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We calculate the proton lifetime and discuss topological defects in a wide class of non-supersymmetric
(non-SUSY) SO(10) and E(6) grand unified theories (GUTs), broken via left-right subgroups with one or
two intermediate scales (a total of 9 different scenarios with and without D-parity), including the important
effect of threshold corrections. By performing a goodness of fit test for unification using the two-loop
renormalization group evolution equations (RGEs), we find that the inclusion of threshold corrections
significantly affects the proton lifetime, allowing several scenarios, which would otherwise be excluded, to
survive. Indeed we find that the threshold corrections are a savior for many non-SUSY GUTs. For each
scenario we analyze the homotopy of the vacuum manifold to estimate the possible emergence of

topological defects.
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I. INTRODUCTION

Grand unified theories (GUTSs) are theoretical frame-
works which aim to unify the fundamental forces described
by strong, weak, and electromagnetic interactions within
the Standard Model (SM) of particle physics described by
SU3)c®SU(2), ®U(1)y=Gs,1, gauge theory. These
unified theories are associated with a simple unified gauge
group Gy and a single gauge coupling g, at some high
energy scale M. However in minimal SU(5), without
supersymmetry (SUSY), gauge coupling unification is not
readily achievable. Nevertheless, non-SUSY GUTs such as
SO(10) or E(6) with one or two intermediate scales remain
viable in principle. However, aside from the requirement of
coupling unification at My, the main prediction of most
GUTs is that of proton decay. But proton decay is yet
to be observed [1-4], and the proton decay lifetime
(z, > 1.6 x 10**) only serves to put a stringent constraint

on the unification scale My > 10'® GeV, which threatens
to exclude many of the non-SUSY GUTs. However, a
detailed study of proton decay in such theories, including
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the effect of threshold corrections, is required in order to
address this question, and to make reliable predictions for
the next generation of proton decay experiments such as
Hyperkamiokande [5] and DUNE [6].

In this paper, we estimate the proton lifetime in a wide
class of nonsupersymmetric GUTs, broken via left-right
subgroups with one or two intermediate scales. For the one
intermediate scale breaking, we suppose that the GUT
groups break into their maximal subgroups of the form
SU(N);, ® SU(N)z ® G, see [7]. This restricts our choice
of GUT groups to be SO(10), E(6), with certain breaking
patterns. Due to the SU(N); ® SU(N)y structure, we
encounter two possibilities—D-parity conserved and
broken [8—12]. We consider a total of 9 different scenarios
with and without D-parity. For each such breaking pattern,
we compute the beta-functions up to two-loop level and
find the unification solutions in terms of unification and
intermediate scales. By performing a goodness of fit test for
unification using the two-loop renormalization group
evolution equations (RGEs), we find that the inclusion
of threshold corrections significantly affects the proton
lifetime, allowing several scenarios, which would other-
wise be excluded, to survive. For each scenario, we also
analyze the homotopy of the vacuum manifold to estimate
the possible emergence of topological defects. We then go
on to consider a general analysis of the two intermediate
scale cases. To understand the status of the one intermediate
scale case, we have recalled our earlier work [7] and
computed the same for those breaking chains as well. This
gives us a clear notion to understand the present status of
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one and two intermediate GUT scenarios. The various
breaking patterns we assume are achieved through the
suitable choice of the scalar representations and the
orientations of their vacuum expectation values (VEVs)
[13-27]. Also, the different breaking patterns lead to
different phenomenological models at low energy,
as discussed in [14,24,2528-31] for SO(10) and
[17,20,21,32-43] for E(6). The neutrino and charged
fermion mass and mixing generation in the context of
unified theories are discussed in [24,44-70]. In [71-85]
different cosmological aspects and dark matter scenarios
are discussed. An important result of the present paper,
using the goodness of fit test for unification with two-loop
renormalization group evolution equations (RGEs), is the
extent to which the inclusion of threshold corrections
significantly affects the proton lifetime, allowing several
scenarios, which would otherwise be excluded, to survive.

The layout of the remainder of the paper is as follows.
Section II is a preliminary section in which we discuss the
important aspects of the unified scenarios which are used
repeatedly in our analysis, e.g., (i) renormalization group
evolutions of the gauge couplings, (ii) matching conditions,
and threshold corrections, and (iii) emergence of topologi-
cal defects—at different stages of symmetry breaking. In
Sec. III, we focus on the computation of proton decay
lifetime, including a detailed discussion of the following
topics: (i) dimension-6 proton decay operators, (ii) anoma-
lous dimension matrix to perform the RG of the related
Wilson coefficients, and (iii) prediction of proton decay
lifetime. In Sec. IV, we analyze the breaking of GUT
symmetry groups [in our case SO(10), and E(6)] to
the Standard Model gauge group via two intermediate
scales. We have considered only those breaking chains
where the first intermediate group is of the form of
SU(N); ® SU(N)r ® G. We also analyze the topological
structure of the vacuum manifold for each such scenario,
and note the emergence of topological defects in the
subsequent process of symmetry breaking. In Sec. V, we
present our results using a goodness of fit test in order to
find unification solutions which are compatible with low
energy data. We compute the proton decay lifetime pre-
dicted for each two intermediate breaking chain along with
the unification solutions in the presence and absence of
threshold corrections. We also discuss the impact of
threshold corrections in detail. Section VI summarizes
and concludes the paper. In a series of Appendixes, we
provide all the details related to the threshold corrections
and group theoretic information used in this paper.

II. PRELIMINARIES
A. RGEs of gauge couplings

The renormalization group evolutions (RGEs) of the
gauge couplings can be written in terms of the group-
theoretic invariants as suggested in [86-92]. The gauge

coupling B-functions for a product group, like §; ® §; ®
Gy.. up to two-loop can be recast as:

dg; g |:4K‘ 1 11 ]

H ™ (4n)? ?T(Fi)D(Fj) +§T(Si)D(Sj) _§C2(Gi)
it | (5660 +267) ) TE)D(F)
+ (et acus) Jrsans) ey
RO T(F)D(E)
HACH(S))T(5)D(S))] m

following the conventions of [88] where F;, and S; are the
representations under group G; for the scalar and fermion
fields, respectively. Here, T(R), D(R), and C,(R) are the
normalization of generators, dimensionality of representa-
tion and the quadratic Casimir for the representation R.

B. Matching conditions and threshold corrections

In the process of symmetry breaking we encounter differ-
ent possibilities: (i) a single group is broken to a product
group, (ii) a product group is broken to a single group, (iii) a
product group is broken to a product group. Now for every
such scenario, we need to encapsulate the redistributions of
the gauge couplings related to the broken and unbroken
gauge groups. This has been done through the suitable choice
of matching conditions which depends on the pattern of
symmetry breaking [93-97]. At this point one needs to recall
that there exist some heavy modes at different scales,
and they may not be always degenerate. So their presence
may affect the matching conditions as well in the form of
threshold corrections. In the absence of these threshold
corrections, the detailed matching conditions for different
scenarios are discussed in [7]. These conditions get modified
in the presence of threshold corrections [71,98—106].

In this section, we have estimated the impact of different
heavy degrees of freedom (d.o.f.) on the unification in the
form of threshold corrections. Until now we have assumed
that all the superheavy particles that do not contribute to the
renormalization group evolution of the gauge couplings are
degenerate with the symmetry breaking scale.

At any symmetry breaking scale, u, the gauge couplings
(1/a,) of the daughter gauge group (G,) are given by the
suitable linear combinations of the gauge couplings (1/a,,)
of the parent one (G,,) along with the threshold corrections
after integrating out the superheavy fields. The gauge
coupling matching condition reads as

I G(G) ( - Cz(gp)> _Aaw)
as(u) 12z a,(u) 12z 127 °

(2)

where,
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M M
Ay(u) = —21Tr<zf,v In —V> + 24 Tr <13,S In —S>
Il !
M
+ 8kTr <ng In 7F> , (3)

is the measure of one-loop threshold correction
[93,94,97,105]. Here, t,y, t;5, and t,r are the generators
for the representations under G, of the superheavy vector,
scalar, and fermion fields respectively, My, Mg, and M ¢ are
their respective masses. In Eq. (3), 7 =3 (1) for the real

(complex) scalar fields and, x = % (1) for Weyl(Dirac)
fermions. Here, all the scalars are the physical scalars.
To analyze the impact of the threshold correction we
have adopted a conservative approach where all the super-
heavy gauge bosons (Myy) are degenerate with the
symmetry breaking scale (u). The scalars (§) and fermions
(F) are assumed to be nondegenerate and the mass ratio
M;/My y (i =S, F) with respect to those gauge bosons are
varied within [1/2:2], and [1/10:10]. We have first
computed the total threshold corrections at the unification
scale My and intermediate scale(s) M; in terms of A,.

. . . . M;
This can be expressed as a linear combination of In 7’

see Eq. (3), with positive and negative coefficients. To
maximize the unification scale My or intermediate
scale(s) M;, we need to assign the maximum(minimum)
value to the terms containing coefficients with +ve(—ve)
sign. We have designed our methodology to capture the
impact of the threshold correction based on the following
scenarios:

(I All the superheavy d.o.f. have the same mass as the
breaking scale. In this case we only have the
contribution from the gauge bosons which is in-
corporated within the matching condition with the
C, (quadratic Casimir) of Eq. (2).

(IT) All the superheavy multiplets have different masses
within the given range of mass. We can maximize
the threshold corrections at My, M, ;; scales adopt-
ing the methodology stated earlier. In this paper,
we have noted the maximum possible value of the
partial proton decay lifetime 7, varying the ratio (R)
within following ranges: [1/10:10] and [1/2:2].

Then using the solutions of two-loop RGEs and goodness
of fit test, we have computed the proton decay lifetime for
all the breaking patterns considered in this analysis.

C. Topological defects associated with spontaneous
symmetry breaking

In a spontaneously broken gauge theories within the
unified framework it is important to analyze the topological
structure of the vacuum manifold [107-113]. In these cases,
one can certainly predict the emergence of topological
defects just by studying the homotopy of the vacuum
manifold. In a mathematical framework this can be stated

TABLE I. Homotopy classification of Lie groups.

zeroth
Lie Homotopy Fundamental 2nd homotopy 3rd homotopy
Group (Iy)  group (I1;)  group (I;)  group (Il5)
U(l) T Z T A
SU(2) 7 A T VA
SU(3) 7 A T VA
SU(4) 7z A 7 Z
Spin(10) T T T z
E(6) T T T zZ

as: say a group G is broken spontaneously to another group
‘H, then the vacuum manifold is identified as M = G/H.
Now one needs to check whether IT,[M] # Z, i.e., non-
trivial or not. If this is nontrivial then there will be some
topological defects determined by the index %, e.g., domain
walls (k = 0), cosmic strings (k = 1), monopoles (k = 2),
and textures (kK = 3). Even this allows us to understand
which of them are stable ones. The topological defects that
we are interested in are domain walls, cosmic strings,
monopoles [114-117] as textures are very unstable and
decay immediately.

For product group we can use the following
identities: (i) II(G; ® G;) = I1;(G;) ® T,(G;), and
(i) T(G/(G:i®G))) =1L1(G; ® G;) while I(G) =
I,_,(G) = Z,1y(Zy) = Zy. We have listed the homotopy
groups for the essential Lie groups for the GUTs in the
Table I.

