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We consider cases where the dark matter-nucleon interaction is naturally suppressed. We explicitly show
that extending the standard model scalar sector by a number of singlets can lead to a vanishing direct
detection cross section, if some softly broken symmetries are imposed in the dark sector. In particular, it is
shown that if said symmetries are SUð2Þ [SUðNÞ] and Uð1Þ × SN , then the resulting pseudo-Nambu-
Goldstone bosons can constitute the dark matter of the Universe while naturally explaining the missing
signal in nuclear recoil experiments.
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I. INTRODUCTION

The current status of direct detection experiments puts
severe limits on dark matter (DM) models with DM particle
masses around the electroweak (EW) scale [typically,
OðGeVÞ–OðTeVÞ], as indicated by recent results from
the XENON1T Collaboration [1]. The main reason for this
is the incompatibility of the experimental results with what
one would expect from dimensional arguments [i.e., the so-
called weakly interacting massive particle (WIMP) miracle
[2]], indicating that a DM particle with a mass around the
EW scale should have interactions with an EW strength.
That is, if the DM freezes out due to its annihilation to
standard model (SM) particles, its interaction with nucleons
should be of a similar magnitude, and nuclear recoil
experiments (which have access to EWDMmasses) should
be able to detect it.
There are various reasons for the missing direct detection

signal, such as aDMparticle that is heavy [3,4] or light [5–11]
enough, where such experiments have low sensitivity.1 There
are caseswhere theDMdoes not (primarily) annihilate to SM
particles and alter the way the DM freezes out,2 for example,
“secluded” [19,20] and “cannibal” [21] DMmodels. There is
also the possibility of suppressed interactions between DM
and the nucleons due to a heavy (integrated-out) mediator

[22–27] and the appearance of “blind spots” [28–30]. Among
particularly appealing scenarios, however, direct detection
experiments are unable to detect theWIMP due to symmetry
arguments [31–35]. In such models, there is a symmetry that
is responsible for the suppression of the DM-nucleon cross
section, usually through the cancellation of the tree-level
DM-nucleon interaction.
In the present work, we explore models that belong to the

family of the so-called “Higgs portal” DM models (e.g.,
[36–42]). Although many models of DM coupled directly
to the Higgs respect direct detection constraints (e.g.,
[43–46]), this kind of DM opens up other intriguing
possibilities. Our focus here is the pseudo-Nambu-
Goldstone boson (PNGB) DM scenario. The general idea
behind how this can help to evade direct detection bounds
comes from the observation that Nambu-Goldstone bosons
(NGBs), which result from a spontaneous breaking of a
global symmetry, have derivative couplings with other
particles, and so their interactions vanish at zeromomentum.
On the other hand, a PNGB (DM cannot be a NGB, since it
should be massive) is a result of a spontaneously broken
approximate global symmetry, which could induce new
interactions resulting in a nonvanishing direct detection
cross section. However, there are examples of a cancellation
that allows the tree-level DM-nucleon interaction to vanish
at the zero momentum transfer [33,35], making models
featuring such a cancellation suitable DM candidates.
In our effort to identify PNGB models featuring the

aforementioned cancellation, we extent the SM by a scalar
field (singlet under the SM gauge symmetry) and doublet
under a softly broken SUð2Þ global symmetry.3 We also
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1However, as the effort for detection of light DM intensifies
[12–18], this could change soon.

2If this is the case, the DM annihilation and its interaction with
nucleons are not correlated, in contrast to what one would expect
from the dimensional argument above.

3Similar models have been studied in great detail [47];
however, we focus on the cancellation of the DM-nucleon cross
section and show explicitly that this takes place regardless of the
form of the soft breaking terms.
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show that the PNGBs in this case remain stable due to the
symmetry properties of the interaction terms. Furthermore,
we show how these arguments apply to a softly broken
SUðNÞ global symmetry.
Then, we move to another case, where we add two scalar

fields (again singlet under the SM), and we note that the
cancellation of the PNGB-nucleon interaction occurs
assuming a permutation symmetry. However, in contrast
to the minimal case [33], the PNGB is not naturally stable
unless a dark CP symmetry is imposed. We also show that
this model can be generalized to an arbitrary number (N) of
scalar fields, provided an SN symmetry assumption.
The outline of the paper is the following: In Sec. II, we

discuss the DM content and the natural suppression of the
DM-nucleon cross section in the SUð2Þ. At the end of this
section, we also show how these results are generalized in
the SUðNÞ case. In Sec. III, we consider theUð1Þ × S2 case
and show how the cancellation of the direct detection
cross section takes place, which we then generalize to
Uð1Þ × SN . Finally, in Sec. IV, we summarize our results
and comment on possible future directions.

II. THE SUð2Þ CASE
In this section, we examine a dark sector with a softly

broken SUð2Þ symmetry, in order to determine if the
cancellation takes place. Specifically, the SM is extended
by a scalar (Φ) which is a gauge singlet under the SM gauge
group and a doublet under a softly broken SUð2Þ. We show
that indeed this model can provide us with naturally stable
(multicomponent) DM, which exhibits a cancellation of the
DM-nucleon interaction. We also show that this holds for
SUðNÞ and Φ in the fundamental representation.4

A. The potential and mass terms

The potential is comprised of two parts: the symmetric
and the soft breaking ones. The symmetric part [global
SUð2Þ invariant] is

V0¼−
μ2H
2
jHj2þλH

2
jHj4þλΦ

2
jΦj4þλHΦjHj2jΦj2; ð2:1Þ

while the softly breaking part of the potential can be
written as

Vsoft ¼
X2
i¼1

X2
j¼1

½ðm2
ΦijΦiΦj þ H:c:Þ þm02

ΦijΦ
†
iΦj�; ð2:2Þ

with m2
Φ12 ¼ m2

Φ21, m02
Φ12 ¼ ðm02

Φ21Þ�, and m02
Φ11;22 ∈ R.

