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Proton decay is usually discussed in the context of grand unified theories. However, as is well known, in
the standard model effective theory proton decay appears in the form of higher-dimensional non-
renormalizable operators. Here, we study systematically the one-loop decomposition of the d ¼ 6 Bþ L
violating operators. We exhaustively list the possible one-loop ultraviolet completions of these operators
and discuss that, in general, two distinct classes of models appear. Models in the first class need an
additional symmetry in order to avoid tree-level proton decay. These models necessarily contain a neutral
particle, which could act as a dark matter candidate. For models in the second class the loop contribution
dominates automatically over the tree-level proton decay, without the need for additional symmetries. We
also discuss possible phenomenology of two example models, one from each class, and their possible
connections to neutrino masses, LHC searches and dark matter.
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I. INTRODUCTION

While searches for proton decay so far have yielded only
lower bounds on the lifetimeof various possible decaymodes
[1–10], future large volume detectors, such as Hyper-
Kamiokande [11], DUNE [12] and JUNO [13], or more
speculative multimegaton proposals such as TITAND
[14,15], MEMPHYS [16] or MICA [17,18] offer a good
chance to finally discover this ultrarare process. Although
nucleon decay processes are usually discussed in the context
of grand unified theories (GUTs), see, e.g., Refs. [19–31],
they can arise in many models. For a review on baryon
number violation, see for example Ref. [32]. Motivated by
the expected improvements in nucleon decay searches, here
we study proton decay generated at the one-loop level.
In the standard model baryon and lepton number

violation arises at the nonrenormalizable level. At the level
of mass dimension five (d ¼ 5), there is only one operator,
the famous Weinberg operator [33], corresponding to
Majorana neutrino masses (ΔL ¼ 2, ΔB ¼ 0). At d ¼ 6

there are already five independent operators, which have
ΔB ¼ ΔL ¼ 1 [but ΔðB − LÞ ¼ 0] [33–35]. All d ¼ 6
operators lead to two-body proton decays, such as
p → π0 þ eþ, p → πþ þ ν̄ or p → Kþ þ ν̄.
GUT models predict proton decay to occur at tree level

[19,20]. For coefficients of order Oð1Þ, the current exper-
imental bounds then imply a lower limit on the scale of
baryon number violation (for d ¼ 6 operators) of order Λ ∼
ðfewÞ Oð1015Þ GeV, which is far out of reach of any
foreseeable accelerator experiment. This simple picture
changes drastically, if proton decay is induced by higher-
dimensional operators and/or at loop level. The decay rate for
a k-body n-loop proton (neutron) decay induced by a
d-dimensional operator can be very roughly estimated to be

1

τ
∼

C2

f½k�
�

1

16π2

�
2n
�
mp

Λ

�
2ðd−6Þ m5

p

Λ4
: ð1Þ

Here, f½k�≡ 4ð4πÞ2k−3ðk − 1Þ!ðk − 2Þ! estimates the phase
space volume available to the decay products for massless
final state particles [36]. The constant C is the coefficient of
the effective interaction that induces the proton decay
process, which contains products of couplings that appear
in the ultraviolet models given at the scaleΛ. Note that C can
be small compared to one, depending on the model (see
below). Obviously, to obtain decay rates within future
experimental sensitivities much lower scales Λ are needed
for k ≫ 2, n ≫ 0 and/or d ≫ 6.
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Probably for this reason, not many studies on higher-
dimensional proton decay operators can be found in the
literature. For d¼7 operators see, for example, Refs. [37–39].
For operators with d ¼ 9 and higher see Refs. [36,40,41]. In
particular, Ref. [36] discusses ΔL ¼ 3 proton decay from
operators up to d ¼ 13, where current experimental sensi-
tivities correspond to new physics scales Λ≲ TeV, even for
couplings as large as order Oð1Þ.1 The authors of Ref. [43]
listed the higher-mass-dimensional B − L violating effective
operators in a GUT model and discussed the relations
between neutrino masses and the nucleon decays induced
by the effective operators.
Even less work has been done so far for loop-induced

proton decay. Perhaps the best-known example for it is
supersymmetric (SUSY) GUTs, see for example the review
[32]. Here, the importance of the loop stems from the fact
that the decay amplitude is proportional to ðΛGUTΛSUSYÞ−1
instead of Λ−2

GUT as (for tree-level contributions) in non-
SUSY GUT models.
In this paper, we exhaustively list the possible high-

energy completions of the proton decay operators with
d ¼ 6 at the one-loop level. We also calculate group
theoretical factors and define the one-loop integrals, which
appear in the reproduction of the proton decay operators
from their decompositions. From these lists one can
immediately estimate the rate of proton decay, once a
(proto-)model is specified. For masses of the mediators at
the TeV scale, we find that the couplings Y entering the
proton decay rate should be of order Y < Oð10−6Þ.2 This
opens up the possibility that the charged and colored
mediator fields live long on the timescale of collider
experiments, yielding particular signals at the LHC.
We divide the different models, found in our lists, into

two subclasses. Models in the first class require an addi-
tional symmetry to avoid tree-level proton decay. It is
straightforward to introduce some extra symmetry in these
cases, for example a Z2 that guarantees that proton decay
appears only at the one-loop (and higher) level. In this class
of models the lightest loop particle is then necessarily stable
and thus can serve as a candidate for the dark matter. In the
second class one finds models, in which the loop-induced
d ¼ 6 decay is automatically the leading contribution to
proton decay, despite the existence of tree-level decay
modes. The reason for this counterintuitive behavior is
simply that, for models in the second class, tree-level
proton decay appear only at the level of higher-dimensional
effective operators.
We then discuss two example models, one from each

model class, in more details. In model I, neutrino masses,
dark matter and proton decay are all related. Majorana
neutrino masses are generated using the scotogenic loop

[44] and the same Z2 that stabilizes the dark matter
guarantees that proton decay occurs only at the one-loop
level. The colored mediators of proton decay, if at the TeV
scale, can be produced at the LHC and will decay to jets,
leptons and the dark matter candidate. These missing
energy signals, possibly associated with charged tracks
from heavy ionizing particles, are reminiscent of those
discussed in the context of SUSY. Thus, one can use
different existing searches at the LHC to derive constraints
on the model. Also, since the model generates neutrino
masses at one loop, one can constrain its parameters using
searches for lepton flavor violation, such as μ → eγ and
others.
In our model II we do not impose any beyond the

standard model (SM) symmetry. Thus, there are no stable,
heavy particles. Signals for searches at the LHC are
therefore different from those discussed for model I. In
particular, there are final states with no missing energy
involved. For this model, we also show how tree-level
proton decay will appear and is suppressed in models in this
class. For the particular case of model II, the final state for
proton decay is caused by a tree d ¼ 12 operator and is
five-body. The expected partial half-lives for these modes
are therefore orders of magnitude larger than those of the
one-loop-induced two-body decays.
The rest of this paper is organized as follows. In Sec. II

we will discuss the d ¼ 6 operators and their one-loop
decomposition. Section III then presents and discusses our
two example models, before we conclude in Sec. IV. Some
more technical aspects for the one-loop decomposition are
given in the Appendix.