III. COMPUTATION OF THE
PROTON LIFETIME

Proton decay is the smoking gun signal to confirm the
existence of grand unification. In the nonsupersymmetric
GUT scenario, the proton can decay dominantly through
the exchange of leptoquark gauge bosons which induce
lepton and baryon number violation simultaneously. These
leptoquark gauge bosons gain mass through the sponta-
neous symmetry breaking of the GUT symmetry; thus their
mass is determined by the unification scale (My). Again
these exotic gauge bosons need to be very heavy to be
consistent with nonobservation of the proton decay so far.
This justifies why the GUT scale is very close to the Planck
scale. At low energy (<My), the proton decay diagrams can
be featured in terms of effective dimension-6 operators after
integrating out the gauge bosons.

Our plan of calculations is following: First we will
construct the dimension-6 proton decay operators using the
Standard Model fermions along with their respective
Wilson coefficients. Then we will perform RG running
of the effective operators till the unification scale using the
relevant anomalous dimensions. Here, we have discussed
and provided the detailed structure of these anomalous
dimensions for different breaking patterns.
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A. Dimension-6 proton decay operators

The leptoquark heavy gauge bosons that mediate the
proton decay, transform under the SM gauge group
(SUR2), ®U(1), ® SUB3)s) as: (X,Y)=1(2,5/6,3)
and (X',Y') = (2,-1/6,3) respectively [118,119]. In
this work we have considered the limits for p — eta°,
as this channel provides the stringent constraint
7, > 1.6 x 10°* yrs.

The effective Lagrangian that emerges after integrating
out the heavy leptoquark gauge bosons, contains the
(B — L) conserving dimension-six proton decay operators,
are given as [120-125]:

Od = Qz ”k ab CyﬂQjaa /jy/tkaﬂv
071 6= Qz l]k ab lC}/MQ]aa kﬁnybﬂ’ (4)
0;1116 Qgeuk abd yﬂQ]baukﬁnyaﬁ7
O;IVG Qz Uk abdcyﬂQ/hal//j y,qua/} (5)

These operators are written in flavor basis. Here, ; , are
the Wilson coefficients associated with these dimension-6
operators. In the next section their structures and necessary
running using anomalous dimension matrices are discussed
in detail.

The SM fermions are: Q = (%) and L = (¥), where i, j, k
are the SU(3); a, b are the SU(2),; and a, f are the
generation indices for light quarks.

In the physical basis, the relevant effective terms in
the Lagrangian leading to p—e*z” decay are expressed
as [126]:

O4-6(eC . d)
O45(e,d°) =

=WC eijku_.cy”u»e_cyﬂdk,
WCre*u Cy”u dkyﬂ (6)

with their respective Wilson coefficients OVC, ,):

WC, = Qi1 + [Vl

WC, = Qf + Q3|V,4]%, (7)
where, |V,4| = 0.9742 is the CKM matrix element [127]
The other mixing matrices [126], e.g., V= UCU
V, = EZD, Vi = DZE and V4, = DTCD, required to

diagonalize the Yukawa couplings as ULY,U= chag’
D{YpD= Y(z)lag,ET YpE= Ydlag are considered to be iden-
tity matrix (I).

B. Computation of the anomalous dimensions
and RG of dimension-6 operators

The running of the dimension-6 proton decay operators
is considered into two steps: (i) RG evolution from mass
scale of proton (m, ~1 GeV) to M, which is taken care

TABLE II. Relevant anomalous dimensions for the considered
breaking chains.

Anomalous dimensions

Gauge group 0F=5(e€, d) 0%5(e,d)
9,153 752} 17%72}
G2 203150 {2.2.2.1 {Z.2.2.}
2,20 {3.5.9 Ny
G104 3.3.9 3.3,
G333 {2.4.2} {4,2,2}
G>,2,401, (flipped) 3.0.8. 013 3.082.1

of by the long distant enhancement factor A; [128], and
(i)) RG evolution of the same operator from M, to
unification scale My through the intermediate scales, if
any. The impact of second level running is captured in short
range renormalization factors Ag which can be written in
the presence of multiple intermediate scales as [129-134]:

J i

where, a; = g?/4x, y;s are the anomalous dimensions,
and b;’s are the p-coefficients at different stages of the
renormalization group evolutions from the scale M; to the
next scale M;, ;. We have computed y; for different
symmetry breaking patterns and they are all summarized
in Table II. The one-loop S coefficients (b;) are given
explicitly in the next section for every breaking chain.

C. Decay width and lifetime computation
for different proton decay channels

Proton is expected to decay into mesons and leptons as
follows: p — M + I, where M can be z°, zt, K°, K+,
and [ can be e,u,v,,, [135]. The current experimental
bounds on the partial proton decay lifetime suggested by
the Super-Kamiokande Collaboration are 7(p — 7% ") >
1.6 x 10* years [1], 7(p — #*D) > 3.9 x 10* years [2],
and 7(p — K*D) > 5.9 x 10® years [3].

The partial decay width for such decay process can be
written as:

p—M+1) =" {1— (%)2]2

p

x A2 A, WC,Fi(p = M)]E. (9)

Here, m,,, and m,, are the mass of the proton and mesons,
respectively. WC, are the Wilson coefficients of the
operators that give rise to that particular decay channel
of the proton (p — M + 1), Ag,’s are the short-range
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enhancement factors computed in the form of Eq. (8),
and  F§ = (M|e"*(q] CP,q})Prq{|p) = (M|(q4'),4}|p)
are the form factors determined by chiral perturbation
theory [136-138], and directly using the lattice QCD
results [139-141]. Here, ¢, ¢', and ¢” are the light quarks
(u, d, s) which are integral part of the dimension-6
proton decay operators. Here, C is the charge conjugation
operator, and P, (n= L, R) is the chiral projection
operator.

Now once every thing is taken care of, the lifetime or
inverse of partial decay width computation for the “golden”
channel p — e*7° can be written as [126]:

2N\2 4

mp mo Ju

= |2 (1=-=2) A2 14|V |2)2

TP |:3277:( m%) L4M4)1(( +‘ ud| )
X (A§R|<”O|(”d)RML|P>|2

+A§L|<n°|<ud>LuL|p>|2>}", (10)

where, Ag; and Agz are the short-range enhancement
factors associated with the left-handed Of=%(e€,d)
and right-handed O%=%(d®, e) operators respectively, see

Table II. In our calculation we have used the following
values of the matrix elements [141]:

(7°|(ud) guy | p) = =0.131,  (2°|(ud), u;|p) = 0.134.

IV. PATTERNS OF GUT BREAKING:
RGES, MATCHING AND
TOPOLOGICAL DEFECTS

In this section, we discuss the spontaneous breaking of
SO(10) and E(6) GUT groups to the SM through two
intermediate scales. As mentioned in the earlier section,
we have considered all the first intermediate groups
starting from GUT, are in the form of SU(N), @ SU(N ).
The list of such breaking patterns are encapsulated in
Figs. 1, and 2. For each such breaking we have computed
the p-coefficients for the gauge coupling running up to
two-loop level. We have also discussed the emergence of
possible topological defects at different stages of symmetry
breaking summarized in the Table III. In these figures, we
have also mentioned the suitable choices of the scalar
representations in detail. To evaluate the RGEs we need to
incorporate suitable matching conditions at each symmetry

(1,3,1,0) @ (3,1,1,0)p C 78
(1,3,1,0) @ (3,1,1,0)p C 78

FIG. 1.

e

(1,2,4,1) c 27
(2,2,1,-2) C 27

(1,3,70) @ (3,1,10)p C 126

Two intermediate step breaking of E(6) to the Standard Model.

Go,213015 1D

(2,2,1) C 10

(2.+3,1)

FIG. 2. Two intermediate step breaking of SO(10) to the Standard Model.
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TABLE IIL
starting from unified groups to the SM one.

Here, we have summarized the possible emergence of the topological defects at the different stages of symmetry breaking

Topological defects

GUT - G; —» G;; > SM GUT - G,

G = G

g][ b d SM

E(6)— G3,303¢0 = 92,2,3c1,,0 = SM Unstable Z,-strings

No defects

Unstable Z,-strings + stable monopoles +
unstable Z,-monopoles
Stable monopoles + unstable Z,-monopoles

E(6) = G3,3,3.— gZL2R3c1LRBf_’ SM
E(6) = G5, 204010 = G2, 1,4, =~ SM

E(6) - g2L2R4CIXD/_) g2L1x4C —-SM

SO(10) =G5, 2,40 = G2,2,301,.,0 = SM Z,-strings (stable upto M;;) +
unstable Z,-monopoles

SO(10) =G5, 2,4.0 = G3,20301,, 0~ SM Unstable Z,-strings + unstable Z,-monopoles

Stable monopoles

Stable monopoles
Domain walls

No defects
Stable monopoles

Domain walls +

Domain walls +
embedded strings
Embedded strings

Embedded strings

Embedded strings

Domain walls +
embedded strings
Embedded strings

SO(10) =G, 5 4™ 92,2301, SM
SO(10) > Gy, 24,0 = G2, 1,4, = SM

SO(10) =G, 54, 92154 = SM

Unstable Z,-monopoles
Unstable Z,-strings + unstable Z,-monopoles

Unstable Z,-monopoles

stable monopoles

Stable monopoles ~ Embedded strings

Domain walls + Embedded strings
stable monopoles

Stable monopoles ~ Embedded strings

breaking scale. The matching conditions when all the heavy
multiplets are degenerate with the breaking scales are given
below for each scenario. This is equivalent to the case of no
threshold correction. To include the effects of threshold
correction we need to modify these conditions accordingly
given in Egs. (2) and (3). The detailed structures of the
threshold corrections are specific to the breaking chains,
and are given in the Appendixes B and C.

M M M
A. E(6) = G3 33,0 — G2,2,3:1,.0 — SM

1. f coefficients

7 7
M[I to MI: b2L :_57 bZR:_gv b3C:_77
3 12 %
38 12 Z
biur =7, b;j = ; :
R
) 1 1
MI to Mx. b3L :Ey b3R 257 b3C:_5;
253 220 12
12 12 12

2. Matching conditions

At M scale SU(3), p is broken to SU(2); r ® U(1), g,
and at the same scale U(1), ® U(1)g is broken to U(1), .
Thus the matching conditions read as:

(11)

as as, (M;) = oy (M), and asg(M;) = a\g(M;). We
would like to mention that az; (M;) = azg(M;) which is
ensured by the unbroken D-parity.

At My scale SU(2)g @ U(1),p is broken to U(1)y, and
the matching condition reads as:

=2 i) 2 (i) (2

Here, ay; (M};) = aogr(My;) as a signature of conserved
D-parity.

3. Topological defects

1) E(6)Aﬁ§g3L3R3CD: Here, the nontrivial homotopy
structure of the vacuum manifold is given by
I, (E(6)/G3,3,3.0) = o(G3,3,3.0) = o(D) = Z,.
Thus Z,-strings are formed during this symmetry
breaking. It is important to note that IT,(E(6)/
G2,24301,,0) = Z,, which implies that the strings
are stable up to M.

(i) G3,3,3, = G2,2.301,,0" At this stage, stable cosmic
strings are formed as we have I1,(G3 3,3,/
g2L2R351LRD) = Hl(g2L2R3C1LRD) = Z. The charge of
these strings changes from LR to Y in the process of
subsequent breaking to the SM.
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(i1) G2, 2,301,,D M SM: Here, D-parity is spontaneously

broken leading to the formation of domain walls
bounded by strings. No stable monopole and
topological cosmic string are formed at this stage,
though embedded strings will be generated.

