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An SO(5) x U(1) x SU(3) gauge-Higgs unification model inspired by SO(11) gauge-Higgs grand
unification is constructed in the Randall-Sundrum warped space. The 4D Higgs boson is identified with the
Aharonov-Bohm phase in the fifth dimension. Fermion multiplets are introduced in the bulk in the spinor,
vector and singlet representations of SO(5) such that they are implemented in the spinor and vector
representations of SO(11). The mass spectrum of quarks and leptons in three generations is reproduced
except for the down-quark mass. The small neutrino masses are explained by the gauge-Higgs seesaw
mechanism which takes the same form as in the inverse seesaw mechanism in grand unified theories in four

dimensions.
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I. INTRODUCTION

The existence of the Higgs boson of a mass 125 GeV has
been firmly established at the LHC [1]. It supports the
unification scenario of electromagnetic and weak forces. So
far almost all of the experimental results and observations
have been consistent with the standard model (SM) based
on the gauge group Ggy = SU(3)e x SU(2), x U(1)y.
Yet it is not clear whether or not the observed Higgs
boson is precisely what the SM assumes. All of the Higgs
couplings to other fields and to itself need to be determined
with better accuracy. Furthermore, the SM is afflicted with
the gauge hierarchy problem which becomes apparent
when the model is generalized to incorporate grand uni-
fication. The fundamental problem is the lack of a principle
which regulates the Higgs sector, quite in contrast to the
gauge sector which is controlled by the gauge principle.

There have been several attempts to overcome these
difficulties. Supersymmetric theory is one of them which
has been extensively investigated. An alternative approach
is gauge-Higgs unification in which the Higgs boson is
identified with the zero mode of the fifth-dimensional
component of the gauge potential. It appears as a fluc-
tuation mode of the Aharonov-Bohm (AB) phase @y in the
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fifth dimension [2-7]. Already a realistic gauge-Higgs
unification (GHU) model has been constructed. It is the
SO(5) x U(1)y gauge theory in the Randall-Sundrum (RS)
warped space with quark and lepton multiplets in the vector
representation of SO(5) [8—16]. It has been shown that the
SO(5) x U(1)y GHU yields nearly the same phenomenol-
ogy at low energies as the SM. Deviations of the gauge
couplings of quarks and leptons from the SM values are
less than 1073 for @y ~ 0.1. Higgs couplings of quarks,
leptons, W, and Z are approximately the SM values times
cos g, the deviation being about 1%. The Kaluza-Klein
(KK) mass scale is about mgg ~8 TeV for 0y ~0.1.
Implications of GHU to dark matter and Majorana neutrino
masses are also under intensive study [17-21].

The model predicts Z' bosons, which are the first KK
modes of y, Z, and Zp [SU(2); gauge boson], in the
7-9 TeV range for 8y = 0.1-0.07. They have broad widths
and can be produced at 14 TeV LHC [12,13]. The current
nonobservation of Z' signals puts the limit 65 < 0.11.
Right-handed quarks and charged leptons have rather large
couplings to Z'. It has been pointed out recently that the
interference effects of Z’ bosons can be clearly observed at
a 250 GeV e' e linear collider (ILC)[14,16]. For instance,
in the process e"e™ — utu~ the deviation from the SM
amounts to —4% with the electron beam polarized in the
right-handed mode by 80% (P, = 0.8) for 8y ~ 0.09,
whereas there appears negligible deviation with the
electron beam polarized in the left-handed mode by
80% (P,- = —0.8). In the forward-backward asymmetry
Apg(utu™), the deviation from the SM becomes —2% for
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P, = 0.8. These deviations can be seen at 250 GeV ILC
with 250 fb~! data, namely in the early stage of the ILC
project [22-24].

At this point one may pause to ask a question. Is there an
alternative way of introducing quark-lepton multiplets in
the SO(5) x U(1)y x SU(3). GHU? A different choice
may lead to different predictions for the Z’ couplings.

In this paper we present an alternative way of introducing
fermions in the SO(5) x U(1)y x SU(3), GHU based on
the compatibility with the grand unification of forces. Many
gauge-Higgs grand unification models have been proposed
[25-30]. Among them the SO(11) GHU generalizes the
gauge structure of the previous SO(5) x U(1)y x SU(3)
model, yielding the 4D Higgs boson as an AB phase
[31-36]. Fermions are introduced in the spinor and vector
representations of SO(11). The current SO(11) GHU
models in either 5D or 6D warped space are not completely
satisfactory, however. The models yield exotic light fer-
mions in addition to quarks and leptons at low energies.

In the framework of grand unification, the representation
in an SO(5) and U(1)y charge are not independent. Only
certain combinations are allowed. For instance, fields with
quantum numbers of up-type quarks are contained in an
SO(11) spinor, but not in an SO(11) vector. This fact
immediately implies that the fermion content in the
previous SO(5) x U(1)y x SU(3) model, in which all
quark multiplets are introduced in the vector representation
of SO(5), needs to be modified to be consistent with the
SO(11) unification. The purpose of the present paper is to
formulate an SO(5) x U(1)y x SU(3). GHU which is
compatible with the SO(11) GHU scheme. Models must
yield phenomenology of the SM at low energies. In
particular, the mass spectrum and gauge couplings of
quarks and leptons need to be reproduced within exper-
imental errors.

In Sec. IT we review the general structure of the group
SO(11) which is necessary to construct a model compatible
with gauge-Higgs grand unification. A new model of
SO(5) x U(1)x x SU(3) GHU is introduced in Sec. III.
In Sec. IV the mass spectrum of gauge fields is determined.
In Sec. V the mass spectra of various fermion fields are
determined. Brane interactions become important for
down-type quarks and neutral leptons. W couplings of
quarks and leptons are also evaluated. Section VI is devoted
to summary and discussions. Appendix A summarizes
generators of SO(5). Basis mode functions in the RS
space are summarized in Appendix B. In Appendix B 3
mode functions for massive fermion fields are given. In
Appendix C notation for Majorana fermions is summa-
rized. In Appendix D the mass spectra and wave functions
of additional dark fermion fields are derived.

IL. STRUCTURE OF SO(11)

We would like to formulate SO(5) x U(1)y x SU(3).
GHU inspired from SO(11) GHU. For that purpose it is

useful to review branching rules of SO(11) to its sub-
groups. We check them for SO(11) singlet, vector, spinor,
and adjoint representations 1, 11, 32, 55. All the necessary
information is found in Ref. [37]. First we note

SO(11) 5 SO(6)¢ x SO(5)yy =~ SU(4) - x USp(4)y,
S SUB3) e x U(l)y x SU(2), x SU(2)x

S SUB)e x SUQ2), x U(1)y x U(1),. (2.1

Here U(1)y represents U(l) in SO(6),~SU(4)c D
SU(3)c x U(1l)y, whereas U(1), represents U(l) in
SO(10) > SU(5) x U(1),.

The branching rules of SO(11) > SO(6)q x
SO5)y(=SU(4)-x USp(4)y,) are given by

1=(1,1),
11=(6.1) @ (1.5),
32=(4.4) @ 4.4),
55=(15.1) @ (6.5) & (1.10) (2.2)

The branching rules of SO(6)~SU(4)-DSU(3)-xU(1)y
are given by

1= (1),
4=03). 0 (1),
4=03) 1),
6=3)_® @)
15=(8),®(3): @ (3)2 & (1), (2.3)

Here the subscript represents the U(1)y charge Qy. For
later use, Oy has been normalized such that the electric
charge Qgy is given by Qgy = T + TX + Qx, where T4
and T® (a = 1, 2, 3) are generators of SU(2); and SU(2).
From the branching rules (2.2) and (2.3), one obtains the
branching rules of SO(11)>SU(3)xSO(5)y xU(1)y as

= (1.1),,
11_(3 D@ (3.1), @ (1,5),,
32 =3, 4)1 (1,4)_: 69(3 4) (1,4)%,
S5 (8.1, 0 (3.1, ® (3.1 ® (11), ® (3.5)
® (3.5), ® (1.10), (2.4)

The branching rules of SO(5)y,
SU(2)g are given by

~ USp(4) 2 SU(2), x
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D (2,2) & (1,3). (2.5)
(For more information, see Table 471 in Ref. [37].)

It has been shown [35,36] that in 6D SO(11) gauge-
Higgs grand unification in the hybrid warped space 4D SM
chiral fermions and other vectorlike fermions can be
extracted from 6D Weyl fermions without 6D and 4D
gauge anomalies. With appropriate boundary conditions
imposed, only (3’4)é ® (1,4)_1 of SU(3)c x SO(5)y x
U(1)y have zero modes of 6D SO(11) 32 Weyl fermions.
Also, only either (1,5), or (3.1)_, @ (3.1), have zero
modes of 6D SO(11) 11 Weyl fermions.

The gauge symmetry breaking takes place in three steps:

SU(3)e x SO(5)y x U(1)x
——SU(3)c x SU(2),, x SU2)g x U(1)y

— SUQB)xSU2);, xU(l)y =G
()40 (3)c (2)L (Dy SM

—SU(3)¢ x U(1)py-

= (2.6)

In the first step SO(5)y, is broken to SO(4) ~SU(2), x
SU(2), by orbifold boundary conditions. In the second
step SU(2)x x U(1)y is spontaneously broken to U(1), by
the nonvanishing vacuum expectation value (VEV) of a
brane scalar field ®(4) ,. In the third step SU(2), x
U(1)y is broken to U(1)gy by the Hosotani mechanism
0y # 0. At the moment we need to introduce an elementary
brane scalar field <I>(1‘4)]/2 on the UV brane, which is not
completely in harmony with the philosophy of gauge-Higgs
unification. The <I>(1.4)]/2 field not only reduces the gauge
symmetry to Ggy in the second step in (2.6), but also plays
a crucial role in realizing the mass spectrum of quarks and
leptons through brane interactions. The origin of the brane

scalar field remains to be clarified.

IIL SU(3). x SO(5)y x U(1)y GHU: NEW MODEL

A new model of SU(3)-x SO(5)y, x U(1)y GHU is
defined in the Randall-Sundrum warped space. The con-
struction is guided by the SO(11) gauge-Higgs grand
unified model [31-36]. The metric g,y of the RS warped
space [38] is given by

ds* = gyndxMdxN = e72°Wy, dxtdx’ + dy?,  (3.1)
where M, N=0, 1,2, 3,5 u,v=0, 1, 2, 3; y = x>
M = diag(=1, +1,+1,+1); o(y) = o(y +2L) = o(-y);
and 6(y) = ky for 0 < y < L. The topological structure of

the RS space is S|/ Z,. In terms of the conformal coordinate
z=e (1 <7<z, =eM)in theregion 0 <y <L,

2

1 d
ds? = (nﬂydx”dx” + k—i) (3.2)

The bulk region 0 <y < L (1 < z < z;) is anti—de Sitter
(AdS) spacetime with a cosmological constant A = —6k2,
which is sandwiched by the UV brane aty = 0 (z = 1) and
the IR brane at y = L (z = z;). The KK mass scale is
mgg = wk/(z; — 1) = wkz;! for z; > 1.

Parity transformations around the two fixed points
(¥0.y1) = (0,L) are defined as (x*,y;+y)— (x*,y;—y).
We choose orbifold boundary conditions (BCs) such that
they break SO(5)y to SO(4)=SU(2), x SU(2)p as
described below.