II. PROTON DECAY OPERATORS AT ONE LOOP

The effective operators which lead to proton decay were
already listed in Refs. [33–35],3

O1 ¼ ½du�½QL�; ð2Þ

O2 ¼ ½QQ�½ue�; ð3Þ

O3 ¼ ½QQ�1½QL�1; ð4Þ

O4 ¼ ½QQ�3½QL�3; ð5Þ

O5 ¼ ½du�½ue�; ð6Þ

where the subscripts 1 and 3 in Eqs. (4) and (5) indicate the
electroweak SUð2Þ representation of the bilinears of the
fermions. The contraction of all the indices on the operators
is explicitly shown in Appendix.

1The complete list of high-d operators can easily be obtained
with SYM2INT [42].

2The coefficientC in Eq. (1) isC ∝ Y4 in one-loopd ¼ 6models.

3See Refs. [45,46] for the d ¼ 6 operators for proton decay
with a SM singlet fermion (sterile neutrino, also known as right-
handed neutrino).
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We are particularly interested in the effective operators
which arise from one-loop diagrams. We decompose the
effective operators Eqs. (2)–(6) and list the necessary
mediators and the interactions. There are two types of
topologies for d ¼ 6 one-loop diagrams: triangle and box.
However, the decompositions based on the triangle diagram
allow one to have the same effective operator at the tree
level.4 Therefore, we concentrate on the decompositions
with the box diagram. In the decomposition, we distribute
the quarks and the lepton of an effective operator to the
outer legs of the box diagram shown in Fig. 1 in all possible
ways and identify the SM gauge charges of the mediator
fields, ψ , S, ψ 0, and S0. In the current study, we restrict
ourselves to the decompositions with scalar and fermion
mediators and do not introduce a vector mediator which
may require an extension of the SM gauge symmetries and
their spontaneous breaking to the SM. In short, we
introduce the following Yukawa interactions:

L¼Y1qcψcSþY2ψ
cq0S0†þY3ψ

0lS0 þY4q00cψ 0S†þH:c:;

ð7Þ

where q, q0, and q00 are the quark fields (Q, u, or d), and l is
the lepton field (L or e) in an effective operator. The
mediator fields, ψ and ψ 0 for fermions and S and S0 for
scalars, are assigned as shown in Fig. 1. The mass terms for
the mediator fields must also be included in the Lagrangian,
although they are not explicitly written in Eq. (7). Later we
will discuss the phenomenology of mediator fields, assum-
ing that the masses Mψ , MS, Mψ 0 , and MS0 are at the TeV
scale.
The color SUð3Þ structure of the box diagram Fig. 1 is

common in all decompositions, and the possible ways to
assign the SUð3Þ charges to the mediators are listed in

Table I. Here we assume that a mediator takes one of 1, 3, 3̄,
6, 6̄, and 8 representations under the SUð3Þ transformation
and do not pursue the possibility of decompositions with a
mediator whose representation is higher than 8. In the
column “SUð3Þ coeff.,” we also list the coefficients
appearing in the calculation, which we call operator
projection, to derive the effective operators from the
decompositions. In order to obtain the effective operators
Eqs. (2)–(6) from the decomposition Eq. (7) where each
Yukawa interaction forms a SUð3Þ singlet, we must
rearrange the SUð3Þ indices as

ð8Þ

where I, J, and K are the SUð3Þ indices for 3 representa-
tions, and ϵIJK is the total antisymmetric tensor to form a
singlet with three triplets. The part omitted from the second
line of Eq. (8), which is expressed as “...,” represents all
contents other than the Yukawa couplings (Y1-4), the
coefficient [SUð3Þ coeff.] brought by the rearrangement
of the SUð3Þ indices, and the outer fermion field operators
(q, q0, q00, and l), such as the propagators of the mediators
and matrices with SUð2Þ indices. We have not specified the
quark fields at this stage and rearrange the SUð3Þ indices by
handling them as 3 representation field operators in general.
Depending on the decomposition with a specific choice of
the quark fields, an additional sign can show up in the
further rearrangement of the SUð3Þ indices, which will be
taken into account after the full information of the

FIG. 1. Box diagram for decomposition of the d ¼ 6 proton
decay operators. The direction of the arrows represents the flow
of the particle number (not chirality). We put the lepton field l
always in the lower right corner (Y3) in all decompositions, i.e.,
The SUð3Þ structure is common in all decompositions.

TABLE I. Choices of the SUð3Þ charges of the mediator fields
and the SUð3Þ coefficients which appear in the reordering of the
SUð3Þ indices to obtain the corresponding effective operator; see
Eqs. (8) and (9) and the text.

Mediators

ψ S ψ 0 S0 SUð3Þ coeff.
#1 1 3̄ 3 3 −1
#2 3 1 3̄ 3̄ 1

#3 3 8 3̄ 3̄ − 8
3

#4 3 8 6 6 4

#5 3̄ 3 1 1 1

#6 3̄ 3 8 8 − 8
3

#7 3̄ 6̄ 8 8 −4
#8 6 3 8 8 4

#9 6̄ 8 3̄ 3̄ −4
#10 8 3̄ 3 3 8

3

#11 8 3̄ 6̄ 6̄ −4
#12 8 6 3 3 4

4Forbidding a Yukawa interaction that mediates a d ¼ 6 proton
decay operator at the tree level by a symmetry and allowing the
soft breaking of the symmetry by the mass term of a mediator
field, one can induce a triangle diagram solely at the loop level.
For more discussions on the realizations, see Ref. [47]. In this
study, we do not pursue the possibility of such a setup with a
symmetry and its soft breaking.
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decomposition, with which one can fully specify the
ordering of the quark fields. The sign due to the ordering
of the quarks will be given in Tables II–V [as “SUð3Þ
sign”]. Note that the SUð2Þ and the Lorentz indices have
not been rearranged at this stage, and the rearrangement of
them will bring other coefficients and factors. All the
details of the method of decomposition and operator
projection are given in Appendix, where we demonstrate
the derivation of all the coefficients, signs, and factors,
keeping all the indices on the field operators explicitly.
To proceed the operator projection onto the basis

operators Eqs. (2)–(6), we must specify the species of
the outer fermion fields, determine the position of the quark
fields on the box diagram, and identify the SUð2Þ gauge
charges of the mediator fields. In Tables II–V, the ways of
decomposition are given in the column “Decom,”where the
given fermion fields correspond to ðqq0Þðq00lÞ in Fig. 1 and
Eq. (7). The electroweak charges of the mediator fields are
listed at the column “Mediators SUð2ÞUð1Þ”. We concen-
trate on 1, 2, and 3 for the SUð2Þ representation. Note that

the sign that comes up in the rearrangement of the SUð3Þ
indices are also given in the column of the SUð3Þ sign in
Tables II–V, which cannot be included in Table I because
they depend on the ordering of the quark fields in a
decomposition. We also list the factors and coefficients
which come up in the process of the operator projection after
Eq. (8): the coefficients and signs from the rearrangement of
the SUð2Þ indices [SUð2Þ coeff.], the factors and signs from
the Fierz transformations (rearrangement of the Lorentz
indices), and the loop integral factors (“Fierz × loop fac-
tors”). The functions I4 and J4 for the loop integrals of the
box diagrams are defined in the Appendix. In short, once the
decomposition (protomodel) is specified (one from Table I
and one from Tables II–Vare chosen), the coefficient of the
effective operator is given as