Ml Mll

My
B. E(6) - g3L3R3C - g21‘3c1uey — SM

1. p coefficients

M to M;: by = -3, bzRZ—; byc = -7,

8 3 12 3

blLRZE’ bi; = 3? N %

3 3 726 3

by oa g

M; to MX:b3L:%, b3R:%7 byc = =5;
253 220 12
b= | 220 253 12
12 12 12

2. Matching conditions

In this case, the breaking chain is very similar to the
earlier one. Therefore, the matching conditions at M; and
M, scales are same as in Eqs. (11) and (12), respectively.
The only little departure occurs at the M; scale since the
D-parity is not conserved here. Thus we have a,; (M) #
argr(M;) unlike the previous case.

3. Topological defects

The formation of topological defects for this breaking
scenario is very similar to the earlier case.
(i) E(6) =G335.0 As m(E(6)/Gs3,3.) =T for
k =0, 1, 2; no topological defect is created during
this symmetry breaking.

.. 7 .
(i) G333 = 95,031, Here,

g2L2R361LRy) =11, (U(I)LR) =Z
11,(G3,3,3./92,1,3.) = Z leading to the formation
of stable monopoles.

(i) G, e K]QSM: At this stage only embedded

12r3c 18P
cosmic strings are formed.

I, (Q3L3R3C/
and, also

My M; My
C.E(6) — Gr2pacty — Gutae — SM

In this case we have considered the flipped-SO(10)
scenario.

1. B coefficients

_ 13 31
My to My by =——, bix =—,
6 6
217 4 45
2 3 2
19
b ___. b.. = 4 35 15
a0 T ij = 8 8
9 35 —355
2 24 "3
M; to My: by ==, b = 3. byc = -8,
3%9 15 15 5
6 2 12 2
15 3% 75 5
b _ﬁ_ po—| 2 & 2 2
1X 9, ij 15 15 =7 11
2 2 72 %
15 15 55 91
> 2 2 0B

2. Matching conditions

At My, the SU(2), group completely breaks. Also, the
conservation of the D-parity gives ay; (M;) = argr(M;). At
the scale M;;, SU(4). is broken to SU(3). @ U(1)g_,.
and at the same scale U(1),_; ® U(1)y is spontaneously
broken to U(1),. Therefore the matching condition is
given by,

et~ 10 ot ~30) 6 (o)
(13)

3. Topological defects

i) E (6)Agg2L2R4C1X p: We can think of this breaking in
terms of an underlying breaking pattern as E(6) is
spontaneously broken to %;Spin(ﬁ) ®U(1)y®D,
where Spin(4) = SU(2), ® SU(2)x and Spin(6) =
SU(4).

We find that Hz(E(6>/g2L2R4C1XD) = Hl X
(Spin(4) ® Spin(6)/Z,) @ I1; (U(1)x) = 1y(Z>)®
Z =17, Q® Z. These imply the formation of topo-
logically unstable Z,-monopoles and stable
monopoles whose charge changes from X to Y
in latter stage. Further, I1,(E(6)/Gy,2.4.1,0) =
(G2, 2,401,0) = Z,, thus unstable Z, cosmic
string is also formed.

(1) G2,2,4014 D_’>g2le4C: At this stage domain walls
bounded by the cosmic strings are generated.

(iii) 92L1X4C—’55M: Here, the embedded strings are
created.
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M
D. E(6) _> g2L2R401Xﬁ gzllx4c _Ig SM

1. p coefficients

13 31
M; to M;: by =——, bix =—,
11 1 2L 6 1X 6
27 4 45
12 3 2
19 35 175
bie==753 by=|4 F F
9 35 =355
2 24 8
1 25
M; to My: by =-1, bz]ezg, b4c_—?,
65 15 45 13
2 2 2 6
15 359 15 5
po_ B, |7 e 2 2
X= 3 U= 19 15 -41 5
2 2 3 3
13 15
5 5 255

2. Matching conditions

Here, the broken D-parity implies .y (M;) # ayr(M;).
The SU(2),, gauge group is completely broken at the scale
M;. The matching conditions at M;; are the same as
the Eq. (13).

3. Topological defects

This breaking pattern is very similar to the earlier one
apart from the absence of D-parity. Thus the generation of
topological defects are very similar.

i E (6)—X>92L2R 401, Here, unstable Z,-monopoles are
created, and stable monopoles with charge X are

generated which changes to Y in the next stage of
phase transition.

(i1) QzL2R R = 9, 1,4+ No topological defect is formed
during this phase transition since all the relevant
homotopy groups are trivial for this vacuum manifold.

(iii) G, 1X4cﬂi'>SM: At this stage, only embedded strings
are formed.

M
50(10) - g2L2R4CD =G 230150 — SM

1. p coefficients

7 7
MII to Ml:sz:_g, b2R:_§’ b3C:_7’

80 27

03 12 2

80 27

big-1y =T, by= 33 - ?

2 2 26 3

8 81 15

55 4 2

11 11
M; to MX:b2L:?’ bZRZ?,
584 765
3 3 7
bie=~4  by=|3 % B
153 153 661

2

™l

2

2. Matching conditions

At M; scale, SU(4). is spontaneously broken to
UB3)c ® U(1)z_,, and the matching conditions are
given as,

1 1 1
al(B—L)(MI) B aye(M;) 3z’
1 I 1 1 (14)
azc(M;) 4rn auc(M) 3z

The matching condition at the scale M;; is dictated by,

aw(le -3 (am(le ‘@ +3 <W)
(15)

D-parity remains conserved up to My
o (M) = aar(My).

giving

3. Topological defects

Here, the GUT group is Spin(10), which is also the
simply connected universal covering of SO(10). Spin(10)
Spin(4)§$pin(6) ® D, where
) = SU(4).

contains the maximal subgroup
Spin(4) = SU(2) ® SU(2) and Spin(6)

(l) SO(IO)&QZIZR“CD Here, HZ(SO(IO)/QZI_2R4CD) =
I, (RSSO @ D) = T1y(Z,) = Z, [107,114].
These 1mp1y that Z,-monopoles are formed, but
they are unstable. Again I1y(G,,5,4.p) =Io(D)=2,.
Thus Z,-strings are formed at the scale My which
are stable till the next phase transition takes place at
M, scale A/\[)vhere D-parity is spontaneously broken.

(i) Go,2,4.0 — 92,2301, ,p° At this stage only
nontrivial homotopy of the vacuum manifold
is H2(92L2R4CD/92L2R3C1B,LD) = HI(U(1>B—L) =Z.
Thus topologically stable monopoles are formed as
we further have I1;(U(1),) = Z. Their topological
charge change from (B — L) to Y due to latter stage
of symmetry breaking.

(i) G2,2.301,5., D@SM: As the D-parity is spontaneously
broken, string-bounded domain walls are formed.
There will be no topological cosmic string, but
embedded strings are formed.
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M; My

M
F. SO(10) = G, 5 4.0 — Grauzctyp — M

1. p coefficients

8§ 3 12 3
7 11 3% 12 7
MII to M[. bZL = —3, b2R = —g’ b3C = —7’ bl(B—L) = 7’ blj — % % % %
9 81 61
2 2 43
584 765
11 1 3 3
M; to Mxisz:?, bzRZ?, byc = —4; b= 3 ¥ I
153 153 661
2 2 2

2. Matching conditions

The matching conditions at the scales M; and M;; are given by the Eqgs. (14) and (15), respectively. Here D-parity is
broken at M;. Therefore, a,; (M) = ayr(M;), whereas, ax; (M) # ayr(M;;)

3. Topological defects

This breaking pattern is very similar to the earlier one apart from the breaking of D-parity at the first intermediate scale.
Thus the formation of topological defects is very similar.
1) SO(IO)—>XQZL2R4CD: At this stage only Z,-monopoles, and Z,-strings are generated. Though both of them are
topologically unstable.
(ii) QQL2R4CD—’>QZL2R3C1& - Due to the spontaneous breaking of D-parity, the domain walls bounded by the cosmic
strings are formed. Along with that stable monopoles are also formed.

(iii) 92L2R3C]B_L E@SM: At this stage only embedded cosmic strings are formed.

G. SO(10) 5 Gy s 40 5 Gy 1, 2 SM

1. B coefficients

8 1 %
23 29

My to M;: by = -3, blR:?, b4c:—?; b=13 44 4
9 27 =101

2 2 6

204 163

. _ _ _ 14 _ 765

M] to Mx. bZL = 4, bZR = 4, b4C = —?, bl] = 3 204 -5
153 153 1759

2 2 6

2. Matching conditions
The SU(2), gauge group is spontaneously broken to U(1), at the scale M; with the matching condition:

1 1 1
aig(My) :a2R(M1) C6r (16)

Also, we have ay; (M) = ayr(M;) as a result of D-parity conservation. At M;;, SU(4) is broken to SU(3)- ® U(1)5_;,
and at the same scale, U(1);_, ® U(1) is spontaneously broken to U(1),. Thus the matching condition at M/; is stated as

ator 5 Caon) 5 et =30 @
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3. Topological defects
The first stage of this breaking chain is exactly same as the earlier and thus true for the formation of topological defects

as well.
1) SO(lO)%QZLLA .p: Here, only topologically unstable Z,-monopoles and Z,-strings are formed.

(1) G2,2,4, D4g2L1R4C: At this stage, the walls bounded by strings, and stable monopoles are formed.
The topological charge of the monopoles changes from R to Y at the subsequent stage of symmetry breaking.

(i) G, 1,4 C@SM: Only embedded strings are formed.

M M, M,
H. SO(IO) = g2L2R4CB/—I) g2L2R3clB-zﬁ/ = SM

1. B coefficients

8 3 12 3
7 11 38 12 7
My to M;: by =-3, bzR:—g» byc =T, bl(B—L):7§ bij=1, ; o6 i
2 2 2
6
TER!
§ 3 %
11
M; to My: by, = -3, bZRI?, bye=-7, b;=|3 ¥ &
9 153 289
2 2 2

2. Matching conditions
Again the matching conditions are given by the Egs. (14) and (15). D-parity is broken at the scale My. Thus,
ay (M) # ap(Myp).

3. Topological defects
Here, the D-parity is broken at the GUT scale itself. Thus there will not be any domain wall due to the spontaneous
breaking of D-parity in the latter stage, unlike the previous cases.
@ S 0(10)"ﬁ>‘g2L2R s Here, only unstable Z,-monopoles are formed.
(i1) g2L2R 4 yﬂgzﬂ,ﬁclw At this stage, the topologically stable monopoles are formed whose topological charge
changes from (B — L) to Y in the subsequent phase transition.
(iii) g2L2R3C1H E}@SM: Here, only embedded cosmic strings are formed.

My M, My
I. SO(10) = g2142R4CB/—> G2, 1,4, — SM

1. p coefficients

Here are the f-coefficients:

g8 1 %
23 29

MII to MI: sz:—3, blR:?v b4C:_?; bij: 3 44 %
9 271 -0t

2 2 6

§ 3 %

. 23 765

M[ to Mx. bZL = —3, b2R = 4, b4C = —?, bl] = 3 204 >

9 153 643

2 2 6

2. Matching conditions
And, the matching conditions are same as the Egs. (16) and (17). Here, D-parity is broken at the scale My
resulting a2L(M[) Sé aZR(M]).
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3. Topological defects

1) SO(IO)—>Q2 2pd ol Here, only topologically unsta-
ble Z,- n}lé)nopoles are formed.

(ii) gszR 4 D,—>Q2L1R4C. Again, stable monopoles are
formed whose topological charge changes from R
to Y in the subsequent phase transition.

(i) G, 14, —SM: Here, only embedded cosmic strings
are generated.

