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We show that moduli fields as mediators between the Standard Model and the dark sector can naturally
lead to the observed relic abundance. Indeed, even if moduli are very massive, the nature of their couplings
with matter and gauge fields allows to produce a sufficiently large amount of dark matter in the early
Universe through the freeze-in mechanism. Moreover, the complex nature of the moduli fields whose real
and imaginary parts couple differently to the thermal bath gives an interesting and unusual phenomenology
compared to other freeze-in models of that type.
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I. INTRODUCTION

Despite indirect but clear evidence [1] of the presence
of a large amount of dark matter (DM) in our Universe, its
nature still remains elusive. The absence of any signal in
direct-detection experiments like XENON [2], LUX [3],
and PANDAX [4] questions the weakly coupled dark
matter paradigm. The simplest extensions—such as
Higgs-portal [5], Z-portal [6], or even Z0-portal models
[7]—have a large part (if not all) of their parameter space
excluded when combining direct, indirect, and accelerator
searches (for a review on weakly interacting massive
particle searches and models, see Ref. [8]). This uncom-
fortable situation justifies the need to look for different
scenarios, allowing feeble couplings, or the possibility of
dark matter production at the very early stages of reheating.
Such mechanisms are usually dubbed “feebly interacting
massive particles” [9] (see Ref. [10] for a review).
In this context, several models have been studied and it

has been confirmed that dark matter production is naturally
feasible in different setups like SO(10) unified construction
[11], Uð1Þ0 anomaly-free models [12], the spin-2 portal
[13], or high-scale supersymmetry (SUSY) [14]. In all off

these models, it has been shown that the effects of non-
instantaneous reheating [15] and noninstantaneous ther-
malization [16] should be considered with care. It then
seemed interesting to study constructions with massive
scalar moduli fields which are abundantly present in
supergravity (SUGRA) and string theory extensions,
and to check if they can play the role of a mediator
between the dark sector and the Standard Model (SM).
Indeed, moduli fields couple generically to Standard Model
fields through higher-dimensional operators (mostly with
derivative interactions). As a consequence, mechanisms
implying moduli are important at high energies/temper-
atures, being therefore potentially relevant for the freeze-in
mechanism.
Moduli fields appear in many extensions of the Standard

Model. Indeed, in any higher-dimensional supergravity or
string theory extension of the Standard Model there are
scalar fields coming from the compactification of the
higher-dimensional metric, dilaton, or various antisymmet-
ric tensors. In particular, internal volumes and shapes and
their axionic partners are abundant in such constructions.
Most of them are flat directions at tree level and get
potentials and therefore masses from various perturbative
and nonperturbative effects. Their resulting masses and
vacuum expectation values (VEVs) are model dependent
and will be taken as free parameters in what follows. Their
VEVs determine the values of four-dimensional parame-
ters: the gauge and Yukawa couplings, the wave functions
of various fields, and the Planck mass. If one assumes that
the low-energy theory (obtained after their decoupling) is
the Standard Model or a phenomenologically motivated
extension of it, then their couplings can be obtained by
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starting from the low-energy theory and expanding the low-
energy parameters in a power series. If moduli fields are
heavier than the reheating temperature, then they can be
safely replaced by their VEVs and the low-energy theory is
just the Standard Model or an appropriate extension. If they
are lighter, however, they can lead to various physical
effects. This strategy was used in early papers [17–23] in
order to study various low-energy effects of the moduli
fields. Recent works have considered moduli as dark matter
candidates [24] or the production of dark matter from
moduli decay in the early Universe [25–29]. The present
work is intended to complete the list of interesting
consequences of moduli fields by studying their possible
role as mediators between the Standard Model and the dark
matter sector.
The paper is organized as follows. In Sec. II, we describe

the model under consideration. In Sec. III, we discuss
bounds on the moduli masses coming from cosmology. In
Sec. IV, we outline the dark matter relic abundance through
the freeze-in mechanism in the early Universe, taking into
account noninstantaneous reheating. Section V is devoted
to the computation of the dark matter production rate in the
early Universe in our model and we delineate the parameter
space for the model in consideration. In Sec. VI, we
summarize the main results of our work and conclude
by highlighting the new aspects that emerged from our
analysis.

II. THE MODEL

Let Λ be the new physics scale (which can be the string
scale, unification scale, or SUSY/SUGRA breaking scale,
for instance). The consistency of the effective field theory
requires that Λ is the largest mass scale of the theory—in
particular, larger than the dark matter or mediator masses
and the maximum temperature after reheating. One can
then define the couplings of the complex modulus field1 T
(decomposed as T ≡ tþ ia) to the Standard Model field k
by expanding the wave functions Zk:

ZkðT ; T̄ Þ ≈ 1þ ck
Λ
T þ dk

Λ
T̄ ≡ 1þ αk

Λ
tþ i

βk
Λ
a; ð1Þ

where ck and dk are real coefficients of order one and we
defined the couplings to the real and imaginary components
of T as αk ¼ ck þ dk and βk ¼ ck − dk, respectively.