Leff ¼ SUð3Þ coeff × SUð3Þ sign × SUð2Þ coeff
× Fierz factor × loop factor × Y1Y2Y3Y4

× effective opðsÞ O in Eqs: ð2Þ–ð6Þ; ð9Þ

with which, and also with the help of the nucleon
matrix elements calculated from lattice [48–51] and chiral
perturbation theory [52–54], one can directly calculate the
rates of proton decay. The notations and the derivations
of the coefficients, factors, and signs are given in the
Appendix.
Here we show an example to demonstrate how to use

the information of the tables. A famous dimension-five
contribution to proton decay in SUSY-GUT models is
found by taking #1 from Table I and the decomposition of
the seventh row in Table IV with α ¼ 0 for Uð1Þ hyper-
charge. The mediators are identified with the SUSY
particles as

TABLE II. Decomposition (protomodels) of the d ¼ 6 effective
operator O1 ¼ ½du�½QL� which consists of d, u, Q, and L. The
protomodels result in the same effective operator O1 but with
different coefficients, factors, and signs.

Mediators SUð2ÞUð1Þ

O1 Decom. ψ S ψ 0 S0
SUð2Þ
coeff.

Fierz × loop
factors

SUð3Þ
sign

ðduÞðQLÞ 1α 1αþ1
3

2αþ1
6

1αþ2
3

1 MψMψ 0I4 þ
2 2 1 2 −1
2 2 3 2 −3
3 3 2 3 3

ðudÞðQLÞ 1α 1α−2
3

2α−5
6

1α−1
3

1 MψMψ 0I4 −
2 2 1 2 −1
2 2 3 2 −3
3 3 2 3 3

ðdQÞðuLÞ 1α 1αþ1
3

1α−1
3

2αþ1
6

−1 − 1
2
J4 −

2 2 2 1 −1
2 2 2 3 3
3 3 3 2 −3

ðQdÞðuLÞ 1α 2α−1
6

2α−5
6

1α−1
3

1 1
2
J4 þ

2 1 1 2 −1
2 3 3 2 −3
3 2 2 3 3

ðuQÞðdLÞ 1α 1α−2
3

1α−1
3

2αþ1
6

−1 − 1
2
J4 þ

2 2 2 1 −1
2 2 2 3 3
3 3 3 2 −3

ðQuÞðdLÞ 1α 2α−1
6

2αþ1
6

1αþ2
3

1 1
2
J4 −

2 1 1 2 −1
2 3 3 2 −3
3 2 2 3 3

TABLE III. Decomposition of O2, where the ordering of the
two quark doublets in the effective operator is determined as
O2 ≡ ½Q1Q2�½ue�.

Mediators SUð2ÞUð1Þ

O2 Decom. ψ S ψ 0 S0
SUð2Þ
coeff.

Fierz × loop
factors

SUð3Þ
sign

ðQ1Q2ÞðueÞ 1α 2α−1
6

2α−5
6

2αþ1
6

1 MψMψ 0I4 þ
2 1 1 1 1
2 3 3 3 −3
3 2 2 2 3

ðuQ2ÞðQ1eÞ 1α 1α−2
3

2α−5
6

2αþ1
6

1 1
2
J4 −

2 2 1 1 1
2 2 3 3 −3
3 3 2 2 3

ðQ1uÞðQ2eÞ 1α 2α−1
6

1α−1
3

1αþ2
3

1 − 1
2
J4 −

2 1 2 2 −1
2 3 2 2 −3
3 2 3 3 3
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ψð1; 3Þ0 ¼ W̃; Sð3̄; 2Þ−1=6 ¼ Q̃�;

ψ 0ð3; 1Þ−1=3 ¼ h̃c; S0ð3; 2Þþ1=6 ¼ Q̃; ð10Þ

where W̃ is the wino, h̃c is the colored higgsino, and Q̃ is
the squark doublet. Using the information listed in the
tables, we can reproduce the coefficient of the effective
operator (9) as

Leff ¼ ð−1Þ
zffl}|ffl{SUð3Þ coeff

× ðþÞ
z}|{SUð3Þsign

×

�
−
3

2
O3 −

1

2
O4

�zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{SUð2Þ coeff andO

× MψMψ 0I4
zfflfflfflfflffl}|fflfflfflfflffl{Fierz×loop factors

× Y1Y2Y3Y4

¼ 1

2
Y1Y2Y3Y4MW̃Mh̃c

I4½3O3 þO4�: ð11Þ

Note thatY1 andY2 are given by the gauge coupling inSUð5Þ
SUSY-GUT models. The coupling Y3 is identified with
the coupling for the Yukawa interaction of 10 · 5̄ ·Hð5̄Þ, and
Y4 is that for 10 · 10 ·Hð5Þ, where 10 and 5̄ are the matter

superfields and Hð5̄Þ and Hð5Þ are the Higgs superfields.
Taking the decomposition of the first row inTable IV, one can
find the same diagram but with a bino B̃ð1; 1Þ0 instead of the
wino W̃.

III. MODELS AND PHENOMENOLOGY

In this section we discuss the phenomenology of the
different one-loop models presented above. We will start
with a brief discussion of the different model classes and an
overview of commonalities that all these one-loop models
share. We then discuss two example models in some more
detail.

A. General discussion

Our results listed in Tables I–V summarize the possible
particle content that allows us to construct models with one-
loop-induced proton decay, we call this the “protomodels.”
However, not all allowed choices of quantum numbers will
automatically result in models in which the one-loop
contribution to proton decay will be the dominant one.
To see this in a simple example, consider decomposition #1

TABLE IV. Decompositions of the effective operators with three Qs and a L. Each model results in a different
combination of O3 and O4. Note that the ordering of the three Qs in the effective operators are fixed as
O3=4 ≡ ½Q1Q2�1=3½Q3L�1=3.