V. RESULTS

A. Test for unification with and
without threshold corrections

Our aim of this analysis is to find out the unification
solutions in terms of unified coupling (g;), interme-
diate scale(s) (M), and unification scale (My) and the
solution space is compatible with the low energy data,

TABLE IV. The low energy parameters at the electroweak scale
[127]. Unification solutions are compatible with these values.

Z-boson mass, M, 91.1876(21) GeV

Strong coupling constant, ag 0.1185(6)
Fermi coupling constant, G 1.1663787(6) x 1075 GeV~2
Weinberg angle, sin’ 8y, 0.23126(5)

TABLE V.

given in Table IV. To do so we have constructed a
x>-function as:

2
— Gexp) ’ (18)

3 (g2
; 6 gl exp)
and we minimize this function to find the solution.
Here, g;’s denote the SM gauge couplings at the electro-
weak scale M, and can be recast in terms of the unification
solutions using the renormalization group equations. The
Jiexp 8 are their experimental values at M, scale with
uncertainties ¢(g; .x,) Which can be derived from the low
energy parameters tabulated in Table IV.

In presence of one intermediate scale, we have noted
solutions in terms of intermediate scale (M), unification
scale (M) and proton decay lifetime (z,), see Table V,
using two-loop RGEs and minimizing the y* function. In
case of two intermediate scales, similar solution space is
found. But, here, due to the presence of an extra inter-
mediate scale, the D.O.F. increases and that allows a range
of solutions, unlike the one intermediate case. Here, we
have considered three different choices to incorporate the
threshold corrections: (i) no threshold correction (R = 1),
(ii) short range variation (R € [1/2:2]), and (iii) long range
variation (R € [1/10:10)).

log o(Mx/GeV) and log,,(M;/GeV), and proton decay lifetime 7, (in yrs) are computed for the different one step GUT

breaking scenarios. Here, R = 1 implies the absence of threshold correction. The nonzero threshold corrections are incorporated for two
different choices: R varied between [1/2:2], and [1/10:10]. The proton decay predictions which satisfy z,, > 1.6 x 103* yrs constraint

are boldfaced.

R={fi=SF

Breaking chain Observables 1 [1/2:2] [1/10:10]

log;o(M,;/GeV) 11.6 9.8 4.6

SO(10) = G, , , ,y — SM logo(My/GeV) 15.7 16.6 18.7
7, (yrs) 5.5 x 10% 1.1 x10% 3.4 x 10%

log,o(M;/GeV) 13.8 13.7 13.7

SO(10) = Ga,p4.p = SM logo(My/GeV) 14.8 15.1 15.7
7, (yrs) 1.6 x 103! 1.7 x 1032 4.0 x 10

log;o(M,;/GeV) 10.0 8.7 5.0

0(10) > G, , . | = SM log,o(My/GeV) 16.0 16.8 18.6
e 7, (yrs) 1.0 x 1036 1.1 x 10% 1.2 x 10%

SO(10) = Gy, 23.1,,0 = SM log;o(My/GeV) 15.3 16.0 17.8
7, (yrs) 9.4 x 1032 9.4 % 10% 8.1 x 10%

log;o(M;/GeV) 11.0 13.6 15.9

E(6)=G,,, 5= SM log,o(My/GeV) 13.7 14.5 16.0
e 7, (yrs) 9.4 x 10% 1.3 x 10% 1.0 x 10%

log o(M,;/GeV) 115 13.7 15.8

E(6) = Gy, 24,10 = SM logo(Mx/GeV) 13.9 14.6 16.0
7, (yrs) 2.8 x 1077 1.9 x 10% 9.7 x 1035
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FIG. 3. GUT prediction for proton lifetime in presence of one

intermediate scale. The horizontal dashed red line is the current
Super-K exclusion limit (7, > 1.6 x 10* yrs) [1], whereas the
green one is the expected sensitivity (z, > 1.2 x 10 yrs) for the
future Hyper-K experiment [5,142] which is about 10 times
improvement.

B. One intermediate scale and the proton
lifetime: Present status

In this section, we have considered all possible one step
breaking chain, as in Ref. [7] from SO(10) and E(6) having
a left-right symmetric gauge group (SU(N), ® SU(N)g)
at the intermediate stage.

We have computed the proton decay lifetime for different
scenarios: (i) no threshold correction (R = 1), (ii) nonzero
threshold correction featured through the variation of R in
two different ranges. Performing two-loop RGEs, we have
found out unification solutions for all one step breaking
chains. We have explained how the inclusion of threshold
correction affects the unification solutions. The question
that we want to address is whether the threshold corrections
could be the savior for this kind of theory which are ruled
by proton decay lifetime constraints?

To answer this query, we need to understand Fig. 3.
In this plot the red dotted line signifies the experimen-
tally allowed minimum value of proton decay lifetime.
Any solution below that is ruled out. The solutions
correspond to R =1, i.e., no threshold corrections are
all ruled out apart from the breaking chains SO(10) —

Gyoypr and SO(10) > G, , 5, .. Then we have varied R within

[1/2:2] and [1/10:10] to estimate the impact of threshold
correction. It is evident from Fig. 3, that inclusion of these
corrections certainly push the proton decay lifetime pre-
diction for each model to the higher values. Thus to save
these models from this constraint, these corrections may
play crucial and important role. It is interesting to note that

'For this one can consult http://www.hyper-k.org/en/physics/
phys-protondecay.html for the update on proton decay lifetime
from Hyper-K experiment.

these corrections also affect the intermediate scales, they
are even brought down to much low scale in some cases.
The amount of threshold corrections depends on the range
of R.

We have summarized the unification solutions for each
breaking chain in terms of intermediate scale M;, uni-
fication scale My, and computed the proton decay lifetime
for three different choices of R in Table V. We have noted
the models that pass the proton decay lifetime constraint
(, > 1.6 x 10* yrs), and their predictions are mentioned
in boldface. This clearly shows the impact and importance
of the threshold corrections.

C. Two intermediate scales and the proton lifetime

In this section, we have performed a similar analysis, as
the earlier section, but for two intermediate symmetry
groups. As proton decay lifetime is one of the deciding
factors to rule in or out GUT models, we have discussed,
first, the models which are compatible with this constraint.

Here, we have shown the unification solutions in terms
of two intermediate scales (M;, M,;), unification scale
(M) and computed the proton decay lifetime (z,). It is
evident from the plots that for each breaking chain the
part of the solutions are satisfying the 7,-constraint and
thus are allowed till date. But some solutions are already
ruled out. Compared to the one intermediate scale, here we
have more freedom due to the presence of one more
intermediate symmetry group. Thus we have found a range
of scales for the intermediate symmetries consistent with
the unification picture, unlike the one intermediate case. In
the context of SO(10), the related analysis can be found
in [97,105].

In this section in each plot, unification (My), and the
first (M) intermediate scales starting from the unification
side are depicted by the brown-dashed and blue-dot-
dashed lines (see the Y;-axis labeling) as a function of
second intermediate scale (M,;) (see X-axis). The proton
decay lifetime (z,) for each model is shown by the
green-solid line (see the Y,-axis labeling). The horizontal
red-dotted line represent the experimental limit on proton
lifetime, i.e., 7, > 1.6 x 10* years.

In Fig. 4, we have discussed the unification and proton
decay for three different breaking chains: (a) E(6) —
g3L3R3C - g2L2R3ClB—LD/ - SM, (b) E(6) - g2L2R4C1XD -
g2L1X4C il SM, and (C) E<6)—> 2L2R4C1Xﬁ—>g2le4C—>sM.
Here, we have set R = 1, i.e., no threshold correction has
been injected. We have noted that for the breaking chain
shown in Fig. 4(a) the solutions, allowed by proton lifetime
constraint, exist only for M, within the range of
[10100:10''4] GeV. Similarly for the models shown in
Figs. 4(b), and 4(c), the unification solutions compatible
with 7z, are for 10" GeV < M;; < 10'*% GeV and
10" GeV < M,; < 10''2 GeV, respectively.
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FIG. 4. Proton lifetime with unification solutions for two intermediate step breaking of E(6) to the SM. The horizontal dotted red line
corresponds to the proton lifetime constraint from Super-Kamiokande collaboration, below which solutions are ruled out.

In Fig. 5, we have discussed the unification and proton
decay for three different breaking chains: (a) SO(10)—
Go204eD = 930,301, = SMand () SO(10) =G, =
g2L2R3c13_L1’7_)SM‘ Here, we have set R=1, ie., no
threshold correction has been incorporated. We have noted
that for breaking chain shown in Figs. 5(a), and 5(b) the
unification solutions compatible with 7, > 1.6 x 10> years
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FIG. 5.

are for 10'°°GeV <M;; <10'"6GeV, and 1090 GeV <
M;; < 1003 GeV, respectively.

This implies that even in the absence of threshold cor-
rections we have unification solutions for these models
compatible with the limit on z,. Thus we have not dis-

cussed the impact of threshold correction within these
frameworks.

17E—— . . . . 39
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(b) SO(IO) b d g2L2R4CD - g2L2R3ClB—LD — SM

Proton lifetime prediction in case of two intermediate step breaking of SO(10). The horizontal dotted red line corresponds to

the lower limit bound of the proton lifetime from Super-Kamiokande collaboration.
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FIG. 6. Proton lifetime prediction in case following breaking chain: E(6) = G5 5,3.p = G2,2,3.1,,0 — SM. The proton lifetime
constraint (>1.6 x 103 yrs) rules out the entire range of unification solutions in the absence of threshold correction (R = 1). But once
the threshold correction is incorporated and R is being varied between [1/2:2], a range of unification solutions are found.
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FIG. 7. Proton lifetime prediction in case following breaking chain: SO(10) = G .4 oD = 92,2,:301,_,p = SM. The proton lifetime
constraint (>1.6 x 103 yrs) rules out the entire range of unification solutions in the absence of threshold correction (R = 1). But once
the threshold correction is incorporated and R is being varied between [1/2:2], we have noted an improvement in the unification
solution. This correction allows a partial range of unification solutions and revive this breaking pattern.
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FIG. 8. Proton lifetime prediction in case following breaking chain: SO(10) = G, 5 .4.p = G2, 1,4. = SM. The proton lifetime
constraint (>1.6 x 103* yrs) rules out the entire range of unification solutions in the absence of threshold correction (R = 1). Here,
unlike the earlier cases where the threshold corrections are the savior for the ruled out scenarios, fail to serve the similar purpose. Even
after the incorporation of threshold correction by varying R in the range of [1/10:10], the full range of unification solutions are
disallowed by the proton decay constraint.
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FIG. 9. Proton lifetime prediction in case following breaking chain: SO(10) — gmk ' G2, 1,4, = SM. The proton lifetime
constraint (>1.6 x 10** yrs) allows a very small range of unification solutions in the absence of threshold correction (R = 1). But once
the threshold correction is incorporated and R is being varied between [1/2:2], we have noted an improvement in the unification
solution. It is clearly evident that the threshold correction allow more proton lifetime compatible unification solutions.

Now we have shifted our focus to other two intermediate
breaking patterns where almost all of the unification
solutions are ruled out by the proton decay lifetime
constraint. Our aim is to check whether the incorporation
of threshold corrections can have enough contribution to
the unification program to revive some of the ruled out
models. More precisely, whether we can find a range of
unification solutions compatible with the limit on z,,.