2 We
can then express generic couplings of the moduli fields to
the Standard Model sector as

LSM
T ⊃ ZHjDμHj2 − μ2ðT ; T̄ ÞjHj2 − λðT ; T̄ ÞjHj4

þ 1

2
ðZLf̄Li=DfL þ ZRf̄Ri=DfR þ H:c:Þ

−
1

4
ZGGμνGμν − Z0

GGμνG̃
μν; ð2Þ

where ZHð¼1 þ αH
Λ tÞ, ZL;Rð¼1 þ αL;R

Λ t þ i βL;R
Λ aÞ,

ZGð¼1þ αG
Λ tÞ, and Z0

Gð¼ βG
Λ aÞ are the wave functions

of the scalar (H), fermionic (f), and (Abelian and non-
Abelian) gauge fields (Gμ) of the Standard Model, respec-
tively. In the above equation,Gμν is the field-strength tensor
of the gauge field (Gμ) and G̃μνð¼ 1

2
ϵμνρσGρσÞ is its dual

field-strength tensor.
From the first line of Eq. (2) we see that the scalar

potential depends on the mass parameter μ, which is also a
function of the moduli fields. Parametrizing the contribu-
tion of the moduli to the μ parameter in a similar fashion as
in Eq. (1), we can write

μ2 ¼ μ20

�
1þ αμ

Λ
t

�
; ð3Þ

with μ0 being the SM μ parameter that reproduces the
observed Higgs mass at the electroweak scale. As Λ is the
highest scale in the theory, the contribution to the Higgs
mass due to the moduli is small. On the other hand, there is
a second possibility: the μ parameter gets generated at a
scale (

ffiffiffiffiffiffiffihFip
) close to the Planck scale. In this case, the

effective μ parameter can be written as

μ2 ¼ μ20 þ
hFi
MP

t; ð4Þ

where hFi is the VEVof the “spurion” field. In this case, one
needs a considerable amount of cancellation or fine-tuning
between the two contributions in Eq. (4) to reproduce the
observed Higgs mass. In contrast to Eq. (3), in this case the
coupling of t to the Higgs is quite large. This leads to the fact
that thewidth of t could be larger than themass of t unlesswe
demand that the width be at most the mass of t. This sets an
upper bound on the spurion VEV, hFi≲mtMP, wheremt is
the mass of t. Throughout our analysis, we will consider the
case of Eq. (3) unless otherwise stated.
The effective interactions between the components of the

moduli and SM fields, at the first order in 1=Λ, reads

LSM
T ⊃

αH
Λ

tjDμHj2 − αμ
Λ
μ20tjHj2

þ
�

1

2Λ
tf̄iγμðαfV − αfAγ5ÞDμf þ H:c:

�

þ 1

2Λ
∂μaf̄γμðβfV − βfAγ5Þf

−
1

4

αG
Λ

tGμνGμν þ 2
βG
Λ

∂μaϵμνρσGν∂ρGσ; ð5Þ

1We will consider only one modulus field throughout our
work. The generalization to several fields is straightforward.

2For simplicity, throughout our work we will consider CP-
conserving Lagrangians and therefore real coefficients in the
couplings of moduli to matter. The extension to CP-violating
couplings is interesting but beyond the goal of our paper.
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where we have identified the chiral couplings as
αfV ¼ ðαL þ αRÞ=2 and αfA ¼ ðαL − αRÞ=2, with analogous
definitions for the couplings of the imaginary part of the
moduli.
Before we proceed further we can make some remarks

after having a quick look at Eq. (5):
(1) Since the kinetic term of the Higgs needs to be real,

the Higgs sector only couples with the real part of
the modulus field t.

(2) One observes that the Lagrangian in Eq. (5) is
invariant under a shift in the imaginary part of the
moduli (a → a + const). This can also be observed
in SUGRA models, for instance, where the Kähler
metric depends explicitly on the combination
T þ T̄ . In other words, the Lagrangian could be
written by imposing the shift symmetry from the
beginning.3 As a consequence, the nature of the
couplings of a to the Standard Model fields differs
from the couplings of t (a naturally develops
derivative-type couplings).

(3) In Eq. (5) we kept only the leading operators
which contribute to three-point functions. This is
because the 2 → 2 production of dark matter will
dominate over the 3 → 2 production.4

By analogy, one can write the same type of couplings in
the dark sector. In our study, we will distinguish three cases
of dark mater: scalar (S), fermionic (χ), and vectorial (V).
Their interactions with moduli read

LS
T ¼ αS

Λ
tj∂μSj2; ð6Þ

Lχ
T ¼

�
1

2Λ
tχ̄iγμðαχV − αχAγ5Þ∂μχ þ H:c:

�

þ 1

2Λ
∂μaχ̄γμðβχV − βχAγ5Þχ; ð7Þ

LV
T ¼ −

1

4

αV
Λ

tVμνVμν þ 2
βV
Λ

∂μaϵμνρσVν∂ρVσ: ð8Þ

We can make some remarks concerning the couplings of
the moduli fields to the dark matter. First of all, similar to
the case for the Higgs sector, the scalar dark matter does not
couple to the imaginary part of the moduli. An immediate
consequence (which will be discussed in what follows) is
that only the real part of moduli contribute to the production
of a scalar dark matter, regardless of the Standard Model
initial states.

