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Hadronic spectral densities are important quantities whose nonperturbative knowledge allows for
calculating phenomenologically relevant observables, such as inclusive hadronic cross sections and
nonleptonic decay rates. The extraction of spectral densities from lattice correlators is a notoriously difficult
problem because lattice simulations are performed in Euclidean time and lattice data are unavoidably
affected by statistical and systematic uncertainties. In this paper we present a new method for extracting
hadronic spectral densities from lattice correlators. The method allows for choosing a smearing function at
the beginning of the procedure and it provides results for the spectral densities smeared with this function
together with reliable estimates of the associated uncertainties. The same smearing function can be used
in the analysis of correlators obtained on different volumes, such that the infinite-volume limit can be
studied in a consistent way. While the method is described by using the language of lattice simulations, in
reality it is completely general and can profitably be used to cope with inverse problems arising in different
fields of research.

DOI: 10.1103/PhysRevD.99.094508

I. INTRODUCTION

Hadronic spectral densities are crucial ingredients in the
calculation of physical observables associated with the
continuum spectrum of the QCD Hamiltonian. A notable
classical example is provided by the differential cross
section for the process eþe− ↦ hadrons that, at leading
order in the electromagnetic coupling, is proportional to the
QCD spectral density evaluated between hadronic electro-
magnetic currents,

dΣðEÞ
dE

∝ h0jJkemð0ÞδðH − EÞδ3ðPÞJkemð0Þj0i; ð1Þ

where E is the energy of the electron-positron pair in the
center-of-mass frame, H and P are respectively the QCD
Hamiltonian and total momentum operators and JμemðxÞ is
the hadronic electromagnetic current. Other important
examples of observables, in which spectral densities play
a crucial role, are the flavor-changing nonleptonic decay
rates of kaons and heavy flavored mesons, the deep
inelastic scattering cross section, and thermodynamic

observables arising in the study of QCD at finite temper-
ature and of the quark-gluon plasma.
It is notoriously difficult to obtain model-independent

nonperturbative theoretical predictions for hadronic spec-
tral densities. In principle this is a problem that can be
addressed from first principles within the solid framework
of lattice QCD. However, in practice, one has to face highly
nontrivial numerical and theoretical problems in order to
extract spectral densities from lattice simulations.
The origin of these problems can be traced back to the

fact that lattice results unavoidably are affected by stat-
istical and systematic errors. More precisely, the primary
observables computed in a lattice simulation are Euclidean
time-ordered correlators at discrete values of the space-time
coordinates and on a finite volume, e.g.,

CðtÞ ¼ 1

L3

X
x

Th0jOðxÞŌð0Þj0iL; ð2Þ

where L is the linear extent of the spatial volume V ¼ L3

while O and Ō are generic hadronic operators. In the
following we shall not discuss cutoff effects and, therefore,
we shall not indicate the dependence of the different
quantities upon the lattice spacing. We shall however
always assume that the correlators are known only for
discrete values of the space-time coordinates. At positive
Euclidean times t ≥ 0 the previous correlator can be
rewritten as
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CðtÞ ¼
Z

∞

0

dE ρLðEÞe−tE; ð3Þ

where, for simplicity (see below for a generalization in the
case of periodic boundary conditions in time), we have
assumed that the time extent of the lattice is infinite and we
have defined the associated spectral density

ρLðEÞ ¼
1

L3

X
x

h0jOð0; xÞδðE −HLÞŌð0Þj0iL: ð4Þ

The main problems faced during the extraction of spectral
densities from lattice simulations can now be explained by
starting from the previous two expressions.
The first problem is associated with the fact that the

extraction of ρLðEÞ from the measured lattice correlator
CðtÞ requires an inverse Laplace transform to be performed
numerically, an ill-posed problem when the measured data
are affected by uncertainties. This is the case for CðtÞ that
unavoidably will be affected by statistical errors, particu-
larly at large time separations where (apart from some
countable exceptions) the signal-to-noise ratio degrades
exponentially for Euclidean hadronic correlators.
The second problem comes from the fact that the finite-

volume Hamiltonian HL has a discrete spectrum. The
finite-volume spectral density is a distribution having
support in correspondence with the eigenvalues EnðLÞ
of HL,

ρLðEÞ ¼
X
n

wnðLÞδðE − EnðLÞÞ: ð5Þ

Here it is important to notice that the finite-volume spectral
densities cannot be directly associated, even in the ideal
case in which these can be computed exactly, to physical
observables.
A big step forward in the extraction of spectral densities

from finite-volume lattice simulations has recently been
done in Ref. [1] where it has been suggested to rely on a
method originally devised to analyze geophysical obser-
vations in Ref. [2]. The central idea of the so-called
Backus-Gilbert method1 (see also Ref. [6]) is to optimize
the amount of information that can be extracted from noisy
measurements, in our case CðtÞ, by focusing on the
calculation of smeared spectral densities,

