ R

d4xð−Ψ†
0χ − χ†Ψ0 þ � � �Þ, we identify the

constraints as

χ ¼ σ⃗ · D⃗ × Ψ⃗ − iml − igσ⃗ · B⃗L;

χ† ¼ Ψ⃗† × σ⃗ · D⃖þ iml† þ igL†σ⃗ · B⃗: ð3Þ

From Eq. (2) we can read off the canonical momenta,

P⃗Ψ⃗ ¼ Ψ⃗† × σ⃗;

Pl ¼ −il† þ imL†;

PL ¼ igL†σ⃗ · B⃗þ iml†: ð4Þ

Solving for the adjoint fields in terms of the canonical
momenta, we get

Ψ⃗† ¼ 1

2
ðiP⃗Ψ⃗ − P⃗Ψ⃗ × σ⃗Þ;

L† ¼ −iðPL þmPlÞðm2 þ gσ⃗ · B⃗Þ−1;
l† ¼ ðiPlgσ⃗ · B⃗ − imPLÞðm2 þ gσ⃗ · B⃗Þ−1: ð5Þ

Using these, and the standard canonical brackets, we find
that the bracket of the constraints vanishes,

½χαðx⃗Þ; χ†βðy⃗Þ� ¼ 0; ð6Þ

showing that as expected, in the extended coupled model
the constraints have become first class. It is easy to show
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that χ and χ† generate the fermionic gauge invariance of the
extended model.

III. PATH INTEGRAL

Returning to the covariant form, the Feynman path
integral is given by

houtjSjini¼
Z

δðϕÞδðϕ†Þ½det½ϕ;χ†�det½ϕ†;χ��−1

×dψμdψ
†
μdλdλ†dΛdΛ† exp

�
i
Z

d4xL
�
; ð7Þ

where ϕ and its adjoint ϕ† are the constraints introduced to
break the fermionic gauge invariance. If one takes ϕ ¼ Λ,
the left chiral part of the bracket ½ϕ; χ†� is ½L;PΨ⃗ · D⃖þ
PL� ¼ −1 and similarly for the right chiral part, so the
Faddeev-Popov (FP) determinant is trivial and there is no
ghost contribution; with this choice of gauge fixing the
extended theory reduces to the unextended one discussed
in [3]. We will here be interested in Nielsen’s choice
ϕ ¼ γρψρ − b, with b Gaussian averaged [4]; in this case
the factors δðϕÞδðϕ†Þ½det½ϕ; χ†� det½ϕ†; χ��−1 correspond to
Nielsen’s ðdet γ ·DÞ−2δðγρψρ − bÞδðψ̄ λγ

λ − b̄Þ, since χ and
χ† are the generators of the fermionic gauge transformation.
The FP ghost contribution to the chiral anomaly will then
be −1 by his argument, and the calculation to be done is to
find the anomaly contribution from the fermion fields ψμ, λ,
Λ, with a gauge fixing term

ΔL ¼ −ζψ̄μγ
μγνDνγ

ρψρ ð8Þ

added to the action.
The Lagrangian L appearing in Eq. (7) can be read off

from Eq. (1). Using the identity ϵμηνργ5γη ¼ iγμνρ, the
Lagrangian takes the form

L¼−½ψ̄μγ
μνρDνψρþðg=2Þð−Λ̄γμνρFμνψρ

þ ψ̄μγ
μνρFνρΛ−Λ̄γμνρFνρDμΛÞ�

− λ̄γνDνλþmðλ̄γνψν−ψ̄νγ
νλþ λ̄γνDνΛ−Λ̄D⃖νγ

νλÞ: ð9Þ

For the later derivation of Feynman rules, we expand the
gauge-fixed Lagrangian density Lþ ΔL in powers of the
coupling g,

Lþ ΔL ¼ Lð0Þ þ gLð1Þ þ g2Lð2Þ;

Lð0Þ ¼ −ψ̄μγ
μνρ∂νψρ − λ̄γν∂νλ − ζψ̄μγ

μγν∂νγ
ρψρ

þmðλ̄γνψν − ψ̄νγ
νλþ λ̄γν∂νΛ − Λ̄∂⃖νγ

νλÞ;
Lð1Þ ¼ AνUν þ FαβV ½αβ�;