A. Gauge fields and orbifold boundary conditions

The structure of the gauge field part is the same as in
the previous SU(3)- x SO(5)y, x U(1)y GHU model. We
have SU(3) xSO(5)y x U(1)x (8,1)y, (1,10),, and

Ble, AS06w

(1,1), gauge bosons denoted by Ai,,U and

AYx The orbifold BCs are given by

(i;l)(x’yf_”:PJ'(_AA;)(MWH)P;] (3.3)

for each gauge field. In terms of

Pio(s) = diag(,, -1,),

50(5)

Py =diag(ly. 1), (3.4)

Po =P, = Py"% for A5/P¢ and Py = P = 1 for A",
50(5) S0(5)y - .
Py= P, = P; for Ay, in the vector representation

and Pio(5> in the spinor representation, respectively. Pio(5>

and Pgo(s) break SO(5)y, to SO(4). The parity assignments
of A, and A, are summarized in Table 1. Note that the 4D
Higgs field is contained in the (1,2,2), part of A.

TABLE 1. Parity assignment Py =P; of A, and A, in

SU(3)exSU(2), xSU2) g x U(1)y. Gy :=SU(3)oxSU(2), x
SU2)xxU(1)y.

G3221 AM Ay

(8.1.1), (+.+) (=)
(1.3.1), (+.+) (=)
(1,1,3), (+,+) (=-)
(1,2,2), (=.-) (+.+)
(1.1,1), (+,+) (=.-)
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B. Matter fields and orbifold boundary conditions

Matter fields are introduced both in the 5D bulk and on
the UV brane. They are listed in Table II. Quark multiplets
(3, 4)% and (3,1)% are introduced in the 5D bulk in

-1
3
three generations. They are denoted as W¢

(3.4
W () (@=1,2, 3). All W%, and W&, intertwine

(34) (3.1
with each other. Lepton multiplets in the bulk are intro-

duced in (1, 4)_%, denoted as W, (x,y). In addition, brane

fermions y{; ;(x) in the singlet (1,1), are introduced on

)(x.y) and

the UV brane, which satisfy the Majorana condition
x(x)¢ = y(x). X1y and Wf o intertwine with each other
to induce the seesaw mechanism for neutrino masses. Two

types of dark fermion multiplets, ‘Pf‘;j) (x,y)in (3.4) 1 and

‘P(ilff’5> (x,y) B=1,....,np) in (1,5)7, are introduced in the
bulk, which is necessary to have desired electroweak (EW)
symmetry breaking with 0 < 0, < 7. Py obeys orbi-
fold boundary conditions such that no zero modes arise.
Zero modes of ‘Pﬁﬁ 5) appear, but ‘Pz;ﬂ 5) and lyaﬂ 5) intertwine
to have large Dirac masses. The brane scalar field @ ; 4)(x)
is introduced in (1,4), on the UV brane. All of these fields
can be implemented in the representations 1, 11, and 32 of
SO(11) as seen from (2.4). SU(3)- x SO(5) x U(1)y
gauge symmetry is preserved on the UV brane, which
should be contrasted to the previous model in which only
SU3)c x SO(4) x U(1)y symmetry is preserved on the
UV brane. (3, l)i fermion fields accompany (3,1)%
3 3

fermion fields when they are implemented in the 11
representation in SO(11) GHU. Zero modes of (3, 7,
3

and (3, 1); , couple to have large Dirac masses so that they
3

may be ignored here. One can confirm that anomalies are
canceled in the present model.

Orbifold boundary conditions for bulk fermions are
specified in the following manner.

TABLE II.

(i) Quark multiplets: (, ;. P37

« 50(5 ”
lI’(3.,4) (x.y;—y) =—Py : )75T<3,4)<X,}’j +),
q’(j;ill)(x’ yj _y) = :FVS\I‘?E;H)(X,)’] +y) (35)

Here 5D Dirac matrices y¢ (a¢=0, 1, 2, 3, 5)
satisfy {y,y"} = 21" [n*" = diag(~1,,1,)], and p’ =
diag(1,1,-1,-1).

(ii) Lepton multiplets: ¥¢

(1.4)
‘{71_4) (x,yj=y)= —Pio(5>75qﬂ(xl,4) (x.y;+y).  (3.6)
(iii) Dark fermions: ‘I‘ﬁﬂ 5)
Wiy (e —y) = 2PVP T (o +y). (37)

Alternatively one may adopt the parity assignment
(1) P instead of £P5°®) in (3.7).
(iv) Dark fermion: W3 4) = ¥r

We(xy —y) = (1) P P We(xy +y). (3.8)

The parity assignment of the 4D left- and right-handed
components of each fermion field is summarized in
Table III. ‘I‘E“3’4) and ‘I‘?l"‘) (a =1, 2, 3) has zero modes,
corresponding to one generation of quarks and leptons for
each a.

C. Action

The action consists of the 5D bulk action and 4D brane
action.

Matter fields. SU(3). x SO(5) x U(1)y content is shown. For comparison the matter content in the

previous model is listed in the last column. In the previous model only SU(3). x SO(4) x U(1)y symmetry is
preserved on the UV brane so that the SU(2), x SU(2), content is shown for brane fields.

Present model

Previous model

Type B Type A
Quark (3.4),3.153.1)7, (3.5:3.5),
Lepton (1.4) (1.5)(1.5)
Dark fermion (3,4):(1,5)5 (1,5); (1,4),
Brane fermion (1,1), (3, [2,1})%%._2(1, [2,1})%’,%_,%
Brane scalar (1.4), L [1.2]),

Symmetry of brane interactions

SU®3)e x SO(5) x U(1)y
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TABLE III.  Parity assignment (P, P;) of fermion fields in the
bulk. The corresponding names adopted in Ref. [33] are listed in
the last column for the first generation. Brane fermion and scalar
fields are listed at the bottom for convenience.

Field G Left Right Name
lP{(13_4) (37 2, 1)}, (+, +) (_’ _) Zj
G120 DY
) w21, () (o) 7
Yoo @12y o) )
(3.2.1) (—+) (+-) r
¥r (3.1,2), (+-) (=) il
b 022 EH @Dy
) (1,1,1), (F.¥) (+. %) §*
x* (1,1,1), .. X
o (1,2,1), D
(14) (1,1, 2)% D)y 5
1. Bulk action
The bulk part of the action is given by
Souk = Spat + Stk (3.9)

where SEo &€ and Sfrmion are bulk actions of gauge and
fermion fields, respectively. The action of each gauge field,

ASU( Je A OG)w , or Af‘],,(l)x, is given in the form

s _ / BxV/=detC
1
[ <4FMNFMN+ (fer)? +£gh>:| (3.10)

where vV—detG = 1/kz°; z=¢"; M, N=0, 1,2, 3, 5;

and tr is a trace over all group generators for each group.

Field strength F);y is defined by
Fyy = OyAy — OnAy —

iglAy, Ayl (3.11)

with each 5D gauge coupling constant g. For the gauge
fixing and ghost terms we take

1
for = zz{n’”Df,Af} + Ek* D¢ <EA§> },

1
Lo = E{nﬂ”D;Dy + EK2ZDE EDZ}C, (3.12)

where u, v =0, 1, 2, 3; " =1n,, = diag(—1,1,1,1); and
Ay = AS, + A, DB = 0y B — ig[A$,, B] and D, 'B =
OyB —ig[Ay, B), where B=A], A?/z and c. In the

s0(s
present paper only the A, component of A, ©)

vanishing classical background A¢.
Each fermion multiplet ¥(x, y) in the bulk has its own
bulk-mass parameter c. The covariant derivative is given by

has non-

1
D) =r'er (Du+gouacly 1) ~eo ).

_igBQXAAZ“) (3.13)
Here ¢'(y) == do(y)/dy and 6’'(y) = k for 0 <y < L. gs,
ga. gp are SU(3)q, SO(S)y, U(l)y gauge coupling
constants. Let W/ collectively denote all fermion fields
in the bulk. Then the action in the bulk becomes

. SU(3 . SO(5
DM:aM—lgsAM ( >_lgAAM )

S{)?lrﬁlon :/dSX\/W{Z@D(CJ)TJ
- Z(

a

lP+a LI;—a + Hec. )

ARy R\ R4
_§(mvlp(l’5)lp( )+Hc)} (3.14)
where ¥ = i¥y0. m% and m!, are “pseudo-Dirac” bulk
mass terms.

In terms of ¥ defined by

v

1
¥Y:i==Y,
Z2

2 3
(az - E)‘P =209, (3.15)

the bulk part of the fermion action becomes

s [ [ (50 [, e1{ 0, o

_Z<mD\P+a —(1)+HC>

—Z<mw+ﬂ v +Hc>} (3.16)
2. Action for the brane scalar ®(y 4
The action for the brane scalar field @y 4)(x) in (1,4), is Lis
given by
brdnc - /ds V —det G5( )
x {- (D D(1.4)) DDy 4

where

095010-5
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10
D@4 = {a,, —igy Yy AT —igzOyB, }%,4).

a=1

(3.18)

Here SO(5)y, generators {T%} consist of SU(2),, SU(2)x
generators {79 ,T%} (a =1, 2, 3) and SO(5)/SO(4)
generators {T? = T?°//2} (p = 1-4). The corresponding
canonically normalized gauge fields are

ar __

1 /1
Ay = 2 (5 ebcAbe + Aﬁ),
ag 1 1 abc Abc a4
AM = \/E 56' AM _AM s

AD = AP, (3.19)
By, represents the U(1)y gauge field.
The brane scalar field @y 4) is decomposed as
o
oo () om
@y

where [2,1] and [1, 2] represent SU(2), x SU(2), content.
®(1 4) develops a nonvanishing VEV:

owa=(%) w=(2)

The nonvanishing VEV breaks SU(3)- x SO(5) x U(1)x
to SU(3)- x SU(2), x U(1)y. As shown in Appendix A,
one can define the conjugate scalar field 5)(1,4> in

(L.4)_1 b
< iaztl)f‘z’l] >
—ic’ D}y )

(3.21)

S

(14) (3.22)

Its VEV is given by

The combination of the nonvanishing VEV (@4 )(3)) on
the UV brane (at y = 0) and the orbifold BCs P; (j = 0, 1)
reduces SU(3)-x SO(5) x U(l)y to the SM gauge
group Ggy = SU(3) x SU(2), x U(1)y.

3. Action for the brane fermion y“*

The action for the gauge-singlet brane fermion y*(x) is

bmne/ds V—detGé(y){ “roux” —lM“ﬂx xﬂ}

(3.24)

x*(x) satisfies the Majorana condition y¢ = y:

(¢ . +n ise (+02'7*>
() (7)) o

4. Brane interactions and mass terms for fermions

On the UV brane there canbe SU(3) - x SO(5) x U(1)-
invariant brane interactions among the bulk fermion, brane
fermion, and brane scalar fields. We consider

it = / Bxv/=deA GO (L, + Ls + L),
= —{kPWE Dy - W +He),
L, = _{fc/aﬁlpa )F”q)(1,4) . (lP(_lﬂ,S))a + H.C.},

= —{&” ;{ﬂqﬂ oW +HeD, (3.26)

where «’s are coupling constants.

(@(1.4)) # 0 generates mass terms on the UV brane from
the interaction in (3.26). Together with the inherent
Majorana masses in (3.24) brane fermion masses are
given by

Sferrmon
brane mass

/ B3/ —detGo(y) (L] + L3+ L7+ L),
Lo =24"aeD;’ + He.,
Lr = —,uzﬁ{IZ(eLER + BN+ V20857 +Hee.,

—___'B [)’v/a
\[(;(

1 -
Lo = =My

+ "),

(3.27)

Here 2/,t‘fﬁ =2k w, 2ﬁ§ﬁ =2, and m‘gﬁ = fcfﬁ wvk.
17 and ¥ are dimensionless, whereas m% and M* have a
dimension of mass.