The interactions of fermions (Ψ, standard or dark) with
moduli are essentially different from the scalar and vecto-
rial cases, due to their chirality. The first aspect of this
remark is evident from the amplitudes for their interactions
with moduli:

MtΨ̄Ψ ¼ −
i
2Λ

ūðp1Þð=p1 − =p2ÞðαΨV − αΨAγ5Þvðp2Þ

¼ −i
αΨVmΨ

Λ
ūðp1Þvðp2Þ;

MaΨ̄Ψ ¼ 1

2Λ
ūðp1Þð=p1 þ =p2ÞðβΨV − βΨAγ5Þvðp2Þ

¼ −
βΨAmΨ

Λ
ūðp1Þγ5vðp2Þ; ð9Þ

where p1 and p2 are the four-momenta of the fermions and
mΨ is the mass of the fermion. We notice that if the
fermions are on shell, we have an explicit dependence on
their mass due to the Dirac equation. As a consequence,
above the electroweak scale, standard fermions cannot
produce any of the dark matter particles. The other aspect
we point out is that the fermionic coupling to the real part of
the moduli is CP even, so that the corresponding rates will
depend only on the vector coupling (αΨV), and that the
fermionic coupling to the imaginary part of the moduli is
CP odd and therefore the corresponding rates will depend
only on the axionic coupling (βΨA).

III. COSMOLOGICAL MODULI PROBLEM

Because of their gravitational interactions, moduli are
long-lived fields. Thus, one has to face two potential
dangers. If the moduli lifetime is smaller than the age of
our Universe, their decay might have released quite a large
amount of entropy in the Universe which would dilute the
contents of the Universe. On the other hand, if the moduli
lifetime is larger than the age of our Universe, they might
still be oscillating around the minimum of their potential.
Thus, the energy stored in these oscillations may overclose
the Universe. One refers to these problems as the cosmo-
logical moduli problem [31]. Taken at their face values,
such constraints dictate that the moduli fields are either
superlight or superheavy. We present here a short review on
these well-known constraints, following Ref. [31].
Using simple dimensional analysis the decay width

of a modulus field T of mass mT can be written as
ΓT ∼m3

T =M
2
P. Since the age of the Universe is of order

H−1
0 , where H0 is the Hubble constant in the present

Universe, we could infer that the modulus will decay at
present times if ΓT ∼H0, or in other words if its massmT is
around ðH0M2

PÞ1=3 ≃ 20 MeV.
At first, we consider the case when mT < 20 MeV, that

is, when the modulus has not decayed yet at the present
time. As long as the Hubble constant is larger than the
modulus mass, the friction term (3H _T ) dominates in the

3This argument is not valid if one includes Yukawa-like
couplings in the action. However, their contribution to dark
matter production in the early Universe is negligible.

4
3 → 2 processes can dominate if 2 → 2 channels are sup-

pressed, and when strong interactions are generated to compen-
sate the loss induced by the reduced phase space [30].
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equation of motion of the modulus field and the field T
remains frozen at its initial value fT . When the Hubble
constant is of the order of the mass of the modulus or
H ∼mT , that is, when TI ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mT MP

p
(since we know that

H ∼ T2=MP), the field T starts oscillating around the
minimum T 0 of its potential. These coherent oscillations
behave like nonrelativistic matter, and thus the energy
density of the modulus reads

ρT ðTÞ ¼ ρT ðTIÞ
�
T
TI

�
3

∼m2
T f

2
T

�
T
TI

�
3

: ð10Þ

We know that the radiation energy density ργðTÞ scales as
T4, and thus ρT =ργ scales as 1=T. As the temperature of the
Universe decreases the energy fraction stored in the moduli
increases. Then, there will be a time when the energy
density of the modulus oscillations will dominate the total
energy density of the Universe. Thus, one needs to make
sure that in the present Universe ρT ðT0Þ < ρc, where T0 is
the temperature of the present Universe and ρc is the critical
density. Using the above equation and TI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mT MP

p
, one

can write this condition as

mT < MP

�
ρcMP

f2T T
3
0

�
2

∼ 10−26 eV; ð11Þ

where we have assumed fT ≃MP. Thus, if 10−26 eV <
mT < 20 MeV, there is a huge amount of energy stored in
the T field.
Next, we consider the case when mT > 20 MeV, that is,

when the modulus field has already decayed at the present
time. Assuming the modulus field energy density domi-
nates over the radiation energy density, the decay of the
modulus occurs at a temperature TD when HðTDÞ ∼ ΓT ,
which can be reexpressed as

Γ2
T ∼

ρT ðTDÞ
M2

P
: ð12Þ

At the time of decay, all of the energy density stored
in the modulus is transferred into radiation energy density.
Thus, the reheating temperature (TRH) is given by the
condition ρT ðTDÞ ∼ T4

RH. Using the above equation, we
can obtain

TRH ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
MPΓT

p
≃

ffiffiffiffiffiffiffi
m3

T

MP

s
: ð13Þ

The entropy release due to the modulus decay must take
place before big bang nucleosynthesis such that the abun-
dance of the light elements is not affected. This condition,
namely, TRH > 1 MeV [32], givesmT > 10 TeV. Thus, for
20 MeV < mT < 10 TeV, the entropy release due to the
decay of the modulus field would contradict current

cosmological observations. In the absence of any other
effects, a cosmologically acceptable regime for the modulus
mass is either superlight (mT < 10−26 eV) or superheavy
(mT > 10 TeV). This concludes the short review discussing
the constraints on the moduli mass.