Lð2Þ ¼ FνρAμW½νρμ�; ð10Þ

where we have introduced the definitions

Uν¼−ψ̄μγ
μνρψρ− λ̄γνλþmðλ̄γνΛþ Λ̄γνλÞ−ζψ̄μγ

μγνγρψρ;

V½αβ� ¼1

2
ðΛ̄γαβρψρ− ψ̄μγ

αβμΛþ Λ̄γαβτ∂τΛÞ;

W½νρμ� ¼1

2
Λ̄γμνρΛ: ð11Þ

We see that in addition to simple vector vertices where Aν

couples to a vector current, there are vertices with Fμν

coupling to a rank two antisymmetric tensor current, and
with FνρAμ coupling to a rank three antisymmetric tensor
current.
Before proceeding to Feynman rules, let us give the

relation between the quantities just defined and the Noether
currents. The Noether vector current is obtained by making
the substitutions

ψρ→ expðθÞψρ; λ→ expðθÞλ; Λ→ expðθÞΛ; ð12Þ

with θ† ¼ −θ, and picking out the coefficient of ∂σθ. This
gives the Noether vector current Vσ given by

Vσ ¼ Vð0Þσ þ Vð1Þσ;

Vð0Þσ ¼ Uσ ¼ −ψ̄μγ
μσρψρ − ζψ̄μγ

μγσγρψρ

− λ̄γσλþmðλ̄γσΛþ Λ̄γσλÞ;
Vð1Þσ ¼ gFνρW½νρσ� ¼ g

2
Λ̄γσνρFνρΛ: ð13Þ

Similarly, making the substitution of Eq. (12) with θ
replaced by −γ5θ, we find the Noether axial-vector current
Aσ given by

Aσ ¼ Að0Þσ þAð1Þσ;

Að0Þσ ¼ ψ̄μγ
μσργ5ψρ þ ζψ̄μγ

μγσγργ5ψρ þ λ̄γσγ5λ

−mðλ̄γσγ5Λþ Λ̄γσγ5λÞ;
Að1Þσ ¼ −

g
2
Λ̄γσνργ5FνρΛ; ð14Þ

showing that the axial current includes a piece with a
direct coupling of the vector field through Fνρ. One can
check that the Noether currents just defined are self-adjoint,
Vσ ¼ ðVσÞ†, Aσ ¼ ðAσÞ†, and by a lengthy calculation
using the Euler-Lagrange equations following from the
action of Eq. (1), with the gauge fixing action added, one
can check that the Noether currents are formally con-
served, ∂σVσ ¼ ∂σAσ ¼ 0.

IV. FEYNMAN RULES FOR PROPAGATORS
AND VERTICES

Let us next derive the Feynman rules. We introduce
Fourier transforms of the fields
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ψμðxÞ ¼
1

ð2πÞ4
Z

d4keik·xψμ½k�;

λðxÞ ¼ 1

ð2πÞ4
Z

d4keik·xλ½k�;

ΛðxÞ ¼ 1

ð2πÞ4
Z

d4keik·xΛ½k�;

S ¼ 1

ð2πÞ4
Z

d4kS½k�; ð15Þ

and expand

S½k� ¼ Sð0Þ½k� þ gSð1Þ½k� þ g2Sð2Þ½k� ð16Þ

corresponding to the Lagrangian density expansion of
Eq. (10). Then for the kinetic term Sð0Þ½k� we find

Sð0Þ½k� ¼ ðψ̄μ½k�λ̄½k� ¯Λ½k�ÞM

0
B@

ψρ½k�
λ½k�
Λ½k�

1
CA: ð17Þ

For the matrix M we have

M ¼

2
66664
−i
��

1

2
þ ζ

�
γμ=kγρ −

1

2
γρ=kγμ

�
−mγμ 0

mγρ −i=k im=k

0 im=k 0

3
77775:

ð18Þ

Defining the propagator N as the inverse of M,

MN ¼

2
64
δμσ 0 0

0 1 0

0 0 1

3
75; ð19Þ

and writing

N ¼

2
64
N1ρσ N2ρ N3ρ

N4σ N5 N6

N7σ N8 N9

3
75; ð20Þ

we find the following solution for the matrix elements
of N ,

N1ρσ ¼ −
i

2k2

�
γσ=kγρ −

1

k2

�
4þ 2

ζ

�
kρkσ=k

�
;

N2ρ ¼ 0;

N3ρ ¼ =k
1

ζðk2Þ2 kρ;

N4σ ¼ 0;

N5 ¼ 0;

N6 ¼ =k
1

imk2
;

N7σ ¼ =k
−1

ζðk2Þ2 kσ;

N8 ¼ =k
1

imk2
;

N9 ¼
=k
ik2

�
1

m2
−

1

ζk2

�
: ð21Þ

The terms Sð1Þ½k� and Sð2Þ½k� in Eq. (16) give the vertex
Feynman rules. The vertices corresponding to Vð0Þσ and
Að0Þσ are

Vð0Þσ¼

2
666664
−
��

1

2
þζ

�
γμγσγρ−

1

2
γργσγμ

�
0 0

0 −γσ mγσ

0 mγσ 0

3
77775;

Að0Þσ¼

2
66664

��
1

2
þζ

�
γμγσγρ−

1

2
γργσγμ

�
γ5 0 0

0 γσγ5 −mγσγ5

0 −mγσγ5 0

3
77775;

ð22Þ
and obey the Ward identities

ikσVð0Þσ ¼ Mðkþ pÞ −MðpÞ
¼ N −1ðkþ pÞ −N −1ðpÞ;

−ikσAð0Þσ ¼ Mðkþ pÞγ5 þ γ5MðpÞ
¼ N −1ðkþ pÞγ5 þ γ5N −1ðpÞ: ð23Þ

The corresponding Feynman rules for V ½αβ� and W½νρμ�
are

V ½αβ� ¼

2
664

0 0 − 1
2
γμαβ

0 0 0

1
2
γαβρ 0 i

2
γαβτkτ

3
775;

W½νρμ� ¼

2
664
0 0 0

0 0 0

0 0 1
2
γνρμ

3
775; ð24Þ
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where k is the four-momentum of the Λ entering or leaving
a vertex where FαβV ½αβ� couples.

V. ENUMERATION OF DIAGRAMS

The issue of anomaly cancellation arises when a left (or
right) chiral current is gauged, since when anomalies in the
gauge gluon three point function are not cancelled there are
nonrenormalizable infinities [5,6]. The general three-point
function for chiral currents gets contributions from dia-
grams with one axial-vector coupling and two vector
couplings, and diagrams with three axial-vector couplings
(diagrams with two axial-vector couplings and one vector
coupling, as well as diagrams with three vector couplings,
vanish by charge conjugation symmetry). Since the
anomaly associated with three axial-vector couplings is
known on symmetry grounds to be 1

3
that of the anomaly

associated with one axial-vector and two vector couplings,
it suffices to compute the latter in a vectorlike theory, and
then to supply the appropriate symmetry factors to get the
anomaly in a chiral theory. Thus, the relevant diagrams for
our calculation are all of those of order g3 with one axial-
vector vertex and two vector vertices, with the axial current
Aσ of (14) multiplied by a factor of the coupling g, since in
a chiral theory this is gauged as well as the vector current.
This leads to the following enumeration of diagrams, as
shown in Fig. 1, where we have included the gauge field
factors coupling to each vertex.
Diagrams which are labeled type I are triangles. Diagram

IA has a leading order Noether axial-vector current AσAð0Þσ
at one vertex and leading order Noether vector currents

AσVð0Þσ at the other two vertices. Using the freedom to
anticommute the factor γ5 around in diagrams with mass-
less propagators, the other triangle diagrams are IB, in
which there is one axial-vector vertex FμνV ½μν�γ5 and two
vector vertices AσVð0Þσ , Diagram IC in which there is one
axial-vector vertex AσAð0Þσ and two vector vertices
FμνV ½μν�, and Diagram ID, in which there is one axial-
vector vertex FμνV ½μν�γ5 and two vector vertices FμνV ½μν�. In
addition, there are diagrams that are two-point functions at
which two gluons couple to one of the vertices, which we
label as type II. Diagram IIA has one axial-vector vertex
AσAð0Þσ and one double vector vertex FνρAμW½νρμ�, and
diagram IIB has one axial-vector vertex FαβV ½αβ�γ5 and one
double vector vertex FνρAμW½νρμ�. All other possibilities
can be reduced to the ones just enumerated by moving the
factor γ5 around inside the fermion loop trace.

