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Applying the narrow-width approximation, we first review the next-to-leading-order QCD predictions
for the total decay rate of a top quark considering two unstable intermediate particles: theWþ boson in the
standard model of particle physics and the charged Higgs boson Hþ in the generic type-I and -II two-
Higgs-doublet models, i.e., t → bþWþ=Hþð→ τþντÞ. We then estimate the errors that arise from this
approximation at leading-order perturbation theory. Finally, we investigate the interference effects in the
factorization of production and decay parts of intermediate particles. We will show that for nearly mass-
degenerate states (mHþ ≈mWþ ) the correction due to the interference effect is considerable.
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I. INTRODUCTION

Since the discovery in 1995 by the CDF and D0 experi-
ments at the pp̄ collider Tevatron at Fermilab, the top quark
has been at or near the center of attention in high-energy
physics. It is still the heaviest particle of the StandardModel
(SM) of elementary particle physics, and its short lifetime
implies that it decays before hadronization takes place. The
remarkably large mass implies that the top quark couples
strongly to the agents of electroweak symmetry breaking,
making it both an object of interest itself and a tool to
investigate that mechanism in detail.
The CERN LHC, producing a tt̄ pair per second, is

potentially a top quark factory which allows us to perform
precision tests of the SM and will enhance the sensitivity of
beyond-the-SM effects in the top sector. In this regard, a lot
of theoretical work has gone into firming up the cross
sections for the tt̄ pair and the single top production at the
Tevatron and the LHC, undertaken in the form of higher-
order QCD corrections [1–4]. Historically, improved theo-
retical calculations of the top quark decay width and
distributions started a long time ago. In this regard, the
leading-order perturbative QCD corrections to the lepton
energy spectrum in the decays t → bWþ → bðlþνlÞ were
calculated some 30 years ago [5]. Subsequent theoretical
works leading to analytic derivations implementing the
OðαsÞ corrections were published in Refs. [6,7] and

corrected in Ref. [8] (see also Refs. [9–11]). Moreover,
in Refs. [12,13], the OðαsÞ radiative corrections to the
decay rate of an unpolarized top quark are calculated, and
the helicities of the W-gauge boson are specified as
longitudinal, transverse plus, and transverse minus.
On the other hand, in the dominant decay mode

t → blþνl, the bottom quark hadronizes into the b-jet Xb
before it decays. Considering this hadronization process, in
Ref. [13], the energy distribution of bottom-flavored
hadrons (B mesons) inclusively produced in the SM decay
chain of an unpolarized top quark, i.e., t → bWþ →
Blþνl þ X, is studied. In Refs. [14–17], the OðαsÞ angular
distribution of the energy spectrum of hadrons considering
the polar and azimuthal angular correlations in the rest frame
decay of a polarized top quark, i.e., tð↑Þ → BþWþ þ X, is
studied. Furthermore, themass effects of quarks and hadrons
have been also investigated.
Charged Higgs bosons emerge in the scalar sector of

several extensions of the SM and are the object of various
beyond SM (BSM) searches at the LHC. Since the SM does
not include any elementary charged scalar particle, the
experimental observation of a charged Higgs boson would
necessarily be a signal for a nontrivially extended scalar
sector and definitive evidence of new physics beyond the
SM. In recent years, searches for charged Higgs have been
done by the ATLAS and the CMS collaborations in proton-
proton collision, and numerous attempts are still in progress
at the LHC.
Among many proposed scenarios beyond the SM which

motivate the existence of charged Higgs, a generic two-
Higgs-doublet model (2HDM) [18–20] provides greater
insight into the supersymmetry (SUSY) Higgs sector with-
out including the plethora of new particles which SUSY
predicts. Within this class of models, the Higgs sector of the
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SM is extended by introducing an extra doublet of complex
SUð2ÞL Higgs scalar fields. After spontaneous symmetry
breaking, the two scalar Higgs doublets H1 and H2 yield
three physical neutral Higgs bosons (h, H, and A) and a pair
of charged-Higgs bosons (H�) [19].Moreover, after electro-
weak symmetry breaking, each doublet acquires a vacuum
expectation value (VEV) vi such that v21 þ v22 ¼ ð ffiffiffi

2
p

GFÞ−1,
where GF is the Fermi constant and the v1 and v2 are the
VEVs of H1 and H2, respectively. Furthermore, it is often
useful to express the parameters tan β ¼ v2=v1 as the ratio of
VEVs and the neutral sector mixing term sinðβ − αÞ. In fact,
the angles α and β govern the mixing between mass
eigenstates in the CP-even sector and CP-odd/charged
sectors, respectively.
The dominant production and decay modes for a charged

Higgs boson depend on the value of its mass with respect to
the top quark mass and can be classified into three
categories [21]. Among them, light charged Higgs scenar-
ios are defined by Higgs-boson masses smaller than the
top quark mass. In the 2HDM, the main production mode
for light charged Higgses is through the top quark decay
t → bHþ. Therefore, at the CERN LHC, the light Higgses
can be searched in the subsequent decay products of
the top pairs tt̄ → H�H∓bb̄ and tt̄ → H�W∓bb̄ when
charged Higgs decays into the τ lepton and neutrino. In
Refs. [22,23], the OðαsÞ QCD corrections to the hadronic
decay width of a charged Higgs boson, i.e., Γðt → bHþÞ,
are calculated, and in Ref. [24], the leading-order contri-
bution and the OðαsÞ corrections to the polarized top
quark decay into bHþ are computed. In Refs. [25,26],
the energy distribution of B hadrons is investigated in the
unpolarized top decays through the 2HDM scenarios,
i.e., t → bHþ → BHþ þ jets. In Ref. [27], in the 2HDM
framework, the OðαsÞ angular distribution of the energy
spectrum of B/D mesons is studied by considering the polar
and the azimuthal angular correlations in the rest frame
decay of a polarized top quark, i.e., tð↑Þ → B=DþHþ þ
X followed by Hþ → lþνl. Note that, even though current
ATLAS and CMS measurements exclude a light charged
Higgs for most of the parameter regions in the context of
the minimal supersymmetric standard model (MSSM)
scenarios, these bounds are significantly weakened in
the type-II 2HDM (MSSM) once the exotic decay channel
into a lighter neutral Higgs,H� → AW�=HW�, is open. In
Ref. [28], the production possibility of a light charged
Higgs in top quark decay via single top or top pair
production is examined, with a subsequent decay as
H� → AW�=HW�. It is shown that this decay mode
can reach a sizable branching fraction at low tan β once
it is kinematically permitted. These results show that the
exotic decay channel Hþ → AWþ=HWþ is complemen-
tary to the conventional Hþ → τþντ channel considered in
the current MSSM scenarios.
Two considerable points about all mentioned works are