Also, note that the potential V ¼ V0 þ Vsoft becomes
SUð2Þ invariant if mΦij ¼ m0

Φ12 ¼ 0 and m02
Φ11 ¼ m02

Φ22.
Assuming that both H and Φ develop vacuum expectation
values (VEVs),

H¼ 1ffiffiffi
2

p
�

0

hþv

�
; Φ¼ 1ffiffiffi

2
p

�
ϕþ is

ρþ iχþvΦ

�
; ð2:3Þ

where, without the loss of generality, we have assumed that
the lower component of Φ obtains a VEV.5 The stationary
point conditions for this potential are

μ2H ¼ λHv2 þ λHΦv2Φ;

m2
Φ12 ¼ −

m02
Φ21

2
;

λΦ ¼ −
1

v2Φ
½λHΦv2 þ 4m2

Φ22
þ 2m02

Φ22
�; ð2:4Þ

where the last relation also implies m2
Φ22 ∈ R.6 The

Lagrangian mass terms can be written as

Lmass ¼ −
1

2
ðGTM2

GGþ STM2
SSÞ; ð2:5Þ

where G ¼ ðχ; s;ϕÞT are the PNGBs and S ¼ ðh; ρÞT . The
mass matrices become

M2
G ¼

0
BB@

−4m2
Φ22

2Reðm02
Φ12

Þ −2Imm02
Φ12

2Reðm02
Φ12

Þ −2m2
Φ22

þm02
Φ11

−m02
Φ22

− 2Reðm2
Φ11

Þ −2Imm2
Φ11

−2Imm02
Φ12

−2Imm2
Φ11

−2m2
Φ22

þm02
Φ11

−m02
Φ22

þ 2Reðm2
Φ11

Þ

1
CCA;

M2
S ¼

�
λHv2 λHΦvvΦ

λHΦvvΦ λΦv2Φ

�
; ð2:6Þ

with λΦ given by Eq. (2.4). It is also evident that, as
expected, M2

G becomes a zero matrix (i.e., all PNGBs
become massless) in the limit of SUð2Þ invariance.

4There is a Python module available [48] that can be used to
obtain Feynman rules and LanHEP [49] input files for the SUðNÞ
case.

5This can be done by a unitary transformation (UX) of some

field X, with hXi¼ðvX1
;vX2

Þ, toΦ. In this case, vΦ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2X1

þv2X2

q
,

and UX ¼ UXðvX1;2
Þ.

6Note here that without any rotation (see footnote 5) Eq. (2.4)
would relate the original VEVs to the parameters of the model. So,
the relation betweenm2

Φ12 and mΦ21 is, in fact, a relation between
vX1;2

and other parameters of the model in the X basis.
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B. Stability of PNGBs

In theUð1Þ case [33], the stability of the DMwas a result
of a natural dark CP invariance. Although it is not possible
to absorb all phases of the parameters, here, the PNGBs are
still stable. What keeps them stable is a residual symmetry
exhibited by the potential that forbids PNGB mixing with ρ
and h (which would induce decays to SM particles), as well
as PNGB conversion interaction terms.
To show this, we note that V0 is a polynomial of

jΦj2 ¼ 1
2
ðχ2 þ ϕ2 þ s2 þ ðvΦ þ ρÞ2Þ, which is symmetric

under orthogonal rotations of ðχ;ϕ; sÞ, i.e., Oð3Þ. This
means that there are no PNGB conversions, and there is no
mixing between PNGBs and other scalars. So, only Vsoft
can induce destabilizing mixings. It suffices to show,
however, that if there is no mixing between PNGBs and
ρ, then all PNGBs are stable, since an orthogonal rotation to
the PNGB eigenvalue basis (with eigenstates ξ1;2;3) does
not generate any ξ conversion terms [V0 is Oð3Þ symmet-
ric]. To show that ðχ;ϕ; sÞ and ρ do not mix, we expand Φ
as in Eq. (2.3) and observe that vΦ is always added to ρ. So,
a potential mixing between ρ and a PNGB would also
induce a linear term (proportional to that PNGB) to the
potential. That is, all PNGB-ρ mixings should vanish by
virtue of the conditions Eq. (2.4). As an example, by
plugging Eq. (2.3) into Eq. (2.2), we get the potential
mixing term between ϕ and ρ:

Vϕρ ¼
1

2
ð2m2

Φ12 þm20
Φ21 þ H:c:Þðρþ vΦÞϕ;

which automatically vanishes once we impose Eq. (2.4).