ρ̂Lðσ; E⋆Þ ¼
Z

∞

0

dEΔσðE⋆; EÞρLðEÞ: ð6Þ

Notice that smeared spectral densities are smooth functions
of the energy [as opposed to the distributions ρLðEÞ] and
that the study of their infinite-volume limit for a fixed
smearing function is a well-posed problem. Ideally one
would like to choose the smearing functions ΔσðE⋆; EÞ
with support in a region around E⋆ of width proportional to
σ and such that they become Dirac δ functions in the limit
in which the smearing radius parameter σ is sent to zero. If
one can choose the same smearing function on different
volumes, the infinite-volume spectral density can then be
extracted by taking the double limit

ρðE⋆Þ ¼ lim
σ→0

lim
L→∞

ρ̂Lðσ; E⋆Þ; ð7Þ

in the specified order.
As already done by the authors of Ref. [1], we stress that

the limit of vanishing smearing radius might not be
necessary in order to compare theoretical predictions with
experimental data. Indeed, it might be possible to smear
experimental observations with the same function used in
the theoretical calculation. In the case of eþe− ↦ hadrons
one should for example compare the theoretical predictions
with

R∞
0 dΣðEÞΔσðE⋆; EÞ. In fact one should also notice

that, in order to derive results such as Eq. (1), a smearing
function has to be introduced at intermediate steps of the
calculations, after which the limit of vanishing smearing
radius has to be taken. This point was extensively discussed
in Ref. [1] by making contact with the so-called Fermi’s
golden rule.
On the one hand, the Backus-Gilbert method is an

extremely efficient algorithm for controlling the statistical
errors on the estimated smeared spectral densities. On the
other hand, the shape of the smearing function cannot be
chosen arbitrarily in this method: it is an output of the
procedure. Indeed, the algorithm is designed in such a way
that the width of the smearing function (having the proper-
ties of being peaked around E⋆ and of having unit area) is
optimized on the basis of the number of observations and of
their statistical uncertainties [in our case the number of
discrete times t at which CðtÞ and the associated statistical
errors are known]. This feature of the algorithm may not
represent a problem in experimental applications of the
Backus-Gilbert method because, at the end of the pro-
cedure, the resulting smearing function is known and no
infinite-volume limit has to be taken. It is instead a strong
limitation in the context of lattice simulations where
simulations at different volumes produce results with
different statistical uncertainties and different numbers of
points. In this case one gets different smearing functions at
different volumes and the extraction of the infinite-volume
physical observable becomes, if not impossible, extremely
difficult.
In this paper we present a new method, a generalization

of the Backus-Gilbert approach, in which the shape of the

1See the references quoted in Ref. [1] for previous applica-
tions of the Backus-Gilbert method in the context of lattice
simulations and Refs. [3–5] for an incomplete list of references on
other approaches used to extract spectral densities from lattice
correlators.
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smearing function is an input of the procedure and not an
output. The method uses the same mechanism of the
original Backus-Gilbert proposal to keep the statistical
errors under control. This happens at the price of a
distortion of the target smearing function induced by the
presence of statistical errors and by the finite number of
observations. At the end of the numerical procedure the
systematic error associated with this distortion can be
reliably quantified and added to the statistical uncertainties
in order to provide a reliable estimate of the smeared
spectral densities. Our method gives an exact
reconstruction of the spectral densities, smeared with the
chosen functions, in the limit of vanishing statistical
uncertainties and of an infinite number of discrete lattice
points along the time direction. The method is quite general
and we are pretty confident that it will be useful in
addressing “inverse problems” arising in different fields
of research, such as problems where the application of the
Backus-Gilbert method has already proven to be useful.
The rest of the paper is organized as follows. In Sec. II

we review the original Backus-Gilbert method and in
Sec. III we present our method. In Sec. IV we apply our
method to a benchmark system where we know the exact
spectral density, while in Sec. V we apply the method to
real lattice correlators. We draw our conclusions in Sec. VI.
The paper ends with two appendices. Appendix A contains
the explicit formulas needed to implement our method in
computer programs. Appendix B contains additional exam-
ples of applications of our method in the case of syn-
thetic data.