In Fig. 6, we have considered the breaking chain:
E(6) = G5,3,3.0 = 92,2,3.1,,0 — SM. The plot in Fig. 6(a)
shows the solution space for R = 1, i.e., in the absence of
threshold correction, and it is quite clear that all the solution
space is below the 7, limit and thus ruled out. Now in
Fig. 6(b) we have noted the solution space when the
minimal threshold correction (as R is varied in range of
[1/2:2]) is incorporated. This clearly shows that now we
have 7, compatible unification solution for 10%¢ GeV <
M;; < 10132 GeV.

In Fig. 7, the following breaking chain: SO(10) —
G2,204cD = 92,2301, 0 — SM is considered. The plot in
Fig. 7(a) shows the solution space for R =1, i.e., in the
absence of threshold correction, and it is quite clear that all
the solution space is below the 7, limit and thus ruled out.
Now in Fig. 7(b) we have noted the solution space when the
threshold correction for R € [1/2:2] is incorporated. This
clearly shows that now we have 7, compatible unification
solution for 10°® GeV < M,; < 10'!'! GeV.

In Fig. 8, we have considered the breaking chain:
SO(]O) —)g2L2R4cD —)g2L1R4C —SM. The plOt in Flg 8(3)
shows the solution space for R =1, i.e., in absence of
threshold correction, and it is quite clear that all the solution
space is below the 7, limit and thus ruled out. Now in
Fig. 8(b) we have noted the unlike the other cases even after
inclusion of maximal threshold correction (as R is varied in
a range of [1/10:10]) solution space is improved but still
ruled out. Thus this model cannot be saved by this amount
of threshold correction.

In Fig. 9, we have considered the breaking chain:
50(10)—>g2L2R4Cﬂ—> G2, 1,4, = SM. The plot in Fig. 9(a)

shows the solution space for R = 1, i.e., in the absence
of threshold correction, and it is quite clear that most of the
solution space is below the 7, limit and thus ruled out. Only

allowed regime is 10'!%3 GeV < M;; < 10'4> GeV. Now in
Fig. 9(b) we have noted the solution space when the
minimal threshold correction (as R is varied in range of
[1/2:2]) is incorporated. This clearly shows that now we
have 7, compatible unification solution for 10%2 GeV <

MII < 109'6 GeV.

VI. SUMMARY AND CONCLUSION

In this paper, we have analyzed the unification scenario
for nonsupersymmetric SO(10) and E(6) GUT groups
which are broken spontaneously to the Standard Model
through one and two intermediate symmetries. We have
focused on those breaking chains where the GUT groups
are broken in the form of SU(N), ® SU(N); ® G, where
G is a single or product group. For each two-step breaking
chain we have cataloged all possible topological defects
which can emerge during the process of spontaneous
symmetry breaking at different scales.

We have computed the two-loop beta coefficients for two
intermediate scale scenarios, and performed a goodness of
fit test to find out the unification solutions in terms of the
unification (My), intermediate (M;, M;;) scales and also
unified coupling. For each such case, we have estimated the
proton decay lifetime by constructing the dimension-6
proton decay operators and considering their running.
We have also computed the anomalous dimension matrix
for each such case to perform RGEs of the proton decay
operators. In the absence of any threshold correction, we
have noted that the unification solutions in the case of
nonsupersymmetric GUTS in presence of one (see Ref. [7]),
and two intermediate scales are mostly incompatible
with the bound from proton decay lifetime. However, by
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including threshold corrections, we have found that
many of these models can be revived. In particular, for
the models which are incompatible with bound on 7, we
have estimated the minimal requirement of threshold
correction such that these models can be revived, in terms
of the ratio (R) of the heavy scalar and fermion fields to the
superheavy gauge bosons, assumed degenerate with the
symmetry breaking scale. Choosing two different sets of
R € [1/2:2], and [1/10:10], we have noticed that most of
the scenarios can be made safe from the proton lifetime
bound apart from SO(10) = G, 4.0 = G2, 1,4, = SM.
Here, the improved solution space is still not compatible
with the 7, constraint.

In conclusion, although most of the nonsupersym-
metric GUT scenarios with one and two intermediate scales
are not compatible with the proton decay lifetime in
absence of threshold correction, many of these cases
become viable once threshold corrections are correctly
taken into account in a consistent way. We conclude that
threshold corrections are a savior for many non-SUSY
GUTs.
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APPENDIX A: ALGORITHM TO CALCULATE
THE ONE LOOP ANOMALOUS DIMENSIONS

The dimension-6 effective operators that induce proton
decay are listed in Fig. 10. These effective operators are
accompanied by the relevant Wilson coefficients at low
scale. But to compute the prediction for proton decay for a
unified scenario we need to incorporate the renormalization
group evolutions of these Wilson coefficients. This can be
done by considering quantum corrections of these operators
(vertex corrections and the self-energy corrections) leading
to computation of anomalous dimension matrix [y;; in
Eq. (8)] for these sets of operators. To simplify the
computation without losing out any generalization we have

@ O (€, dg) b O (ea,dg>

© O (ydasds) @ O (v dasds)

FIG. 10. Proton decay operators at tree level.

(i,a)

(a) Vertex correction of type I

FIG. 11.

k,c)
(4, ) (

(b) Vertex correction of type IT

Generic vertex corrections to the operators. The two indices within the parentheses indicate the representation index and the

Dirac index respectively of each fermion. m and n are the group indices.
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O
R fi f2

(a) Vertex of the type I (b) Vertex of

the type II

FIG. 12. Two types of vertices appearing in the operators.

set external momenta and masses to be zero. The necessary
vertex corrections are given in Fig. 11. There are two
different types of vertices occur here, see Fig. 12.

The self-energy correction is captured in C,(R) when the
fields are in R-dimensional representation of SU(N). The
vertex correction is encapsulated in a combined factor due
to: [(Dirac algebra) ® (color algebra)].

The Dirac algebra factor is independent of the gauge
symmetry. To compute this factor for the type-I vertex [see
Fig. 11(a)] we can write

d/(J_CTLJ’ysz)(ﬁLV”st)
- 1 -
= (f{Lrul vufor) 7 (fr?" (=P)r"fsL)

= (=) (S rufor)(fir?" f3L)- (A1)
Thus the Dirac algebra factor for the type-I vertex is
d; = —4. Similarly, in the case of type-II vertex, we have
di=1.

Now we will concentrate in the color factor computation
part. For a given gauge group SU(N), we have noted the
color factors are (—2+!), and () for the type-I, and
type-II vertices.

For example in the presence of SU(N) gauge theory,
with n; and n;; number of vertex of type-I, and type-II
where n; fermions receive the self-energy corrections due

to the gauge bosons, the anomalous dimension is given as

( N+1>

X ——
2N
—_——

color algebra factor
L (N ng (N?—1
2N 2 2N )’
N———

color algebra factor

(—4)
——

Dirac algebra factor

YN =np X

+n11X 1)
-~

Dirac algebra factor

(A2)

We must mention that one needs to modify the
algorithm for the gauge symmetry Gj 3 3. and the flipped
G2, 2,401, Specifically for these types of scenarios, we
need to first construct the parent operators, and then

calculate the color factors. Thus we prefer to provide
their structures for these two cases explicitly below.
The fermion representations under the gauge group
G333, transform as: (3,3,1)=Lgt, (3,1.3) = Oy,
and, (1,3,3) = Q. The parent operators leading to
the proton decay (p — e*z%) are given in flavor basis as:

Oi=6<ec7 d) C €aLﬁL7L 6;: eaCﬁC}/C (Q_C(IR(IC},M QaL/),C)

=4
X (L;JR YuQrre):

L

Old€:6 (e, dc) C 5;2 eaRﬁRyR eaCﬁC}/C (Q_C!XRGC Y” QU‘LﬁC )

X (Qcpercr"L7E). (A3)

While for the flipped scenario G 5.4.1,, the similar
relevant parent operators for p — e*z° decay in flavor
basis are given as:

Of=0(e€, d) C e eV (U 1" Qic) (EruQja)
Of(e.d) C e ee (U yy" Qic) (DNoat L) (A4)

Here, {i,j}, {a.p}, and {a,b.c,d} denote the SU(2),,
SU(2)g, and SU(4) indices respectively. The representa-
tions of fermion multiplet under this flipped gauge
group are given as: (1,1,1,4)=E, (2,2,1,-2) =L,
(1,1,6,-2)=U,,, (2,1,4,1)=Q;,, and (1,2,4,1) = DN¢.

APPENDIX B: THRESHOLD CORRECTIONS
(A;’S) FOR ONE INTERMEDIATE
STEP BREAKING SCENARIO

In this section, we have enlisted the threshold corrections
(A’s) that arise when the heavy scalars and fermions are
integrated out. The choice of heavy and light particles is
guided by the extended survival hypothesis which implies
that only those scalars are light which take part in the
subsequent symmetry breaking process. These particles
have nondegenerate masses different from the symmetry
breaking scales. These corrections modify the matching
conditions, see Egs. (2) and (3). We have assumed that all
heavy gauge bosons have the same masses degenerate with
the breaking scale. The computation requires the informa-
tion regarding the index and normalizations of representa-
tions which are provided in Tables XV, and XVIL.

1. SO(IO) - g2L2R4CD - SM

The threshold corrections arise after integrating out the
heavy scalar fields are tabulated in the Table VI.
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TABLE VL.  SO(10) = G,5,4.p — SM. The bold multiplets contribute to the RGE and others are the heavy fields
which are integrated out.

SO(lO) g2L2R4CD g2L|Y3C
Scalars 10 2.2, 1 2.£1.1
1,1, 6)
126 (1,3,10) (1.2,1)
(1.4.3)
(1.5.6)
(1.1.1)gp
(14.3)
(1.-1.6)
(1.0, 1)
(17_%‘13)_68
(1.-3.6)
(3.1,10), 3.-1.1)
(3’—1%’3)
(3.3.6)
(2,2,15)
(1,1,6)
54 (1,1,1)
(2,2,6)5p
(3,3.1)
(1,1,20')
Threshold corrections at My:
Mq(3,3,1 Mq(2,2,15
Ay (My) = 6logy+3010gg,
X My
M(3,3,1) Mg(2,2,15)
MAop(My)=6log————=+30log—————,
2r(Mx) 0g My +30log My
Mg(1,1,6 Mg(1,1,20/ Mg(2,2,15 Mg(1,1,6
Aye(My) = logM—i— SIOgM—i— 3210gM+ ZIOgM. (B1)
X X My X
Threshold corrections at M-
Mg(3,-1,1 Ms(3.5%.3) Mg(3.%.6)
AZL(M]):410g%+1210gTj’+2410gTﬁ,

3 Mg(1,2,1) 32 Mg(1.3.3) 16, Mg(1.53.6) 2 Mg(1,1.3) 4 Mg(1,5.6)
Ay(M;)==|8log—————+ —log————————+ —log——————+ -1 +=lo
(M) 5( oL + log M, + 5 log M, +3log M +3log M

64 Mg(1,3,6) Mg(3,-1,1) Mg(3,5,3) Mg(3,1,6)

—log—— 3"~ 4+ 6log—"—"L 4 2log——3 "2 4 4log—— 3",
3 M, + 6log M, + 2log M, + 4 log M,
Mg(1,%,3 Mg(1,2,6 Mg(1,1,3 Mg(1,5,6 Mg(1,5,6
A3C(M,):10g7( 3 )+510g (1.5 >+log s(l.5. )+510g s(L3 )+51og7S( -6)
I 1 M, M, M,
Mg(3,3,3 Ms(3,1,6
+310g%+ ISIOg%. (B2)

2.50(10) —» g2L2R4Cy—> SM
The threshold corrections arise after integrating out the heavy scalar fields are tabulated in the Table VII.
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TABLE VII. SO(10) - 9212 ' SM. The bold multiplets contribute to the RGE and others are the heavy
multiplets which are integraté(f out.