as follows. First, in all works, authors have applied the

narrow width approximation (NWA) in which an inter-
mediate gauge boson (Wþ boson in the SM and Hþ boson
in the 2HDM scenario) is considered the on-shell particle.
Second, the contribution of the interference term in the total
decay rate of top quarks is ignored. In this work, we shall
examine how much these two approximations change the
results. Note that an important condition limiting the
applicability of the narrow width approximation, however,
is the requirement that there should be no interference of
the contribution of the intermediate particle for which the
NWA is applied with any other close-by resonance. It
should be noted that, in a general case, if the mass gap
between two intermediate particles is smaller than one of
their total widths, the interference term between the
contributions from the two nearly mass-degenerate par-
ticles may become large. In these cases, a single resonance
approach or the incoherent sum of the contributions due to
two resonances does not necessarily hold.
This work is organized as follows. In Sec. II, we

calculate the Born rate of top quark decay in the SM
through the direct approach and the narrow width approxi-
mation. We will also present the next-to-leading-order
(NLO) QCD corrections to the tree-level rate of top decay.
In Sec. III, the same calculations will be done by working in
the general 2HDM. In Sec. IV, we present our results for the
interference effects on the total top quark decay and show
when this effect is considerable. In Sec. V, we summarize
our conclusions.

II. TOP QUARK DECAY IN THE
SM t → bW + → bl + νl

For the Cabibbo-Kobayashi-Maskawa quark mixing
matrix [29], one has jVtbj ≈ 1. Therefore, the top quark
decays within the SM are completely dominated by the
mode t→bWþ followed by Wþ→lþνl where lþ ¼
eþ; μþ; τþ. Since the top quark’s lifetime is much shorter
than the typical strong interaction time, the top quark
decay dynamics is controlled by the perturbation theory.
Therefore, incorporating the QED/QCD perturbative cor-
rections, one has precise theoretical predictions for the decay
width to be confronted with the experimental data. For a
warm-up exercise, we start to calculate the decay width of
the process

tðptÞ→bðpbÞþWþðpWÞ→bðpbÞþ lþðplÞþνlðpνÞ ð1Þ

at the Born approximation. The matrix element of this
process at tree level is given by

MSM
Born ≡MSM

0 ¼ −
g2W
8
jVtbj

�−gαβ þ pα
Wpβ

W

m2
W

p2
W −m2

W

�

× ½ūbðpbÞγαð1 − γ5ÞutðptÞ�
× ½ūνðpνÞγβð1 − γ5ÞvlðplÞ�; ð2Þ
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where g2W ¼ 4πα=sin2θW ¼ 8m2
WGF=

ffiffiffi
2

p
is the electro-

weak coupling constant, θW is the weak mixing angle,
and mW is the Wþ-boson mass. Since the second term in
parentheses (2) is proportional to the lepton mass due to the
conservation of the lepton current, it can be omitted simply.
Therefore, the matrix element squared reads

jMSM
0 ðt→blþνlÞj2¼

�
2g2W jVtbj
p2
W−m2

W

�
2

ðpb ·pνÞðpl ·ptÞ; ð3Þ

where, for the convenient scalar products in the top quark
rest frame, one has 2pb · pν ¼ m2

t þm2
l −m2

b − 2mtEl
and pt · pl ¼ mtEl, in which El is the energy of the
lepton in the top quark rest frame. Technically, to
obtain the matrix element squared for the polarized top
decay, one should replace

P
stuðpt;stÞūðpt;stÞ¼ ð=ptþmtÞ

in the unpolarized Dirac string by uðpt; stÞūðpt; stÞ ¼
ð1 − γ5=stÞð=st þmtÞ=2.
Since the main contribution to the top quark decay mode

(1) comes from the kinematic region where theWþ boson is
near its mass shell, one has to take into account its finite
decay width ΓW . For this reason, in Eq. (3), we employ the
Breit-Wigner prescription of the Wþ-boson propagator for
which the propagator contribution of an unstable particle of
mass MW and total width ΓW is given by

1

p2
W −M2

W
→

1

p2
W −M2

W þ iMW ΓW
: ð4Þ

Thus, the matrix element squared (3) reads

jMSM
0 ðt→ blþνlÞj2¼

g4Wm
3
t jVtbj2

ðp2
W −m2

WÞ2þm2
W Γ2

W

×El

�
1þ

�
ml

mt

�
2

−
�
mb

mt

�
2

−
2El

mt

�
:

ð5Þ
The phase space element for the three particles final state is
given by

dPS3 ¼ ð2πÞ−5 d
3p⃗b

2Eb

d3p⃗ν

2Eν

d3p⃗l

2El
δ4ðpt − pb − pν − plÞ

¼ 1

25π3
dEbdEl: ð6Þ

Ignoring the lepton mass (ml ≈ 0), the kinematic
restrictions are mt=2−El ≤Eb ≤mt=2 and 0 ≤ El ≤ mt=
2ð1 − ðmb=mtÞ2Þ, where Eb is the energy of the b quark.
For the Born decay width, we use Fermi’s golden rule

dΓ0 ¼
1

2mt
jM0j2dPS3; ð7Þ

where jM0j2 ¼
P

spin jM0j2=ð1þ 2stÞ and st stands for the
top quark spin. Thus, for the case of unpolarized top quark
decay, we obtain the decay rate at the lowest order as