II. REVIEWOF THE BACKUS-GILBERTMETHOD

In this section we review the original Backus-Gilbert
method. This will help us to set the notation and to discuss,
in the following sections, the similarities and the
differences between our new proposal and the Backus-
Gilbert approach. Although the method is general and can
be applied to many different problems, in our discussion we
shall use the language of lattice correlators to explain the
approach. The generalization to other contexts is straight-
forward; see Ref. [6].
Let us consider a generic lattice correlator that, by

following the same steps as in the Introduction, can be
written as

CðtÞ ¼
Z

∞

0

dEρLðEÞbTðt; EÞ; ð8Þ

where ρLðEÞ is the distribution corresponding to the finite-
volume spectral density. Here bTðt; EÞ are the so-called
basis functions. These are simply given by exponentials in
the limit of an infinite temporal extent of the lattice,

b∞ðt; EÞ ¼ e−tE; ð9Þ

while, in the case of periodic boundary conditions in time
and by assuming that the correlator is symmetric under time
reversal, the basis functions are2

bTðt; EÞ ¼ e−tE þ e−ðT−tÞE: ð10Þ

In all what follows the time variable t is assumed to be
discrete, non-negative and smaller than the time extent of
the lattice (0 ≤ t < T).
The central idea of the Backus-Gilbert method is to

search for a smearing function that lives in the space
spanned by the basis functions; more precisely

ΔBGðE⋆; EÞ ¼
Xtmax

t¼0

gtðE⋆ÞbTðtþ 1; EÞ; ð11Þ

with tmax < T=2. Once the coefficients gtðE⋆Þ that define
the smearing function are known, the smeared spectral
density can then easily be computed by starting from the
correlator,

ρ̂BGL ðE⋆Þ ¼
Xtmax

t¼0

gtðE⋆ÞCðtþ 1Þ

¼
Z

∞

0

dEρLðEÞΔBGðE⋆; EÞ: ð12Þ

The Backus-Gilbert procedure “optimizes” the choice of
the smearing function, i.e., of the coefficients gtðE⋆Þ, on the
basis of the measured data for the correlator. In the absence
of statistical errors the coefficients are fixed by minimizing
a deterministic functional that can be interpreted as a
measure of the width of the smearing function. The
functional is

ABG½g� ¼
Z

∞

0

dEðE − E⋆Þ2fΔBGðE⋆; EÞg2; ð13Þ

and the minimization is performed under the unit area
constraint

Z
∞

0

dEΔBGðE⋆; EÞ ¼ 1: ð14Þ

It is a simple exercise (see Ref. [6]) to show that the
solution of this problem is given by

2The use of Eq. (10) in the case of periodic boundary
conditions in time is an approximation. The approximation is
much better than the naive use of Eq. (9) at finite values of T but
the general spectral decomposition of a periodic hadronic
correlator would require the inclusion of other contributions that
vanish exponentially fast when T is sent to infinity. See Ref. [7]
for a discussion of this point.
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gðE⋆Þ ¼
A−1ðE⋆ÞR

RTA−1ðE⋆ÞR
; ð15Þ

where we have used a vector notation for the coefficients,
gTðE⋆Þ ¼ ðg0ðE⋆Þ;…; gtmax

ðE⋆ÞÞ, the vector R has the
entries

Rt ¼
Z

∞

0

dEbTðtþ 1; EÞ ð16Þ

and the elements of the matrix AðE⋆Þ are given by

AtrðE⋆Þ ¼
Z

∞

0

dEðE − E⋆Þ2bTðtþ 1; EÞbTðrþ 1; EÞ:

ð17Þ

It is important to notice that the matrices AðE⋆Þ tend to be
nearly singular for the basis functions discussed in this
paper. From a numerical point of view this might be an
issue, but in fact the problem can easily be circumvented on
currently available computers by using extended-precision
arithmetic. In order to avoid coping with algorithmic
instabilities induced by numerical rounding errors, this is
what we have done in our computer programs [8].
In Fig. 1 we show some examples of the smearing

functions obtained by using Eq. (15). As it can be seen by
comparing the plots in the different panels, the function
ΔBGðE⋆; EÞ becomes more similar to a Dirac δ function
when increasing the number of basis functions used in its
definition.
In Fig. 2 we show the coefficients gtðE⋆Þ corresponding

to the smearing function ΔBGðE⋆; EÞ shown in the right
panel of Fig. 1. The plot has been shown in order to
highlight a typical feature exhibited by these coefficients.
As a consequence of the nearly singular nature of the matrix

AðE⋆Þ the coefficients become gigantic for some values of t
and, moreover, oscillate in sign. Having noticed this feature
we can now discuss the Backus-Gilbert procedure in the
presence of uncertainties.
The exact correlator is an idealization that is not

accessible in the real world and, in the presence of
(experimental or) statistical errors, we have to consider

CiðtÞ ¼ C̄ðtÞ þ δCiðtÞ; i ¼ 0;…; N − 1 ð18Þ
where the index i runs over the N different statistical
samples (for a lattice correlator we can consider the
different bootstrap or jackknife bins), C̄ðtÞ is the statistical
average and δCiðtÞ is the deviation from the average of the
ith bin,

P
N−1
i¼0 δCiðtÞ ¼ 0.