50(10) Gy 2oiis 92,143
Scalars 10 (2,2,1) (2.+1.1)
(1,1,6)
126 (1,3,10) a

—_
~

W WIS T

WI— O\ Wi
=

AN—Q ON—Q =
=

— Q

—
—m =~ o~
—_

—_

&
[~

(3,1,10)
(2,2,15)
(1,1,6)
210 (L,1,1)
(1,1,15)
(3,1,15)
(1,3,15)
(2.2,6)65
(2,2,10)
(2,2,10)

Threshold corrections at My:
M(3,1,15) Mg(2,2,15) M(2,2,10) M(3,10,1)
Ay (My) =30log————=+30log—————+20log—————= 4+ 40log———=
21 (M) og—— 3 — +30log =4 20log =+ 40log =1
Mg(1,3,15) Mg(2,2,15) Ms(2,2,10)
— 4+ 30log————=+20log—————=
My + og My + og M,
Mq(1,1,6 Mg(1,1,15 Mg(3,1,15 Mq(1,3,15
M—l—ﬂogy—l— 1210g‘?(7)+ IZIOgM
My My My My
Mg(2,2,15) . Ms(2,2,10) M(3,10,1)
8 M M

Mg(1,1,6
2logM+24log + 18log—"——= . (B3)
X X X MX

’

Axr(My) = 301log )
Ayc(My) = log
+321lo

Threshold corrections at M;:

Ay (M) =0, _
Ay(M;) —g(Slog%’lz’l) %log%;’@'*?log%%—%log%
Asc(M;) = log S(M’%’3)+510g s( 3’6)+10g S(;%’g)—i—Slog s(1.5.6) SIOg%?’G), (B4)
I I | , )

3. SO(IO) g g2L2R3CIB_LD - SM
The threshold corrections arise after integrating out the heavy scalar fields are tabulated in the Table VIII.
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TABLE VIIL.  SO(10) = G 5,3 15,0 — SM. The bold multiplets contribute to the RGE and others are the heavy
d.o.f. which are integrated out.

50(10) 92,2,301,.,D 92,1,3,
Scalars 10 (2,2,1,0) (2,+£3.1)
(1.1,3,-3)
(1,1,3,2)
126 (1,3,1,2) (1,2,1)

(3.1,1,-2); (3,-1,1)
(1.3.3.3)
(1.3,6,-2)
(3.1.3,-3)
(3.1.6.3)
(2,2,1,0)
(2.2.3.9)
(2.2,3,-9%)
(2,2,8,0)
(1,1,3,-%)
(1,1,3,2)

210 (1,1,1,0)
(1,1,8,0)
(1’ 17_37 %)GB
(1»1v37_%)68
(1,3,1,0)
(1,3.3.9)
(1,3,3,-%)
(1,3,8,0)
(3,1,1,0)
(3.1.3.9)
(3.1.3.-%)
(3,1,8,0)
(2»273’__%)68
(2.2.3.3)cs
(2,2,1,2)
(2.2,3,-%)
(2,2,6,%)
(2,2,1,-2)
(2,.2,3,3)
(2.2,6,-2)

Threshold corrections at M y:

M(3,1,1,0 M(3,1,8,0 Mg(3,1,3,32 Mq(3,1,6,2
M+l6logg+l2logs<73)+24logg
X X X MX

M(2.2.1,0 Mg(2,2,3,2 Mg(2,2,3,2 Mq(2,2,8.0
MX X X MX
Mg(2,2,1,2) Ms(2,2,3,3) Mg(2.2,6.2)

M M

Ms(3,1,3,%)
52 3 4 D log + 6log + 12log—22 2 3
X X X MX

Ay (My) = 2log
+2log

+ 121og
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M(1,3,1,0 M(1,3,8,0 Mq(1,3,3,2 Mq(1,3,6,2
Ms(1,3.1,0) )+16log7S(1;4’ ’ )+12log75( 3)+2410g75( 3)

X X X MX
M(2,2,1,0 Mg(2,2,3,% Mg(2,2,3,% Mg(2,2,8,0
M—f—&og s( 3)—|—6log s( 3)—i—l6logM

MX X X MX
Mq(1,3,3,% M(2,2,1,2 M(2,2,3,32 Mg(2,2,6,2
—S( 3)—|—210g75( 7 )—5—6log4s< 3)—1—12105;7S( 3),

X MX X X
M(1,1,8,0 M(3,1,8,0 M(1,3,8,0 Mg(1,1,3,32 M(1,3,3,2
S( )+910g S( )+910g S( )+10g S( 3 )+310g S( 3)
X X X MX X
M(1,3,6,32) Ms(3,1,3,32) Ms(3,1,6,2) Mg(2,2,3.)

+ 151og 5 3 + 3log + 151og +4log
X X X X
Mg(2,2,3,2 Mg(2,2,8,0 Mg(1,1,3,2 Mg(1,1,3,2 Mg(3,1,3,4
75( 3) + 241og s ) + log s 3) + log—S( 3) + 310g75( 3)
X X My X X
Mg(1,3,3,2 Mg(2,2,3,32 Mg(2,2,6,2
—S( 3)+4log75( 3)Jr2010g7“g( 3),
X X My
3 (8 Mg(1,1,3,3) Mg(1,3,3.3) Ms(1,3,6,3) Mg(3,1,3,3)

S S
AI(B—L)(MX) = g §log MX + 810g MX + 1610g MX N

M(3,1,6,2) 128 Mg(2,2,3,%) 128 M(2,2,3.%4) 8§ My(1,1,3,2
S( 3)+ log S( 3)+ log S( 3)+_10g S( 3)
My 3 My 3 My 3 My
8  Mg(1,1,3,2) Mg(3,1,3,%) Mg(1,3,3,%) Mg(2,2,1,2)
Zlog—2 73 4L 390 —2 P73 4 30 |ge—n TP 3 L 39 g2 0
+3 og My + og My + og My + og My
32 My(2,2,3,32) 64, Mg(2,2,6,2

S( 3)+_10 S( 3))

Aop(My) = 2log

+ 2log
+ 121log

A3C(MX) = 3log

+ 4log

+ 3log
+ 161log

i
tye Ty 3% My

Threshold corrections at M-

Mq(3,-1,1
Aor (M) :4log¥,
1

3 Mg(1,2,1 Mg(3,-1,1
AIY(MI) = g <810g%+ 610g%>,

A3C(M1) =0. (B6)

4.50(10) > G, , \ |, —SM

The threshold corrections arise after integrating out the heavy scalar fields are tabulated in the Table IX.

TABLEIX. SO(10) =G, , 5
d.o.f. which are integrated out.

— SM. The bold multiplets contribute to the RGE and others are the heavy

50(10) gz, 2301 7 92L1y3c
Scalars 10 (2,2,1,0) (2.+£1.1)
(1,1,3,-3)
(1,1.3.3
126 (1,3,1,2) (1,2,1)
(L1 1)gp
(1.0. 1)gp

(Table continued)
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TABLE IX. (Continued)

SO(IO) g2,2R3,|B_,17f g2L1Y3C
(3,1,1,-2)
(1,3,3,2
(1,3,6,-2)
(3.1,3,-%)
(3.1,6,%
(2.2,1,0)
(2,2,3,4
(2,2,3,-3)
2,2,8,0)
(1,1,3,-2)
(1,1.3.3)
45 (1,1,1,0)
(1,1,8,0)
(1.1.3.4)cs
(1,1,3,-3)6s
(1,3,1,0)
3,1,1,0)
(2,2,3,-3)
(2,2,3.3
Threshold corrections at My:
Mg(3,1,1,0 Mg(3,1,1,-2 Mg(3,1,3,32 Mg(3.1,6,2
AZL(MX):2logg+4logg+IZIOgM—FZMogM
X X b b
Mg(2,2,1,0 Mg(2,2,3,% Mg(2,2,3,% Mg(2,2,8,0
+210g75( )+610g s 3)+6log s( 3)+16log75(M ),
X X X X
Mg(1,3,1,0 Mg(1,3,3,2 Mqg(1,3,6,32 Mg(2,2,1,0
AzR(MX):210g¥+12log%+z410g s( . 3)+210g s » )
Mq(2,2,3,% Mg(2,2,3,2 M(2,2,8,0
+ 610g75( 3) + 610g75( 3) + 1610g75( ) ,
My X My
Mg(1,1,8,0 Mg(1,1,3,32 M(1,3,3,2 Mg(1,3,6,%2
Asc(My) = 3log S(MX )—i—log s ; )+310g73(MX 3)—Q—ISIOg—S( ; 3)
M(3,1,3,2 M(3,1,6,2 M(2,2,3,4 Mg(2,2,3,4
+310g75( M, 3)—1—15log S(MX 3)—f—4log7S( » 3)-1—410g7S<MX 3>
Mg(2,2,8,0 Mg(1,1,3,2 Mg(1,1,3,2
+2410g7S( )—I—log s 3)—Hog s 3),
My My My
3 8 M 111a31;2 M 173739; M 1,376,;2 M 3,1,1,_2
AI(B_L)(MX) =3 <§log¥+8bgM+ 16 log s i ) +2410g¥
X X X X
Mg(3,1,3,32) Mg(3,1,6,2) 128  Mg(2,2,3,%) 128 Mg(2,2,3,%)
8log—"""""37 L 16log—1 "3 4 1T g2 L T g 2T T3
By P T VL B V28
8 Ms(],],g,z) 8 MS(]’]’g’z)
Zlog—22 T3y P2 T3 B7
+30g M, +30g M, (B7)
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Threshold corrections at M : ( )
24 Mg(1,2,1
Aor (M) =0, Ay(M;) = Flog ===
5 M;

A3C(M1) =0. (BS)
5. E(6) — G2,204c1,0 — SM

The threshold corrections arise after integrating out the heavy scalar fields are tabulated in the Table X.
Threshold corrections at M y:

Ms(3,1,1,0) M(2,2.6,0) M(3.3,1,0) Ms(3,1,15,0) M(2,2,6,0)
Ny (My) =2log——~+6log + 6log +30log—————+ 6log——F~1—=
21 (Mx) My My My My My
Mg(2,1,4,1 Mg(2,2,1,-2 Mg(2,2,1,6 Mg(2,1,4,-3
+4logg+logg+logg+4logg
My My My My
Mg(2,3,4,-3 M(3,2,4,-3 Mg(2,1,20,-3 Mg(2,2,10,0
+IZIOgM—G-3210gM+2010g¥+2010g5(—),
X X My My
Mg(1,3,1,0 Mg(2,2,6,0 Mg(3,3,1,0 Mg(1,3,15,0 Mg(2,2,6,0
Mr(My) = 6logg+ 6log s )+6log s )—I— SOIOgM—I—MogM
X X X X My
Mg(1,2,4,1) Mg(2,2,1,-2) Mg(2,2,1,6) Mg(1,2,4,-3)
4log——————+log————— 4 log——————=+4log—————=
+ 4log My + log My + log My + 4 log M,
Mg(2,3,4,-3 Mg(3,2,4,-3 Mg(1,2,20,-3 Mg(2,2,10,0
+32logM+1210g‘9(—)+2010gg+2010g¥,
X X X X

TABLE X. E(6) = Gy,2,4.1,0 = SM. The bold multiplets contribute to the RGE and others are the heavy fields
which are integrated out.