IV. DARK MATTER PRODUCTION

The evolution of the dark matter number density nDM is
determined by the Boltzmann equation

dnDM
dt

¼ −3HðtÞnDM þ RðTÞ; ð14Þ

where HðtÞ ¼ 1ffiffi
3

p
MP

ffiffiffiffiffiffiffiffiffiffiffiffi
ρtotðtÞ

p
is the Hubble expansion rate,

with MP ≃ 2.4 × 1018 GeV being the reduced Planck
mass and ρtotðtÞ the total energy density which changes
with time, as we will see in what follows. RðTÞ ¼
n2SMhσviSMSM→DMDM is the production rate (the number
of dark matter particles produced per unit of time and unit
of volume; see the Appendix B for details) which, for a
process ð1; 2 → 3; 4Þ, is given by5

RðTÞ¼
Z

f1f2
E1E2dE1dE2 dcosθ12

1024π6

Z
jMj2i dΩ13; ð15Þ

where Ei and fi are the energy and (thermal) distribution
function of particle i, respectively, θ12 is the angle between
the incoming particles 1 and 2 in the laboratory frame,
and Ω13 is the solid angle between the outgoing particles
1 and 3 in the rest frame.
Since we are interested in mediators with masses that

could be near the reheating scale, the contribution to the
total energy density of the inflaton field (labeled by ϕ) may
dominate over the contribution of radiation (labeled by γ) in
the Hubble rate. In order to find the correct amount of dark
matter, Eq. (14) needs to be solved numerically along with
the following coupled equations (see, for instance,
Refs. [15,33]):

dργ
dt

≈ −4Hργ þ Γϕρϕ;

dρϕ
dt

¼ −3Hρϕ − Γϕρϕ; ð16Þ

where the approximation neglects the effect of interactions
with dark matter particles in the evolution of the energy
density of radiation, which is dominated by the decay of the
inflaton field, with a total decay width Γϕ. We have defined

5In our analysis we assume the initial value of the modulus
field to be around 1010 GeV such that DM production from the
modulus decay remains subdominant with respect to the
SMSM → DMDM process.
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TRH as the temperature in a radiation-dominated Universe
after the inflaton decay, Γϕ ¼ HðTRHÞ.
In the present work, we have solved the set of three

coupled differential equations above, but it is instructive to
find analytic solutions for the limiting cases of inflaton and
radiation domination. In fact, we have checked that this is a
good approximation, since there is a recognizable change
of regime in the Hubble rate near the reheating temperature
(see, for instance, Ref. [34]). In the radiation-dominated
era, we can use the familiar relations6

d
dt

¼ −HðTÞT d
dT

with HðTÞ ¼
ffiffiffiffiffi
ge
90

r
π
T2

MP
; ð17Þ

while in the inflaton-dominated era, we have [12]

d
dt
¼−

3

8
HðTÞT d

dT
with HðTÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
5g2MAX

72gRH

s
π

T4

T2
RHMP

;

ð18Þ

where gRH and gMAX are, respectively, the relativistic
degrees of freedom at the reheating temperature after
inflation and at the maximal temperature reached during
the reheating process, TMAX.
The dark matter relic density Ωh2 ≡mDMnDM=ρc,

where ρc is the critical density today, may be split into
radiation-dominated (RD) and inflaton-dominated (ID)
contributions:

Ωh2≅Ωh2RDþΩh2ID

∼4×1024mDM

�Z
TRH

T0

dT
RðTÞ
T6

þ1.07T7
RH

Z
TMAX

TRH

dT
RðTÞ
T13

�
≡Ωh2RDBF; ð19Þ

where T0 is the temperature of the present Universe. In the
above equation we have defined a “boost factor” BF

(¼ 1þ Ωh2ID
Ωh2RD

), which quantifies the fraction of dark matter

produced during the ID era to the amount of dark matter
produced during the RD era. Notice that the fraction of dark
matter produced during the reheating stage is ðBF − 1Þ=BF.
From this expression we can see that the production of

dark matter during reheating (TRH < T < TMAX) might be
relevant if the temperature dependence in the rate is
sufficiently high. Let us parametrize the rate as RðTÞ ∝
Tn and denote the boost factor as BðnÞ

F . For n ≥ 12, dark
matter production during reheating is comparable to or

dominant over production during the radiation-dominated
era. For instance, for TMAX ¼ 100TRH we find

Bð10Þ
F ≈ 1þ 1.07 ×

5

2

�
1þ T2

RH

T2
MAX

�
≃ 3.68; ð20Þ

Bð12Þ
F ≈ 1þ 1.07 × 7 ln

�
TMAX

TRH

�
≃ 35.5; ð21Þ

and for n > 12,

Bðn>12Þ
F ≈ 1þ 1.07 ×

n − 5

n − 12

�
TMAX

TRH

�
n−12

: ð22Þ

The percentage of dark matter production during
reheating for n ¼ 10 is therefore ∼73%, whereas for n ¼
12 it is ∼97%. An important point we want to emphasize
here is that if the mediators between the dark and visible
sectors are close to the reheating scale and if the production
rate of dark matter has a high temperature dependence,
we cannot avoid the contribution of the inflaton to the
Hubble rate.