Mediators SUð2ÞUð1Þ
O3;4 Decom. ψ S ψ 0 S0 SUð2Þ coeff. Fierz × loop factors SUð3Þ sign
ðQ1Q2ÞðQ3LÞ 1α 2α−1

6
1α−1

3
2αþ1

6
− 1

2
O3 þ 1

2
O4 MψMψ 0I4 þ

1 2 3 2 − 3
2
O3 − 1

2
O4

2 1 2 1 O3

2 1 2 3 O4

2 3 2 1 −O4

2 3 2 3 −3O3 þ 2O4

3 2 1 2 − 3
2
O3 − 1

2
O4

3 2 3 2 − 9
2
O3 þ 1

2
O4

TABLE V. Decompositions of O5. Here the ordering of the two u’s in the basis operators is determined as
O5 ≡ ½du1�½u2e� and O0

5 ≡ ½du2�½u1e�.
Mediators SUð2ÞUð1Þ

O5 Decom. ψ S ψ 0 S0 SUð2Þ coeff. Fierz × loop factors × SUð3Þ sign
ðdu1Þðu2eÞ 1α 1αþ1

3
1α−1

3
1αþ2

3
1 MψMψ 0I4O5

2 2 2 2 2
3 3 3 3 3

ðu1dÞðu2eÞ 1α 1α−2
3

1α−4
3

1α−1
3

1 −MψMψ 0I4O5

2 2 2 2 2
3 3 3 3 3

ðu2u1ÞðdeÞ 1α 1α−2
3

1α−1
3

1αþ2
3

1 MψMψ 0I4½O5 −O0
5�

2 2 2 2 2
3 3 3 3 3
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from Table I and the decomposition of the third row in
Table IV with α ¼ 1=2. In this case S is identified with
Sð3̄; 1Þ1=3. The quantum numbers of this scalar allow us to
write down the following two interactions with standard
model fermions: QQS† and QLS. The product of these
interactions, after integrating out S, generate O3 at tree
level.5 Thus, unless there is a strong hierarchy between the
different Yukawa interactions, one expects that the tree-
level contribution dominates the decay rate. One can
eliminate such an unwanted hierarchy in couplings using
additional symmetries. The simplest possibility is to just
assign the particles running in the loop to be odd under a
Z2, while all the standard model particles are even. We
classify models, which need such an additional symmetry
to avoid unwanted tree-level proton decay, as class-I
models. We discuss one example model from this class
in Sec. III B.
In addition, there exist choices of quantum numbers, for

which tree-level two-body decays are not allowed, but
higher multiplicity final states are generated at tree-level
together with the one-loop diagrams. For example, if S and
S0 are chosen to be Sð3; 2Þ1=6 and S0ð1; 2Þ1=2, which have
the same charges as a scalar leptoquark and the SM Higgs
field, the corresponding models will produce three-body
proton decays, such as p → πþπþe− via an effective d ¼ 9
operator. In such cases, one expects in general that the
d ¼ 6 one-loop operator dominates over the d ¼ 9 tree-
level operator for typical scales Λ≳ 1 TeV, see Eq. (1).
However, if there is some hierarchy in the Yukawa
couplings, ðY3Y4Þ ≪ ðY1Y2Þ, one can arrange the three-
body decays to dominate over the two-body ones and one
needs again a symmetry to assure that the loop dominates
over the tree-level contribution. Our first example model is
exactly of this type, see Sec. III B.
Finally, there are choices, where the particle content of

the one-loop model is such that tree-level proton decay can
occur only at d ¼ 12 and higher (usually leading to proton
decay with five-body final states). In these cases the one-
loop d ¼ 6 decay will win over the tree-level decays for all
practical choices of model parameters. We consider such
models interesting and define these models as class-II
models, since no symmetry is required to make the one-
loop d ¼ 6 decays dominant. We will discuss one concrete
example model in Sec. III C.
Obviously, the main difference between models in class I

and class II is that in class I the lightest particle will be
absolutely stable. This opens up the possibility to connect
proton decay to dark matter, but requires an electrically
neutral particle in the loop. We will come back to a more
detailed discussion of this point in Sec. III B.

Let us now turn to a rough estimate of the proton
decay half-life. Using results from lattice QCD calculations
[48–51] and chiral perturbation theory [52–54], the two-
body proton decay half-life can be calculated as6

τ ≃
1

mp

32π

h
1 − m2

meson
m2

p

i
2
���W Y1Y2Y3Y4

16π2·6·M2

���2
∼ 1034ðyrÞ

�
M

1 TeV

�
4
�
3 × 10−6

Ȳ

�
8

: ð12Þ

Note that half-life estimates for different operators,O1–O5,
differ slightly due to the different possible final states. For
the numerical estimate we use the charged pion mass for the
massmmeson of the daughter meson.W is the corresponding
hadronic matrix element,W ≡ hmesonjðqqÞqjpi ¼ −0.181
[GeV2]; the numerical value has recently been calculated in
Ref. [49]. The factor 1=6 in the first equation above is due
to the loop integral I4, in the limit of equal masses. We have
defined the mean coupling Ȳ ¼ ðY1Y2Y3Y4Þ1=4, since
proton decay is sensitive only to this product, and used
a mass scale of 1 TeV, since we are interested in possible
LHC phenomenology of these one-loop models.
With couplings of the order of Eq. (12), the particles in the

one-loop diagrams can be rather long-lived. Depending on
the choices of parameters, i.e., Yukawa couplings and mass
hierarchies of the new particles, decay lengths can vary from
unmeasurably short to many meters. The collider phenom-
enology of long-lived particles has recently attracted a lot of
attention in the literature, see for example Refs. [55–62].
There are also plans for several future experiments, dedicated
to the search for ultralong-lived particles, see for example
Refs. [63–67]. For the current status of searches for long-
lived particles at the LHC, see Refs. [68–85]. We will come
back to a more detailed discussion of the LHC phenom-
enology of our one-loop models in Secs. III B and III C.

B. Model I

Here we discuss one example model, corresponding to
the choices #5 in Table I for color, the second row in
Table II for the decomposition of O1, and the parameter α
for the electroweak Uð1Þ hypercharge to −1=6. The SM
charges of the mediator fields are then determined as

ψð3̄;2Þ−1=6; Sð3;2Þþ1=6; ψ 0ð1;1Þ0; S0ð1;2Þþ1=2:

ð13Þ

Note that the scalar mediator field S0 has the same charges
as the SM Higgs field H. The one-loop diagram for proton
decay is shown in Fig. 2.

5Sð3̄; 1Þ1=3 is not the only choice that will lead to tree-level
proton decay. The same argument applies to Sð3̄; 3Þ1=3 and
Sð3̄; 1Þ4=3.