So, the potential is Zðξ1Þ
2 × Zðξ2Þ

2 × Zðξ3Þ
2 symmetric (i.e.,

each PNGB carries its own Z2 parity) that not only forbids
decays of the PNGBs to SM particles, but also ξi→ξjþSM
as well, resulting in a three-component DM content.
We note here that, in the limit of decoupled ϕ and s, we

recover the Uð1Þ [33] case. That is, in this limit, one
expects (approximately) the same phenomenology. Thus,
the relic abundance of the SUð2Þ model (ΩSUð2Þh2) should
be comparable to the Uð1Þ (ΩUð1Þh2). On the other hand, in
the limit of (almost) degenerate PNGBs, the relic abun-
dance should get a factor of 3, i.e., ΩSUð2Þh2 ≈ 3ΩUð1Þh2,
which tightens the bound on the annihilation cross section
per DM particle. This, in turn, means that the required value
of the coupling(s) responsible for the DM annihilation
should be smaller (by a factor of ∼

ffiffiffi
3

p
). In addition to that,

the LHC constraints [50] should remain mostly unaffected,
sincewewould have three degenerate particles, each onewith
interactions reduced by a factor of ∼3. Between the degen-
erate and decoupling limits described above, the picture can
get quite involved (e.g., [51,52]). However, in principle, we
should expect the relic abundance to be between these two
limits, i.e., ΩUð1Þh2 ≲ ΩSUð2Þh2 ≲ 3ΩUð1Þh2. Therefore, it
seems plausible that there should be some allowed region in

the parameter space of the SUð2Þ case, although a detailed
analysis is still needed.

C. The pseudo-Nambu-Goldstone–nucleon interaction

Since all PNGBs are stable, we need to calculate three
amplitudes for the direct detection cross section. However,
due to the Oð3Þ symmetry of the interaction terms, the
amplitude for the ξi-nucleon elastic scattering (ξin → ξin)
is proportional to Gi-nucleon elastic scattering amplitude,
and it is independent of i. In general, the interaction of
the three-point terms pertinent to this interaction can be
written as

Lint ¼ −
1

2

X3
i¼1

X3
j¼1

X2
k¼1

YðkÞ
ij GiGjSk: ð2:7Þ

But, due to the Oð3Þ symmetry, we expect that

Lint ¼ −
1

2
ðG2

1 þ G2
2 þ G2

3Þ
X2
k¼1

YðkÞSk

¼ −
1

2
ðξ21 þ ξ22 þ ξ23Þ

X2
k¼1

YðkÞSk: ð2:8Þ

From the potential (2.1) and the relations (2.4), we obtain

Lint¼−
1

2
ðξ21þξ22þξ23Þ

×

� λHΦv

− 1
vΦ
ðλHΦv2þ4m2

Φ22
þ2m02

Φ22
Þ
�T�h

ρ

�
: ð2:9Þ

Since we are interested in the zero-momentum transfer
limit, the propagator is proportional to the inverse of the
mass matrixM2

S. Then the direct detection amplitude for all
PNGBs (the Feynman diagram is shown in Fig. 1) becomes

ADD∼
� −λHΦvΦv

λHΦv2þ4m2
Φ22

þ2m02
Φ22

�T

×

�
λHΦv2þ4m2

Φ22
þ2m02

Φ22
λHΦvΦv

λHΦvΦv −λHv2

��
1

0

�
¼ 0;

ð2:10Þ

ξ

ξ

q

q

S h

FIG. 1. The Feynman diagram for the elastic scattering between
a quark (q) and a PNGB.
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which concludes the proof of the claim that the DM-
nucleon cross section vanishes at tree level and zero
momentum transfer. However, this indicates only that the
direct detection cross section is “naturally suppressed.” In
practice, loop corrections need to be included as well, since
these effects could allow for a possible direct detection
signal [33,53,54].

D. Generalization to SUðNÞ
It is straightforward to generalize the above result in the

case where Φ is in the fundamental representation of a
softly broken SUðNÞ global symmetry, since the form of V0

is the same as in Eq. (2.1), with the soft breaking terms
being

Vsoft ¼
XN
i¼1

XN
j¼1

½m2
ΦijΦiΦj þ H:c:þm02

ΦijΦ
†
iΦj�; ð2:11Þ

where, in analogy to SUð2Þ,mΦij¼mΦji andm0
Φij ¼ m0�

Φji.
Assuming that the Nth component of Φ develops a
VEV, one can show that the minimization of the potential
requires

μ2H ¼ λHv2 þ λHΦv2Φ;

m2
ΦiN ¼ −

m02
ΦNi

2
∀ i < N;

λΦ ¼ −
1

v2Φ
½λHΦv2 þ 4m2

ΦNN
þ 2m02

ΦNN
�; ð2:12Þ

where again m2
ΦNN ∈ R is implied by the last condition.

This results in 2N − 1 PNGBs, χ, ϕi, and si with
i ¼ 1; 2;…; N − 1. In complete analogy to the SUð2Þ
case, the interaction potential (V0) is symmetric under

Oð2N − 1Þ,7 which results in a Zðξ1Þ
2 × Zðξ2Þ

2 � � � × Zðξ2N−1Þ
2

symmetry for the entire potential (in the PNGB
eigenvalue basis). Therefore, all PNGBs are stable. We
also point out that the same arguments for the
relic abundance of the SUð2Þ case hold also in SUðNÞ.
That is, in general, the relic abundance should be
ΩUð1Þh2 ≲ ΩSUðNÞh2 ≲ ð2N − 1ÞΩUð1Þh2.
Returning to the discussion for the direct detection

cross section, the pseudo-Nambu-Goldstone boson-
nucleon interaction terms take the familiar form

Lint¼−
1

2

X2N−1

i¼1

ξ2i

� λHΦv

− 1
vΦ
ðλHΦv2þ4m2

Φ22
þ2m02

Φ22
Þ
�T�h

ρ

�
:

ð2:13Þ

Since the mass matrix M2
S is independent of N [i.e., it is

always given by Eq. (2.6)], the amplitude for the process
ξiN → ξiN at tree level and zero momentum transfer
vanishes as in the SUð2Þ case.
One should keep in mind that the cancellation takes place

only if Φ is in the fundamental representation of SUðNÞ. It
is not clear if ADD would cancel if another (irreducible)
representation of Φ was assumed, as there are additional
interactions, corresponding to all the possible contractions
of the SUðNÞ indices. For example, for N ¼ 2 and Φ in the
adjoint representation, there is an interaction term of the
form

V int ∼ jHj2
X
i;j;k;l

ϵilϵjkΦijΦkl;

which can potentially change the mixing between the
particles in a nontrivial way. Since the number of such
interactions increases greatly with the dimension of each
representation of SUðNÞ, it becomes hard to generalize.
Thus, we postpone such an analysis for the future.8

E. Beyond the tree-level approximation

So far, we have considered the direct detection cross
section at the tree level, which vanishes because of the
PNGB nature of the DM particles, i.e., the approximate
imposed symmetry. However, one expects that new inter-
action terms can be induced at the loop level, from the
contribution of the soft breaking terms. That is, one expects
four-point symmetry-breaking interaction terms (e.g.,
jHj2Φ1Φ1 þ H:c:) to be generated.9 In this case, we expect
a situation similar to Ref. [33], with a typical loop-induced
coupling λ0 ∼ λ2

ð4πÞ2 (multiplied by a function logarithmic in

the mass parameters as in Ref. [33], which should vanish in
the symmetric limit) and λ2 proportional to a combination
of λHΦλΦ þ λ2Φ. That is, one expects for the direct detection
cross section to be suppressed. An order of magnitude
estimate can be deduced by assuming an interaction of the
form (the tree-level coupling cancels at zero momentum
transfer, so we show only the loop-induced one here)
Lhξξ ∼ λ2

ð4πÞ2 vhξ
2 (ξ is a DM particle).10 For such inter-

actions, the spin-independent cross section is approxi-
mately [55]

σSI ∼ 3.5 × 10−47
�
100 GeV

mξ

�
2

λ4 cm2; ð2:14Þ

7The symmetric potential depends on jΦj2 ∼ ðχ2 þ ϕ2
1þ

s21 þ ϕ2
2 þ s22 þ � � � ϕ2

N−1 þ s2N−1Þ þ ðvΦ þ ρÞ2, which is sym-
metric under orthogonal rotations of the PNGBs.

8However, if the imposed symmetry is SUðNÞ × Uð1Þ, such
interactions are not allowed, which means the mechanism under
consideration holds for other representations as well.

9Note that three-point interactions cannot be produced, be-
cause the entire potential is symmetric under Φ1;2 → −Φ1;2.

10Note that such interactions, in our case, are also multiplied
by the mixing of ρ and h. By omitting them, we may overestimate
the DM-nucleon cross section.
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which for a moderate λ ∼ 0.5 is below current
limits (see Fig. 2). Even for λ ¼ 1, this cross
section is below the bounds, for most of the DM mass
range. Note that, since Eq. (2.12) suggests that

λ2 ∼ λHΦλΦ þ λ2Φ ∼ λ2HΦv
2

v2Φ
½1− ð v

vΦ
Þ2 þ � � ��, such values of λ

are reasonable, assuming vΦ > v;mð0Þ
ΦNN . In principle,

though, since we may have omitted important loop factors,
one should calculate the relevant one-loop vertices (or the
complete one-loop scalar potential as also stated in
Ref. [33]), in order to have an accurate description of these
interactions. Finally, one should keep in mind that, in the
case ofmulticomponentDM, each component contributes to
the direct detection cross section according to its relative
relic abundance [52]. This could mean more relaxed
direct detection bounds (if the DM masses are separated),
since for the various DMcomponents the DM-nucleon cross
section should be rescaled as σiSI ≈ σSI ×

Ωih2

Ωtoth2 (for the ith
component).

F. Note on possible completions

The models presented here should not be considered UV
complete, since the origin of the global symmetries as well
as the soft breaking terms are not known. That is, such
models should be treated as low-energy limits of other, UV-
complete, ones. Possible UV completions may include new
gauge symmetries and a complicated spectrum of particles,
so the explicitly broken symmetries may be manifested as
approximate symmetries (as the so-called “custodial sym-
metry” in the SM [56]) in their low-energy limit. However,
the structure of the low-energy models should be mostly
unaffected, and any new effects induced by the completion
should be suppressed by some characteristic high-energy
scale. In principle, such a completion can induce decays of
the DM particles, as well as other effects (e.g., tree-level
DM interaction with the nucleons) not present in the low-
energy model but suppressed by the energy scale of the

completion.11 Such effects, though, can be studied only in a
case-by-case manner provided a valid completion.

III. THE Uð1Þ × S2 CASE

In this section, we examine another case, which we
denote as Uð1Þ × S2. In this case, the SM is extended by
two scalars (S1;2) charged only under a softly broken global
Uð1Þ. For the desired cancellation to occur, we impose a
permutation symmetry on S1;2. As we will see, this
symmetry provides a sufficient condition for the vanishing
of the PNGB-nucleon cross section.