Given the fact that the coefficients gtðE⋆Þ are huge
numbers, even a tiny deviation (for example an apparently
harmless rounding error) from the average gives an
unacceptably large contribution to the smeared spectral
function. Indeed, by applying Eq. (12) to CiðtÞ, one gets
that the sums

P
tgtðE⋆ÞδCiðtÞ are also huge numbers in

general and the final error on the estimated smeared
spectral functions turns out to be unacceptably large.
This can be viewed as a manifestation of the fact that
we are dealing with a numerically ill-posed problem.
In order to keep statistical errors under control Backus

and Gilbert considered another functional of the coeffi-
cients: a measure of the statistical error on the smeared
spectral function, namely

B½g� ¼ gTCov g; ð19Þ
where Cov is the covariance matrix of the correlator,
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0 0.5 1 0 0.5 1

FIG. 1. Smearing functions ΔBGðE⋆; EÞ obtained by applying
the Backus-Gilbert procedure in the absence of statistical errors
with E⋆ ¼ 0.5 and b∞ðt; EÞ as basis functions. The different
panels correspond to different values of tmax. As it can be seen the
function ΔBGðE⋆; EÞ gets more similar to a Dirac δ function for
increasing values of tmax.
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1021

FIG. 2. Values of the coefficients gtðE⋆Þ corresponding to the
smearing function ΔBGðE⋆; EÞ shown in the right panel of Fig. 1,
i.e., the coefficients obtained by applying the Backus-Gilbert
procedure in the absence of statistical errors with E⋆ ¼ 0.5,
b∞ðt; EÞ as basis functions and tmax ¼ 30. A typical pattern for
these coefficients is that they change sign and for some values of t
they have extremely large absolute values (the scale on the y axis
varies between �1021).
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Covtr ¼
1

N − 1

XN−1

i¼0

δCiðtþ 1ÞδCiðrþ 1Þ: ð20Þ

In the presence of statistical errors, the coefficients are fixed
by minimizing the following functional:

W½λ; g� ¼ ð1 − λÞABG½g� þ λB½g�; ð21Þ
again under the unit area constraint of Eq. (14). In this case
the solution is given by

gðλ; E⋆Þ ¼
W−1ðλ; E⋆ÞR

RTW−1ðλ; E⋆ÞR
; ð22Þ

where the matrix Wðλ; E⋆Þ has elements

Wtrðλ; E⋆Þ ¼ ð1 − λÞAtrðE⋆Þ þ λCovtr ð23Þ
with AtrðE⋆Þ already defined in Eq. (17). The real number λ
is a free parameter of the algorithm, chosen in the range
[0, 1].
The functional W½λ; g� is in fact a convex linear combi-

nation of the deterministic functional ABG½g� and of the
error functionalB½g�. The presence of the error functional in
the minimization procedure forbids solutions correspond-
ing to gigantic values of the coefficients. Statistical errors
are thus kept under control at the price of accepting that the
shape of the smearing function is determined (somehow
optimized) also by the statistical errors.
The tuning of the parameter λ is a subtle issue in the

Backus-Gilbert procedure. Choosing λ too small3 may
result in too large statistical errors while values of λ close
to one may generate smearing functions that are useless for
physical applications. This point will be discussed in more
detail in Sec. IV where, by using a synthetic correlator
generated by starting from an exactly known spectral
function and by adding random statistical noise, we shall
compare the results obtained with the Backus-Gilbert
method with the ones obtained by using our method.