5. Brane mass terms for gauge bosons

(@(1.4)) # 0 also yields additional brane mass terms for
the 4D components of the SO(5) x U(1)y gauge fields. It
follows from (3.17) that
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brane

sgauee / d5xv/=det G(y)

2 2
< {_gA|41jv| (A/IJRAIR/,{ +AZRA2R/4)

2
4
where
()= 26
B}, S Cop By /)’
cp=Cosg = %,
V9at s
sp=singp =22, (3.29)
Vst g
The 5D gauge coupling ¢3° of U(1), is given by
gadg.
Vst g
A},’*, A,%R, and Ai;* obtain large brane masses, which

effectively change the BCs on the UV brane for the
corresponding fields.

Note that the 4D SU(2), gauge coupling constant is
related to g4 by

94

gw—\/—z-

The three 4D SM gauge coupling constants g, g,,, gy of
SU(3)¢, SU(2),, U(1)y at the my scale are a, = g2 /4 =
0.1184 £0.0007, a,, = ¢2/4n = aEM/ sin? @y, and ay =
gy/An = agy/ cos? Oy, where agy = 127.916 +0.015
and sin? Oy, = 0.23116 £ 0.00013 [39]. In the SU(3). x
SO(5) x U(1)y GHU, the SU(2); gauge coupling con-
stants are the same as the SM SU(2), gauge coupling
constants. With the relation (3.30) one finds that

(3.31)

4nL
= ! 22956,

ga
4nL
! - ~68.78, (3.32)
9B

at the m, scale.

D. Higgs boson and the twisted gauge
A 4D Higgs boson is contained in the (1,2,2) compo-

nent of A;QO(S) as tabulated in Table I. In the z coordinate
A, = (kZ)_lAy (1<z<z)and

AP (x.2) = ()

(5 (2) -+

2
Z’
-1
1 + i
o) — L <¢2 i )
V2 \ ¢y — igh3

®(x) corresponds to the doublet Higgs field in the SM.

At the quantum level, ® develops a nonvanishing
expectation value. Without loss of generality we assume

(@1), (¢r), (¢3) = 0 and (¢h4) # 0, which is related to the
AB phase 0y in the fifth dimension. Eigenvalues of

ug(z) =

(3.33)

N L
-L

are gauge invariant. For A, = (2k)™'2¢(x) vy (y)T™),
where vy(y) = ke¥uy(z) for 0 <y <L and vy(—y) =
vy(y) = vy (y + 2L), one finds

W = exp{ify(x) - 2T},

) =2 [ ()

The eigenvalues of 279 in the spinor representation are
41, and @y (x) is the AB phase. We denote (0) = 0. The
4D neutral Higgs field H(x) is the fluctuation mode of
¢4(x) around (¢,). Hence one finds

>

(3.35)

A (x.2) = {erH + H(x)up (2)
3.36
\/ —7= L@ 1) (3.36)
Under an SO(5) gauge transformation

Q(y;a) = eXp{—l Vi,

orbifold boundary conditions {P, P;} are changed to

Cayn )T} (3)

P = Q(0;2a)Py = exp{—ii : 2T(45)} - Py,

fu
P, =Py, (3.38)
and Oy (x) is transformed to 8 (x) = Oy (x) + (a/f4). For
a/fy = 2zn (where n is an integer), the boundary con-
ditions remain unchanged, whereas 6y changes to
0y = 0y + 2zn. This property reflects the gauge-invariant
nature of the AB phase e#.
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Now we go to a new gauge by adopting a = —0y fy so
that (§};) = 0, = 0, which is called the twisted gauge. It is
most convenient to evaluate various physical quantities in
this gauge. The twisted gauge was originally introduced in
Refs. [40,41] and has been extensively employed in the
analysis of GHU. (See, e.g., Refs. [10,33].) Note that the
gauge transformation in (3.37) becomes, for 0 <y < L,

Q(z) = Q(y; —Oufn) = exp{i@(z)T(45>},
zL -7
-1

(3.39)

Quantities in the twisted gauge are denoted with tildes
below. In the twisted gauge, the background field vanishes
(@y = 0), whereas the boundary conditions change as
(3.38). For the SO(5) vector representation 5, the boundary
condition matrices P}’ec (j=0,1) are

p(é)’O(S) _ Q(O)ZPSO(S) _ eziaHT<45>P3’0(5)

pio0) = pSot), (3.40)

’

For the SO(5) vector representation 5, the boundary
condition matrices 13}’” (j =0, 1) become

I3
IN’S‘” = cos20y  —sin20y |,
—sin20y —cos20y
3 I,
Pye = : (3.41)
—1
and for the SO(5) spinor representation 4,
- cosfy —isinf
pp o (0 )
isinfy —cosfy
~ 1
PP = ( : ) (3.42)
_12

Here T§35> =10" ® o' has been used.

IV. SPECTRUM OF GAUGE FIELDS

The spectrum of gauge fields in the present model
(type B) is the same as the spectrum in the previous model
(type A). We here quote the result for completeness. The
bilinear part of the action of gauge fields in (3.10) takes the
form

(O + k*Py)

v [

Jj<k

. 1 .
- (1 =g horoal? + 1Al (0 + e p Al

+ U+ §k2734)c(-7k)} ,
010 0 01
" e
0 =1"0,0,, P * 897707’ T 890027
(4.1)

Additional brane mass terms in (3.28) arise for the A,
components of (SU(2)r x U(1)y)/U(1)y.

Boundary conditions in the original gauge are given, in
the absence of brane interactions, by

{N: é%All =0 for parity+
D:A, =0

{N: dz( .
D: A, =0
at z=1 (y=0) and z = z; (y = L). The parity of each

field is summarized in Table I. Because of the brane

interaction (3.28), boundary conditions of AIR 23 g

z = 1 become

a 2.2
Deff(a)): <8—Z—C()>A/£R’2R:0, a):g‘z‘]/: ,

a 3;? g2 _I_gQ W2
Degi(a'): (az—w/>A/4 =0, a)’:%.

for parity—
.) =0 for parity+

(4.2)
for parity—

(4.3)

For sufficiently large w, boundary conditions of AIR P

z =1 are modified from the Neumann COIldlthIl to the
Dirichlet condition for low-lying modes in their KK towers.
Boundary conditions of gauge fields are summarized in
Table IV.

In the twisted gauge, all fields obey free equations in the
bulk 1 < z < z;, whereas boundary conditions at z =1
become @y dependent and nontrivial. SO(5) gauge fields in

TABLE IV. The boundary conditions for the gauge fields at
z=1, z; are summarized. N and D stand for Neumann and
Dirichlet conditions, respectively. Doy stands for the effective
Dirichlet condition specified in (4.3).

Number of

generators A, A,
)] SU(3)¢ 8 (N.N) (D,D)
2 SUQ2), 3 (N.N) (D,D)
3) U(l)y 1 (N.N) (D,D)
@ (SU2)r v U(1)x)/U()y 3 (Dar.N) (D,D)
(5) SO(S)w/(SU(2), USUQR)g) 4 (D.D) (N.N)
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the twisted gauge are given by Ay = Q(2)A,Q(z)~" +
(i/94)Q(2)0yQ(z)~", where Q(z) is given by (3.39). In
particular one finds that

A4 = cos 0(z)AY —sin0(2)AS, (a=1,2,3),
A = sin0(z)A4] + cos 0(z) AL,
. 2 s 22
s s _ V2 _as  2V2, S (a4
ga ga i — 1

while the other components are unchanged.

Atz =z, 0(z;,) =0, and A, satisfies the same boun-
dary condition as Ay at z =z;. Consequently, wave
functions for A” and A, are given by the functions tabulated
in Table V. The basis functions C(z; 1) and S(z; A) there are
defined in, e.g., Refs. [10,33], and they are listed in
Appendix B.

A. A, components

The mass spectra of A, components are the following.
(i) (Au- AR AY) (a =1, 2): W and Wy towers
The boundary conditions at z = 1 are

a0 (2-

A =0, AZ = 0.
0z 0z a)) !

" (4.5)

DA,* /D7 is evaluated at z = 17. These conditions with
(4.4) lead to the equation which determines the mass
spectrum {m,, = kA, }:

2C'(SC' + Asin®0y) — wC(2SC' + Asin?0y) = 0. (4.6)
Here C=C(1;4),
S =5'(1;4).

For sufficiently large w, the second term in Eq. (4.6)
approximately determines the spectra of low-lying KK
modes. This approximation is justified for w > mgg. In
this approximation, the spectra of W and Wj towers are
determined by

S=S(1;2), C'=C'(1;2), and

W tower : 25(1;4)C'(1; 1) + Asin?0y = 0,
=0.

Wy tower : C(1; 1) (4.7)
It follows that the mass of the W boson my, = my« is
given by

TABLE V. Wave functions of the gauge fields in the twisted
gauge. N and D stand for Neumann and Dirichlet conditions at
z =z;. The basis functions C(z;4) and S(z;4) are given in
Appendix B.

BCat z =z, N D
A, C(z;2) S(z;2)
i §'(z:4) C'(z:0)

k ) sin@
my = \/;ZZI S1n 91.1 >~ TimKK, (48)

where mgx = nk/(z; — 1) ~ nkz;'.

(ii) (A;HA,%,AE,BZ): v, Z, and Zy towers
The boundary conditions at z = 1 are

0 3
(&‘“ﬁ&‘ZQ

; )
Ay=0. 5 BI=0.

0 3,
aszﬂ — O,

The spectrum is determined by

C'2C'(SC' + Asin®6y)

— @/ C{25C' + (1 + s3)Asin®0,}] = 0. (4.10)

For sufficiently large ', the spectrum of low-lying KK
modes is approximately determined by the second term.
One finds that

y tower : C'(1;4) =0,

Z tower : 28(1;2)C'(1;2) + (1 + s;)Asin*6y = 0,

Zg tower : C(1;1) = 0. (4.11)
The mass of the Z boson my; = m« is given by
my =~ 4/1+ 53 E‘lsinﬁ
z= # LZL H
~ /1 + 53 S0, (4.12)
_— ¢”\/ﬁ KK. .
We recall the relation [12]

1 , s
————~cos by, sinfy ~ —2——. (4.13)
J1+9 Vi + 295

It follows from (4.8) and (4.12) that
My
~ 4.14
27 cos Oy (4.14)

which coincides with the relation in the SM.

(iii) Aj: A* tower

A obeys the (D, D) boundary condition and there is no
zero mode. Its spectrum is determined by

A* tower : S(1;2) = 0. (4.15)
(iv) SU(3) gluons
The boundary condition is (N, N) so that
gluon tower : C'(1;1) = 0. (4.16)
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B. A, components

The mass spectra of A, components are the following.
Except for the zero modes, masses are given by
{m, = £ka, }.

(i) A%(1 <a<b<3),B,

These components satisfy boundary conditions (D, D)
so that

C'(1;2) =0. (4.17)
(i) A% A (a=1,2,3)
The boundary conditions at z = 1 are
A =0, 6% (%A;ﬁ) =0. (4.18)
The spectrum is determined by
S(1;2)C'(1;2) + Asin®0y = 0. (4.19)

(iii) A%: Higgs tower
The boundary conditions of A% are (N,N) and the
spectrum is determined by

Higgs tower : S(1;1) = 0. (4.20)

There is a zero mode, which will acquire a mass at the one-
loop level.

(iv) SU(3)- A,

There are no zero modes. Their components satisfy boun-
dary conditions (D, D). The mass spectrum is determined by

C'(1;2) = 0. (4.21)

V. SPECTRUM OF FERMION FIELDS

We determine the mass spectra of fermion fields. It will be
seen that the mass spectrum of quarks and leptons in three
generations is reproduced except for the down-quark mass
which turns out smaller than the up-quark mass (m,; < m,).
To evaluate the effective potential V (0 ) for the AB phase
0y, one needs to know the mass spectra of the dark fermion
fields in (3.7) and (3.8) as well. We summarize the result for
dark fermions in Appendix D for completeness.