E(6) gZL2R4C1XD g2L1,3C
Fermions 27 (1,1,1,4) (1,1,1)
(2,2,1,-2) (2.-1.1)
(1,1,6,-2) (1,-3.3)
(1,-3.3)
(2.1.4.1) (2,1.3)
(2,3.1)
(1,2,4,1) (1,0,1)
(1.3.3)
Scalars 27 (2,2,1,-2) (2,- % 1)
(1,1,6,-2)
(1,1,1,4)
(2,1,4,1)
(1,2,4,1)
27 (1,2,4,1) (1,0,1)
(1.3.3)gp
(2,1,4.1), (2,1.3)
(2.3.1)
(2,2,1,-2)
(1,1,6,-2)
(1,1,1,4)

(Table continued)
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TABLE X. (Continued)

E(6) G2, 2p4013D 9o, 1,3¢

Scalars 650 (1,1,1,0)
2,2,1,6)
(1,1,6,6)

(2,1,4,-3)g3
(1,2,4,-3)p
(1,3,1,0)
(3,1,1,0)
(1,1,15,0)
(2,2,6,0)
(1,1,1,0),
(3,3,1,0)
(1,1,20,0)

(1,1,15,0)
(3,1,15,0)
(1,3,15,0)
(2,2,6,0)
(2,2,10,0)
(2,2,10,0)

Mq(1,1,15,0 Mq(2,2,6,0 Mg(1,1,20',0 Mq(3,1,15,0
S(—)+4logM+SIOgM+I2logS(—)
My My My My
Mg(1,3,15,0 Mg(2,2,6,0 Mg(1,1,6,-2 Mg(2,1,4,1
s )+410g s )+210gM+ZIOgM
My My My My
Mg(1,2,4,1 Mg(1,1,6,-2 Mg(1,1,6,6 Mg¢(2,1,4,-3
X X b'¢ My
Mg(1,2,4,-3 Mg(2,3.4,-3 Mg(3.2,4,-3 Mg(2,1,20,-3
M—l—ﬂog s )—|-610g s )+26logM
X X X My
M(1,2,20,-3) (2,2,10,0)

M
+ 24 1log §
My My

Mg(1,1,6,-2 Mg(1,1,1,4 Mq(2,1,4,1 Mg(1,2,4,1
—S(’ - )+3210g—3(’ S )+16log75( )+1610g7S( )
X MX X MX
Mq(1.1.6, -2 Mo(1.1.1,4 M(2.2.1, -2 M(2.2.1.6
szloggﬂzlogMJrzsslogM
X X X MX
M(1,1,6.6 Mq(2.1,4, -3 M(1,2.3, -3 M(2.3.4, -3
Ms(1.1,6.6) 148 log—S( ) + 48 log—S( ) —|—43210g—S( )
X MX MX X
Mq(3.2.4,-3 Mg(2.1,20,-3 M(1,2.20, -3
M—anogg—#nmogg).
X X X

Ayc(My) = 4log

+ 121log

+ 2log

+ 2log

+ 261log ,
1

Aix(My) = ﬁ(48 log

+ 48log

+4321og

+432log (B9)
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Threshold corrections at M :

MS(2’%’1) MS(2’%73) MF(29%71)
— = ~ 1 3] 41 ,
M, T, Tt

3/ Mg(21 1) 1. Mg(2,1.3) 8 Mg(1,3,3) Mp(2.5.1)
Ary(M;) =2 (log 2832202 | 2o 280602 Oy I3 09) | gy P00 )
v (M) 5<°g M, 308y TzleeTmhalee— )

MS(2’1’3) MF(L__17 )
Ase(M)) = 2log =320 2 4 g1og T30
SC( I) MI MI

Ay (M) = log

. (B10)

6. E(6) > G - SM

2, 2p4c 1
Threshold corrections at My:

Mq(3,1,1,0 Mg(2,2,6,0 M¢(3,3,1,0 Mg(2,2,6,0 Mg(3,1,15,0
M+6log s )+610g s )+6logg+3010gg
X X X X X
Mg(2,1,4,1 Mg(2,1,4,1 Mg(2,2,1,-2 Mg(2,2,1,6 Mg(2,1,4,-3
SRALAD) | M4 M ) 1ogMsC216) M )
My My X b% X

Mq(2,3,4,-3 Mg(3,2,4,-3 Mg(2,1,20,-3 Mq(2,2,10,0
¥+32logg+2mog¥+2mog¥,
X X X X

Mg(1,3,1,0 Mg(2,2,6,0 M(3,3,1,0 Mg(2,2,6,0 M(1,3,15,0
L3100 Ms(2.2.6.0) | 0 Mi(B31.0) | M(2.2.6.0) 0 My )
X X X X X

Mg(1,2,4,1) Mg(2,2,1,-2) Mg(2,2,1,6) Mg(1,2,4,-3)
——+log———F——F+log—————"+4log————"
My My My X

Mqg(2,3,4,-3 Mq(3,2,4,-3 M(1,2,20,-3 Mg(2,2,10,0
Mﬁ-ulogg—k%logg—i—mlogg
X X X My

Mg(1,1,15,0 Mg(2,2,6,0 Mg(1,1,20',0 Mg(2,2,6,0

My My My My
Mg(3,1,15,0 Mg(1,3,15,0 Mg(1,1,6,-2 Mg(2,1,4,1
M—I—lﬂogg—l—ﬂogg—l—ﬂogy

X X X My
Mg(1,2,4,1 Mg(1,1,6,-2 Mg(2,1,4,1 Mg(1,1,6,6

X X X My
Mg(2,1,4,-3 Mg(1,2,4,-3 Mg(2,3,4,-3 Mg(3,2,4,-3
M—l—ﬂog s )—|-610g s )+6logM

X X X My
Mg(2,1,20,-3 Mg(1,2,20,-3 Mg(2,2,10,0
M+2610g¥+2410g¥

X X My

1 Mg(1,1,6,-2) Mg(1,1,1,4) Mg(2,1,4,1) Mg(1,2,4,1)
Ax(My) = —(48log—————*+32log——————= + 16log—————+ 16log—————=
1x(Mx) 24< og M, +32log =4 16log = ——+ 16log =
Mg(1,1,6,-2 Mg(1,1,1,4 Mg(2,1,4,1 Mg(2,2,1,-2
M+32logy—l—l6log¥+3210gg

X X X X
Mg(2,2,1,6 Mg(1,1,6,6 Mg(2,1,4,-3 Mg(1,2,4,-3
Ms(22.1.6) | 435 10gMs1.6:6) | g1 Ms2 1.4 23) g Ms(1:2.4.23)

X X X X
Mg(2,3,4,-3 Mg(3,2,4,-3 Mg(2,1,20,-3 Mg(1,2,20,-3
M+432log¥+72010g¥+72010gg>.

X X X X

Ay (My) = 2log

+ 4log

+ 121log

Agr(Mx) = 6log
+ 4log

+ 32log

Ayc(My) = 4log
+ 121log
+ 2log

+ 2log

’

+ 261log

+ 48 log
+ 288 log

+4321log

(B11)

095008-25



CHAKRABORTTY, MAIJI, and KING

PHYS. REV. D 99, 095008 (2019)

Threshold corrections at M :

Mg(2,1,1)
AZL(MI) = 410gFT2,

1

3(8, Mg(1.5.3) Mp(2.3.1)
AlY(MI) :g(glogTj—FéllogTIz .

Mp(1.5.3)
1

APPENDIX C: THRESHOLD CORRECTIONS
(A;’S) FOR TWO INTERMEDIATE STEP
BREAKING SCENARIO

In this section we have quoted the threshold corrections
that arise in terms of A’s when all the heavy scalars and
fermions have nondegenerate masses different from the
symmetry breaking scales in the RGE. We have assumed
that all heavy gauge bosons have same masses degenerate
with the breaking scale. As a result the matching conditions
in the Eq. (14) get modified very similar to the one
intermediate cases. The detailed structures of these thresh-
old corrections for the considered breaking chains are
given below.

1. S0(10) — g2L2R4CD - g2,_2R3clB_LD - SM
The threshold corrections arise after integrating out the

heavy scalar fields are tabulated in the Table XI.
Threshold corrections at My:

Ms(3.1,1 M(2,2
Nop (M) = 3010g%+ 6logM

X X
Mq(3,3,1 Mg(2,2,15
G310 Ms(2.2.19
MX X
Mg(2.2,10)
My ’
Mg(1,3,1 Mg(2,2
S( 737 5)+610g S( ) 76)
My My
Mq(3,3,1 Mg(2,2,15
G310 Ms(2.2.19
My My
Mg(2.2,10)
My ’
Mg(1,1 M 1,1
My My
Mg(1,3,15 Mq(2,2,6
(1.315) |, M(2.2.6
X MX
Mg(2,2,15 Ms(1,1,6
2.215) 0 Mi(1.1.6
X X

Mo(2,2.1
+2410g75( i O).
My

+6log
+ 201log
Asr(My) = 30log
+ 6log
+20log
A4C(MX) = log
+ 121log
+ 32log

(C1)

TABLE XI. 50(10) g g2L2R4CD g g2L2R3C137LD — SM. The
bold multiplets contribute to the RGE and others are the heavy
d.o.f. which are integrated out.

50(10) g2L2R4CD g2L2R3613_LD gzL1y3C
Scalars 10 (2,2,1) (2,2,1,0)  (2,+1.1)
(1,1,6)
m (1,3,1_0) (173’1’2) (1’271)
(1.1.1)gp
o (1L0.1)g
(1,3.3.3)
(1.3.6,-3)
(37 1’ IO)D (3* 17 13 _2)D (3’ _1’ 1)
(371737_%)
(3.1.6.2)
(2,2,15)
(1,1,6)
210 (1,1,15) (1,1,1,0)
(1,1,3,0)
(1.1.3.%)65
(1,1,3,~%)gp
(3,1,15)
(1,3,15)
(2,2,6)
(2,2,10)
(2,2,10)
54 (1,1,1)
(27276)63
(3.3.1)
(1,1,20)
Threshold corrections at M ;:
M(3,1,3,32 Mg(3,1,6,2
Aop (M) = 1210gM+2410gM,
1 MI
Mg(1,1,8,0 Mg(1.3,3.3
Apr(M}) = logg—k IZIOgM
1 1
Mg(1,3,6,32)
24log———" 137
+24log M,
MS(I,I,S,O) MS(1535§9%)
Asc(M;) =3log—>—"""-~+3log—————~
SC( 1) MI MI
Mg(1,3,6,32)
15log————~—"3~
+ 151log M,
Mg(3,1,3,32) Mg(3,1,6,2)
3log———"""37 4 [5]og——— 3
+3log M, + 15log M,
3 Ms(1,3,3,2) Ms(1,3,6,3)
A M;)=-|8log——— ==+ 16log——————==
18-1) (M) 8< og M, +16log M,
Mg(3,1,3,32)
8log—" 737
+38log M,
Mg(3,1,6,2
+ 1610gM> . (C2)
M;
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Threshold corrections at M;:

Mg(3,-1,1
Ao (Myp) = 4108%,
1

3 Mq(1,2,1 Mq(3,-1,1
A]Y(M][) — 5 <810gM+610gM>,
11 11

Asc(Myr) = 0. (C3)

2. S0(10) = G5, 3.4.0 = G2, 1,4, — SM

The threshold corrections arise after integrating out the heavy scalar fields are tabulated in the Table XII.
Threshold corrections at My:

Mg(2,2,6) Mg(3,3,1) Mg(2,2,15)
Ay (My) = 6log—-—"" 1 6log————"—~ log——"— =2
2. (My) = 6log M, + 6log M, + 301og T
Mg(2,2,6) Mg(3,3,1) Mg(2,2,15)
Apr(My) = 6log—-""" 1 6log———""—2 1 30log——— "~
2r(Myx) o8 + 6log My +301og M,
Mg(1,1,6) Mg(1,1,15) Mg(2,2,6) M(1,1,20)
Ayc(My) =log—2 """ 4 4log— " """2 4 Alog———""" 4 8log—————~
sc(My) = log M, +4log M, + 4log My + 8log My
Mg(2,2,15) Mg(1,1,6)
32log— 2 4 2 log———— . C4
H32log— 4 2log =0 (C4)
Threshold corrections at M-
M(3,0,1 M(3,0,10
AZL(MI) = 210g%+40]0g%,
1 1
M(1,1,10
Air(M;) =201log 75(1‘4 ) ,
1
Mg(1,1,10 M(1,0,10 M¢(3,0,10
Asc(M;) = 6log S(M, )+610g S<M, )+18log%. (C5)

TABLE XIL.  SO(10) = G5, 5.4.0 = G2, 1,4 - — SM. The bold multiplets contribute to the RGE and others are the
heavy d.o.f. which are integrated out.