V. RESULTS AND DISCUSSION

A. Production rate

The squared amplitudes responsible for the model-
dependent behavior of the production rates of three differ-
ent dark matter candidates are given in Appendix B.7

Before presenting the exact solution of the rate [see
Eq. (B4)], we recognize from the squared amplitudes three
regimes which depend on the relation between the mass of
the mediators and the temperature of the thermal bath:
(1) The light regime, when the mediator mass is

much below the temperature of the thermal bath
T (mt;a ≪ T).

(2) The pole regime, when the mediator mass is of the
same order as the temperature (mt;a ∼ T), where we
might use the narrow-width approximation (NWA).

(3) The heavy regime, when the mediator mass is much
above the temperature (mt;a ≫ T).

Far from the pole of the propagator, we might assume
Γt;a ≪ mt;a. In the limit mDM ≪ T, we can obtain analytic
solutions for the production rate Rj

sf of dark matter of spin
sf due to the exchange of a mediator j:

6For simplicity, we will not assume changes in the energetic
and entropic relativistic degrees of freedom, ge and gs, respec-
tively. In what follows, we set ge ¼ gs ¼ 106.75.

7In our analysis, we concentrate on the first possibility
discussed for the mass parameter of the Higgs [see Eq. (3)].
For the possibility where the mass parameter is given by Eq. (4),
the result is similar to the case in Eq. (3).
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Rj
0;1ðTÞ ¼ δj0;1 ×

8>>>>>>>><
>>>>>>>>:

T8

Λ4
ðmj ≪ TÞ;

m8
j

Λ4

T
Γj

K1

�
mj

T

�
ðmj ∼ TÞ;

T12

m4
jΛ4

ðmj ≫ TÞ;

ð23Þ

Rj
1=2ðTÞ ¼ δj1=2

8>>>>>>>><
>>>>>>>>:

m2
DMT

6

Λ4
ðmj ≪ TÞ;

m2
DMm

6
j

Λ4

T
Γj

K1

�
mj

T

�
ðmj ∼ TÞ;

m2
DMT

10

m4
jΛ4

ðmj ≫ TÞ;

ð24Þ

where the proportionality constants δjsf are given in Table II.
We have numerically computed the total production rates

(B4), where the integration was performed using the CUBA

package [35], with a Bose-Einstein distribution function for
the Higgs and gauge bosons in the initial states.
In Fig. 1, we show the exact solutions of the total

production rate of the fermionic dark matter for a repre-
sentative set of free parameters, as a function of the variable
x ¼ ms=T which may be regarded as a parametrization of
time. We set the new physics scale Λ to be 1016 GeV (the
grand unified theory scale), TMAX ¼ 1012 GeV, and the
mass of the axionic modulus to be 108 GeV. For simplicity,
all of the couplings are set to unity. From left to right, the
mass of the real component of the modulus is set to 1010,
1013, and 1015 GeV (green, orange, and blue curves,
respectively). The mass of the fermionic dark matter is
set to be between the mediator masses in the first case
(109 GeV) and to be relatively light in the second and third
cases (104 GeV).
It is easy to understand the mechanism at work in the

dark matter production after taking a look at Fig. 1. First of
all, a general feature of the rate is the strong temperature
dependence: the higher the temperature (small-x region),
the more dark matter will be produced. The second generic
feature is the threshold for dark matter production, which is
due to the Boltzmann-suppressed photon distribution hav-
ing T < mDM (large x). This happens just after x ¼ 10, 109,
and 1011 for the three case, respectively.

Between those two extremes, we can notice the effects of
the pole regions once T reachesmt (x ∼ 1) andma (x¼ 102,
105, and 107 for mt¼1010, 1013, and 1015 GeV, respec-
tively). Notice that the production rates for the scalar dark
matter would not have the effect of the poles of ma since it
couples only with the real component of the modulus. The
production rate of a vectorial dark matter would have the
same qualitative features as the fermionic case but with a
steeper bend at high temperatures, since the temperature
dependence in the heavy regime is T12 in the vector dark
matter case and T10 in the fermionic case.
The presence of the pole regions depends on the low- and

high-temperature thresholds. It will not appear if the
Boltzmann suppression takes place before it (as in the green
curve, for x ∼ 100). Since the Universe has a maximal
temperature (fixed to 1012 GeV in Fig. 1), the production
ratewill have maximal values at x ¼ 10−2; 10, and 103. As a
consequence, the pole due to the real component exchange
would not contribute for the cases in orange and blue.