6The simple estimate (1) would give Ȳ roughly a factor 2.5
smaller.
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As discussed above, the model allows for a d ¼ 9
three-body decay of the proton, unless an additional
symmetry is introduced. This can be seen easily as follows:
Cutting the diagram in the scalar lines, one obtains the
effective operator dRuRSS0†. Including the decays of the
scalars produces then a ΔðB − LÞ ¼ 2 d ¼ 9 operator:
ðdRuRÞðL̄dRÞðuRQÞ. It is easy to forbid this operator,
simply postulating B − L conservation, since the original
d ¼ 6 operator has ΔðB − LÞ ¼ 0. More interesting phe-
nomenologically, however, is to assign a new Z2 to the
model, under which all loop particles are odd, while the SM
fermions are even. In this case, unless the Z2 is sponta-
neously broken, the lightest of the particles in the loop is
absolutely stable and can be therefore a candidate for the
dark matter. In the following, we will discuss this variant of
the model.
Combining the information listed in Tables I and II, one

can find the coefficient of the effective interaction of proton
decay processes as

C1 ¼ −MψMψ 0I4Y1Y2Y3Y4; ð14Þ

with which the effective Lagrangian (9) is given as
Leff ≡ C1O1. The effective operator O1 causes decay of
a proton in two modes, and the rates are calculated with the
coefficient Eq. (14) as7

Γðp → πþν̄e=π0eþÞ ¼
mp

32π

�
1 −

m2
πþ=0

m2
p

�2
jW0C1j2; ð15Þ

where the hadronic matrix elements W0 are found in
Ref. [49]: W0 ¼ −0.186ð−0.131Þ (GeV2) for the πþ (π0)
mode. All decompositions in Table II, which result in the
operator O1, predict roughly the same size of the rates for
both decay modes. Therefore, if it turns out that the rates of
the two modes are very different, models based on O1 will
be disfavored. As we have already seen in Eq. (12), the
mean of the couplings Ȳ ¼ ðY1Y2Y3Y4Þ1=4 should be order
few Oð10−6Þ for masses accessible at the LHC.
The interaction Y3ψ

0ð1; 1Þ0LS0ð1; 2Þþ1=2 in Fig. 2 can be
identified with the corresponding interaction that appears in
the scotogenic model [44], since ψ 0ð1; 1Þ0 can be inter-
preted as a νR. Note that model I is not the only decom-
position that contains such an interaction. Requiring the
fields (ψ 0 and S0) relevant for the radiative neutrino mass
generation to be color singlets, we have only one choice left
for the assignment of the color charges, which is #5 in
Table I. Assuming the ψ 0 to be a singlet under the
electroweak SUð2Þ as in the original scotogenic model,
we have the choices of Nos. 2, 6, 9, 14, 17, 22 in Table II for

O1 and Nos. 1 and 7 in Table IV for O3;4. In total, we have
eight possibilities for loop-induced proton decays which
can accommodate neutrino masses and dark matter with the
scotogenic-type realization.8

The phenomenology of the scotogenic model has been
studied in many papers, see for example Refs. [86–98]. We
will therefore only briefly summarize the most important
aspects of its phenomenology here and comment on the
differences between our model I and the original scoto-
genic model.
To generate a Majorana mass term for neutrinos from the

one-loop diagram (upper left in Fig. 3) one introduces a
scalar quartic interaction between the SM Higgs and the
new scalar [44]

L ⊃ λ5ðS0†HÞðS0†HÞ þ H:c: ð16Þ

The flavor structure of the Majorana mass term for
neutrinos in the scotogenic model can be expressed as

ðmνÞαβ ¼
X
i

ðYT
3 ÞαiΛiðY3Þiβ; ð17Þ

which shows that at least two ψ 0 are necessary to reproduce
the two mass squared differences measured by neutrino
oscillation data. One can find the loop integral Λi in
Ref. [44], which is

Λi ≡
Mψ 0

i

16π2
½fðM2

ψ 0
i
=M2

ReS00Þ − fðM2
ψ 0
i
=M2

ImS00Þ�; ð18Þ

where the function fðxÞ is defined as fðxÞ ¼
− ln t=ð1 − xÞ. The splitting between the mass MReS00 of
the real part of the neutral component of S0 and MImS00 of

FIG. 2. An example, model I, for a one-loop decomposition of
the proton decay operator O1. This model relates proton decay to
neutrino masses, the dark matter, and possibly a long-lived
colored particle at the LHC; compare with Fig. 3.

7In this estimate we do not take into account the effect of the
renormalization group running [35,45] of the operators and use
the coefficient at the scale of the proton mass. This is sufficient
for our rough estimates.

8The scotogenic-type diagram for neutrinomasses can be drawn
with theMajorana fermion (ψ 0) in the adjoint representations under
the SM gauge symmetries. If we relax the requirements to include
the adjoint representations, we havemore possibilities: Nos. 6–8 in
Table I for color, andNos. 3, 7, 12, 15, 20, and 23 in Table II forO1

and Nos. 2 and 8 in Table IV for O3;4.
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the imaginary part is given by the scalar mixing term
(16) as M2

ReS00 −M2
ImS00 ¼ 2λ5hH0i2. It is clear from

Eq. (18) and also the diagram in Fig. 3 that the loop
integral vanishes in the limit where the mass splitting,
which is proportional to the scalar mixing, goes to zero.
In short, the size of the neutrino masses is controlled
by the scalar mixing coupling λ5, the Yukawa interaction
Y3, and the masses of the mediators. Here we are interested
in the phenomenology of the mediators with masses of the
TeV scale. Setting the mediator masses to roughly a TeV,
one finds that either Y3 should be small, say of the order
of Oð10−5Þ for λ5 order Oð1Þ, or λ5 should be order
Oð10−10 − 10−8Þ for Yukawas order 0.1–1 to obtain
mν ∼Oð0.1Þ eV.
The Y3 interaction also mediates charged lepton flavor

violating (CLFV) processes. Studies with a parameter scan,
e.g., Refs. [94,96], conclude that the lα → lβγ processes
currently places the most stringent constraints on the model
parameters in a wide area of the parameter space. A general
formula for the rate of this CLFV process has been
presented in Ref. [99]. It can be written as

Γðlα → lβγÞ ¼
e2m5

lα

16π

����Xi
ðY†

3ÞβiðY3Þiα
�
−c̄þ 3

2
d̄

�
i

����2:
ð19Þ

The loop integral factor in Eq. (19) is given as

�
−c̄þ 3

2
d̄

�
i
¼ i

16π2
1

M2
S0þ

�
2t2i þ 5ti − 1

12ðti − 1Þ3 −
t2i ln ti

2ðti − 1Þ4
�
;

ð20Þ

with ti ≡M2
ψ 0
i
=M2

S0þ . The nonobservation of the μ → eγ

process [100] suggests ðY3Þiα∈fe;μg ≲Oð0.01 − 1Þ for
mediators with masses of Oð1Þ TeV [96]. For future
prospects of the experimental bounds to the CLFV proc-
esses are summarized in, e.g., Ref. [101].
We now turn to a brief discussion of dark matter. There

are two possible candidates in model I. The scalar
S0ð1; 2Þþ1=2 can be identified with the inert doublet,
discussed many times in the literature. For inert doublet
DM see, for example, Refs. [102,103]. The second
candidate is the neutral fermion. For a detailed study of
singlet fermion DM in the scotogenic model see, for
example, Refs. [96,98].
Suppose the lightest Majorana fermion ψ 0