ΓSM
0 ðt → blþνlÞ ¼

mtα
2jVtbj2

192πsin4θW

�
2ðR − 1Þð1þ R − 2ωÞ þ

�
3ðω − 1ÞðR − ωÞ þ ω

Γ2
W

m2
t

�
ln
ωΓ2

W þm2
t ðR − ωÞ2

ωΓ2
W þm2

t ð1 − ωÞ2

þ 1

mt
ffiffiffiffi
ω

p
ΓW

½3ωΓ2
Wð1þ R − 2ωÞ þm2

t ð1 − RÞ3 þm2
t ðR − ωÞ2ðRþ 2ω − 3Þ�

×
�
tan−1

mtðω − RÞffiffiffiffi
ω

p
ΓW

þ tan−1
mtð1 − ωÞffiffiffiffi

ω
p

ΓW

��
; ð8Þ

where we defined R ¼ ðmb=mtÞ2 and ω ¼ ðmW=mtÞ2.
Concentrating on the case lþνl ¼ τþντ with mτ ¼
1.776 GeV and taking mt ¼ 172.98 GeV, mW ¼
80.339 GeV, mb ¼ 4.78 GeV, ΓW ¼ 2.085� 0.042 GeV,
sin2 θW ¼ 0.2312, α ¼ 0.0077, and jVtbj ≈ 1 [30], one has

ΓSM
0 ðt → bτþντÞ ¼ 0.1543: ð9Þ

Extension of this approach to higher orders of pertur-
bative QED/QCD is complicated. For example, at the
NLO perturbative QCD, the phase space element con-
tains four particles, including a real emitted gluon, so
this leads to cumbersome computations. For this reason,
in all manuscripts, authors have applied the narrow
width approximation, which will be described in the
following.

A. Narrow width approximation

The separation of amore complicated process into several
subprocesses involving on-shell incoming and outgoing
particles is achieved with the help of the NWA. This
approximation is based on the observation that the on-shell
contribution is strongly enhanced if the total width is much
smaller than the mass of the particle, i.e., Γ ≪ M. Here, we
briefly describe how the NWAworks for the decay process
of the top quark.
On squaring the Born matrix element (2) and taking the

Breit-Wigner prescription, one is led to theBorn contribution

jMSM
0 j2¼ 1

ðp2
W−m2

WÞ2þðmW ΓWÞ2
× jMBornðt→bWþÞj2jMBornðWþ→ lþνlÞj2; ð10Þ
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where jMBornðt → bWþÞj2 ¼ 2g2W jVtbj2ðpb · ptÞ and
jMBornðWþ → lþνlÞj2 ¼ 2g2Wðpl · pνÞ. We now factorize
the three-body decay rate (6) into the two-body rates Γðt →
bWþÞ and ΓðWþ → lþνlÞ using the NWA for theWþ boson

for which the condition ΓW ≪ mW holds. First, we introduce
the identity

1 ¼
Z

dp2
W

Z
d3pW

2EW
δ4ðpWþ − plþ − pνlÞ; ð11Þ

therefore, the decay rate (7) reads

dΓ0 ¼ 2mW

Z
dp2

W

2π
jMSM

0 j2 × 1

2mt

�
d3pb

ð2πÞ32Eb

d3pW

ð2πÞ32EW
ð2πÞ4δ4ðpt − pb − pWþÞ

�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{dPS2ðt→bWþÞ

×
1

2mW

�
d3pl

ð2πÞ32El

d3pνl

ð2πÞ32Eνl

ð2πÞ4δ4ðpWþ − plþ − pνlÞ
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dPS2ðWþ→lþνlÞ

: ð12Þ

Next, the phase space is nicely factorized so that by
substituting jMSM

0 j2 (10) one finds

dΓ0 ¼
mW

π

Z
dp2

W
1

ðp2
W −m2

WÞ2 þ ðmW ΓWÞ2

×

�
1

2mt
½jMBorn

t→bWþj2�dPS2ðt → bWþÞ

×
1

2mW
½jMBorn

Wþ→lþνl
j2�dPS2ðWþ → lþνlÞ

�
: ð13Þ

Adopting the NWA approach, the Breit-Wigner resonance
is replaced by a delta function as [31]

1

ðp2
W −m2

WÞ2 þ ðmW ΓWÞ2
≈

π

mW ΓW
δðp2

W −m2
WÞ: ð14Þ

This approximation is expected to work reliably up to terms
of OðΓW=mWþÞ. As was discussed, a necessary condition
limiting the applicability of this approximation is the
requirement that there should be particles with a total
decay width much smaller than their mass; otherwise, the
integral (13) is reduced to [31]

Z
dp2

W
1

ðp2
W −m2

WÞ2 þ ðmW ΓWÞ2

¼ −
1

mW ΓW
tan−1

�
m2

W − p2
W

mW ΓW

�
: ð15Þ

Using the NWA, the three-body decay t → bτþντ is
factorized as

Γðt → blþνlÞ ¼ Γðt → bWþÞ ΓðW
þ → lþνlÞ
ΓW

¼ Γðt → bWþÞBrðWþ → lþνlÞ; ð16Þ

which is a result expected from physical intuition
and is expected to work reliably up to terms of
OðΓW=mWþÞ. For three individual leptonic branching
ratios, one has BrðWþ→ eþνeÞ¼ 10.75�0.13, BrðWþ →
μþνμÞ ¼ 10.57� 0.15 and BrðWþ → τþντÞ ¼ 11.25�
0.20 in units 10−2 [32].
In (16), the partial Born width of the decay t → bWþ

differential in the angle θP enclosed between the top quark
polarization 3-vector P⃗ and the bottom quark 3-momentum
p⃗b is given by [14,16]

dΓSM
0

d cos θP
ðt → bWþÞ ¼ 1

2
ðΓSM

0 þ PΓSM
0P cos θPÞ; ð17Þ

where P ¼ jP⃗jð0 ≤ P ≤ 1Þ is the degree of polarization and

ΓSM
0 ¼ mtα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 − R

p

8sin2θW

�
1þ R − 2ωþ ð1 − RÞ2

ω

�
;