VI. ANOMALY ARISING FROM THE LEADING
ORDER NOETHER CURRENT TRIANGLE

In this section we evaluate the anomaly arising from
diagram IA. We first review the calculation of the standard
anomaly for spin- 1

2
following the treatment in [3], and then

do the analogous calculation for the diagram with leading
order Noether currents at the three vertices.

A. The standard spin- 12 chiral anomaly
by the shift method

The generic triangle diagrams with one axial-vector
vertex and two vector vertices are shown in Fig. 2.

FIG. 1. Summary of contributing diagrams.
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For the case of the standard spin- 1
2
anomaly, the vertexA

with incoming momentum −ðk1 þ k2Þ is γνγ5, and the
vector vertices V with incoming momenta k1 and k2 are
−iγσ and −iγτ, respectively. For the corresponding ampli-
tude, we find

T ν
στ ¼

Z
d4r
ð2πÞ4 ð−1Þtr

�
i

=rþ=k1
ð−iγσÞ

i
=r
ð−iγτÞ

i
=r−=k2

γνγ5

�

þ
Z

d4r
ð2πÞ4 ð−1Þtr

�
i

=rþ=k2
ð−iγτÞ

i
=r
ð−iγσÞ

i
=r−=k1

γνγ5

�
:

ð25Þ
Forming the axial-vector divergence −ðk1 þ k2ÞνT ν

στ, and
substituting −ð=k1 þ =k2Þγ5 ¼ ð=r − =k2Þγ5 þ γ5ð=rþ =k1Þ into
the first line and −ð=k1 þ =k2Þγ5 ¼ ð=r − =k1Þγ5 þ γ5ð=rþ =k2Þ
into the second line, one gets a sum of four terms, each of
which contains only k1 or k2 but not both, and hence
vanishes, since there are not enough external momentum
factors to form the pseudoscalar ϵτσμνk1μk2ν. Hence with the
chosen routing of momenta in the triangle, the axial-vector
divergence vanishes. Since the sum of the two diagrams is
symmetric under interchange of the vector vertices, it
suffices to test the single vector divergence kσ1T

ν
στ, by

substituting =k1 ¼ ð=rþ =k1Þ − =r into the first line and =k1 ¼
=r − ð=r − =k1Þ into the second line. This gives a sum of four
terms, two of which contain only k2, and hence vanish,
leaving the other two terms,

kσ1T
ν
στ ¼ i

Z
d4r
ð2πÞ4 tr

�
1

ð=rþ =k1Þ
γτ

1

=r − =k2
γνγ5

−
1

ð=rþ =k2Þ
γτ

1

=r − =k1
γνγ5

�
: ð26Þ

If we could make the shift of integration variable r →
rþ k2 − k1 in the first term of Eq. (26), the two terms

would cancel, but this shift is not permitted inside a linearly
divergent integral. Following Jackiw [7] we proceed as
follows. Taking k1 − k2 to be infinitesimal, and rational-
izing Feynman denominators, we can write Eq. (26) as

kσ1T
ν
στ≃ iðk1−k2Þκ

×
Z

d4r
ð2πÞ4

∂
∂rκ

�
trðð=rþ=k2Þγτð=r−=k1Þγνγ5Þ

ðrþk2Þ2ðr−k1Þ2
�
: ð27Þ

Let us now make the usual Wick rotation to a Euclidean
integration region for r, which introduces an overall factor
of i, and use Stokes theorem, which for a Euclidean four-
dimensional integration over a volume V bounded by a
surface S states that