1 is the DM field
and was thermally produced and frozen out in the early
Universe. In ourmodel, there are two pair-annihilationmodes
for ψ 0

1, which are ψ 0
1ψ

0
1 → QQ̄ and LL̄. The LL̄ mode,

mediated by the Y3 interaction, is the only mode in the
original scotogenic model. For this diagram to be efficient
enough, Y3 should be large, which produces a mild tension
betweenupper limits fromCLFVand theminimalY3 required
to reproduce the correct relic density [96].9 However, the
model we are discussing here also has the interaction Y4

of the DM field ψ 0 with Q and can annihilate through the
ψ 0ψ 0 → QQ̄ channel, see Fig. 3. The cross section for this
pair-annihilation process can be roughly estimated as

X
q¼u;d

hσðψ 0ψ 0 → qq̄Þvi ∼ 2 × π

�jY4j2
4π

�
2 1

M2
×

T
M

¼ 2 × 10−26½cm3=s�
�
Y4

1.0

�
4
�
TeV
M

�
2

;

ð21Þ
whereT is the freeze-out temperature. The suppression factor
T=M ∼ 1=20 comes from the fact that the annihilation
amplitude is p-wave, since the initial state consists of two
Majorana fermions (cf., e.g., Ref. [104]). Note that, cross
sections of order 2 × 10−26 ðcm3=sÞ will reproduce the
correct relic density. Again, as in the case of Y3, much
smaller values of this coupling would be sufficient, if
Sð3; 2Þþ1=6 is not much heavier than ψ 0, such that coanni-
hilation effects become important.
Finally, we will discuss the LHC phenomenology of

model I. We will concentrate on the colored states
Sð3; 2Þþ1=6 and ψð3̄; 2Þ−1=6. Let us first consider S. This
scalar will decay to a two-body final state of jets (j) plus
missing energy (E). The decay will be prompt, unless Y4 is
tiny, say Y4 ≪ 10−7. Thus, limits from standard SUSY
searches apply. For example, CMS has searched for scalar

FIG. 3. Phenomenology of model I: Majorana masses for
neutrinos (upper left), example of a dark matter (DM) annihi-
lation process for the freeze-out scenario (upper right), a charged
lepton flavor violating process (lower left), and a decay chain of
the colored mediator field ψ at the LHC (lower right).

9It is possible to solve this problem of the overabundance of
DM field in scotogenic models in regions of parameter space
where coannihilation processes are sizeable, see, for example,
Refs. [96,98].
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quarks decaying promptly to jets plus missing energy
[105]. The limits for one generation of squarks reach up
to 1 TeV for neutralino mass of mχ̃0 ∼ 100 GeV and
weaken to roughly 600 GeV for mχ̃0 ∼ 400 GeV [105].
Similar numbers can be found in ATLAS searches, for
example, [106].
The possible decay chains for the colored fermion

ψcð3; 2Þþ1=6 lead to final states of either jjE or jl�E.
Thus, even though ψ resembles a vectorlike quark (VLQ)
from its quantum numbers, standard VLQ searches do not
apply to this state. (For a summary of CMS searches for
VLQs see, for example, Ref. [107].) On the other hand, pair
production of ψ will lead to final states that resemble again
those for SUSY searches for squarks and gluinos. However,
which of the LHC searches can be used to constrain the ψ
depends on whether its decays are prompt or not. This in
turn depends on the mass hierarchy of the particles in the
loop, see Fig. 3. If the massMψ of ψ is larger than either of
the masses of the scalars Sð3; 2Þþ1=6 or S0ð1; 2Þþ1=2, the
decays of ψ are two body and likely prompt, unless again
the corresponding Yukawa is considerably smaller than the
estimate for Ȳ of Oð10−6Þ discussed above from proton
decay sensitivities. ATLAS gives lower limits on the gluino
mass in simplified SUSY models of order mg̃ ≳ 2 TeV
[106]. However, the limits on ψ will be weaker, since (a) the
cross section for a color triplet is smaller than for the gluino
(octet) and (b) the ψ can also decay to jl�E with an
unknown branching ratio, so this zero-lepton search [106]
does not always directly apply. Masses Mψ below 1 TeV
will, however, always be excluded since ATLAS lepto-
quark searches [108] can be combined with the SUSY
search [106], as long as the decays of ψ are prompt.
Assume now that Mψ is smaller than the mass MS of the

scalar Sð3; 2Þþ1=6. The three-body decay rate of ψ to jjE
can then be estimated as

Γðψð3̄; 2Þ−1=6 → jjEÞ ≃ jY1Y4j2
512π3

�
Mψ

MS

�
4

Mψ : ð22Þ

Note that the rate for the three-body final state jl�E is given
by the same expression, simply replacing jY1Y4j with
jY2Y3j and taking MS as the mass of S0ð1; 2Þþ1=2. From
Eq. (22) one can estimate that forMψ ≳MS ≃ 1 TeV decay
lengths will become larger than the order of millimeter for
Yukawas smaller than 10−3. For Yukawas as small as 10−6,
see Eq. (12), lifetimes exceed already 10 s. Thus, the ψ will
hadronize before decaying. ATLAS studied constraints on
long-lived colored particles [109], again in the context of a
supersymmetric model. From Figs. 9 and 11 in Ref. [109]
one can estimate that ψ should be heavier than Mψ ≳
1.8–1.9 TeV for cτ ¼ 3–10 m. From Ref. [110] one
can estimate that similar numbers will apply also for
quasistable ψ .

In summary, model I allows us to connect proton decay,
dark matter, and neutrino masses. If the masses of the loop
particles are of order of Oð1–2Þ TeV, one can have also a
wide range of interesting signals at the LHC. We have
discussed a few possible search strategies for the LHC for
the colored particles in this model.

C. Model II

Let us consider now a model without additional discrete
symmetries, which we categorized into the second class in
Sec. I. The full new particle content of the model is

ψð3̄;1Þþ4=3¼ψþ4=3; Sð3;2Þþ7=6¼ðSþ2=3;Sþ5=3Þ;
ψ 0ð8;2Þþ1=2¼ðψ 0

0;ψ
0
þ1Þ; S0ð8;2Þþ3=2¼ðS0þ1;S

0
þ2Þ;

ð23Þ

which corresponds to choosing the first row in Table III of
the decomposition of the O2 operator with the parameter
α ¼ 4=3 for the electroweak Uð1Þ hypercharge. For the
color representation, we take #6 in Table I. The corre-
sponding Feynman diagram of the one-loop proton decay is
shown in Fig. 4.
The symmetries allow us to have an additional inter-

action

L2 ¼ Y5uRLiτ2Sþ H:c:; ð24Þ

which does not appear in the one-loop proton decay dia-
gram, shown in Fig. 4. With this interaction, a d ¼ 12

effective operatorQQuReRuRLL̄uR appears at tree level, as
shown in Fig. 5, which causes five-body proton decays
such us p → eþe−eþπþπ−. However, the decay modes
induced from the d ¼ 12 operator are subdominant; using
Eq. (1), for Y5 ∼ 10−2, we can roughly estimate the
contribution of these modes to the proton total decay width
to be around 40 orders of magnitude smaller than the two-
body proton decay induced by the d ¼ 6 effective operator
O2 given through the one-loop diagram in Fig. 4.
Combining the information listed in Tables I and III, one

can find the coefficient of the effective interaction O2 of
proton decay as

FIG. 4. An example, model II, for one-loop decomposition of
the proton decay operator O2.
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C2 ¼ −
8