ΓSM
0P ¼ mtα

4ωsin2θW
ð1 − R − 2ωÞðS2 − RÞ: ð18Þ

Here, we defined S ¼ ð1þ R − ωÞ=2. Taking the input
parameters as before, one has

ΓSM
0 ðt → bWþÞ ¼ 1.463;

ΓSM
0P ðtð↑Þ → bWþÞ ¼ 0.579: ð19Þ

Considering the factorization (16), onehas ΓSM
0 ðt→bτþντÞ¼

1.463×BrðWþ→τþντÞ¼0.1645, which is in agreement
with the result obtained in the full calculation (9) up to the
accuracy about5%.One also has ΓSM

0 ðt → bμþνμÞ ¼ 0.1543
and ΓSM

0 ðt → beþνeÞ ¼ 0.1569.
InRef. [13], we have calculated theNLOQCDcorrections

to the differential decay rate of t → bWþ in the massless
(with mb ¼ 0) and massive (with mb ≠ 0) schemes. The
result for the massless decay rate reads
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ΓSM
NLOðt→ bWþÞ

¼ ΓSM
0

�
1þCFαs

2π

�
−
2π2

3
−4Li2ðωÞ−

5þ4ω

1þ2ω
lnð1−ωÞ

−2
ωð1þωÞð1−2ωÞ
ð1−ωÞ2ð1þ2ωÞ lnω−2 lnω lnð1−ωÞ

−
1þ3ð1þ2ωÞðω−2Þ
2ð1−ωÞð1þ2ωÞ

��
: ð20Þ

In Ref. [13], using the NWA approach, we have also
calculated the NLO QCD corrections to the differential
decay rate of t → bWþ → blþνl considering the helicity
contributions of the Wþ boson. In Refs. [15–17], we have
computed the differential decaywidth for the process tð↑Þ →
bWþ up to the NLO accuracy. Our numerical results read

ΓSM
NLOðt → bWþÞ ¼ ΓSM

0 ð1 − 0.0853Þ;
ΓSM
NLO;Pðtð↑Þ → bWþÞ ¼ ΓSM

0P ð1 − 0.1308Þ: ð21Þ

Thus, the OðαsÞ contribution to the unpolarized and polar-
ized top width is −8.53% and −13%, respectively, while the
contribution of the finite W-width effect is about 5%. It
should be noted that the OðαÞ electroweak corrections
contribute typically by þ1.55% [33,34].

III. TOP QUARK DECAY IN THE 2HDM

In the theories beyond the SM with an extended Higgs
sector one may also have the decay mode

t → bHþ → blþνl; ð22Þ
provided that mt > mHþ þmb. A model-independent
lower bound on the Higgs mass mHþ arising from the
nonobservation of the charged Higgs pair production at
LEPII has yielded mH� > 79.3 GeV at 95% C.L. [35]. As
is asserted in Ref. [36], a charged Higgs with a mass in the
range 80 ≤ mH� ≤ 160 GeV is a logical possibility, and its
effect should be searched for in the process (22). A
beginning along these lines has already been done at the
Tevatron [37,38], but a definitive search of the charged
Higss bosons over a good part of the ðmH� − tan βÞ plane is
a plan which still has to be done, and this belongs to the
CERN LHC experiments [39].
Here, we review some technical details about the decay

rate of the unpolarized top quark in the process (22) by
working in the general 2HDM [18–20] in whichH1 andH2

are the doublets ofwhich theVEVs givemasses to the down-
and up-type quarks. Moreover, a linear combination of the
charged components of doublets H1 and H2 gives two
physical charged Higgs bosons H�, i.e., H� ¼ H�

2 cos β−
H�

1 sin β.
In a general 2HDM, in order to avoid tree-level flavor-

changing neutral currents, which can be induced by Higgs
exchange, the generic Higgs-boson coupling to all types of

quarks must be restricted. Fortunately, there are several
classes of two-Higgs-doublet models which naturally
avoid this difficulty by restricting the Higgs coupling.
Imposing flavor conservation, there are four possibilities
(models I–IV) for the two Higgs doublets to couple to the
SM fermions so that each gives rise to rather different
phenomenology predictions. In these fourmodels, assuming
massless neutrinos, the generic charged Higgs coupling
to the SM fermions can be expressed as a superposition
of right- and left-chiral coupling factors [40], so the
relevant part of the interaction Lagrangian of the process
(22) is given by

LI ¼
gW

2
ffiffiffi
2

p
mW

HþfVtb½ūtðptÞfAð1þ γ5Þ

þ Bð1 − γ5ÞgubðpbÞ�
þ C½ūνlðpνÞð1 − γ5ÞulðplÞ�g; ð23Þ

where A, B, and C are three model-dependent parameters.
In the first possibility (called model I), the H2 doublet

gives masses to all quarks and leptons, so the other one, i.e.,
doublet H1, essentially decouples from fermions. In this
model, one has

AI ¼mt cotβ; BI¼−mb cotβ; CI ¼−mτ cotβ: ð24Þ
In the second scenario (called model II), the H2 doublet
gives mass to the right-chiral up-type quarks (and possibly
neutrinos), and the H1-doublet gives mass to the right-
chiral down-type quarks and charged leptons. In this
possibility, the Lagrangian (23) contains