In the original gauge, the background gauge field in
SO(5) is

gA§’ — giAA§45>T45 — —GI(Z)T45,

V2

where 6(z) is defined in (3.39). We introduce the following
derivatives:

(5.1)

Do(e)=+2 €
0z z

D.(c) =D.(c) i (2)T®. (5.2)

To simplify the notation, the bulk mass parameters of
various fields are denoted as

C = Cwya Cr = Cwye
0 Yiaa L ¥

(5.3)

Cpt = Cwy
D ¥a

Cy+t = Cy=p .
(3.1) v lP(]S)

We have suppressed generation indices a, . In this paper
we consider the cases cp+ = +cp- and cy+ = £cy-, for
which exact solutions are available.

The components of SO(5) spinor fermions V(34 and
¥(1,4) in the original and twisted gauges are related to each
other by

- < cos10(z)  —isin}6(z) ))? (5.4
—isinlf(z) cosiO(z) /7 '
where y is given by
u d e v
= () C) e

T = 1! for these y’s.

A. Up-type quarks

QEM - +% u, u (LP(3,4>)

There are no brane mass terms. The boundary conditions
are given by D_ii; = 0,1ig = 0,4, = 0, and D_ii, = 0 at
z =1, z; . The equations of motion in the twisted gauge are

T 3 3
u
(") ke () 0, () 0
uy Upg urp

¥ 3 3
ié(”ﬁ) : —kD+(CQ)<ZL> +aﬂaﬂ<f’*) —0. (5.6)
up i i

!/ !/
L R
(if,11') satisfy the same boundary conditions at z = z; as

(i1,1') so that one can write, in terms of basis functions
summarized in Appendix B,

iR\ ausg> (Z;L>_<aucg>
()= (e Jrwo (5 ) = (50 Jrueor
(5.7)

where CLQ/R = Cpr/r(z, 4, ¢cg); S%R = S1/r(2:4.¢c)s
6Ofg(x) = kAf(x); and 60f (x) = kAfg(x). Both right-
and left-handed modes have the same coefficients «,, and a,,
as a consequence of Egs. (5.6).

By making use of (5.4), the boundary conditions at z = 1
for the right-handed components iz =0 and D_ui} =0

become
p (a) B ( cos10,5% —isin;eHC,%> <a) .,
“Nay —isinl0,CY  cosl@,s? oy .
(5.8)

Here Sg/R = SL/R(I,/L cp), etc. detK, =0 leads to the
equation determining the spectrum:
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0
§259 +sin? 2L = 0.

: (5.9)

The mass of the lowest mode (up-type quark) m = kA is
given by

7'y /1 =4 sinfOymyy
_ —lco|+0.5 .
7l J4ch - lzL‘ ol sinf@ymgy  for |cg| > 3.

(5.10)

for |co| <3,
m, =

Note that S;(z;4, —c) = —=Sg(z;4,¢) and Cp(z;4,—¢) =
Cr(z;4,¢). With a given m,, there are two solutions to
(5.9): cg >0 and ¢y < 0.

B. Down-type quarks

Opm = —_%3 d, d, D* (‘P(3,4)’lp?t3,1))

As seen from Table III, parity even modes at y = 0 with
(Py, Py) = (+,+) are d;, dy, D}, and D. From the action
(3.16) and the £7' term in (3.27), the equations of motion in
the original gauge are given by

d/
(RN (dg R dy 0
' lé(d};")' "”6”(3;> "‘D*(CQ)(JL) :2”‘5(”<bz>’

N . . mi . “
(e): —isD}": —kD_(cp,)Dy +0"9,D] — TDD’_* = 2u4;5(y)dx,

(f): i6D}": 3#0,D% — kD, (cp,)
(9): —i6D;": —kD_(cp_)Dx + 0"9,Dy —

(h): i6DR": 30,D — kD, (cp_ )DL - %Dj =0.

Note that the mass dimension of each coupling constant
and field is, e.g., [C?R/L] =2, [k] = [mp] =1, and [u;] = 0.

The following arguments are parallel to those in
Ref. [33]. Under the parity transformation around y = 0,
¥, =d;, dy, Dj, and Dy are parity even, whereas
V_=dg, d;, D§, and D; are parity odd. Note that
W_(y)|¢ = 2%¥_(+e€) and

e
D.(c) = {j:(,?y+c0'(y)} (5.12)

in the y coordinate. We integrate the equations for parity
odd fields, (a), (d), (e), and (h) in (5.11), from y = —¢ to
+¢ to find

(a) = dg(e) =0,

(d) = =2dy(¢) = 2u, D (0) =0,
(e) = 2Dj (€) — 2u;dx(0) =0,
(h)

h) = Di(e) = 0. (5.13)

For parity-even fields, we evaluate the equations at y = +¢
by using the relations (5.13):

D} -"2D; =0,
4
mp <.
D} =0,
z R
(5.11)
| A v
(¢) = D (cg)d, =0,
(b) = m[D_(cp1) Dy + i Dy] + D_(co)dr = 0.
(f) = uiD.(co)dy, — D (cp,)D} =0,
(9) = D_(cp_) By + ippidy =0, (5.14)

where the equations of motion (e) and (d) at y = +¢ have
been made use of. Relations (5.13) and (5.14) specify the
boundary conditions at z = 17. We examine the spectrum
in two cases, cp+ = cp- and cp+ = —cp- below.

1. Case I: cp+ =cp- =cp

The BCs at z = z; are given by

dg =0, D} =0,

D+<CQ)dL = O’ DJr(CD)DZ = 0’ (5 15)
D (cgdy =0, | D(cp)Dg=0,
d; =0, D; =0.

In the twisted gauge, the BCs in (5.15) are satisfied
by mode functions in (B6) and (B23) so that one can
write as
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o aySr(z:4.¢p)

t‘/R B ad’CR(Z;/l,CQ)

5; | @uSra(zihcpoiip) + baSi (3 A cp.iip) |
513 aqCri(234,¢p.fp) + baCra(2:4,cp.fiip)
& a,Cp(z34,¢0)

a: - agSp(z:4,¢o)

Blf | aiCra(zshcp.ing) +bCpi(zidicp.iip) |
52 aqSpi (24, ¢p.fp) +byS12(2:4.cp.ip)

(5.16)

where a4, ay, a4, and b, are parameters.
Boundary conditions at z = 17 for the left-handed fields

dy, dy, Df, and Dy are found from Egs. (5.13) and (5.14)
to be

Oy Oy
: ﬂ(cosTadSQ—zsm > ayCR > =0,
0 0
. —iSiniang+COS§adng+ﬂ1(ddClL)2+de?1) =

Oy Oy
S A (—lSlnTadSQ—J—cos > ad/CR)

—l(ads +deR1)+mD(adSL1+deL2)

L aySP, 4 bySP, =0, (5.17)

where Sg/R = SL/R(Z =1;4, CQ); S‘L)/Rj = SL/Rj(z =1;
A, cp,imp); etc. Conditions in (5.17) are summarized
as

cos%”Sg —isin%”Cg 0 0
MPVD —isin%C?  cos%S?  uCP wCP
byb —
—ipjsin% S§  picos%Cy —-SR, SR
0 0 sh 8P
aq
ad!
X =0. (5.18)
aq
by
The mass spectrum is determined by
det MP = <SQSQ + sin? )(sglsgl SP,SR,)
+ [ PCRSR (S CP, — SPLCPy) = (5.19)

Note the relations (B21).

To lift the degeneracy between the up-type and down-
type quark masses, the y; term in (5.19) is necessary. Its
coefficient contains the factor c,% = Cgr(1;4,¢g). For the
first and second generations, [co| = 1. For
Azp <1, Cr(l;4,¢)~z;¢ <1 for ¢ > % and Cg(1;4,¢)>1
for ¢ < —1. The detailed study shows that with ¢ > 1,
Eq. (5.19) necessarily yields the first KK mode with a mass
much less than mgg, which contradicts observation. One
needs to take c,, ¢, < 0. For the third generation, |c,| < 1,
and this problem does not show up.

Consider case I, cp+ = cp- = cp > 0, with /mp > 1/2
and c¢p —mp > 1/2. The up-type quark mass m, for
|co| > % is approximately given by

c 9
m, = Azp = [4chy = 1zp “leol+s smTH (5.20)

from Eq. (5.9). Substituting

2751l 2y 2lcol+!

050 4 O L R o0 (=g

L°R 2 4C2Q -1 4CQ 1 s
1 1
S92 892 — 85289 ~ — 22z 26n+l n ’

L1*R1 L2PR2 = 4C2D _ (2ﬁ1D + 1)2 4c2D _ (27’7’!D _ 1)2

262_1 for ¢y >0,
Cgsg =N e

W for ¢y <0,

! ! (5.21)

2cp+1
3210% - ngcgz ~ =21z o (

2(CD +ﬁ’lD) + 1

T ey =) + 1)
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into M? in Eq. (5.19), we find

(12 —ﬂz)ZiICQH]

det/\/lD == 5 (Ziﬁll) _/12Zicu+1A)
4CQ—1
1
ZCQ—I c >0
Fui P g p (=2223THB=0 for{ e
2L CQ <
Z\L'Q\Jrl
(5.22)
where
A= 1 + ! >0, (523)
C4cd — (2mp + 1) der - (2imp— 127 '
1 1
= 0. (5.24)

~ + ~ >
2(CD+mD>+1 2(CD—mD)+1

Both A and B are O(1). If z;" > 22z;*™", then it follows
from (5.22) that

i 2 1
‘e <Ay forcy>5
=2c 2cp—2m

1420 [ (2co+1)z, 2P0 p “ e~

i ; <22
142l (2leg-1)z, 27" B “

22~

for cp < —1.
(5.25)

In other words, the spectrum for the second generation
mg < m, can be reproduced with appropriate p;, cop,
and 7.

Indeed, one can show that the smallest value of A2
determined from Eq. (5.19) necessarily becomes smaller
than 12 with general u; # 0, cg, and 7. For Az, <1,
Eq. (5.19) reduces to the form (4> —212)(4*—a)-—
blu,|*2> =0, where a> 12 and b > 0. Consequently
the two roots 4> = A% satisfy 4> < A7 and 4% > a. This
implies that the spectrum m,; > m, cannot be realized at the
tree level in the current scheme. It is left for future
investigation to find a solution to this problem.

Typical values of the parameters reproducing the quark
mass spectrum (except for m,) are tabulated in Table VI.
det MP in Eq. (5.19) for the second generation is plotted as
a function of A for /mp = 1.0 and various values of
in Fig. 1.

2. Case II: cp+ = —cp- =cp

The BCs at z = z; are given by

dR = 0, D; - 0,
D.(cp)d; =0, D DI =0,
D_(co)dy=0. | Dylep)Df =0,
d, =0, D; =0.

In the twisted gauge, the BCs in Eq. (5.26) are satisfied
by mode functions in (B6) and (B46) so that one can
write

r agSg(z:4,¢9)

d _ ayCr(z34,¢c0)

D} | @Sra(zicp.ip) +baSwi (4 cp.iip) |
Dy a,Cri (220 ep.itp) +byCra(zdcp i)
ZZL a,Ci(z:A.co)

du | _ s Sp(23,¢0)

D} | adCia(ziep ip) +baCri(zsd cpiip) |
132 _adSRl(Z;’l’cD’mD)—de'Rz(Z;l,cD,I%D)

(5.27)

where ay, ay, ay, and b, are parameters.