3
MψMψ 0I4Y1Y2Y3Y4; ð25Þ

and the effective interaction causes only p → π0eþ. As we
have seen in Sec. III A, the experimental bounds on the
proton decay rate require Yukawa couplings of order Y <
Oð10−6Þ for the masses of the mediators at the TeV scale.
Within this model it is possible to have signatures that

violate the lepton number by 1 unit, ΔL ¼ 1. This can be
seen in the pair production of the scalar S0þ2 which has two
possible decay modes S0þ2 → lþlþ2j and S0þ2 → lþ3j, as
shown in Fig. 6. Therefore the pair production of the color-
octet S0þ2 at the LHC might lead to the lepton number
violating (LNV) signal 3 lepton plus 5 jets ðlþl−l�5jÞ.
Observation of LNV through this process is only possible if
ΓðS0þ2 → lþlþ2jÞ is of similar order to ΓðS0þ2 → lþ3jÞ,
since both final states are needed to establish that LNV is
indeed taking place. Similar order of these decay widths are
possible if Y1Y2 ∼ Y3Y4. Observing this LNV process also
requires one to have short enough decays so the decays of
the particles can be prompt.
This can be achieved for instance if we assume a mass

hierarchy of the particles,MS0 ≳Mψ ðMψ 0 Þ≳MS, such that
the pair production of S0þ2 leads to a decay chain of two-
body decays, as shown in Fig. 6. If this is the case, the

two decay modes of S0þ2 will be S0þ2 → ψ 0
þ1l

þ and
S0þ2 → ψþ4=3j, and its decay length can be estimated as

L0ðS0þ2Þ ∼ 10−2½m� ½10−6�2
jY3j2 þ jY4j2

�
TeV
MS0

�
: ð26Þ

Here, the choice for the Yukawa couplings Y3 and Y4 being
order 10−6 is motivated by the current proton decay
experimental bounds.
It is also possible to have long-lived particles at the LHC

which are pair produced. Let us assume for instance that the
color-octet fermion ψ 0 is slightly lighter than the scalar S.
Then, the decay rates of the particles ψ 0

þ1 → lþjj and ψ 0
0 →

νljj can be estimated as (see Fig. 7)

Γðψ 0 → lðνÞjjÞ ∼ jY4Y5j2
512π3

�
Mψ 0

MS

�
4

Mψ 0 ; ð27Þ

which leads to the estimate of the decay length

L0ðψ 0Þ ∼ 30½m�
�
10−6

jY4j
�
2
�
10−2

jY5j
�
2
�
TeV
Mψ

��
MS

Mψ 0

�
4

: ð28Þ

Here, the Yukawa coupling Y5, which is not constrained by
the proton decay, has been set to be of the order 10−2.
Equation (28) shows that ψ 0, after being pair produced at
the LHC, will become a long-lived particle. Since ψ 0 has
also color, one can use R hadron searches at the LHC
[109,111–115] to constrain it.
In summary, in model II, depending on the mass

hierarchies of the particles that appear in the proton decay
diagram, one can have either long-lived colored and
charged particles or prompt decays. The latter would allow
us to establish experimentally the existence of LNV.

IV. CONCLUSIONS

We have studied systematically the one-loop decom-
position of the d ¼ 6 Bþ L violating operators involving
only SM fields. Our results are listed in tabular forms, from
which all possible one-loop ultraviolet completions of these
operators involving fermions and scalars can be con-
structed. We have briefly discussed how to use the
information provided to calculate all coefficients that enter
the calculation of the proton decay rate.
We then discussed that all models, in general, can be

divided into two distinct classes. Class-I models are those
for which the one-loop proton decay exists, but is not
necessarily the dominant diagram for a given model.

FIG. 5. d ¼ 12 effective operator QQueūLL̄u at tree level.

FIG. 6. Pair production and corresponding possible decays
modes of the color-octet scalar S0þ2 at the LHC.

FIG. 7. Decay channels of the color-octet fermion ψ 0.
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Models in this class therefore need usually an additional
symmetry, such that tree-level contributions to proton
decay become forbidden. Class-II models are then simply
those for which the particle content guarantees that the one-
loop diagram is automatically the dominant contribution to
proton decay.
We then turned to possible phenomenology of these

models and discussed one example model from each class.
Class-I models have an absolutely stable particle and thus
proton decay can be connected to the dark matter in the
Universe. In the example we discussed, the same symmetry
is responsible for one-loop proton decay, dark matter, and
neutrino mass. The latter is also generated at one-loop level,
as in the scotogenic neutrino mass model. We have
discussed existing constraints and possible LHC phenom-
enology of this model also briefly.
For the example model of class II, we have discussed

possible LHC phenomenology. It has been shown that
depending on the mass hierarchy of the particles in the
model, we can have particles that after being pair produced
at the LHC can decay promptly, leading to LNV signals, or
are long-lived colored and charged particles. Signals with-
out missing energy, such as the LNV signals discussed, do
not appear in model I and so can be used to distinguish
between these two classes of models.
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APPENDIX: FACTORS IN TABLES

Here we write down the basis operators given in
Eqs. (2)–(6) with all the indices of the SM gauge groups
and Lorentz spinors,

O1 ≡ ϵIJK½ðdRcÞI _aðuRÞ _aJ �½ðQcÞaKiðiτ2ÞijðLÞja�;
O2 ≡ ϵIJK½ðQcÞaIiðiτ2ÞijðQÞJja�½ðuRcÞK _aðeRÞ _a�;
O3 ≡ ϵIJK½ðQcÞaIiðiτ2ÞijðQÞJja�½ðQcÞbKkðiτ2ÞklðLÞlb�;
O4 ≡ ϵIJK½ðQcÞaIiðiτ2τdÞijðQÞJja�½ðQcÞbKkðiτ2τdÞklðLÞlb�;
O5 ≡ ϵIJK½ðdRcÞI _aðuRÞ _aJ �½ðuRcÞK _bðeRÞ _b�; ðA1Þ