AII ¼mt cotβ; BII ¼mb tanβ; CII ¼mτ tanβ: ð25Þ

There are also two other scenarios (models III and IV) in
which the down-type quarks and charged leptons receive
masses from different doublets; in model III, both up- and
down-type quarks couple to the second doublet (H2), and
all leptons couple to the first one, so one has

AIII¼mtcotβ; BIII¼mb tanβ; CIII¼−mτ cotβ; ð26Þ

and in the fourth scenario (model IV), the roles of two
doublets are reversed with respect to model II, i.e.,

AIV¼mtcotβ; BIV¼−mbcotβ; CIV¼mτ tanβ: ð27Þ

These four models are also known as type I-IV 2HDM
scenarios. Note that the type-II scenario is, in fact, the
Higgs sector of the MSSM up to SUSY corrections [41,42].
In other words, in the MSSM, we have a type-II 2HDM
sector in addition to the supersymmetric particles including
the stops, charginos, and gluinos.
After this description, we start to calculate the Born term

contribution to the decay rate of the process t → blþνl
(lþ ¼ eþ, μþ, τþ). Considering the decay process

INTERFERENCE EFFECTS FOR THE TOP QUARK … PHYS. REV. D 99, 095012 (2019)

095012-5



tðptÞ → bðpbÞ þHþðpHþÞ → bðpbÞ þ lþðplÞ þ νlðpνÞ ð28Þ

and using the couplings from the Lagrangian (23), one can write the matrix element of the process (28) as

MBSM
0 ðt→ blþνlÞ¼

g2W jVtbj
8m2

W

1

p2
Hþ −m2

Hþ þ imHþ ΓH
C½ūνðpνÞð1þ γ5ÞvlðplÞ�½ūbðpbÞfAð1þ γ5ÞþBð1− γ5ÞgutðptÞ�: ð29Þ

Thus, the matrix element squared reads

jMBSM
0 ðt → blþνlÞj2 ¼

�
g2W jVtbjffiffiffi
2

p
m2

W

�
2 1

½p2
Hþ −m2

Hþ�2 þm2
Hþ Γ2

H
C2ðpl · pνÞfðA2 þ B2Þpb · pt þ 2mbmtABg: ð30Þ

The kinematic restrictions and the phase space element are as before; see Eq. (6). Thus, defining y ¼ ðmHþ=mtÞ2, for the
unpolarized decay rate, one has

ΓBSM
0 ðt→blþνlÞ¼

�
CαjVtbj

16
ffiffiffi
π

p
m2

Wsin
2θW

�
2

×

�
mtðR−1Þ½8AB

ffiffiffiffi
R

p
þðA2þB2Þð3þR−4yÞ�

þ2

ffiffiffi
y

p
ΓH

�
tan−1

mtðy−RÞffiffiffi
y

p ΓH
þ tan−1

mtð1−yÞffiffiffi
y

p ΓH

�
½4AB

ffiffiffiffi
R

p
ðΓ2

Hþð1−yÞm2
t Þ

þðA2þB2Þ½ð2þR−3yÞΓ2
Hþm2

t ð1−yÞð1þR−yÞ��

þmt

�
4ABð2y−1Þ

ffiffiffiffi
R

p
þðA2þB2Þ

�
yΓ2

H

m2
t
−ð1þR−4y−2Ryþ3y2Þ

��
×ln

yΓ2
Hþm2

t ðR−yÞ2
yΓ2

Hþm2
t ð1−yÞ2

�
: ð31Þ

Leaving this result and working in the NWA framework, in which p2
Hþ ¼ m2

Hþ is given from the beginning, we have

ΓBSM
0 ðt → blþνlÞ ¼ Γ0ðt → bHþÞ × BrðHþ → lþνlÞ; ð32Þ

where BrðHþ → lþνlÞ ¼ Γ0ðHþ → lþνlÞ=ΓTotal
H , and the polarized and unpolarized tree-level decay widths read [25–27]

ΓBSM
0 ðt → bHþÞ ¼ mt

16π
fða2 þ b2Þð1þ R − yÞ þ 2ða2 − b2Þ

ffiffiffiffi
R

p
gλ1

2ð1; R; yÞ;

ΓBSM
0P ðtð↑Þ → bHþÞ ¼ mt

8π
ðabÞλð1; R; yÞ: ð33Þ

Here, λðx; y; zÞ ¼ ðx − y − zÞ2 − 4yz is the Källén function
(triangle function), and, for simplicity, we introduced the
coefficients a and b as

a ¼ gW
2

ffiffiffi
2

p
mW

jVtbjðAþ BÞ;

b ¼ gW
2

ffiffiffi
2

p
mW

jVtbjðA − BÞ;

c ¼ gW
2

ffiffiffi
2

p
mW

C: ð34Þ

The advantage of this notation is that the coupling
of the charged Higgs to the bottom and top quarks is

expressed as a superposition of scalar and pseudoscalar
coupling factors. The NLO QCD radiative corrections to
the polarized and unpolarized rates are given in our
previous works [25–27].
Since all current search strategies postulate that the

charged Higgs decays either leptonically ðHþ → τþντÞ or
hadronically ðHþ → cs̄Þ, we adopt, following Ref. [43], the
relevant branching fraction BrðHþ → τþντÞ as

BrðHþ → τþντÞ ¼
ΓðHþ → τþντÞ

ΓðHþ → τþντÞ þ ΓðHþ → cs̄Þ ; ð35Þ

where in model I (and IV) one has

Γ0ðHþ → τþντÞ ¼
g2WmHþ

32πm2
W
m2

τcot2β;

ΓðHþ → cs̄Þ ¼ 3g2WmHþ

32πm2
W

jVcsj2ðcot2βÞλ1
2

�
1;

m2
c

m2
Hþ

;
m2

s

m2
Hþ

��
ðm2

c þm2
sÞ
�
1 −

m2
c

m2
Hþ

−
m2

s

m2
Hþ

�
þ 4

m2
cm2

s

m2
Hþ

�
ð36Þ
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and for model II (and III) one has