A. The cancellation mechanism for this model

1. The potential

In the case of two scalars, each transforming as
Si → e−iaSi, the Uð1Þ × S2 symmetric potential, assuming
that all parameters are real numbers (we shall call this
assumption dark CP invariance), is

V0¼−
μ2H
2
jHj2þλ2H

2
jHj4þλHS1 jHj2ðjS1j2þjS2j2Þ

þλHS2 jHj2ðS1S†2þH:c:Þ

−
μ2S1
2
ðjS1j2þjS2j2Þ−

μ2S2
2
ðS1S†2þH:c:Þ

þλS1
2
ðjS1j4þjS2j4Þþ

λS2
2
½ðS1S†2Þ2þH:c:�

þλ0SjS1j2jS2j2þcðS1S†2þS2S
†
1ÞðjS1j2þjS2j2Þ; ð3:1Þ

while the S2-symmetric soft breaking potential is
written as

FIG. 2. An estimate of the one-loop direct detection cross section Eq. (2.14) for λ ¼ 1 (black line), λ ¼ 0.7 (dashed line), and λ ¼ 0.5
(dashed-dotted line). The gray line corresponds to the upper limit as given by XENON1T [1].

11For example, in Ref. [33], the DM particle becomes unstable
with a lifetime of the order of 1039 s.
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Vsoft ¼ −
μ02S1
2

ðS21 þ S22 þ H:c:Þ − μ02S2ðS1S2 þ H:c:Þ ð3:2Þ

with the total potential given by V ¼ V0 þ Vsoft. In order to
find the minimization conditions, we expand the fields
around their VEVs:

S1;2 ¼
1ffiffiffi
2

p ðvS þ s1;2 þ iχ1;2Þ;

H ¼ 1ffiffiffi
2

p
�

0

vþ h

�
; ð3:3Þ

where this particular choice of hS1;2i ensures that the
potential remains symmetric under simultaneous permuta-
tions of ðs; χÞ1 ↔ ðs; χÞ2. Because of the permutation
symmetry, there are only two independent stationary point
conditions, which read

μ2H ¼ λHv2 þ 2v2SðλHS1 þ λHS2Þ;
μ2S1 ¼ v2ðλHS1 þ λHS2Þ − ½μ2S2 þ 2ðμ02S1 þ μ02S2Þ�

þ v2SðλS1 þ λS2 þ λ0S þ 4cÞ: ð3:4Þ

2. Spectrum of the CP-odd scalars

In order to calculate the direct detection
amplitude, we first need to identify the PNGB. This
can be done by diagonalizing the mass matrix of the
CP-odd fields to its eigenvalues. Once the eigenvalues
are found, one of them should vanish in the limit where
the Uð1Þ is restored, which should correspond to the
PNGB. From Eq. (3.5), we obtain the mass matrix for
the χ’s:

M2
χ ¼

0
B@− v2λHS2

2
− v2SðλS2 þ cÞ þ 2μ02S1 þ μ02S2 þ

μ2S2
2

v2λHS2
2

þ v2SðλS2 þ cÞ þ μ02S2 −
μ2S2
2

v2λHS2
2

þ v2SðλS2 þ cÞ þ μ02S2 −
μ2S2
2

− v2λHS2
2

− v2SðλS2 þ cÞ þ 2μ02S1 þ μ02S2 þ
μ2S2
2

1
CA; ð3:5Þ

from which we find the eigenvalues

m2
ξ1
¼ 2ðμ02S1 þ μ02S2Þ;

m2
ξ2
¼ 2μ02S1 þ μ2S2 − v2λHS2 − 2v2SðλS2 þ cÞ: ð3:6Þ

It is apparent that m2
ξ1
vanishes in the limit μ02S1;2 → 0; thus,

the particle corresponding to this mass can be identified as
the would-be Nambu-Goldstone boson of theUð1Þ, i.e., the
PNGB of this model. The eigenstates corresponding to
these masses are

ξ1 ¼
1ffiffiffi
2

p ðχ1 þ χ2Þ; ξ2 ¼
1ffiffiffi
2

p ðχ1 − χ2Þ: ð3:7Þ

It is worth noting that the PNGB (ξ1) is symmetric under
χ1 ↔ χ2. This property of the PNGB will be proven
helpful, especially in the N-particle generalization of
this model, since it will allow us to calculate the desired
direct detection amplitude easily. The imposed dark CP
invariance can potentially keep both of the states ξ1;2
stable, since there are only interactions involving even
numbers of CP-odd particles; e.g., there is no ξ1h2

interaction term while the vertex ξ21h exists. However,
since we are interested in the scenario where the DM
particle is a PNGB, we need to impose an extra hierarchy
condition, so that ξ1 will be stable while ξ2 will be able to
decay. This condition is mξ1 < mξ2 , with their difference
(mξ2 −mξ1) at least larger than the mass of the lightest
CP-even particle (e.g., mξ2 −mξ1 > mH ≈ 125 GeV if the

Higgs boson is the lightest one). This is not too
restrictive, and it does not affect the vanishing of the
PNGB-nucleon cross section, but it must be pointed out
for the sake of completeness. Also, as in Sec. II, it seems
reasonable that this model will be allowed by observa-
tions, at least close to the limit in which it becomes
similar to the Uð1Þ case. That said, however, since the
parameter space is greater here, there should be room to
accommodate all constraints (especially since the direct
detection bounds are evaded).