From Egs. (5.13) and (5.14), we find the boundary
conditions at z = 1 for the left-handed fields. The manipu-
lation is similar to that in case I. The difference appears
only for terms involving D} /R It is straightforward to see

cos%HSg —isin%”C,g 0 0
) 0, »D »D
MPYD — —zsm%C? cosTHSg 1 Cra 1 Cry
—ip} sin%”Sg Ui cos%”Cg S
0 0 Sk SR
Ay
ay
X =0, (5.28)
aq
by
TABLE VI. Parameters which reproduce the spectrum of

quarks for @, = 0.15, z;, = 10, mykx = 8.062 TeV. The
masses of the first KK modes of up-type and down-type quarks
are also shown. c,, ¢, <0 for the reason described below
Eq. (5.19). The values m, = 1.27 MeV, m; =55 MeV,
m,. = 619 MeV, m;, = 2.89 GeV, and m, = 171.17 GeV have
been used. m,; = 0.9m,, has been used for the first generation.

m ) )
Quarks co I cp mp (TeV) (TeV)
(u,d) —1.044 0.01 06194 1.0 459 8.23

0.1 04612 1.0 4.80

(c,s) —0.7546 0.1 0.6808 1.0 540 7.16
10. 0.0949 1.0 522

(1,D) +0.2287 0.1 0.5838 0.1 2.84 7.20
10. 03791 0.1 2.84
—-0.2287 0.1 1.044 1.0 5.06
10. 0.8352 1.0  5.06
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m=1.0
1x10%F T A
0 2 : w
~1x10%} : oo
—2x1026 H1=V.
~3x10%} 11=0.10
-4x10%° 111=1.00
~5x10%5} B
6 1026% 11=10.0
0 2000 4000 6000 8000 10000
m (GeV)

FIG. 1. Spectrum of strange quark tower. det MP? in Eq. (5.19)
is plotted as a function of m = kA for /mp = 1.0 and various
values of u;. The mass spectrum {m, = kA,} is determined by
roots of det M? = 0. mgg = 8062 GeV.

where Sg/R = SL/R(Z = ],)«, CQ), S?/Rj = SL/Rj(Z = 1,
A, cp,m D); etc. The spectrum is determined by

2
+ | |PCESE(SRICE = SRChy) = 0.

det MP = (SgS,g + sin? Q—H) {(SR1)? = (SR}

(5.29)

Note the relation (B35).
For |cy|.¢ >4, cp > 0, and 1z, < 1, we have

(- 2z
2
4cQ -1

(SR1)* = (S12)* ~ —a 2F.

)

0
5959 4 sin27H ~—

2¢
Az

Sglcﬁ - SRQZCQZ ~(1+a}) wn_1’

(5.30)
so that

(/12 _12)Zi|CQ|+l
2
dcg—1

1
2¢cp-1

det MP ~ — - (A z30)
273t

1+ 2 .
(T4 e) o

+ |ug [?

2| 1
ZL\CQH
2lcol+1

co >3
for

T (5.31)
o 2

Thus we find

2 “2leol=1y ¢ 2
22 [l + —lflll { (2¢o+ 1)z, }—+2a+} =12 for
2e—1 2[co -1

ay
1
{CQ>§
cog <=3

We observe that 4> <12 so that m,; > m, cannot be
realized with this parametrization, as in case 1.

(5.32)

C. Charged lepton

Opm = —1: e, ¢ (P(14)

In general, ¥ (; 4y may couple with leLl.s through the

brane interaction £ in (3.27). We suppose that ji, there is
sufficiently small so that the effect of £4' can be ignored. In
this case the equations and boundary conditions for e, ¢’
take the same form as those for u, u’. Mode functions and
boundary conditions are summarized as

r a,Sg(z.4,¢cp)
(évﬁg) N (ae’cR(Z’AvCL))’
ér a,Cp(z,4,¢cp)
(%)Z(w&@LQJ’
< cos10,S% —isin%GHCfe) <ae

—isin}0yCt  cosiOy,St

> =0, (5.33)

(094

where Sﬁ/R = SL/R(I,/I, cr), etc., in the last equation. The
mass spectrum is determined by

0
SESk + sin? 7” =0.

(5.34)

The mass of the lowest mode (charged lepton) m = kA is
given by

1/ “er)+os . 1
m, =nm 1 46% - 1ZL|LL‘+ SIHEQHmKK.

Note |cp| > 1.

(5.35)

D. Neutrino

Oem = 0: 1, l/v)((lP(IA)(—B)J()

As mentioned above, we assume that £%' can be ignored.
The brane interaction L3 in (3.26) yields the coupling
between v/ and y, £%' in (3.27). It leads to the gauge-Higgs
seesaw mechanism [35]. In the present paper we treat the
case in which all brane interactions are diagonal in
generations. In particular we set M* = —M 6% in (3.27).
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Equations of motion are given by

0 () af) ()

EZ; : i6<2§>: &”@,(Z) —kD+(CL)<ZZ>
22%;5@)@)

(€): idn': {Uﬂaﬂ’?—n\;—%%—l—Mﬂ”}ﬁ)’) =0. (5.36)

vg and v/} are parity-odd at y = 0, whereas v; and v are
parity-even. We integrate the equations (a) and (d) in the
vicinity of y = 0 and evaluate the equations (b) and (c) at
y = +¢€ to find boundary conditions at y = ¢ as

(a) = Ugr(x,e) =0,

. m
(d) = v (x.€) = +7%'7(x)7
R . om%y . mpM
(b) = —=D_(cp )ty —k—fz/R k§/2 nt =0,

(¢) = D, (cp)vy =0. (5.37
Boundary conditions at z = z; are given by D (c.)0, =
Up =0 and 7/, = D_(c;)p = 0.

Mode functions of these fields in the twisted gauge can
be written as

Ur a,Sk

| = iayCx | fir(x).
7 F iy /Vk

5 a,Cf

7| = St | fer(x),

n iay/Vk

5'”8,4fiR(x) = kAf 1. (%), "0, f+L (x) = kAf g (x),
Jar(x)¢ = ePco? fo (x)" = £f1p(x), (5.38)

where S}, =S /r(z:4.¢) and Cfp = Cpryp(zsd,cp),
and §¢ is defined in Eq. (3.25). Explicit forms of f; /g
are given in Appendix C. One can take a,, @y, a, to be real.
In this case 6#0,n =F kAn° is satisfied so that the equation
(e) in Eq. (5.36) implies that

mg .,

U — (M F kA)nc =0.
\/%Ry:() ( )

(5.39)

With this identity, the third relation in Eq. (5.37) can be
rewritten as

A o mBﬂ
D _(c))W, F —=n°=0. 5.40
(cL)g N (5.40)
Substituting (5.38) into (5.37), one finds
a, cos % Sk sin% Ck 0
K,|a | = —sin%”C% COS%HS% ne
@y mpsin% Sk —mpcos% Ck ki F M
al/
x| ay | =0, (5.41)
a

where SQ/R = SL/R(I;L cr), etc. Fromdet K, = 0, we find
the mass spectrum formula for the neutrino sector':

2
My

L SECk =0.

0
detK, = (kA £ M){Sgsfe + sinZTH} +
(5.42)

One of the solutions with f g/ (x) or f_g/.(x) allows a
small mass eigenvalue m, = k4, > 0. For M > 0, the
neutrino mode is obtained with f. g/, (x). Noting
that Az; <1 and k1 < M, one finds the neutrino mass
given by

24y 20+
meMzL f 1
or ¢, >3
(2cp+1)m3, L2
m, ~ 5.43
‘ _mM ke < =1 (543)
Q2le|-1)my, L 2"

The gauge-Higgs seesaw mechanism [35,42,43] is charac-
terized by a 3 x 3 mass matrix

0 m, O VoL

Loct i c'}')

E(VOL’”()RJ’[ +H.c., (5.44)

m, 0 ﬁ’lB UZ)CR
0 l’hB M n

where m, is its corresponding charged lepton mass. The
structure takes the same form as the inverse seesaw
mechanism in Ref. [43] and yields very light neutrino mass
m, ~ m2M /%. The Majorana mass M may take a moderate
value. In particular, for ¢; < —%, m, ~ 1 meV is obtained
with mg ~ 1 TeV and M ~ 50 GeV. For ¢; > % mpg has to
take a rather large value, larger than the Planck mass.
Typical parameters in the lepton sector are summarized
in Table VIL. |c; | and m, ) are fixed by m,. The value of M
can be varied. The spectrum does not depend on M very
much. As is seen in the table, a very light neutrino excited

"There was an error of a factor 2 in the right side of equation
(d) in (5.36) in the previous papers [35,36]. The formulas (5.42)
and (5.43) reflect this correction.
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TABLE VII. Parameters which reproduce the spectrum of
leptons for 6y = 0.15, z; =109 mggx = 8.062 TeV. The
masses of the first KK mode leptons are also shown in
units of TeV. For ¢; > 0, there appear light neutrino excitation
modes, v;. The values m, = 0.511 MeV, m, = 105.7 MeV,
m, = 1.776 GeV, and m, = 1 meV have been used.

Leptons ¢, M mpg myu M,
(GeV)  (GeV) m,  (TeV) (TeV)

(ve.e) 1.086 10° 6.6x 10" 6.8 MeV 838 838
1 21x108 6.8MeV 838 838

-1.086 10° 1.5 x10* 8.38 838

1 4.7 x 10? 051 8.38

(vom) 0839 103 50x10"° 14 GeV 747 747
-0.839 10> 1.2 x10’ 747 747

(vot) 0703 100 39x10 24.GeV 696 6.96
-0.703 10> 8.8 x 108 6.96  6.96

mode v, appears for positive c; . This does not necessarily
mean inconsistency with the observation. The v, mode may
become a candidate for warm dark matter [44], though

more detailed investigation of gauge couplings is necessary
to see the feasibility. For negative c;, a very light neutrino
excited mode appears only when M becomes very small.
The spectrum of the neutrino towers are shown in Fig. 2 for
c;, > 0 and in Fig. 3 for ¢; < O.

E. W couplings of quarks and leptons

As has been shown above, the quark and lepton mass
spectrum can be reproduced except that the down-quark
mass turns out lighter than the up-quark mass. At this stage,
one might worry about the W couplings of quarks and
leptons in the current scheme. In the gauge-Higgs uni-
fication, the W boson at 8y # 0 necessarily contains the
original SU(2), component as seen in Sec. IV A. If quarks
and leptons originated from only spinor representation
multiplets in SO(5), right-handed components of quarks
and leptons also would have had nonvanishing couplings to
W, which contradicts the observation.

The left-handed quark and lepton doublets are mainly in
the spinor representation of SO(5), which have nominal W

- 103 3
M=10° GeV M =103 GeV — Vv(4)
sb e /——\ Ve(=)
---------- 0
10 T
--------- -2x10"¢
i /A
-4x10"¢
0 — Ve(+) x
_5'/ Ve(_) —6)(1010'
1 1 1 1 A1 1 1 1 1 1 1
0 5.x10°1 1.x10°'2 1.5x1012 2.x10~12 0.000 0.002 0.004 0.006 0.008 0.010
m (GeV) m (GeV)
(a) (b)
M=10° GeV
2x10%7 /\
0
-2x107¢ \/
4x10% = vel)
o Ve(=)
. |

'5000 10000 15000 20000 25000 30000
m (GeV)

(©)
FIG. 2. Spectrum of electron neutrino tower for ¢, > 0. det K, in (5.42) is plotted as a function of m = kA in various mass ranges for
0y =0.15, z; = 10'°, myx = 8.062 TeV, and M = 1 TeV. The mass spectrum {m, = ki, } is determined by roots of detK, = 0.

v,(=£) indicates the case of f.; g(x) in (5.38). Only v,(+) has a solution corresponding to v, with m, = 1 meV. In (b) and (c), the
curves for v,(+) and v,(—) almost overlap with each other at this scale.
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M=10° GeV

L] S

10 e

B /A

0 — Ve(+)
Ve(—)

_5» .

0 5x10" 1.x107'2 1.5x107'? 2.x107"2
m (GeV)

(@)

FIG. 3. Spectrum of neutrino towers for ¢; < 0. As in Fig. 2, de

M=10° GeV
4x10"5 e
: -V
3x10"5} Yy
- V.
2x 1015} -
15 /’.‘-\
1x10 170N
1 " -~
0 '," e LA — /l ~d
15 \7/'/ A =7
-1x10"°F ‘..,l"
-2x10"5E._.