Γ0ðHþ→ τþντÞ¼
g2WmHþ

32πm2
W
m2

τ tan2β;

ΓðHþ→cs̄Þ¼3g2WmHþ

32πm2
W
jVcsj2λ1

2

�
1;

m2
c

m2
Hþ

;
m2

s

m2
Hþ

�

×

�
ðm2

ccot2βþm2
s tan2βÞ

×

�
1−

m2
c

m2
Hþ

−
m2

s

m2
Hþ

�
−4

m2
cm2

s

m2
Hþ

�
: ð37Þ

Both results are in complete agreement with Ref. [22].
In the limit of m2

i =m
2
H → 0 ði ¼ c; sÞ, the branching

fraction (35) in the type-I 2HDM is simplified as

BrðHþ → τþντÞ ¼
1

1þ 3jVcsj2½ðms
mτ
Þ2 þ ðmc

mτ
Þ2� ; ð38Þ

which is independent of the tan β and in the type-II reads

BrðHþ → τþντÞ ¼
1

1þ 3jVcsj2½ðms
mτ
Þ2 þ ðmc

mτ
Þ2cot4β� : ð39Þ

Takingms¼95MeV, mc ¼ 1.67GeV,mτ ¼ 1.776 GeV,
and jVcsj ¼ 0.9734, the branching ratio in model I reads
Br ¼ 0.284. While in model I the branching ratio is
independent of the tan β, in the type-II scenario, it depends
on the tan β. It is simple to prove that for tan β > 5 one has
Br ≈ 1 in model II to a very high accuracy. Direct searches
at the LHC, with the center-of-mass energy of 7 [44–46]
and 8 TeV [47,48] set stringent constraints on the mH� −
tan β parameter space.
Taking mHþ ¼ 95 GeV and tan β ¼ 8, from full calcu-

lation (31), one has ΓModelI
0 ¼36×10−4 in the type-I 2HDM,

while the corresponding result in the type-II 2HDM
reads ΓModel II

0 ¼ 559 × 10−4. Considering Eqs. (32)–(39),
our results in the NWA scheme read ΓModel I

0 ¼ 35 × 10−4

and ΓModel II
0 ¼ 568 × 10−4. As is seen, the results (31)

obtained through the direct approach are in good
agreement with the ones from the NWA for both models
up to the accuracies about 1.6% (for model I) and 2.7% (for
model II).
Applying Eq. (31), in Figs. 1–3, we studied the depend-

ence of the top quark decay rate on tan β considering
mHþ ¼ mWþ (in Fig. 1), mHþ ¼ 85 GeV (in Fig. 2), and
mHþ ¼ 120 GeV (in Fig. 3). As is seen, for tan β > 2, the
Born rate in model II is always larger than the one in
model I, and the lowest value at the type-II model occurs at
tan β ¼ 6. From Fig. 1, it can be also seen that for mHþ ¼
mWþ one has ΓModel II

0 ≥ ΓSM
0 ð¼ 0.1543Þ when tan β > 14

is considered. In Figs. 4 and 5, varying the charged Higgs-
boson mass, we investigated the behavior of the top decay
rate at the Born level for both models when tan β is fixed. In
Ref. [26], we have calculated the QCD corrections to the
differential decay rate of t → bHþ up to NLO accuracy.
Taking mHþ ¼ mWþ and tan β ¼ 8, one has

ΓModel I
NLO ðt → bHþÞ ¼ ΓModel I

0 ð1 − 0.0879Þ;
ΓModel II
NLO ðt → bHþÞ ¼ ΓModel II

0 ð1 − 0.4635Þ; ð40Þ

Born model I

Born model II

0 5 10 15 20
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

tan

t
b

FIG. 1. The Born decay rate of t → bτþντ as a function of tan β
in two scenarios for which mHþ ¼ mWþ is set.

Born model I

Born model II
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t
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Ν Τ

FIG. 2. As in Fig. 1 but for mHþ ¼ 85 GeV.

Born model I

Born Model II
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0.12

0.14

tanΒ

t
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FIG. 3. As in Fig. 1 but for mHþ ¼ 120 GeV.
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where ΓModel I
0 ¼ 159× 10−4 and ΓModel II

0 ¼ 700 × 10−4.
Also, for mHþ ¼ 85 GeV and tan β ¼ 8, they read

ΓModel I
NLO ðt → bHþÞ ¼ Γ0Model I

0 ð1 − 0.0870Þ;
ΓModel II
NLO ðt → bHþÞ ¼ Γ0Model II

0 ð1 − 0.4627Þ; ð41Þ

where Γ0Model I
0 ¼ 149×10−4 and Γ0Model II

0 ¼ 656 × 10−4.
As is seen, the NLO QCD corrections to the decay rates are
significant, especially when the type-II 2HDM scenario is
concerned.

IV. INTERFERENCE EFFECTS OF AMPLITUDES

Considering the decay modes

t → bþWþ=Hþð→ lþνþÞ; ð42Þ
the full amplitude for the top decay process is the sum of
the amplitudes in the SM and BSM theories, i.e.,

MTotalðt → blþνþÞ ¼ MSM
t→blþνþ þMBSM

t→blþνþ : ð43Þ

At the Born level, the matrix element squared is
jM0j2 ¼ jMSM

0 j2 þ jMBSM
0 j2 þ 2ReðMBSM

0 ·MSM†
0 Þ, where

the amplitudes MSM
0 and MBSM

0 are given in (2) and (29),
respectively. Considering the Born decay width (7) and the
phase space element (6), one can obtain the total Born
decay width as