B. Relic abundance

From the approximate rates given in the last section,
we can get an idea about the parameter space in agreement
with the inferred value of the dark matter relic density
Ωh2 ¼ 0.1200� 0.0012 [1]. Taking the limit of heavy
moduli, we find

Ωh2

0.12
≈

8>>>>>>><
>>>>>>>:

Bð12Þ
F

35.5 α
2
S
α2SM
5

�
mDM

1.2×1014 GeV

��
TRH

1010 GeV

�
7
�

Λ
1015 GeV

�
−4
�

mt

1013 GeV

�
−4

ðscalarDMÞ;

Bð10Þ
F

3.68

�
mDM

3.2×1010 GeV

�
3
�

TRH
1010 GeV

�
5
�

Λ
1015 GeV

�
−4
�
ðαχVÞ2
2

α2SM
5

�
mt

1013 GeV

�
−4
þðβχAÞ2

2
β2G

�
ma

1012 GeV

�
−4
�

ðfermionicDMÞ;

Bð12Þ
F

35.5

�
mDM

1.5×1012 GeV

��
TRH

1010 GeV

�
7
�

Λ
1015 GeV

�
−4
�
α2V
2

α2SM
25

�
mt

1013 GeV

�
−4
þ β2V

2
β2G

�
ma

1012 GeV

�
−4
�

ðvectorialDMÞ:

ð25Þ

FIG. 1. Evolution of the production rate of fermionic dark
matter as a function of the temperature for different masses of
dark matter and a real component of the modulus field.
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It is important to emphasize that the expressions
in Eq. (25) are computed with a simplified hypothesis,
specifically in the limit mt;a ≫ TMAX. Comparing Eq. (25)
with our numerical results, we notice that pole effects due
to the exchange of t, a can be important even when mDM
lies above TMAX as the enhancement due to a small width
can compensate the Boltzmann suppression e−mDM=TMAX .
Our results are summarized in Figs. 2 and 3, where we

plot the contours in the parameter space ðmDM;ΛÞ corre-
sponding to Ωh2 ¼ 0.12 for the scalar, fermionic, and
vectorial dark matter (blue, green, and red curves, respec-
tively). For simplicity, all of the couplings in the
Lagrangian are set to unity. The split between the reheating
and maximal temperatures depends, of course, on the
inflationary model. We set this split to be TMAX ¼
100TRH (inspired by a Starobinsky-like potential [36]),

which sets the initial condition for the inflaton energy
density (after the end of inflation) to be ρend ≃ 0.175m2

ϕM
2
P

[37], for an inflaton mass of mϕ ¼ 1013 GeV and for an
inflaton decay width Γϕ ¼ αϕmϕ with αϕ ¼ 10−8. We set
the reheating scale to be 1010 GeV. In Fig. 2 we set
ma ¼ 108 GeV and mt ¼ 1011 GeV, whereas we explore a
scenario with heavier mediators in Fig. 3, with ma ¼
1010 GeV and mt ¼ 1013 GeV.
With this set of parameters, it is imperative to consider

the presence of the inflaton energy density in the Hubble
rate. Indeed, our complete analysis is performed by solving
the complete set of Boltzmann equations, and integrating
over the whole phase space with Bose-Einstein distribution
functions for the initial states (since standard fermions do
not contribute to dark matter production in our scenario).
We compute the triple integral of the production rates using
a Monte Carlo method (Vegas), as given by the CUBA

package [38]. Depending on the parameter choice, the
Monte Carlo integration outputs close to the pole regions
(and thus the relic density) are highly oscillatory, rendering
unreliable results. Because of this, while we are always
solving the set of Boltzmann equations, we interpolate the
relic density contours found when we compute the rates
exactly (solid curves) with the contours found when we use
approximate rates (dotted curves).8

The first thing the reader might notice in each figure is
the stronger dependence of the fermionic contour on the
dark matter mass, as compared to the scalar and vectorial
cases which have a linear dark matter mass dependence
coming from the relic density definition. This is easy to
understand since the amplitude for the annihilation of the
Standard Model states into fermionic dark matter depend
explicitly on the dark matter mass [see Eq. (9)]. It is
therefore easier to see in the fermionic contours the
following generic feature: the lighter the dark matter, the
smaller the new physics scale for the same relic density
value. On the other hand, the contours of the scalar and
vectorial dark matter have similar behavior, as suggested by
the approximate expressions for the rate in Eq. (23).
Comparing the scalar and vectorial cases in each figure,
we see that for any dark matter mass, the same relic density
value is achieved for larger values ofΛ in the vectorial case,
since a vectorial dark matter receives a contribution from
the imaginary part of modulus and the rate is therefore
higher, which is not the case for the scalar dark matter. This
feature is more accentuated in Fig. 3, as we will be able to
understand in what follows.
In the parameter region where mt;a > 2mDM, the medi-

ators can decay on shell to the dark matter particles

FIG. 2. Contours respecting Ωh2 ¼ 0.12 in the (mDM, Λ) plane
for the real and imaginary parts of the modulus with massesmt ¼
1011 GeV andma ¼ 108 GeV, respectively. Solid (dotted) curves
are for the exact (approximate) computation of the production
rates. For illustrative purposes, we set TRH ¼ 1010 GeV,
TMAX ¼ 100TRH, and all couplings are set to unity. The region
in red is not reliable since Λ < mDM.