3. The direct detection amplitude

The calculation of the quark-ξ1 scattering amplitude is
a relatively straightforward task. We just need to calcu-
late the corresponding Feynman diagram (Fig. 1).
In fact, since we are interested in the zero momentum
transfer limit, the ingredients that we need in order to
show that the direct detection cross section vanishes are
the inverse of the mass matrix of the CP-even scalars
and the three-point interaction of a pair of PNGBs with
them (i.e., vertices of the form ξ21h and ξ21s1;2). The mass
terms for the CP-even scalars can be written in a compact
form as

Lhs ¼ −
1

2
ΦTM2

ΦΦ; ð3:8Þ

with Φ ¼ ðh; s1; s2ÞT and
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M2
Φ ¼

0
BBB@

v2λH vvSðλHS1 þ λHS2Þ vvSðλHS1 þ λHS2Þ
vvSðλHS1 þ λHS2Þ

2v2SðcþλS1 Þþμ2S2
þ2μ02S2−λHS2

v2

2

2v2Sð3cþλS2þλ0S1 Þþv2λHS2
−μ2S2−2μ

02
S2

2

vvSðλHS1 þ λHS2Þ
2v2Sð3cþλS2þλ0S1 Þþv2λHS2

−μ2S2−2μ
02
S2

2

2v2SðcþλS1 Þþμ2S2
þ2μ02S2−λHS2

v2

2

1
CCCA: ð3:9Þ

Observing that only h couples to SM fermions, we need
only the following few terms of the inverse of M2

Φ:

½M2
Φ�−111 ∼ v2SðλHS1 þ λHS2 þ λ0HS1

þ 4cÞ;
½M2

Φ�−1i1 ∼ −vvSðλHS1 þ λHS2Þ: ð3:10Þ

With the interaction term of the Lagrangian
terms responsible for the ξ1-nucleon elastic scattering
being12

Lint ¼ −
1

8
ξ21

0
B@

2vðλHS1 þ λHS2Þ
vSðλHS1 þ λHS2 þ λ0HS1

þ 4cÞ
vSðλHS1 þ λHS2 þ λ0HS1

þ 4cÞ

1
CA

T0
B@

h

s1
s2

1
CA;

ð3:11Þ

we can show that the amplitude for the ξ1-nucleon elastic
scattering vanishes. That is,

ADD ∼

0
B@

2vðλHS1 þ λHS2Þ
vSðλHS1 þ λHS2 þ λ0HS1

þ 4cÞ
vSðλHS1 þ λHS2 þ λ0HS1

þ 4cÞ

1
CA

T

×

0
B@

v2SðλHS1 þ λHS2 þ λ0HS1
þ 4cÞ

−vvSðλHS1 þ λHS2Þ
−vvSðλHS1 þ λHS2Þ

1
CA ¼ 0: ð3:12Þ

In analogy to the SUð2Þ case, one again expects a one-
loop correction. This correction should be suppressed, with

an induced coupling ∼ λ2

ð4πÞ2, with λ combination of all

couplings in this model. The case here is more involved,
however, since the number of independent parameters is
greater.

B. Generalization to Uð1Þ × SN
As we saw in Sec. III A, the cancellation mechanism

holds when the model consists of two scalars under the

assumption that the potential is symmetric under per-
mutations of these scalars. This symmetry fixes the
PNGB-s1;2 interactions and the relevant components of
M2

Φ in such a way that ADD vanishes. However, there is
no guarantee that this also happens if we add
more scalars, since more interaction terms are allowed.
In this section, we investigate whether ADD vanishes in a
model consisting of an arbitrary number of scalars. We
denote this model as Uð1Þ × SN , and it is a direct
generalization of Uð1Þ × S2 with N the number of
scalars.

1. The potential for N scalars

In the case of N scalar fields, each transforming as
Si → e−iaSi (similarly to Sec. III A), the Uð1Þ × SN sym-
metric potential, assuming again dark CP invariance, can
be written as

V0 ¼ −
μ2H
2
jHj2 þ λ2H

2
jHj4 −

X
i;j

μ2Sij
2

SiS
†
j þ

X
i;j

λSij
2

ðSiS†jÞ2

þ
X
i;j

λ0Sij
2

jSij2jSjj2 þ
X
i;j;k

cijkSiS
†
j jSkj2

þ
X
i;j;k

c0ijkðSiSjS†2k þ H:c:Þ þ
X
i;j;k;l

dijklSiSjS
†
kS

†
l

þ
X
i;j

λHSij jHj2SiS†j ; ð3:13Þ

where all the sums run over all scalars. This potential
has some redundant terms, so we can set some of them
to zero:

λ0Sii ¼ 0;

ciik ¼ 0;

c0iij ¼ c0iji ¼ c0ijj ¼ 0;

diijk ¼ dijik ¼ dijki ¼ dijjk ¼ dijkj ¼ dijkk ¼ 0: ð3:14Þ

Furthermore, the permutation symmetry dictates
12Note that, since ξ1 is an S2 symmetric state, a pair of ξ1

interacts in the same way with both s1 and s2.
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μ2Sij ¼
� μ2S1 ði ¼ jÞ;
μ2S2 ði ≠ jÞ;

λSij ¼
�
λS1 ði ¼ jÞ;
λS2 ði ≠ jÞ;

λHSij ¼
�
λHS1 ði ¼ jÞ;
λHS2 ði ≠ jÞ;

λ0Sij ¼ λ0S ði ≠ jÞ;
ciji ¼ cjii ¼ c1 ði ≠ jÞ;
cijk ¼ c2 ði ≠ j ≠ kÞ;
c0ijk ¼ c0 ði ≠ j ≠ kÞ;
dijkl ¼ d ði ≠ j ≠ k ≠ lÞ: ð3:15Þ

As previously, we assume soft breaking of Uð1Þ. That is,
we add the following terms in the potential:

Vsoft ¼ −
X
i;j

μ02Sij
2

SiSj þ H:c:; ð3:16Þ

where, due to the SN symmetry, we have

μ02Sij ¼
� μ02S1 ði ¼ jÞ;
μ02S2 ði ≠ jÞ: ð3:17Þ

So, from Eqs. (3.14), (3.15), and (3.17), the total potential
becomes

V ¼ −
μ2H
2
jHj2 þ λ2H

2
jHj4 þ λHS1

X
i

jHj2jSij2 þ λHS2

X
i≠j

jHj2SiS†j −
μ2S1
2

X
i

jSij2 þ
μ2S2
2

X
i≠j

SiS
†
j

þ λS1
2

X
i

jSij4 þ
λS2
2

X
i≠j

ðSiS†jÞ2 þ c1
X
i≠j

ðSiS†j jSjj2 þ SiS
†
j jSij2Þ þ c2

X
i≠j≠k

SiS
†
j jSkj2

þ λ0S
X
j>i

jSij2jSjj2 þ c0
X
i≠j≠k

ðSiSjS†2k þH:c:Þ þ d
X

i≠j≠k≠l
SiSjS

†
kS

†
l −

μ02S1
2

X
i

ðS2i þH:c:Þ− μ02S2
X
i

ðSiSj þH:c:Þ: ð3:18Þ

At this point, it becomes clear that the SN symmetry helps
keep the number of new free parameters relatively small.13

This keeps the model as simple as possible, considering the
potential large number of particles.
Similar to the previous, the scalars acquire VEVs

Si ¼
1ffiffiffi
2

p ðvS þ si þ iχiÞ; H ¼ 1ffiffiffi
2

p
�

0

vþ h

�
; ð3:19Þ

where, again, we have assumed that the potential remains
symmetric under ðs; χÞi ↔ ðs; χÞj after spontaneous sym-
metry breaking. From Eqs. (3.18) and (3.19), we observe
that there are only two independent stationary point
conditions, due to the SN symmetry (similar to Sec. III
A), which are

μ2H ¼ λHv2þNv2S½λHS1 þðN−1ÞλHS2 �;
μ2S1 ¼ v2½λHS1 þðN−1ÞλHS2 �− ½2μ02S1 þðN−1Þðμ2S2 þ2μ02S2Þ�

þv2S½λS1 þðN−1ÞðλS2 þλ0Sþ4c1Þ
þ2ðN−1ÞðN−2Þðc2þ2c0Þ
þ2ðN−1ÞðN−2ÞðN−3Þd�: ð3:20Þ

These conditions further reduce the number of new
parameters by one; i.e., the maximum number of new
parameters introduced is 12 for N ≥ 4 (for N ¼ 2 and 3,
these are 9 and 11, respectively).

2. Spectrum of the CP-odd scalars

As in Sec. III A, our next step is to find which mass
eigenstate corresponds to the PNGB. To do so, we first have
to find the mass matrix (M2

χ) for the CP-odd scalars. Since
the CP-odd and CP-even scalars do not mix (due to the
dark CP invariance), their mass terms are symmetric under
permutations of the χ’s. As a result, there are only two
different entries in the mass matrix for χ’s, the diagonal,
ðM2

χÞii, and the off-diagonal, ðM2
χÞij, ones. After some

algebra, one can show that

½M2
χ �ii¼−v2ðN−1ÞλHS2

2
þ2μ02S1 þ

1

2
ðN−1Þð2μ02S2 þμ2S2Þ

−v2S

�
ðN−1ÞðλS2 þc1Þþ

1

2
ðN−1ÞðN−2Þðc2þ6c0Þ

þðN−1ÞðN−2ÞðN−3Þ
�
;

½M2
χ �ij¼

2ðμ02S1 þðN−1Þμ02S2Þ− ½M2
χ �ii

ðN−1Þ for i≠ j: ð3:21Þ13There are 10,12, and 13 free parameters for N ¼ 2, N ¼ 3,
and N ≥ 4, respectively.
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The eigenvalues of this matrix are

m2
ξ1
¼ ½M2

χ �ij þ ðN − 1Þ½M2
χ �ii ¼ 2ðμ02S1 þ ðN − 1Þμ02S2Þ;

ð3:22Þ

m2
ξi
¼ ½M2

χ �ii − ½M2
χ �ij for i ¼ 2; 3;…; N: ð3:23Þ

The first (m2
ξ1
) corresponds to the particle ξ1, which is the

PNGB (m2
ξ1
→ 0 as μ02S1;2 → 0), while the other particles

(ξ2;3;…;N) are degenerate with mass mξ2 ¼mξ3 ¼ �� � ¼mξN .
As it turns out (in analogy to Sec. III A), the PNGB is the
SN-symmetric state

ξ1 ¼
1ffiffiffiffi
N

p
XN
i¼1

χi; ð3:24Þ

where the others (not relevant to our discussion) can be
found from orthonormality conditions. We also note again
that some hierarchy conditions should be imposed in order
for the PNGB to be the DM particle.