0 5000 10000 15000 20000 25000 30000
m (GeV)

(b)

t K, in (5.42) is plotted as a function of m = kA in two mass ranges for

Oy = 0.15, z; = 10'°, myx = 8.062 TeV, and M = 1 TeV. The mass spectrum {m, = ki,} is determined by roots of detK, = 0.

(a) Only v,(+4) has a solution corresponding to v, with m, =1
towers almost overlap in this figure. For the v, tower, the masses o

couplings. The mechanism in the current model for making
right-handed quarks and leptons having almost vanishing
W couplings is the following. The up-type quarks are
contained solely in the spinor multiplets. The down-type
quarks are contained in both the spinor and singlet
representations of SO(5). Left-handed down-type quarks
are mostly in the spinor representation multiplets, whereas
right-handed down-type quarks are mostly in the singlet
representation multiplets so that right-handed up-type
quarks have almost vanishing W couplings to right-handed
down-type quarks.

The mechanism in the lepton sector is different. With the
presence of brane fermions y, the gauge-Higgs seesaw

TABLE VIII. W couplings of quarks and leptons for 8y = 0.15,
71 = 109, myyx = 8.062 TeV. The couplings are defined by
L =W, (g)uy"d;, + gy ugy*dg) for the (u,d) doublet. In the
SM, gV = g,,/Vv2 and g)¥ = 0. For the (u,d) doublet, we set
mg = 0.9m,,.

9/ 1 9%
Leptons cL M V2 9. /V2
(v, e) 1.086 1 TeV — —2.64x1073  0(107'")
-1.086 1 TeV  -524x107°  0(107%)
(Vo 1) 0839 1TeV  -264x107  0(107%)
-0.839 1TeV  -525x1073  0(107%)
(Ve 7) 0703 1TeV  -2.64x107°  0O(107Y)
-0.703 1 TeV  -525x103  O(10719)
3 9 _q e
Quarks Co My mp 9u/V2 9 /V2
(u,d) -1.044 01 1.0 -524x103 O(107'%)
(c,s) -0.7546 0.1 1.0 -525x107°  0O(107)
(t,b) 02287 0.1 0.1 -343x107  0(107%)
-0.2287 0.1 1.0 —441x107  0(107)

meV. (b) The spectra of v,, v, v, towers are shown. v(+) and v(-)
f the third and fourth KK modes are 16.46 and 16.67 TeV, respectively.

mechanism functions in the neutrino sector. Right-handed
neutrinos become heavy, acquiring O(mygy) masses, and
decouple from right-handed charged leptons.

Indeed, one can evaluate the W couplings of quarks and
leptons by determining wave functions of quarks and
leptons from the mass-determining matrices explained
above and inserting them into the original action. The
result is shown in Table VIIL It is seen that the u-e
universality in the charged current interactions holds to
high accuracy, provided the same sign of c; is adopted. It is
also confirmed that the W couplings of right-handed quarks
and leptons are strongly suppressed. A more detailed study
of gauge couplings, including Z and Z’ couplings, will be
given separately.

VI. SUMMARY AND DISCUSSIONS

In this paper we have presented a new model of the
SO(5) x U(1) x SU(3) gauge-Higgs unification in which
quark and lepton multiplets are introduced in the spinor,
vector, and singlet representations of SO(5) such that they
can be implemented in the SO(11) gauge-Higgs grand
unification scheme. This should be contrasted to the
previous model in which all quark and lepton multiplets
are introduced in the vector representation of SO(5). The
up-type quarks are contained solely in the spinor repre-
sentation. The right-handed down-type quarks are mainly
contained in the singlet representation of SO(5). SO(5) x
U(1) x SU(3) singlet brane Majorana fermions are intro-
duced on the UV brane. The coupling of these brane
fermions to bulk fermion multiplets induces the gauge-
Higgs seesaw mechanism in the neutrino sector, which
takes the same form as the inverse seesaw mechanism in
four-dimensional GUT theories.

With SO(5) x U(1) x SU(3) gauge-invariant brane
interactions taken into account, the quark-lepton mass
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spectrum has been reproduced with the exception that the
down-quark mass (m,) becomes lighter than the up-quark
mass (m,,). A solution to this problem has yet to be found.
The compatibility with grand unification severely restricts
matter content and interactions in the gauge-Higgs uni-
fication. Nevertheless it is very encouraging that the model
yields almost the same W couplings of quarks and leptons.

The present model serves as a viable alternative to the
standard model. If it is the case, phenomenological con-
sequences of the model need to be clarified. As in the
previous model, Z’ bosons (the first KK modes of y, Z, and
Zy) are predicted around the 7 to 10 TeV range. We have
seen in Sec. V that the bulk mass parameters (c,, c.) of
quark multiplets ¥ (3 4y in the first and second generations
must be negative to avoid exotic light excitation modes of
down-quark type. The bulk mass parameters c; of lepton
multiplets can be either positive or negative. The sign of the
bulk mass parameters is critically important to determine
the behavior of wave functions. For ¢ > +% (c < — %), left-
handed quarks/leptons are localized near the UV (IR)
brane, whereas right-handed ones are localized near the
IR (UV) brane. As Z' bosons are localized near the IR
brane, right-handed (left-handed) quarks/leptons have
larger couplings to Z' bosons for ¢ > +1 (¢ < —1). The
effect of the large parity violation can be seen in the
ete™ collisions through interference terms. In particular,
cross sections of various fermion-pair production
processes should reveal distinct dependence on the e~
polarization. [14]

With the mass spectra of all fields having been deter-
mined, one can investigate the effective potential V¢ (6y)
to show that EW symmetry is dynamically broken. The
flavor mixing in the quark and lepton sectors and the dark
matter are also among the problems to be solved in the
gauge-Higgs unification scenario. We shall come back to
these issues in the near future.
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APPENDIX A: SO(5)
The generators of SO(5), Tj = =Ty, = T;k (G, k=1,2,
3, 4, 5), satisfy the algebra '

(Tijs Tra) = i(0uTji = 6uT jr + 6T — 6T 1).

J (A1)

In the adjoint representation,

(Tij)pq = _i(‘sip‘sjq - 5iq§jp)’

(T ik Ti) = 2(810km = SjmOui)s tr(Tj)* = 2.

j ; (A2)

We take the following basis of SO(5) Clifford algebra:
(T, T} = 28314,

I,=0‘®oc!

r,= o ® o2,

FS = UO X 63 = —F1F2F3F4,

(a=1,2,3),

(A3)

where 6° = I, and {6“} are Pauli matrices. In terms of I';,
the SO(5) generators in the spinor representation are
given by

i i .
Ty = _Z[rjyrk] (: _Erjrk for j # k),

(Ti)* = 714 tr(Tj)* = 1. (A4)

The orbifold boundary conditions Py, P; in Egs. (3.4)
break SO(5) to SO(4) ~SU(2), x SU(2)g. The genera-
tors of the corresponding SO(4) ~ SU(2), x SU(2)y in the
spinor representation are given by

T+ T
- : T23 T14 1q® L o
L=5 31 T 124 5° 0 0/
T+ Tz
Tr»y =T
T =1 T23 T14 e 00 (A5)
R—2 31 24 20 0 1
Tip—Tsy

These generators become block-diagonal so that an SO(5)
spinor representation 4 can be decomposed into (2,1) @
(1,2) of SO(4) = SU(2), x SU(2)g:

¥
n= () (A6)
Pz
In the representation (A3) one finds that
I} = (=0T,
R:=-ilL[, =R =R'=6*Q® 7,
RI';R = (—l)f“l“j, RIGR =17,
RTHR = —Tj. (A7)

It follows that for an SO(5) spinor ¥, the R-transformed
one also transforms as 4:
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lP4 = lR"P:,

i
Y= <1 +§€jijk> Yy
i

5 (A8)

= {PZ‘ = (1 + Sjijk)l‘ilél.

Its SO(5) content is given by

APPENDIX B: BASIS FUNCTIONS

We summarize basis functions in the RS space.

1. Gauge fields
We define

Fop(u,v) = Jo(u)Yp(v) = Yo(u)Jy(v),  (BI)

where J,,(x) and Y, (x) are Bessel functions of the first and
second kind, respectively. For gauge bosons, C = C(z;1)
and S = S(z;4) are defined as solutions of

(- (412 (E)-(O) @

with boundary conditions C = z;,§ =0,C' =0,and §' =
A at z = z;. They are given by
T
C(ZUI) = +§/122LF1_0(/12,/1ZL),
T
C'(z:4) = +§1ZZZLF0.0(/IZJZL)»

S(Z,/l) — _g/’{ZFl’l(/’{Zy /1ZL)’

S'(z:4) = —gﬂzFo,l(xz,zzL). (B3)
We note that
c c
_ 12
_PZ<S'> = <S>
CS - SC = iz (B4)

2. Massless fermion fields

For massless fermions in five dimensions, we define

CL T
S (z3d,c) == Eix/zzLFC%C%(ﬂz, 2z1),
L

C
() ere =% Savamromiai. ()
R
which satisfy
C S C S
2 () =e) ()=
St Cr Sk Cr
CLCR - SLSR — 1,
CR:CLzl, SR:SLZO, atZ:ZL. (B6)
They also satisfy
CL(z:4, —c) = Cr(z; 4, ¢),
Si(z34,—c) = =Sg(z34, ¢). (B7)

3. Massive fermion fields

As seen in (3.16), ‘Iv’éf"l) and ‘Iv’ﬁﬂ 5 have additional
pseudo-Dirac bulk mass terms in the action. To find basis
functions for these massive fermions, we consider the
action for N* fields given by

Ld' ~ ~ ~ v
/d“x/z %{N*Do(c+)N++N‘DO(c_)N_
|

R e +z'v—1v+>},
—kD_(c) 0",
where Dy(c) = ( ) ) (B8)
"0, —kD, (c)

m is dimensionless, and k7 corresponds to m§, and m€
in (3.16).

To find eigenmodes with four-dimensional mass
ki, we write N#(x,2) = N.og(2)fx(x) and Nf(x.2) =
N.;(z)fr(x) as described below Eq. (5.7). Then N_x(z)
and N (z) must satisfy

m
D_(c+)Nigp = ANy +?N¢R =0,

m
D (c:)Nip —ANog +;N:FL =0. (B9)

Note that
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We consider two cases: ¢, = c_ and ¢, = —c_.

a.Casel.c, =c_=c
It follows immediately from (B9) that

D_(c
D, (c

M) (N g £ N_g
m)(Nyp £N_;

) :/1(N+L iN—L),

+
+ ) =AN.g£N_g).  (Bll)

General solutions are given by
N Cc+ﬁ1 Sc+rh
(nir) =) +2l()
N:i:L S]Cfm Cz+m
ia/(c?_'?) ib’(sfe_ﬂj )
N ci

Here Cﬁg’:CL/R(Z;/I,c:tm) and Szj/ﬁg’:SL/R(z;/l,c:tm).
At this stage we define basis functions by

(B12)

Cri(z;4,¢,/) = Cr(z;4, ¢ + 1) + Cgr(z;4,¢c — i),
Cro(z:4,¢,m) = Sg(z;:4, ¢ + M) — Sg(z;4, ¢ — i),
Spi(zA,c,m) =S (z;A,c+m)+ S (24, ¢ — ),
Si2(z;4,¢,m) =Cr(z;4,c+m) — Cr(z;4, ¢ — i),
Cri(z:4,c,m) =Cp(z;4,c+mm) + Cr(z;4,¢c — i),
Cra(z34,¢,im) =S, (z:4, ¢ +n) — S (z:4, ¢ — ),
Sri(z:4,¢,i) = Sg(z;4,¢ + i) + Sg(z:4,c — i),
Spo(z3d,c,im) = Cr(z; A, c+m) = Cr(z;4,c—m),  (B13)

which satisfy the equations and boundary conditions
(CR1> (Su)_@(«sm)
Cro Sia 2 \Sp1 /)’
205 ) ) % ()
R2 Cra 2 \Cr /)’
(Cu <5R1>_ﬁ<5L2)
Cra Sk 2\Su /)
(5L1> - (CR1>_@(CL2>
Sp2 a Cro 2 \Cp /)’
Sgj =81 =D_(c)Cgj =D, (c)Cp; =0

atZ:ZL.