ΓTot
t ¼ ΓSM

0 ðt→ blþνlÞþ ΓBSM
0 ðt→ blþνlÞþ ΓInt

0 ; ð44Þ

where ΓSM
0 and ΓBSM

0 are given in (8) and (31), respectively.
In all manuscripts, it is postulated that the contribution of
the interference term can be ignored while it needs some
subtle accuracies. In this section, we intend to estimate this
contribution at leading order, i.e., ΓInt

0 , to show when one is
allowed to omit this contribution.
The contribution of interference amplitude squared is

obtained as

jMInt
0 j2¼ 1

2

X
spin

ð2RejMBSM
0 :MSM†

0 j2Þ¼
�

g2W
8mW

jVtbj
�

2

×
ðp2

W −m2
WÞðp2

H−m2
HÞþmWmHΓW ΓH

½ðp2
W −m2

WÞ2þm2
W Γ2

W �½ðp2
H−m2

HÞ2þm2
HΓ2

H�
× ð−64mlC½Amtðpb ·pνÞþBmbðpt ·pνÞ�Þ; ð45Þ

where pt · pν ¼ mtEν and 2pb ·pν¼m2
t þm2

l −m2
b−2mtEl

in the top rest frame. The kinematic restrictions are

0 ≤ El ≤
mtð1 − RÞ

2
;

mt

2

�
1 − R − 2

El

mt

�
≤ Eν ≤

mt

2

�
1 −

mtR
mt − 2El

�
: ð46Þ

Finally, defining l ¼ ðml=mtÞ2, for the contribution of the
interference term in the top decay rate, one has

ΓInt
0 ðt → blþνlÞ ¼

Cα2
ffiffi
l

p

27πm2
tωsin4θW

�
2mtðR − 1ÞðA − B

ffiffiffiffi
R

p
Þ þ 1

m2
t ðy − ωÞ2 þ ð ffiffiffi

y
p ΓH þ ffiffiffiffi

ω
p

ΓWÞ2
½fðy;ω; ΓH; ΓWÞ

þ gðy;ω; ΓH; ΓWÞ þ hðy;ω; ΓH; ΓWÞ þQðy;ω; ΓH; ΓWÞ�
�
; ð47Þ

where gðy;ω; ΓH; ΓWÞ ¼ fðy ↔ ω; ΓH ↔ ΓWÞ so that

Born model I

Born model II

tan 8

80 100 120 140 160
0.00

0.01
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0.03

0.04

0.05

0.06

0.07

mH

t
bΤ
Ν Τ

FIG. 4. ΓBSM
Born ðt → bτþντÞ as a function ofmHþ in two scenarios

for which tan β ¼ 8 is set.

Born model I

300 Born model II

tan 30
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0.0
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mH

t
bΤ
Ν Τ

FIG. 5. As in Fig. 4 but for tan β ¼ 30.
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fðy;ω; ΓH; ΓWÞ ¼ mt ln
ðR − yÞ2m2

t þ yΓ2
H

ð1 − yÞ2m2
t þ yΓ2

H
ðm2

t ðy − ωÞ½Að1 − yÞ2 þ B
ffiffiffiffi
R

p
ð1 − y2Þ� þ 2

ffiffiffiffiffiffi
yω

p
ΓHΓW ½Aðy − 1Þ − By

ffiffiffiffi
R

p
�

þ yΓ2
H½Aðyþ ω − 2Þ − Bðyþ ωÞ

ffiffiffiffi
R

p
�Þ; ð48Þ

and Qðy;ω; ΓH; ΓWÞ ¼ hðy ↔ ω; ΓH ↔ ΓWÞ, where

hðy;ω; ΓH; ΓWÞ ¼ 2

�
tan−1

mtðR − yÞffiffiffi
y

p ΓH
− tan−1

mtð1 − yÞffiffiffi
y

p ΓH

�
½ðB

ffiffiffiffi
R

p
− AÞðyΓW Γ2

H

ffiffiffiffi
ω

p þ ðΓH
ffiffiffi
y

p Þ3

þm2
t ΓHðy2 − 2yωþ 1Þ ffiffiffi

y
p

−m2
t ðy2 − 1ÞΓW

ffiffiffiffi
ω

p Þ þ 2Am2
t ðð1 − ωÞΓH

ffiffiffi
y

p þ ð1 − yÞΓW
ffiffiffiffi
ω

p Þ�: ð49Þ

In the above relations, ΓW ¼ 2.085 [30], and concentrating
on lþ ¼ τþ, one has ΓH ¼ ΓðHþ → τþντÞ þ ΓðHþ → cs̄Þ,
which are given in (36) and (37) for models I and II.
In Figs. 6–8, we studied the dependence of the inter-

ference term on tan β considering mHþ ¼ mWþ (in Fig. 6),
mHþ ¼ 85 GeV (in Fig. 7), and mHþ ¼ 120 GeV (in
Fig. 8). As is seen, for mHþ ¼ mWþ, this contribution in
model I is positive for all values of tan β, while this is
negative in model II. This behavior is vice versa in Fig. 8, in
which we set mH ¼ 120 GeV. For tan β > 2, the absolute

value of interference contribution in model II is always
larger than the one in model I.
In Figs. 9 and 10, we investigate the dependence of the

interference term on the charged Higgs mass by fixing
tan β ¼ 8 (in Fig. 9) and tan β ¼ 30 (in Fig. 10). As is seen,
the maximum value of the interference contribution occurs
for mHþ ≈mWþ, and it goes to zero when tan β increases.
To work out our conclusion, here, we concentrate on the
two following examples:

mH mW
Model I

Model II

0 10 20 30 40 50

0.020

0.015

0.010

0.005

0.000

0.005

tanΒ

In
t

t
bΤ
Ν Τ

FIG. 6. The interference contribution as a function of tan β for
which we fixed the Higgs mass as mHþ ¼ mWþ .