Z
V
d4r

∂
∂rκ fðrÞ ¼

Z
S
dSκfðrÞ: ð28Þ

Applying Eq. (28) to Eq. (27), we have

kσ1T
ν
στ ≃

−1
ð2πÞ4 ðk1 − k2Þκ

Z
S
dSκ

tr½ð=rþ =k2Þγτð=r − =k1Þγνγ5�
ðrþ k2Þ2ðr − k1Þ2

:

ð29Þ

The trace in the numerator can be simplified to
tr½ðð=k1 þ =k2Þγτ=r − =k2γτ=k1Þγνγ5�. Taking now the surface S
to be a large three-sphere of radius R, the denominator ðrþ
k2Þ2ðr − k1Þ2 ≃ R4 and so can be pulled outside the integral.
Since the volume of the sphere is 2π2R3, and noting that dSκ

is a vector parallel to rκ, the r-independent term in the
numerator averages to zero, while =r averages to Rðγκ=4Þ,
giving

FIG. 2. Generic triangle diagrams.
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Z
S
dSκtr½ðð=k1 þ =k2Þγτ=r − =k2γτ=k1Þγνγ5�

¼ 2π2R4tr½ð=k1 þ =k2Þγτðγκ=4Þγνγ5�: ð30Þ

Thus theR factors cancel out as the sphere radius approaches
∞, and we find for the vector vertex anomaly

kσ1T
ν
στ ¼

−g2

ð2πÞ4 ðk1 − k2Þκ2π2tr½ð=k1 þ =k2Þγτðγκ=4Þγνγ5�

¼ g2

16π2
tr½=k1γτ=k2γνγ5�: ð31Þ

When vector vertex conservation is enforced by adding a
polynomial to the amplitude, Eq. (31) yields the usual
answer for the axial-vector anomaly. In comparing with
the coupled model calculation that follows, it suffices to use
the expression in Eq. (26) for the standard spin- 1

2
anomaly,

so we will not repeat the steps of Eqs. (28) through (31).

B. The anomaly arising from diagram IA

Referring to Fig. 2, for diagram IA the axial-vector
vertex A with incoming momentum −ðk1 þ k2Þ is Að0Þ,
and the vector vertices V with incoming momenta k1 and k2
are iVð0Þ

σ and iVð0Þ
τ respectively. For the corresponding

amplitude, we find

T̃ ν
στ ¼

Z
d4r
ð2πÞ4 tr½N ðrþ k1ÞVð0Þ

σ N ðrÞVð0Þ
τ N ðr − k2ÞAð0Þν

þN ðrþ k2ÞVð0Þ
τ N ðrÞVð0Þ

σ N ðr − k1ÞAð0Þν�: ð32Þ

Contracting with iðk1 þ k2Þν to test the axial divergence,
and using the respective Ward identities

iðk1þk2ÞνAð0Þν¼N −1ðr−k2Þγ5þ γ5N −1ðrþk1Þ
¼N −1ðr−k1Þγ5þ γ5N −1ðrþk2Þ; ð33Þ

in the first and second lines of Eq. (32), we get again a
sum of four terms, each of which contains only k1 or k2
and so vanish. So the axial-vector divergence vanishes.
Contracting with k1σ to test the vector divergence, and
using the respective Ward identities

ikσ1V
ð0Þ
σ ¼ N −1ðrþ k1Þ −N −1ðrÞ;

¼ N −1ðrÞ −N −1ðr − k1Þ; ð34Þ

in the first and second lines of Eq. (32), we get a sum of four
terms, two of which contain only k2 and vanish, leaving the
other two terms

kσ1T̃
ν
στ ¼ i

Z
d4r
ð2πÞ4 tr½N ðrþ k1ÞVτN ðr − k2ÞAν

−N ðrþ k2ÞVτN ðr − k1ÞAν�: ð35Þ

Again, we see that if we could make a shift of integration
variable r → rþ k2 − k1 in the first term of Eq. (35), the
two terms would cancel, but as before this shift is not
permitted inside a linearly divergent integral. To proceed
further we focus on the first term in Eq. (35), substitute the
propagator and vertex matrices from Eqs. (20) and (22),
multiply out, and take the overall trace. Writing Eq. (35) as

kσ1T̃
ν
στ ¼ i

Z
d4r
ð2πÞ4 S̃;