FIG. 3. Contours respecting Ωh2 ¼ 0.12 in the (mDM, Λ) plane
for same parameter values as in Fig. 2 but for heavier moduli:
ma ¼ 1010 GeV and mt ¼ 1013 GeV.

8At a given temperature, the production rate due to
the exchange of a mediator j is approximated by RjðTÞ ¼
e−mDM=TðminRj

light; R
j
heavyÞ; in this way, we can account for the

six different regimes of production as well as for the Boltzmann
suppression.
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whenever the pole can be reached (mt;a < TMAX). The dark
matter production in this region of the parameter space is
therefore enhanced and we can understand that by increas-
ing mDM, Λ needs to be increased as well to provide the
same relic density. So, the contour of Ωh2 ¼ 0.12 mono-
tonically increases as mDM is increased until the threshold
for on-shell production is reached, formDM ≃mt;a=2. In the
parameter region with mDM > mt;a=2, the dark matter is
produced from the Standard Model through off-shell medi-
ators. Thus, in this regime the cross section and the rate are
much lower compared to the pole-enhanced region. As the
rate is much lower in this regime, the effective scale (Λ) also
needs to be decreased to much lower values so as to satisfy
the Planck constraint on the dark matter relic density. This is
why we can observe a very sharp transition between the on-
shell and off-shell production regimes. This decrease in Λ
continues as we increase the dark matter mass, and becomes
drastically accentuated because of the Boltzmann suppres-
sion in the rate, as we saw in Fig. 1. The heavier the dark
matter, the lower its production, and then a smaller Λ is
needed to compensate the loss of production. The process
goes on until the point where it becomes impossible to
produce darkmatter from the StandardModel. In fact, if dark
matter is that heavy, our effective theory approach is no
longer on a firm footing since we would enter into an
unreliable region of our parameter space, with Λ < mDM
(red shaded region).
Because of their accentuated dark matter mass depend-

ence, the fermionic dark matter contours allow much lower
effective scale values for the entire region where dark
matter is produced through the on-shell decay of the
mediators. As the dark matter mass increases to mDM ≳
mt;a=2 the off-shell production becomes the dominant one
and the rate slowly approaches the rate of the other two
dark matter cases. As a result of this, in this regime the
allowed contour for fermionic dark matter mimics the
scalar and vectorial dark matter curves. Notice that in
the fermionic contour we see a kink around mDM ≃ma=2

9;
this is due to the fact that, before this region, the fermionic
dark matter production was due to the on-shell decay of
both the real and imaginary parts of the moduli (pole
region). As the dark matter mass reaches mDM ≃ma=2, the
dark matter production through the imaginary part of the
moduli becomes off shell, while production through
the real part of the moduli remains on shell. At this point,
the dark matter production rate decreases and as a result
there is a dip in the curve to compensate for this change.
Above this regime, the slope of the curve changes as the
dominant contribution to the rate is only through the on-
shell exchange of the real part of the moduli.
Finally, we can understand the main difference between

Figs. 2 and 3. Heavier mediators lead to suppressed rates,

which brings the effective scale to lower (and in our case
more reasonable) values. From the fermionic and vectorial
dark matter contours, we observe in Fig. 3 viable regions
which could not be present in Fig. 2, corresponding to the
combination of off-shell production from imaginary
modulus and on-shell production of real modulus that
happens for dark matter masses between TRH and TMAX.
Concerning the scalar contour, we see in Fig. 3 that the
enhancement of the on-shell production from the real
modulus (the only mediator possible in this case) is not
more efficient than the suppression due to the exchange of a
very heavy modulus.
We finalize our discussion with the following lesson for

the reader. The derivative couplings of the operators
connecting the visible and dark sectors, due to moduli
field exchanges, generate high temperature dependences in
the production rates. As a consequence, the dark matter
candidates considered in the present work are mainly
produced during the reheating process in the early
Universe. Additionally, the interplay of the pole enhance-
ments due to the two moduli mediators controls the regions
of the parameter space which can account for the right
amount of dark matter in the Universe.

VI. CONCLUSION

We showed in this work that moduli fields which
are present in several extensions of the Standard Model,
even if very heavy, can play the role of a mediator between
the dark sector and the Standard Model. Through its
couplings to the thermal bath, dark matter can be produced
at a sufficient rate to fulfill the observed relic abundance.
The main production takes place through an ultraviolet
freeze-in mechanism where the majority of dark matter is
created at the early stage of reheating. Our main results are
summarized in Figs. 2 and 3, where the correct relic
abundance can be obtained for a broad range of dark
matter mass and an effective scale Λ around the unification/
string scale. Finally, our results are quite general, and can
be applied to any ultraviolet models where moduli fields are
present.
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APPENDIX A: WIDTH OF THE MODULI FIELDS

Here we provide the expressions for the decay widths of
the moduli fields.10 The real components of the moduli may
decay into scalars and vectors of the Standard Model, since
the decays into fermions are not allowed above the
electroweak symmetry breaking scale. Therefore, we have