where the different indices are introduced to describe the
different representations: I; J; K ∈ f1; 2; 3g for a triplet
under the color SUð3Þ, i; j; k; l ∈ f1; 2g for a doublet under
the electroweak SUð2Þ, d ∈ f1; 2; 3g on the Pauli matrices
τd for a triplet under the SUð2Þ, a; b ∈ f1; 2g for a left-
handed 2-spinor and _a; _b ∈ f_1; _2g for a right-handed
2-spinor. The position of the indices also depends on the
representation of the field: a lower I for 3I and an upper I for
3̄I . The index on the 2̄i representation of SUð2Þ can be
lowered as 2i with ðiτ2Þij. On the position of the spinor
indices, we follow the notation that is widely adopted in
literature, e.g., Ref. [116]; the standard positions are deter-
mined as ðψLÞa and ðψRÞ _a and the contraction is taken as
ðψRÞaðψLÞa and ðψLÞ _aðψRÞ _a to form Lorentz scalars.
The ordering of the field operators in the decomposed

interactions are determined as given in Eq. (7). In order to
make the Yukawa interactions singlets under the color
SUð3Þ, we plug the total antisymmetric tensors (ϵIJK and
ϵIJK), the Gell-Mann matrices [ðλAÞIJ], and the Clebsch-
Gordan (CG) coefficient matrices [ðT6ÞIJX and ðT 6̄ÞXIJ] into
the interactions accordingly, where the index A ∈ f1 � � � 8g
is for an octet, and a lower (upper) X ∈ f1 � � � 6g is for 6
(6̄). For the contraction of the electroweak SUð2Þ indices,
we use the antisymmetric tensors [ðiτ2Þij and ðiτ2Þij] and
the Pauli matrices [ðτdÞij]. The CG matrices for the sextet
representations are defined as

ðT6ÞIJ1 ¼

0
B@
1

0

0

1
CA; ðT6ÞIJ2 ¼

0
B@

0 1ffiffi
2

p

1ffiffi
2

p 0

0

1
CA;

ðT6ÞIJ3 ¼

0
B@
0

1

0

1
CA; ðT6ÞIJ4 ¼

0
B@

0 1ffiffi
2

p

0

1ffiffi
2

p 0

1
CA;

ðT6ÞIJ5 ¼

0
B@
0

0 1ffiffi
2

p

1ffiffi
2

p 0

1
CA; ðT6ÞIJ6 ¼

0
B@
0

0

1

1
CA; ðA2Þ

and T 6̄ are defined in the same manner.
Let us demonstrate the operator projection (¼ reintegrate

out the mediator fields), keeping all the indices, i.e., we
explicitly derive a basis operator(s) from a decomposition
with all the coefficients, signs, and factors. As an example,
we take the basis operator O1 and decompose it with the
mediators with #4 in Table I, #12 for Table II, i.e.,

ψð3; 3Þα; Sð8; 3Þαþ1=3;

ψ 0ð6; 3Þα−1=3 S0ð6; 2Þαþ1=6: ðA3Þ

The Yukawa interactions are defined as
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L ¼ Y1ðdRcÞI _aðλTAÞII0 ðψL
cÞI0d _aSAd þ Y2ðψL

cÞd0aJ0 ðT6ÞJ0JX ðQÞJiaðτTd0 Þii0 ðS0†ÞXi0 þ Y3ðψ 0
RÞX0fbðLÞjbðiτ2τfÞjj0S0X0j0

þ Y4ϵ
KLMðuRcÞK _bðλA

0 ÞLNðT 6̄ÞYNMðψ 0
RÞf

0 _b
Y ðS†ÞA0f0 þ H:c: ðA4Þ

The effective proton decay operator resulting from the box diagrammediated by them can be calculated as follows. First, the
mediator fields are contracted, which give the propagators

Leff ¼ Y1Y2Y3Y4ðλTAÞII0 ðT6ÞJ0JX ϵKLMðλA0 ÞLNðT 6̄ÞYNM × ðτTd0 Þii0 ðiτ2τfÞjj0 hSAdðS†ÞA0f0 ihS0X0j0 ðS0†ÞXi
0 i

× ðdRcÞI _ahðψL
cÞI0d _aðψL

cÞd0aJ0 iðQÞJia × ðuRcÞK _bhðψ 0
RÞf

0 _b
Y ðψ 0

RÞX0fbiðLÞjb
¼ Y1Y2Y3Y4ðλTAÞII0 ðT6ÞI0JX ϵKLMðλAÞLNðT 6̄ÞXNM × ðiτ2τdÞji0 ðτdÞi0 i

Z
ddp
ð2πÞdi

i
p2 −M2

S

i
p2 −M2

S0

× ðdRcÞI _a
−ipρðσ̄ρÞ _aa
p2 −M2

ψ
ðQÞJiaðuRcÞK _b

ipσðσ̄σÞ _bb
p2 −M2

ψ 0
ðLÞjb: ðA5Þ

Next, the SUð3Þ and the SUð2Þ indices are rearranged,

Leff ¼ Y1Y2Y3Y4½4ϵIJK�½−3ðiτ2Þij�
�
−
1

4
J4

�
× ðdRcÞI _aðσ̄ρÞ _aaðQÞJiaðuRcÞK _bðσ̄ρÞ _bbðLÞjb: ðA6Þ

Here we arrived at the step shown in Eq. (8). If necessary, the SUð3Þ indices are renamed so that they fit to the ordering in
the corresponding basis operator. This step may give an additional sign [SUð3Þ sign in the tables],

Leff ¼ Y1Y2Y3Y4½4ϵIJK�½−1�½−3ðiτ2Þij�
�
−
1

4
J4

�
× ðdRcÞI _aðσ̄ρÞ _aaðQÞKiaðuRcÞJ _bðσ̄ρÞ _bbðLÞjb: ðA7Þ

Finally, the Fierz transformation (rearrangement of the Lorentz indices) is carried out,

Leff ¼ Y1Y2Y3Y4½4�½−1�½−3�
�
−
1

4
J4

�
½2� × ϵIJKðdRcÞI _aðuRÞ _aJðQcÞaKiðiτ2ÞijðLÞja

¼ −6Y1Y2Y3Y4J4O1: ðA8Þ

In this example, we obtain 4 for the SUð3Þ coefficient, − for the SUð3Þ sign, −3 for the SUð2Þ coefficient, 2 for the factor
of the Fierz transformation for Lorentz indices, and −J4=4 for the loop integral factor. The loop integral factors I4 and J4
that appear in Tables II–V are defined as

I4 ≡
Z

d4k
ð2πÞ4i

1

ðk2 −M2
ψÞðk2 −M2

SÞðk2 −M2
ψ 0 Þðk2 −M2

S0 Þ
; ðA9Þ

J4 ≡
Z

d4k
ð2πÞ4i

k2

ðk2 −M2
ψ Þðk2 −M2

SÞðk2 −M2
ψ 0 Þðk2 −M2

S0 Þ
: ðA10Þ

In the limit where all the mediator masses are identical, the integrals converge to

I4 →
1

16π2
1

6

1

M4
; J4 → −

1

16π2
1

3

1

M2
; ðA11Þ

whereM is the common value of the masses. All the information to reproduce the coefficient of the effective operatorO1 in
Eq. (A8) can be found in Tables I and II.
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