S̃≡ tr½N ðrþk1ÞVτN ðr−k2ÞAν− ðk1↔ k2Þ�; ð36Þ
and abbreviating s ≡ r þ k1, d ≡ r − k2, ðVσÞμρ ≡
ð1
2
þ ζÞγμγσγρ − 1

2
γργσγμ, we find for the explicitly shown

term in S̃ the expression

S̃½explicitly shown term�
¼ tr½−N1ρσðsÞVσα

τ N1αβðdÞðVνÞβργ5
−m2N6ðsÞγτN6ðdÞγνγ5−m2N8ðsÞγτN8ðdÞγνγ5�: ð37Þ

SubstitutingN6 and N8 from Eq. (21) we see that the factors
ofm cancel, leaving as the sum of the second and third terms
in Eq. (37)

2

s2d2
tr½=sγτ=dγνγ5�: ð38Þ

When substituted into Eq. (36) this gives exactly twice the
first term in Eq. (26), corresponding to a factor of 2 times the
standard spin- 1

2
anomaly.

The first term in Eq. (37) is more complicated in
structure. We have evaluated it two different ways. By
using the cyclic invariance of the trace, this term can be
evaluated algebraically for general gauge parameter ζ using
the identities in the Appendix, with the result

4

s2d2

�
1þ 1

16

�
1

2
þ ζ

�
Σ
�
tr½=sγτ=dγνγ5�; ð39Þ

with Σ given by

Σ¼−16−16

�
1

2
þζ

�
þ4

ζ

�
−2þ8

�
1

2
þζ

�
þ8

�
1

2
þζ

�
2
�

þ 4

ζ2

�
3

�
1

2
þζ

�
−4

�
1

2
þζ

�
2

−4

�
1

2
þζ

�
3
�
≡0: ð40Þ

Thus, the anomaly from diagram IA is independent of the
gauge fixing parameter ζ, and adding Eq. (39) to Eq. (38)
and substituting the total into Eq. (36) gives six times the
first term in Eq. (26). So the diagram IA contribution to the
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chiral anomaly is a factor of 6 times the standard spin- 1
2

anomaly. As a check on this calculation, we also evaluated
the first term in Eq. (37) in the gauge ζ ¼ − 1

2
, which

eliminates many terms from the calculation, and used the
FEYNCALC package of Mathematica [8] to evaluate the
Dirac matrix trace, with the same result of six times
the standard anomaly.

VII. ANOMALY CONTRIBUTIONS ARISING
FROM THE REMAINING DIAGRAMS

We turn next to calculating the anomaly contributions
coming from the remaining diagrams in Fig. 1. This is
facilitated by the observation that since the anomaly is
topological in nature, it cannot depend on continuously
variable parameters such as the coupling mass m and the
gauge-fixing parameter ζ. We have seen an example of this
in the preceding section, where the apparent m and ζ
dependence cancelled away in the calculation of the
diagram IA anomaly. In the calculations of this section,
after multiplying all vertex and propagator factors, we shall
take the limit as m and ζ become infinite, dropping terms
which vanish in this limit, and keeping only terms which
remain finite (we find no growing terms). This leaves only a
few remaining pieces to evaluate algebraically to get the
anomaly contribution.
The result of this calculation is that all of the remaining

diagrams contribute zero to the chiral anomaly. We enu-
merate them one by one, giving for each the reason why
they give a null contribution.

(i) Diagram ID. Since all vertices have a field strength
factor Fαβ½k� ¼ iðkαAβ − kβAαÞ, which vanishes
when Aα ¼ kα, this diagram is conserved at all three
vertices. Note also that it is of order k21k2 and k

2
2k1 in

external momenta, so is a higher order polynomial
than the anomaly, which is of order k1k2.

(ii) Diagram IC. For the same reason, it is conserved at
the two vector vertices containing F factors. Taking
the divergence at the axial-vector vertex and using
the Ward identities gives a difference of terms which
differ by a shift of k1 or k2, plus extra pieces of order
k21k2 or k22k1. Because the shifted terms still each
contain a factor k1k2, the result of the shift is of order
k21k2 or k22k1, so cannot give an anomaly. Another
reason for a null result is that the terms which are
shifted all vanish asm and ζ become infinite; there is
no contribution that remains nonzero.