3. The cancellation of the direct
detection cross section

Again, the ingredients that we need in order to show that
the direct detection cross section vanishes are the inverse of
the mass matrix for the real part of the scalars and the
interaction of a pair of pseudo-Nambu-Goldstone particles
with them (i.e., ξ21 − h; si).
As usual, the mass terms for the CP-even scalars can be

written in a compact form as

Lhs ¼ −
1

2
ΦTM2

ΦΦ; ð3:25Þ

with Φ ¼ ðhs1s2…ÞT and

½M2
Φ�11¼v2λH;

½M2
Φ�1i¼ðM2

hsÞi1¼vvS½λHS1 þðN−1ÞλHS2 � for i>1;

½M2
Φ�ii¼−v2ðN−1ÞλHS2

2
þN−1

2
ðμ2S2 þμ02S2Þ

þv2S

�
λS1 þðN−1Þc1−

1

2
ðN−1ÞðN−2Þðc2þ2c02Þ

−ðN−1ÞðN−2ÞðN−3Þd
�

for i>1;

½M2
Φ�ij¼v2

λHS2

2
−
1

2
ðμ2S2 þμ02S2Þþv2S

�
ðλS2 þλ0S1 þ3c1Þ

þ5

2
ðN−2Þðc2þ2c02Þ

þ3ðN−2ÞðN−3Þd
�

for i;j>1: ð3:26Þ

The interaction term of the Lagrangian which is responsible
for the ξ1 − N elastic scattering is

Lint ¼ −
1

4N
ξ21ðYξh; Yξs; Yξs;…Þ

0
BBBBB@

h

s1
s2

..

.

1
CCCCCA
; ð3:27Þ

with

Yξh ¼ vN½λHS1 þ ðN − 1ÞλHS2 �; ð3:28Þ

Yξs ¼ vSfλS1 þ ðN − 1Þ½λS2 þ λ0S1 þ 4c1

þ 2ðN − 2Þðc2 þ 2c0 þ ðN − 3ÞdÞ�g: ð3:29Þ

Again, the propagator (i.e., the inverse of the s − h mass
matrix) should be multiplied by a column vector ∼δ1i (since
only h interacts with SM fermions), so the elements of the
inverse of M2

hs relevant to the DM-nucleon interaction are

½M2
Φ�−111 ∼ ½M2

Φ�22 þ ðN − 1Þ½M2
Φ�23;

½M2
Φ�−1i1 ∼ −½M2

Φ�12: ð3:30Þ
As in Sec. III A, the Feynman diagram for the elastic

PNGB-quark scattering is given in Fig. 1, with an ampli-
tude proportional to

ADD ∼ ðYξh; Yξs; Yξs;…Þ

0
BBBBB@

½M2
Φ�−111

½M2
Φ�−1i1

½M2
Φ�−1i1
..
.

1
CCCCCA
; ð3:31Þ

which, from Eqs. (3.26), (3.27), and (3.30), can be shown to
vanish.

4. A note on the dark CP invariance

In Ref. [33], it was argued that the Uð1Þ case is invariant
under S → S†, because there is one phase which can be
absorbed by S. This natural symmetry of the model
guarantees that the imaginary part of S (the CP-odd scalar)
always interacts in pairs, and as a result it is stable. However,
when the scalar sector consists of a larger number of
particles, it is not possible to absorb all phases to the scalars,
as shown in Table I. Therefore, in order to guarantee the

TABLE I. Number of phases for various values of N.

N No. phases

1 1
2 3
≥3 3þ 1

2
NðN − 1Þ
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stability of the DM particle ξ1, we have to assume that all
parameters are real on top of the SN symmetry.

IV. CONCLUSION AND FUTURE DIRECTION

Inspired by an Abelian model which introduced a natural
mechanism for the vanishing of the direct detection cross
section, we have expanded the discussion on the explan-
ation of the smallness of the DM direct detection cross
section.
The first case under study (Sec. II) was a softly broken

SUð2Þ global symmetry. In this, we assumed that there is a
doublet scalar (singlet under the SMgauge symmetry),which
acquires a VEV. We showed that the resulting pseudo-
Nambu-Goldstone bosons are all DM candidates, due to a
remaining discrete symmetry that keeps them stable. We also
showed that the DM-nucleon interaction vanishes. Then, we
argued that this case can be generalized in a straightforward
fashion to an SUðNÞ symmetry, leading to the same result,
i.e., vanishing of the DM-nucleon interaction.
Then in Sec. III B we examined the Uð1Þ × SN global

symmetry, with Uð1Þ being softly broken, where we
extended the scalar sector by adding N scalars, charged
only under a global Uð1Þ. Assuming a dark CP invariance,
we calculated the form of the mass matrices and three-point
interactions relevant to the pseudo-Nambu-Goldstone–
nucleon interaction, which turned out to vanish.
A parameter space analysis of some simple cases [e.g.,

Uð1Þ × S2 or SUð2Þ] will help us identify potential

discovery channels at the LHC and astrophysical observa-
tions [35,50]. Also, a calculation of one-loop corrections
will give us with precision the direct detection cross
section, which can further be used to probe (or even
exclude) the models discussed in this work. In addition,
since the cases at hand should be treated as low-energy
limits of complete models, an interesting direction would
be to determine possible completions. These can induce
(parametrically or energetically suppressed [33,35]) DM-
nucleon interactions at the tree level as well as decays of the
PNGBs, allowing for a rich phenomenology and connec-
tion of the DM problem with other open issues in particle
physics (e.g., lepton number violation and neutrino masses
[57]). Furthermore, there are some cases that we did not
consider [i.e., the general irrep of the SUðNÞ case], and a
study of other simple considerations [e.g., SUð2Þ triplet]
can be insightful and help us identify similar classes of
models. However, since we were interested only in further-
ing the discussion on the suppression of the DM-nucleon
interaction, with a focus on simple realizations, we post-
pone these for a later project.
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