D, (c)

(B14)

Note also

( )
SRJ'(Z,/L —C,ﬁ’l) = —SLj(Z;l7 c, m)?
Crirj(z: A c.—m) = (=1)71Cryp (254, c, i),
SR/L](Z,X, C, —ﬁl) = (—l)j_]SR/Lj(Z;j., C,ﬁ’l). (BIS)
In the i — 0 limit,
Cri=2Cgr,  Sgpi =28z, Cp1—2C,, Sp1—28,
Cra»  Sgas Cray S1p—0. (B16)

Two types of boundary conditions appear at 7 = z; .

Type A: (N+R’N—R’N+L’ N—L) = (+* R +)

When parity assignment at y =L for (N g, N_g,
N.;,N_;) is (+,—,—,+), boundary conditions at z =
z;, become

D_(C)N+R = 0,
N—R = O,

N+L:07

D,(c)N_, =0. (B17)

In this case a = @’ and b = —b' in (B12) and solutions can

be written as

N+R CRI(Z;/I,C,ﬁ’Z) CRZ(Z /1 C, ﬁ’l)
=a B +b -
N_g Sra(z; 4, ¢, i) SRl(z A c, m)
N_, Cra(z34, ¢, m) Cri(z; 4, ¢, m)
(B18)

where a, b are arbitrary constants.

If N’s have the same parity assignment at y = 0 as that at
y =L, then (B17) must be satisfied at z =1 as well.
Substituting (B18) into (B17) and evaluating the conditions
at z = 1, one finds

<SL1 3L2><a>:0
Sk Sri/ \b ’

where S;; = S;1(1;4, ¢, /), etc. The mass spectrum is
determined by

(B19)

SLISRI - SL28R2 =0. (BZO)

Note that
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S11Sr1 = S128r +2 = Cp1Cr1 = Cp2Cro — 2
— SerﬁzS%—rh + Sz—rhS?;rﬁl
+ C?Lﬁlcfe—ﬁl 4 Ci—mci;rﬁl’
SLICLI - SLZCLZ == 2(SZ+'71C2_"~1 + Si_chLer)
(B21)

Type B: (N g Ng. N p.N_p) = (= +,+,—)

When parity assignment at y =L for (N_ g, N_g,
N, ,N_;) is (-, +,4,—), boundary conditions at z =
z; become

Nig =0, D (c)Ni =0,
D_(c)N_g=0, N_, =0. (B22)
In this case « = —a’ and b = b’ in (B12) and solutions can
be written as
N Sra(z34, ¢, i) Sri(z34, ¢, i)
Nyp Cra(z34, c, i) Cri(z3 4, c, )
=a . +b .
N_g Cri(z:4, ¢, i) Cro(z:4,¢,im)
N_p Spi(z34,¢,m) S1a(z34, ¢, )
(B23)

where a and b are arbitrary constants.

If N’s have the same parity assignment at y = 0 as that at
y =L, then (B22) must be satisfied at z =1 as well.
Substituting (B23) into (B22) and evaluating the conditions
at z = 1, one finds

S S a
< 2 R‘)( )—o. (B24)
Su S b
The mass spectrum is determined by
Sp1Sp1 = 5128 = 0. (B25)
b. CaseIl. ¢, = —-c_=c
The special case ¢, = —c_ = c¢ naturally emerges in the

context of six-dimensional gauge-Higgs grand unification
[35]. The bulk (vector) mass parameter ¢ appears there as a
coefficient in the vector component y%, which becomes the
bulk mass parameter in the RS space, +c¢, for 6D Weyl
(¢’ = %) components. In this case, Eq. (B9) becomes

m
D_(C)N+R _A.NJ',L +;N—R = O,

m
D (c)Nip — AN g +;N—L =0,

m
—D+(C)N_R —AN_L +ZN+R = 0,

“D_(¢)N_,—IN_p+2N, =0.  (B26)
z
To find solutions to Egs. (B26), we note that
& cleFl) m? in
(B27)

We seek solutions in the form N,p = f(z) and
N_g = af(z). Solutions exist provided —c— am =
¢ —m/a is satisfied, or a = ay, where

1
ai:%(—c:lzé),

aa_=—1, ¢=+/c*+m*  (B28)

With a = a., f(z) satisfies
{D.(e)D(2) = 22}f(2) = 0. (B29)

Hence general solutions are given by

N_g a, C a, S
C¢ ¢
—|—a’( R)+b’< H), (B30)
a_Cj a_Sy

where CE/R = Cy/g(z:4.¢) and Si/R =Sy r(z:4,2).
To find the corresponding solutions for N, ;, we make
use of the identities

. ma ~  ma_
D_(¢) = +D(&) === = =D (&) ==,
R ma R ma_
D.(¢) = +D, (@) =" = -D_(¢) - "= (B31)
to find
N s¢ C¢
() =#lais) ler)
N_p a, Sy a, Cy
4 C§
S EARTRAN
a_Sy a_Chq
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Basis functions for case II are defined as follows:

Cri(z:4, ¢, ) = Cr(z:4,2) + a2.Cp(z:4,8),
Cro(zidc.m) = a {S;(2:4.8) + Sg(z: 4, 8)}.

Spi(zsd e i) = S (234, 8) — a2 Sp(z:4,2),
Sia(zide.m) = a, {Cp(z:4.8) — Cp(z: 2. 2)},
Cri(z: A com) = Cp(z: 4, 8) + a2 Cr(z: 4. 2),

Cra(z: A o) = a {Sg(z: 4. &) 4+ Si(z:4.2)},

SRl(Z;/L c,m) = Sp(z;4,8) — 2.8 (z: 4, ¢),

Spa(z3 4 ¢, ) = a {Cr(z:4,8) = Cr(z:4,8)}.  (B33)

We note that C;»(z;4, ¢, im) = Cro(z34, ¢, i) and Sy, (z;
A, c,m) = —SRz(z;ﬂ, c,m). With the aid of (B28) and
(B31), one finds

C S (S
o)) ()
Cr2 S 2\S
DAc)(‘?“) ﬂ(?’“) - (C’“>
S Cra 2 \Cpi
D_(C)(ﬂ?m) :/1<€:L1> R (?L2)’
Sro Cra 2 \Cpy
C S n(S
o)) ()
Cra Skra T\ Sg
SRj_SL]_D—(c)éR]:DJr(C)aLj:O atZ:ZL.
(B34)
Note that
SriCri = SpoCrp = (1 + o) (SRCE — a3 S;CL).  (B35)
As ¢ = —c, ay — —az so that
@Rj(z;/i, —c, i) = a%(AZ'L](z,/I, c,m),
aLj(z;l, —c,im) = a_aRj(z,/l, c, i),
Skj(z A, —c, i) = =28, (234, ¢, i),
Sii(zd —c, i) = =2 Sg;(z: 4 ¢, ). (B36)
Further, as m — —, ai. — —ay and
&R/LJ(Z;/L c,—m) = (—1)j_]&R/Lj(Z§ﬂ7 c, ),
Skyrj(zd e, =) = (=118, (2 4 ¢, ). (B37)

In the m — O limit

éR/Ll(Z;’L ¢,0) = Cry1(z34,¢),
SR/LI(Z;/L c, O) = SR/L1<Z;/1, C),

Cryra(z34,¢,0) = Sg/1a(z34,¢,0) = 0. (B38)
Two types of boundary conditions appear at z = z; .
Type A: (Nyg, N_g, N, N_p) = (+.—,—. +)

When parity assignment at y = L for (N, N_g, N,

N_;) is (+,—,—,+), boundary conditions at z = z;

become

D_(C)N+R - 0,

N—R = 0, D_(C)N_L = O, (B39)
which leads to the conditions for the parameters in (B30)

and (B32):

(B40)

{aa++a’a_ =0,
b—-b =0.

It follows that solutions can be written as

N g &Rl(Z%C,ﬁ’l) éRz(Z;/l,C,ﬁ’l)
Nyp - SLl(Z%C”h) = SLZ(Z;/LC’m)
=al +b|
N—R —SLz(Z;j.,C,ﬁ’l) —SLI(Z;l,C,ﬁ’l)
N-p aRZ(Z;/LC,ﬁ’l) ém(z;/l,c,ﬁi)
(B41)

where @ = a and b = b/ a, are arbitrary constants.

If N’s have the same parity assignment at y = 0 as that at
y =L, then (B39) must be satisfied at z =1 as well.
Substituting (B4 1) into (B39) and evaluating the conditions
at z = 1, one finds

<3L1 3L2)<Zl):0
Sy S/ \b

where Su = SLI(I;L c,m), etc. The mass spectrum is
determined by

(B42)

S, -83,=0. (B43)
Type B: (Nyg. N_go Ny N_p) = (= +,+,—)
When parity assignment at y =L for (N_g, N_g,
N, ,N_;) is (=, +,4+,—), boundary conditions at z =
z;, become
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Nig =0, D (c)Ny, =0,
D+(C>N_R = 0, N—L =0. (B44)
This leads to
+ , = 0’
{ @ (B45)
ba, —ba_=0.

It follows that solutions can be written as

Nig SRz(ZVLC,ﬁi) S'Rl(z;/l,c,ﬁa)
Nip - éLz(Z;ﬂ,C,ﬁl) ~ @Ll(z;ﬂ,c,ﬁz)
=da n _|_b R ,
N_g Cri(z:4,c,mm) Cra(z34,¢,im)
N—L —(AS‘RI(Z;J,C,ﬁ’l) —:S'RQ(Z;/I,C,I’h)

(B46)

where & = a/a, and b = b are arbitrary constants.

If N’s have the same parity assignment at y = 0 as that at
y =L, then (B44) must be satisfied at z =1 as well.
Substituting (B46) into (B44) and evaluating the conditions
at z = 1, one finds

<AR2 A’“)(f’) —0. (B47)
Sk Sgp/ \P
The mass spectrum is determined by

S -8 =0. (B48)

APPENDIX C: MAJORANA FERMIONS

We summarize the notation adopted in the present paper
concerning Majorana fermions in four dimensions. Dirac
matrices are

{7/.“77/1/}:2]1’“” n””:diag(—l,l,l,l),

v ot ot (4]
v = P ) Py —( 210)’
75—<12 )

—I,

We define i = iy'y®. Charge conjugation is given by

(C1)

wC = Uc(W)', where Ucy"' U TC = —y#.Inour representation

Note that ()¢ = y, whereas (7)€ = —y and (&)¢ = —¢.
It follows that

Wiy, = —iﬂkz + if;’h = ySyf,
Vit = —in|0"0,m, + i€]50,&,.