(iii) Diagram IB. This is conserved at the vertex con-
taining F. Taking a divergence at either of the other
two vertices and substituting the Ward identity gives
a difference of terms that differ by a shift of k2 or
k2 − k1, plus a remainder of order k1k2 that vanishes
as m and ζ approach infinity. The shift terms, after
dropping terms that are cubic or higher order in k1;2,
or that vanish as m and ζ approach infinity,

contains a finite part which inside the trace
has a factor of either γρðγσ=rγρ−ð4=r2Þrσrρ=rÞ¼0

or ðγσ=rγρ − ð4=r2Þrσrρ=rÞγσ ¼ 0. (This is the identity
of Eq. (72) of [3]). Hence the anomaly from diagram
IB is zero.

(iv) Diagrams IIA and IIB. These diagrams approach
zero as m and ζ approach infinity, with no nonzero
remainder, so contribute zero to the anomaly.

Our conclusion is that the remaining diagrams IB, IC, ID
and IIA, IIB all contribute zero to the anomaly. So the
anomaly is given entirely by diagram IA, which gives 6
times the standard spin- 1

2
anomaly, together with the ghost

contribution of −1 times the standard anomaly, giving a
total of 5 times the standard anomaly. As noted in the
Introduction, this agrees with the result obtained in [3]
when the second class constraint determinant is exponen-
tiated by introducing a nonpropagating ghost.

VIII. DISCUSSION

The result for the coupled model anomaly of 5 times the
standard anomaly differs from what one would get by naive
counting in the uncoupled model. In the model with m ¼ 0
(which as noted has singularities that prevent a perturbative
gauging), one would naively count an anomaly of 1 for the
spin- 1

2
field and an anomaly of 3 for the spin- 3

2
field [9],

giving a total anomaly of 4. We see that this naive anomaly
counting result cannot be carried over to the coupled model.
This implies that the anomaly counting argument in the
non-Abelian SUð8Þ gauge model of [10], which is the
progenitor of the Abelianized coupled model analyzed in
[3] and here, has to be reexamined.
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APPENDIX: DIRAC MATRICES AND
IDENTITIES

We follow the conventions used in [1], which agree
with those used in the text of Freedman and Van Proeyen
[11]. Using the flat Minkowskian metric ημν, which is
(−;þ;þ;þ), the Dirac matrices fγμg fulfill the Clifford
algebra

fγμ; γνg ¼ 2ημν: ðA1Þ
In the representation chosen here, they can be written as
4 × 4 matrices in terms of the Pauli sigma matrices and the
2 × 2 identity matrix 1,
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γ0 ¼ −γ0 ¼
�
0 −1
1 0

�

γi ¼ γi ¼
�

0 σi

σi 0

�
; ðA2Þ

with the γ5 matrix defined as

γ5 ¼ iγ0γ1γ2γ3 ¼
�
1 0

0 −1

�
: ðA3Þ

We take the following convention for the Levi-Civita
skew-symmetric tensor

ϵ0123 ¼ −ϵ0123 ¼ 1; ðA4Þ

and, for the spatial Levi-Civita, the identification
ϵ0ijk ¼ ϵijk.
Some useful trace properties which can be derived from

Eqs. (A1)–(A3) are

Trð1Þ ¼ 4;

Trðany odd number of γ’sÞ ¼ 0;

Trðγ5Þ ¼ 0;

TrðγμγνÞ ¼ 4ημν;

Trðγμγνγ5Þ ¼ 0;

TrðγμγνγργσÞ ¼ 4ðημνηρσ − ημρηνσ þ ημσηνρÞ;
Trðγμγνγργσγ5Þ ¼ −4iϵμνρσ: ðA5Þ

We have also the following contraction formulas,

γμγμ ¼ 4;

γμγνγμ ¼ −2γν;

γμγνγργμ ¼ 4ηνρ;

γμγνγργσγμ ¼ −2γσγργν;

γμγνγργσγτγμ ¼ 2γσγργνγτ þ 2γτγνγργσ: ðA6Þ
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