SO(]O) 92L2R4CD gzL1R4C g2Lly3C
Scalars 10 (2,2,1) (Z,i%,l) (Z,i%,l)
(1,1,6)
126 (1,3,10) (1,-1,10) (1.0.1)gp
(1,-3.3)6s
(1.-3.6)
(1,0,10)
(1,1,10)
(3.1,10), (3.0,10)
2,2,15)
(1,1,6)
45 (1,3,1) (1,-1,1)gp
(1,0,1)
(L1, 1)gp
(. L1y (3.0.1)p
(1,1,15)
2,2,6)
54 (1,1
(2.2.6)gp
3.,3,1)
(1,1,20)
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Threshold corrections at M;:
Nor (M) =0,

64 Mg(1,5%,6)
Ay(My) = —1054573

5 M[[ ’
Mg(1,3,6)
Asc(My;) = 510gST3- (Co)
1

3. SO(IO) - g2L2R4Cy_) g2LlR4C -~ SM

The threshold corrections arise after integrating out the heavy scalar fields are tabulated in the Table XIII.
Threshold corrections at M y:

Mg(2,2,6 Mg(3,1,1 Mg(3,1,15 Mg(2,2,15 Mg(3,1,10
AZL(MX):6logM+210gM+SOIOgM—i—%logM—FMIOgM
X X X X MX
Mg(2,2,10)
20log——— =
+ 0og Mx
Mg(2,2,6 Mg(1,3,15 Mg(2,2,15 Mg(2,2,10
AZR(MX):610gM+3OIOgM+3OlogM+ZOIOgM,
X X X MX
Mg(1,1,6 Mg(1,1,15 Mg(2,2,6 Mg(1,1,15 Mg(3,1,15
A4C(MX):logM—i—MogM—FMogM—i—MogM—kIZIOgM
MX X X X X
Mg(1,3,15 Mg(2,2,15 Mg(1,1,6 Mg(3,1,10 Mg(2,2,10
+1210gM+3210gM+210gM+18logy+24logy.
MX MX X MX MX

(C7)

TABLEXIIL.  SO(10) — gzl 2ol ™ G5, 1,40 = SM. The bold multiplets contribute to the RGE and others are the
heavy d.o.f. which are integrated out.

50(10) 9y 20400 G, 144 Go,1,3¢
Scalars 10 (2,2,1) (2.+1.1) (2.+£1.1)
(1,1,6)
126 (1,3,10) (1,-1,10) (1.0, D)gp
(1.-%.3)gs
(1.-3.6)

(3.1,10)
(2.2,15)
(1,1,6)

45 (1,3.1) (1.1, 1) 45

3,1,1)
(1,1,15)
(2,2,6)
210 (1,1,1)
(1,1,15)
(3,1,15)
(1,3,15)
(2.2,6)65
(2,2,10)
(2,2,10)
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Threshold corrections at M;:

Mq(1,1,10 M(1,1,10 Mg(1,0,10
Aoy (M) =0,  Ap(M;)= ZOlog%, Aye(M;) = 6log%+6log%.
1 1 1

Threshold corrections at M;: B B
64 Mg(1,5%.6) Ms(1,5,6)
Aoy (My) =0, Apy(My) = ?IOgT3’ Ase(My) = SIOgM—3‘ (C9)
1 1
4. E(6) - 93L3R3CD - g2L2R3C13_LD - SM

The threshold corrections arise after integrating out the heavy scalar fields are tabulated in the Table XIV.
Threshold corrections at My:

Mg(8.1,1 Mg(8.8.1 Mg(8,1,8 Mg(3,1,3 Mg(3.1,3
M+24logy+24log s )+3log s )+3logy
X X X X MX
Mg(3.8.3 Mg(8,3,3 Mg(6,1,6 Mg(3,3,8 Mg(3.1,3
+2410gM+54logy+3OIOgM+2410gM+3logM
MX X X X MX
Mg(6,3,3) Mg(3,6,3) Mg(3,3.,6)
M

+451og S + 18log + 18log————,
My X My

Mg(1,8,1 Mg(8,8.1 Mg(1,8,8 Mg(1,3.3 M(3.8.3
M—Fﬂlogy%—ﬂlog s )+3log s )+54logM
X MX MX MX X

Mg(1,3,3) Mg(8,3.3) M(1,6,6) M(3,3,8) M(1,3,3)
+3log—————-+24log——————=+30log————— + 24 log + 3log
MX MX MX MX X
Mg(3,6,3) M(3,3,6)
M

M(6,3,3)
+ 18log————~+451og + 18log—————,
My X My

Mg(8,1,8) M(1,8,8) Mg(3,1,3) Mg(1,3,3)
+ 24log———= + 24 log + 3log +3log————
X MX MX MX X
Mg(3.1,3 Mg(3.8,3 Mg(1,3,3 Mg(8.,3,3 Mg(6,1,6
MG 13) | og10gMsB:83) | 510o Ms(1:3:3) oy 10o MsB:3:3) | 5510, Ms(6:1.6)

MX MX X X X
Mg(1,6,6) Mg(3,3.8) Mg(3,1,3) Mg(1,3,3) Mg(6,3,3)
————+ 54log + 3log +3log————+ 18log————

MX MX X MX MX
M¢(3,6,3 Mg(3,3,6

s( )+4510g s( )‘

My My

A3 (My) = 3log

Asp(My) = 3log

Mq(1,1,8
Asc(My) = 3log%

+ 3log

+ 301og

+ 181log (C10)

TABLE XIV. E(6) = G3,3,3.0 = 92,2,301,,0 — SM. The bold multiplets contribute to the RGE and others are
the heavy d.o.f. which are integrated out.

E(6) gBL3R3CD gzL2R3clﬂ_LD g2L1y3C
Fermions 27 (3,3.1) (1,1,1,0)
(1,2,1,1) (1,11
(L,0,1)
(2.1,1,-1) (2,-1,1)
(2,2,1,0)
(3,1,3) (2.1.3.}) (2.3.3)
B (1,1,3,-3) )
(1,3,3) (1,2,3,-} (1.-%.3)
(1.5.3)

(171733%)

(Table continued)
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TABLE XIV. (Continued)

E(6) g3,_3R3CD gz,,z,gclg,,p gz,‘1y3c
Scalars 27 (3.3.1) (2,2,1,0) (2.+£1.1)
(1,1,1,0)
(1,2,1,1)
(2,1,1,-1)
(3.1,3)
(1,3,3)
351 (6,6,1) (1,3,1,-2) (1,0, 1)
(L=11)gp
(1,-2.1)
(3.1,1,2)p G,1,D)
(1,1,1,0)
(1,2,1,-1)
2,1,1,1)
(2,2,1,0)
(2,3.1,-1)
(3.2,1,1)
(3,3,1,0)
(6.1,6)
(1,6,6)
(3.3,1)
(3,1,3)
(1,3,3)
(3.8,3)
(8,3.3)
(3.3.8)
27 (3,3,1) (1,1,1,0)

(1,2,1,1)gp
(2,1,1,-1)gp
(2,2,1,0)
(3,1,3)
(1,3,3)
Scalars 650 (1,1,1)
(1,1,1)
8,1,1)
(1,8,1)
(1,1,8)

~—~

o
Q Q Q Q
T W %™

A~~~
W WI W W
W WI W W
LW LW W Wi

W1 AN W O Wi
— — — —

A~~~ o~ o~
—~ W W O\ W\
[T

W

(®))

=

[©)] OS] IS IRUS ERIN]

s

(8.8,1)
(8,1,8)
(1,8,8)
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Threshold corrections at M :

Mg(2,1,1,1 Mg(2,1,1,1 Mg(2,2,1,0 Mg(2,3,1,-1
Ay (M) = log S(M )—Hog S(M )—|—210g5(7)+310g¥

1 1 1 I

M 1 Mg(2,2,1 Mp(2,2,1
S(3’3’ ’0)+210g S(M’ ’O)+4log F(Z"l’ ’O)’

I 1 1

Mg(1,2,1,-1 Mg(1,2,1,-1 Mg(2,2,1,0 Mg(2,3,1,-1

MAog(M;) = 110g¥+10g¥+210gg+810gg
I I I 1

Mg(3,3,1,0 Mg(2,2,1,0 Mrp(2,2,1,0
M, M; M;

MF(1,1,3,‘72)
M,

3 Mq(2,1,1,1
A r(M;) = 3 (4 IOgM

+ 4log

+ 12 log

+ 12 log

El

Azc(M;) = 4log )
Mg(1,2,1,-1) Mg(2,1,1,1)

41 41 41

[ A A 7

Mg(3,1,1,2) 32 MF(1,1,3,‘T2)>

Mg(2,3,1,-1)
—— 4 24log———F + —1
M, + 24 log M, + 3 og M,

+ 121log

Threshold corrections at My;:

Mg(3,1,1)
My,

3 Mg(1,-2,1 Mg(3,1,1
Ay(Myp) = 5 <8 logﬂTh— 6logS(T)),
1 1

Ay (M) = 4log

El

A3C(Mn) =0.

APPENDIX D: NORMALIZATION OF THE REPRESENTATIONS

Please see Table XV below.

TABLE XV. Normalization of the representations of different SU(N) groups.

Mg(1,2,1,-1)

1

Dimension of Normalization of
Gauge group representation (R) representation (Trr%)

SU(2)

SU(3)

Wi~ N =

W

SU(4)

-
)
PR oD A W — o B

095008-31

Ms(3,1,1,2)

(Cl11)

(C12)
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APPENDIX E: GUT NORMALIZATION OF THE ABELIAN CHARGES

Please see Table XVI below.

TABLE XVI. Normalizations of the Abelian charges embedded in unified groups. In GUTs the hypercharge () is

normalized by +/(3/5).

Breaking pattern

Branching rule

U(1) charge normalization

SU2)g = U(1)g
SUB)Lg = SUR2)Lr @ Uz 3=

SUM#)c = SUB)c®@U(1)p,
E(6) —» SO(10) @ U(1)y

2= (=) !

(1.-5%) @ (255
4=(1,-1)® (3.9)

27 = (1,4) ® (10,-2) & (16, 1)

[e=]|98)

[e=1I98)

)
S»—‘
(=)
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