Model I
Model II

mH 85 GeV

0 10 20 30 40 50

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

0.0002

tanΒ

In
t

t
bΤ
Ν Τ

FIG. 7. As in Fig. 6 but for mHþ ¼ 85 GeV.

mH 120 GeV

Model I

Model II
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0
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0.00002

0.00003

0.00004

0.00005

tanΒ

In
t

t
b Τ
Ν Τ

FIG. 8. As in Fig. 6 but for mHþ ¼ 120 GeV.

tan 8
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FIG. 9. The contribution of interference term in the Born decay
rate of t → bτþντ as a function ofmHþ in two scenarios for which
tan β ¼ 8 is set.
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(1) Taking mHþ ≈mWþ and tan β ¼ 8, in the type-I
2HDM, one has

ΓTotal
NLOðt→ bνþντÞ¼ ΓSM

0 ð1−0.0853Þ
þ ΓBSM;I

0 ð1−0.0879Þþ ΓInt;

ð50Þ

where ΓSM
0 ¼ 0.1543, ΓBSM;I

0 ¼ 4.53× 10−3, and the
interference contribution at lowest order reads
ΓInt
0 ¼

9.95 × 10−5. This result in the type-II 2HDM reads

ΓTotal
NLOðt→bνþντÞ¼ ΓSM

0 ð1−0.0853Þ
þ ΓBSM;II

0 ð1−0.463Þþ ΓInt; ð51Þ

where ΓBSM;II
0 ¼ 6.94 × 10−2 and the interference

contribution reads ΓInt
0 ¼ −6.82 × 10−3. This exam-

ple shows that the interference contribution in the
type-I and -II scenarios is about 2% and −9% of the
contribution from 2HDM at leading order (LO),
respectively.

(2) Taking mHþ ¼ 85 GeV and tan β ¼ 8, in the type-I
2HDM, one has

ΓTotal
NLOðt→ bνþντÞ
¼ ΓSM

0 ð1−0.0853Þþ ΓBSM;I
0 ð1−0.870Þþ ΓInt;

ð52Þ

where ΓBSM;I
0 ¼ 4.2 × 10−3 and the interference

contribution at LO reads ΓInt
0 ¼ 9.2 × 10−6. This

result in the type-II 2HDM reads

ΓTotal
NLOðt→ bνþντÞ
¼ ΓSM

0 ð1−0.0853Þþ ΓBSM;II
0 ð1−0.462Þþ ΓInt;

ð53Þ

where ΓBSM;II
0 ¼ 0.0651 and the interference term

is ΓInt
0 ¼ −129 × 10−6.

These two examples show that for mHþ ≈mWþ the con-
tribution of interference term, specifically in the type-II
2HDM, is considerable and its value cannot be ignored.
Therefore, our numerical results emphasize that if the

mass gap between two intermediate particles (Wþ andHþ in
our work) is smaller than one of their total widths, the
interference term between the contributions from the two
nearly mass-degenerate particles may become considerable.
In otherwords, the interference effects can be considerable if
there are several resonant diagrams of which the intermedi-
ate particles (in general, with masses M1 and M2 for two
resonances) are close in mass compared to their total decay
widths: jM1 −M2j ≤ ðΓ1; Γ2Þ [31]. In these situations, a
single resonance approach or the incoherent sum of two
resonance contributions does not necessarily hold, and it
needs more attention. In fact, if the mass difference is
smaller than their total widths, the two resonances overlap.
This can lead to a considerable interference term, which was
neglected in the standardNWAbut can be taken into account
in the full calculation or in a generalized NWA [31].

V. CONCLUSIONS

In a general 2HDM, the main production mode of a light
charged Higgs bosons (with mHþ ≤ mt) is through the top
quark decay, t → bHþ, followed by Hþ → τþντ. In this
work, we have calculated the total decay rate of the top
quark, i.e., t → bþWþ=Hþ → blþνl, at the standard
model of particle physics as well as the 2HDM theory.
In the first part of our work, we calculated the Born decay
rate for the full process in which one deals with the stable
intermediate bosons Wþ and Hþ. Extension of this
procedure to higher orders of perturbative QED/QCD is
complicated, but it would be possible using the narrow-
width approximation for particles having a total width
much smaller than their masses. Next, using the NWA, we
recalculated the aforementioned decay rates and showed
that the accuracy of NWA is about (2–5)%. Within this
approach, we presented our numerical analysis at NLO.
A necessary and important condition limiting the appli-

cability of NWA is the requirement that there should be no
interference of the contribution of the intermediate particle
for which the NWA is applied with any other close-by
resonance. While within the SM of particle physics this
condition is usually valid for relevant processes at high-
energy colliders such as the CERN LHC or a future linear
collider, many models of physics beyond the SM have mass
spectra in which two or more states can be nearly mass
degenerate. If the mass gap between two intermediate
particles is smaller than one of their total widths, their
resonances overlap, so the interference contribution cannot
be neglected if the two states mix.
In the last section of our paper, we investigated the

interference effect of two intermediate particles in top

10 Model I

Model II

tan 30

80 100 120 140 160
3. 10 6

2. 10 6

1. 10 6

0

1. 10 6

2. 10 6

3. 10 6
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t

t
b Τ
Ν Τ

FIG. 10. As in Fig. 9 but for tan β ¼ 30.
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decay, i.e., Wþ and Hþ bosons, and showed when this
effect is considerable and the NWA is insufficient. Our
results confirmed that when the mass of charged Higgs
boson is considered equal or near to the Wþ mass
(referred to as nearly mass-degenerate particles) the
interference effects are sizable and considerable, specifi-
cally for the type-II 2HDM. For larger values of mHþ this

contribution can be omitted with high accuracy. It should
be pointed out that several cases have been already
identified in the literature in which the NWA is insuffi-
cient due to sizable interference effects, e.g., in the
context of the MSSM in Refs. [49,50] and in the context
of two- and multiple-Higgs models and in Higgsless
models in Ref. [51].
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