Γt ¼ 4Γt→HH þ 12Γt→GG þ Γt→DMDM

¼ m3
t

πΛ2

 
fHðm2

t Þ2
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4μ20
m2

t

s
þ 3

16
α2G

!
þ Γt→DMDM:

ðA1Þ

The distinct ways of writing the mass parameter of the
Higgs lead us to define the function11

fHðxÞ≡
8<
:
αH ½case of Eq:ð3Þ�;
αH
�
1− 2μ2

0

x

�
þ 2Λ

x
hFi
MP

½case of Eq:ð4Þ�. ðA2Þ

In the case of the imaginary component, decay into
scalars is prohibited, and we have simply

Γa ¼ 12Γa→GG þ Γa→DMDM

¼ m3
a

πΛ2
3β2G þ Γa→DMDM: ðA3Þ

The partial decay widths of the real and imaginary parts
of the modulus into dark matter read, respectively,

Γt→DMDM ¼ m3
t

πΛ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
DM

m2
t

s

×

8>>>>><
>>>>>:

α2S
32

�
1 − 2m2

DM
m2

t

�
2

for S;

ðαχVÞ2
8

m2
DM
m2

t

�
1 − 4m2

DM
m2

t

�
for χ;

β2V
64

�
1 − 4m2

DM
m2

t
þ 6m4

DM
m4

t

�
for V;

ðA4Þ

and

Γa→DMDM ¼ m3
a

πΛ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
DM

m2
a

s

×

8>>><
>>>:

0 for S;
1
8
ðβχβχ5Þ2 m2

DM
m2

a
for χ;

β2V
4

�
1 − 4m2

DM
m2

a

�
for V:

ðA5Þ

APPENDIX B: SQUARED AMPLITUDES

In what follows, we provide the expressions for the
squared amplitudes of s-channel SM annihilations into DM
candidates of spin sf (jMj2sf ):

jMj20 ¼
α2S
Λ4

s4ð1 − 2m2
DM
s Þ2

ðs −m2
t Þ2 þm2

tΓ2
t

X
si

λtsi;0ðsÞ; ðB1Þ

jMj21=2¼
ðαχÞ2
Λ4

m2
DMs

3ð1− 4m2
DM
s Þ

ðs−m2
t Þ2þm2

tΓ2
t

X
si

λtsi;1=2ðsÞ

þðβχβχ5Þ2
Λ4

m2
DMs

3

ðs−m2
aÞ2þm2

aΓ2
a

X
si

λasi;1=2ðsÞ; ðB2Þ

jMj21 ¼
α2V
Λ4

s4ð1 − 4m2
DM
s þ 6m4

DM
s2 Þ

ðs −m2
t Þ2 þm2

tΓ2
t

X
si

λtsi;1ðsÞ

þ β2V
Λ4

s4ð1 − 4m2
DM
s Þ

ðs −m2
aÞ2 þm2

aΓ2
a

X
si

λasi;1ðsÞ: ðB3Þ

We parametrize the contribution of the Ni SM initial states
with spin si for the production of DM of spin sf through the

exchange of a field j by λjsi;sf, which may be functions of
the Mandelstam variable s and the masses and couplings
involved in the processes. They are given in Table I.

TABLE I. Coefficients of the squared amplitudes: λtsi;sf (left)
and λasi;sf (right) [Eqs. (B1)–(B3)].

DM

SM spin-0 spin-1=2 spin-1

spin-0 f2HðsÞ 2f2HðsÞ 1=2f2HðsÞ
spin-1=2 0 0 0
spin-1 1=2α2G α2G 1=4α2G

DM

SM spin-0 spin-1=2 spin-1

spin-0 0 0 0
spin-1=2 0 0 0
spin-1 0 16β2G 64β2G

10Finite-temperature effects on the decay width of moduli (as
discussed, for instance, in Ref. [39]) will not be relevant for us
since we will not consider the moduli as ultrarelativistic species in
our analysis.

11In what follows, we assume that both couplings of moduli to
the Higgs are equal, so that αμ ¼ αH .
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The total production rate of the dark matter candidate
with spin sf from Ni ultrarelativistic (mi ≪ T;

ffiffiffi
s

p
) thermal

particles of spin si in terms of the Mandelstam variable s is
given by

RðTÞsf ¼
X
si

RðTÞsi→sf

¼ 4πSf
2048π6

Z
∞

4m2
DM

ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
DM

s

r

×

�X
si

NiSijMj2si→sf

�Z
∞

0

dpi
1f

i
1

Z
∞

s
4pi1

dpi
2f

i
2;

ðB4Þ

where the symmetrization factors Si;f ¼ 1=ni;f! account for

ni;f identical particles in the initial/final state and fi1;2 ¼
ðe−pi

1;2=T � 1Þ−1 are the distribution functions of the initial-
state particles.
The integration over the initial momenta in Eq. (B4) is

approximately given by T
ffiffiffi
s

p
K1ð

ffiffi
s

p
T Þ, which means that

after integrating over s we recognize the light, pole, and
heavy regimes of the mediator by comparing the temper-
ature of the thermal bath with the mediator mass. In

Table II we provide the proportionality constants of the
approximate expressions for the rates given in Eqs. (23)
and (24).
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