—in| "0, = —i0,ns ' n ~ ins 50,n5.  (C3)

and so on.
In (5.38) we have introduced wave functions of mass
eigenstates satisfying

00, f+r(x) = mf 1 (x), 00, f 11 (x) = mf g(x),
fep(x)¢ =0 fip(x) = £fp(x). (C4)

Explicit forms of f; /g(x) are given, for modes propagat-
ing in the x3-direction with p = (0,0, p), by

f(l) N 1 ( me—iEt+ipx3 )
+L \/2_E eide meiEt—ip)q ’
f(l) _ 1 (_i\/E—:_ﬁe—iEH-ip)@ )
RT3 \ e JET peif-ivn
f(z) _ 1 \/ETI;eiEt—ipx3
+L YE \ —eide JE— pe—iEt+ipx3 ’
f(2) _ 1 i E_peiEt—ipx3
R 2F \ ie®\/E + pe~iErtirxs )’
N 1 \/me—iEH-ip)q
f_L = 2E _eiéc E — peiEr—ipx3
0 1 —iJE = pe—iEt+ipx3
ok = 2FE (—ieiﬁf VE + pelFi=irss >’
y 1 [ JEFpeltiv
f_L - 2E \ e \/JE = pe—iEt+ipx3 ’
: — iEt—ipx;
2) 1 ivE - pe'
flr= i —iEttipxy | (C5)
2E \ —ie'*\/E + pe P

APPENDIX D: DARK FERMIONS

In addition to the quark and lepton multiplets, we
introduce dark fermion multiplets in the bulk, which give
relevant contributions to the effective potential V (6y) to
induce the electroweak symmetry breaking by the Hosotani
mechanism. They naturally appear from grand unified
theory.
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L Opm=3%.-3 P34 =¥p)

The bulk mass parameter of this multiplet, cp, is
assumed to satisfy |cz| <1 Wp satisfies boundary con-
dition (3.8). There are no zero modes. The spectrum is
vectorlike. (Fy, F}) in Table III forms a pair analogous to
the (u, u’) pair, whereas (F,, F}) is analogous to the (d, d’)
pair. Both pairs satisfy, in the twisted gauge, the equations
similar to Eq. (5.6) with ¢, replaced by cp.

With the boundary conditions at y = L taken into
account, mode functions can be written as

1 C(FSR(Zs i, CF)
(2 =( e,
/lR (ZF/CR(Z,/L Cp)
aFCL(Z’/17 CF)
(7~ ( o
’lL OCF’SL(ZML CF)
The boundary conditions at z = 1 are flipped, however, and
we have D_Fz =0 and F'; = 0 there to find

p (aF> ( cos$0,Cl —isin%HHS’Z)(aF)O
F ap) —isin%QHSg COS%QHCII; ap)

(D2)
Here S}/, = Sp/r(1,4,cp), etc. detKp =0 leads to the
equation determining the spectrum:

e e mya

(D1)

Ty

0
SFSE + cos? 2H 0. (D3)
There are no light modes for |c| < and small 6. The
spectrum of the (F,, F’) pair is also given by (D3).

2. Qpm= + 1: E=, E* (W 5)
In general ‘P and v (15) May have dlfferent bulk mass

parameters Cv* and cy-. For charged particles E*, equa-
tions of motion are given by

—kD_(cy)Ef +0"0,Ef -V E7 =0,
Z
F0,E} — kD, (cy)Ef ="V E; =0,
Z
_ I — U I — m*V r+
kD_(cy-)Ex +00,E] ——E} =0,
Z
— v v m v
&9,Ex — kD, (cy-)Ef ——LE} =0. (D4)
Z

E" and E~ couple with each other through the mass my.
Boundary conditions are given by E ; = D_ (cy+)E; =0
and D_(Cv—)EE = EZ =0 at = 1, 2L

Mode functions can easily be found for cy+ = +cy-.
They are summarized in Appendix B 3. We quote the results

there. We note that the same result is obtained for E* as
for E*.

a. Case I: cy+ =cy- =cy

We denote 7izy = my, /k. The boundary condition is type
B. Mode functions are given by (B23):

E} Sra(z:h.cy.iny) Sri(z:A.cy.imy)
Ef . Cra(z:d,cy.imy) o Cri(z:A.cy.iny)
Ex Cri(z:A,cy.imy) Cro(zid ey iy) |
E; Spi(z:d,cy.my) Spa(z34, ¢y, mny)

(D5)

where a and b are arbitrary constants. The expression is
valid both in the original gauge and in the twisted gauge, as
these fields do not couple to @y at the tree level. The
spectrum is determined by (B25):

S‘L/ISXI - S‘L/2SKZ =0, (D6)
where S}, = S;1(154, ¢y, firy), ete.
b. Case II: Cy+ = —Cy- =Cy
In this case, mode functions are given by (B46):
E} Sra(zido ey, iy)
EZ B éLQ(Z;ﬂ, Cy, ﬁlv)
EE éLl(Z;ﬂ, Cy, ﬁlv)
Er =Sgi(z:4, ¢y, iny)
SR] (Zyﬂa CVv ﬁ/lv)

C A, ey, m

| Gorenm |

CLZ(Z;lv CVa ﬁlv)
—Sra(z34, ey fy)
where a and b are arbitrary constants. The spectrum is

determined by (B48):

(Sk)* = (Sk) =0, (D8)

where SKI = SRI(I;/L cy, iy), etc.
3. Qg =0: N+, N+, §* ¥is)

N*, N*, and S* couple with each other through 6.
Equations of motion in the original gauges are
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—kD_(cye) | NE | +04, | N+ —’ZV N | =0
§x §+ §7
i NE\ (AT

50, | N% | —kDo(cy=)| N7 _TV NF | =0.
Sk St i

(D9)

Note that D (c) is given by (5.2).

The relation between the original and twisted gauges is
g}iven by ‘Pﬁ& = Q(z)‘l‘(il.s), where Q(z) = )7, 50
that

e (1) )

cos0(z)
b + e Loae o
=—(N"+N7), =—(N"=N~),
V3 \/i( ) L \/E( )
wi=S*, (D10)
and therefore
NE | =Q@) | N* |
5+ B
0 0
Qz)=V|[ 0 cosf(z) sinf(z) |V,
0 —sinf(z) cosf(z)
1 1
nown 0
—y-l— | I
v=vit=|[d -1 o] (D11)
0 0 1
It follows that
A Ni
b(ey)| Nt | =@@D ()| 75 | D12
SE §1ﬂ5

and so on. Boundary conditions in the original gauge are

Ni=D(cy )N} =D_(cy)Nz=Ni =0,
NE = b+(CV+)NZ = D—<CV’)NE = ]\V]Z = 0,
D_(cy)St=8F=8Sx=D_(cy-)S7 =0, (D13)

at both z=1and z = z;.

a. Case I: cy+ =cy- =cy
The boundary conditions in the twisted gauge at
7=z, are obtained from (D13) by replacing D (c)
by D, (c). Mode functions of the N and N fields are
given by (B23), whereas those of the S field are given by
(B18):

S 4
]YR SRz(Z;ﬂ,Cv,ﬁ’lv)
N;: — a4 CLQ(Z;Aa CVvﬁ/lV)
K/E Y| Cri(zid. ey imy)
¥ SL](Z;/L CV”/hV)
N
SRI(Z;/L Cy, ﬁ’lv)
b Cri(z34, ¢y, iy)
N1 Cro(zi A cyomy) |
SLz(Z;l, Cy, ﬁ’lv)
N Sra(z: 4, ey, iy
Nf Cra(z3 4, ey, iny)
~ =day -
Ny Cri(zi 4, cy, y)
K’Z Spi(z3 4, ey, finy)
Sri(z:4, ¢y, iny)
Cii(zsA, ey,
by Li( . v " v) 7
CRZ(Z’ A, ¢y, mv)
Si2(z:4, ¢y, iny)
S+
Sk Cri(z; 4, ¢y, iy)
St . Spi(z: 4, ey, firy)
< =dg
Sz Sra(z3 4, ey, imy)
- Cra(z; 4, ¢y, iny)
L

CR2<Z; ﬂa CVa ﬁlv)

S;5(z34, ¢y, m
1 p| Seshenm) |

_ (D14)
SRl (Z;/l, Cy, mv)

CLI (Z;/l, Cy, ﬁ’lv)

where 7ty = my/k and ag, by, ay, by, ag, and by are
arbitrary parameters.

We insert (D14) into the boundary conditions
(D13) at z = 1. With the aid of (D11) and (D12), one
finds that

095010-25



SHUICHIRO FUNATSU et al.

PHYS. REV. D 99, 095010 (2019)

ay
ay
ag <V O) <A B) (V O)
Ky -0, Ky= :
by ov/\cp/lov
by
by
s, 0 0 S0 0
A=| 0 xSk, suCri |- B=| 0 xSk suCk |-
0 —syCl, cusSy, 0 —suCry cuS
s, 0 0 s, 0 0
C=| 0 cuS), suCl, |, D=| 0 ¢S, suCy, |.
0 —suCk cuSk 0 —s54Ch cySk

where ¢y =cosy, sy=sinfy, and S}, =8;,(1;4,cy, 7y ), etc. The spectrum is determined by det Ky = 0:

v 1% v v
cgSry SuCri cuSg1 SuCpy

% 1% 1% % v v

Sky Sk =suCry cuSpy —suCpy cuSpy

det K = det v v det v v v v
Sp S cuSpr suCry cuSpy suCp

v v v 1%

—suCri ¢uSpy —SuCry  ¢uSpi

= (8]18k1 = S8k chi (S 1Sk — S128ka)* + 51(CY \Cry = CYxCho)* + 51 (Ci Cl, — CioSY 1 )?

+ S%C%(CZIS& - CZzSXl)z + 2S%-1C%-1(CZ1S{1 - CX23{2)(CX18%1 - Cz‘éz‘%z)}-

b. Case II: ¢cy+ = —cy- =cy
The boundary conditions (D13) become

(D15)

(D16)

(D17)

at both z = 1 and z = z;. Mode functions of the N and N fields are given by (B46), whereas those of the S field are given

by (B41):
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IZ; Sra(z3 4, ey, iy Sri(z34, ¢y, fny)
]E’f — ?LZ(Z;/L cy, fy) + by ?LI(ZZ/L cy, fity)
1{/; Cri(zid, ey, my) Cra(z: 4, cy.iny)
]%]Z =Sri1(z:4, ey, iny) ~Sra(z: 4, ey, ity )
K’; Ska(zs A ey, iiy) Spi(z: 4.y iiy)
&{ o ?uﬂﬁﬂJngV) o ?“(ZAJngV) |
Ny Cri(z:4, ey, iy) Cra(z34, ey, iy)
](72 ~Sri(z: 4. cy.iny) ~Spo(z: 4, cy, ity)
Sk Cri(zs A, ey imy) Cra(z: 4 ey iiy)
:?Zr g SALI(Z;’L cy, fity) by SALz(ZVL cy, fity)
Sz =812z 4, ¢y, iry) =S11(z5 4, ¢y, iy)
§Z Cra(zs A, ey imy) Cri(z A ey, iy)

where ag, by, ay, by, ag, and by are arbitrary parameters.
We insert (D18) into the boundary conditions (D17) at z = 1. This time we have, instead of (D15),

(V 0)(A B)(V 0)

KN: ~ A )

0 Vv)\C D/\0 V
0

s, 0 oo o
A= 0 CHSKZ SHézgl ’ b= 0 CHSXI SHéXZ ’
0 —suCV, xSy, 0 —suC¥, cySY,
Sk 0 0 Sk 0 0
C=| 0 xSy —suClk |. D=| 0 ¢z8Y% —suC¥% |.
0 —suC¥, —cySY, 0 —syC}, —cuS7y,

where S‘L/I = SLI(I;/I, cy, my), etc. The spectrum is determined by

detKy = {(S§)> - (Sk)?}

X {COS49H[(SIYI)2 - (3Z2)2M(3X1)2 - (3K2)2] + Sin49H[(éZI)2 - (ézz)z][(ci‘é)z - (sz)z]

+ ZSinngCOSZQH(S V13¥1 -8 Vzg Vz)(é V16X1 - égzé x2)
14

L L2°R L
- 25'inz‘gHCOSZgH(S ‘L/13R2 - 3223X1)(6Z1@X2 - 8Z2C K1)} =0.
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