III. THE NEW METHOD

In our method the target smearing function is an input of
the algorithm. For example, the target smearing function
can be chosen as a Gaussian of width σ, centred at E⋆ and
normalized to have unit area in the interval ½0;∞Þ,

ΔσðE⋆; EÞ ¼
e−

ðE−E⋆Þ2
2σ2R∞

0 dEe−
ðE−E⋆Þ2

2σ2

: ð24Þ

The method then searches for an optimal approximation of
the target smearing function in the space spanned by the
basis functions,

Δ̄σðE⋆; EÞ ¼
Xtmax

t¼0

gtðλ; E⋆ÞbTðtþ 1; EÞ; ð25Þ

where tmax < T=2. The previous formula is identical to the
definition of the smearing function in the original Backus-
Gilbert proposal; see Eq. (11) above. The difference is in
the way the coefficients gtðλ; E⋆Þ are determined.
This is done by minimizing again a convex linear

combination of a deterministic functional and the error
functional,

W½λ; g� ¼ ð1 − λÞA½g� þ λ
B½g�
Cð0Þ2 ; ð26Þ

under the unit area constraintZ
∞

0

dEΔ̄σðE⋆; EÞ ¼ 1: ð27Þ

However, in our case, the deterministic functional is chosen
to be a measure of the difference between the target and the
approximated smearing functions, namely

A½g� ¼
Z

∞

E0

dEjΔ̄σðE⋆; EÞ − ΔσðE⋆; EÞj2; ð28Þ

while the error functional is conveniently normalized with
Cð0Þ2, i.e., the square of the correlator at t ¼ 0.
The parameter E0 has to be chosen in such a way that the

finite-volume spectral function ρLðE0Þ ¼ 0. This is always
possible in the case of connected correlators in QCD and in
the charged sectors of QCDþ QED because of the pres-
ence of a mass gap. According to our experience, having
E0 > 0 is particularly convenient in the case where bTðt; EÞ
are the basis functions.
It is easy to show that the solution of the minimization

procedure is given by

gðλ; E⋆Þ ¼ W−1ðλÞf ðλ; E⋆Þ

þ W−1ðλÞR 1 − RTW−1ðλÞf ðλ; E⋆Þ
RTW−1ðλÞR ; ð29Þ

where the vector R has already been defined in Eq. (16) and
the components of the vector f ðE⋆Þ are given by

ftðλ; E⋆Þ ¼ ð1 − λÞ
Z

∞

E0

dEbTðtþ 1; EÞΔσðE⋆; EÞ: ð30Þ

The matrix W has the elements

WtrðλÞ ¼ ð1 − λÞAtr þ λ
Covtr

Cð0Þ2 ; ð31Þ

where3Notice that our parameter λ corresponds to 1 − λ in Ref. [1].
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Atr ¼
Z

∞

E0

dEbTðtþ 1; EÞbTðrþ 1; EÞ: ð32Þ

Explicit expressions for R, A and f , derived in the case of
the smearing function of Eq. (24), are given in Appendix A.
In the absence of statistical errors our procedure is a

method to obtain the best approximation of the target
smearing function in the space spanned by the basis
functions under the norm defined by the functional A½g�.
Since the target function is assumed to be analytic in the
interval ½E0;∞Þ and to decay faster than any power for E
that goes to infinity, the error of the approximation can be
made arbitrarily small by enlarging the space spanned by
the basis functions. This can be understood by looking at
the deterministic functional in the case of the choice of
b∞ðt; EÞ as basis functions after performing the change of
integration variable to x ¼ e−E,

A½g� ¼
Z

e−E0

0

dxx

����X
tmax

t¼0

gtxt −
ΔσðE⋆;− logðxÞÞ

x

����
2

: ð33Þ

In fact in our procedure we are just searching for the best
polynomial approximation of a well-behaved function. The
argument holds also in the case where bTðt; EÞ are the basis
functions because these simply reduce to b∞ðt; EÞ in the
limit of an infinitely long time extent.4 The comparison of
the smearing functions Δ̄σðE⋆; EÞ obtained with our
method in the absence of statistical errors with the target
function ΔσðE⋆; EÞ is shown in Fig. 3.
The different philosophy of our method with respect to

the original Backus-Gilbert proposal can already be appre-
ciated by comparing Fig. 3 and Fig. 1. In the Backus-
Gilbert method, by changing tmax one gets a different
(sharper) function. In our method, by increasing tmax one
gets a better approximation of the target smearing function.
Moreover, in our method the error of the approximation of
the target smearing function is known and this information
can be used to estimate the final error on the smeared
spectral density as we are now going to explain.
On the one hand, in the presence of statistical uncer-

tainties the difference between the target and the approxi-
mated smearing functions is due to both a finite value of
tmax and to the presence of the error functional B½g� in the
minimization procedure, whose importance is regulated by
the choice of the λ parameter. On the other hand, the
quantity

δσðE⋆; EÞ ¼ 1 −
Δ̄σðE⋆; EÞ
ΔσðE⋆; EÞ

; ð34Þ

can always be calculated at the end of the procedure. In
Fig. 4 we show how this quantity depends on the different

8 16 24 32 40 48 56 64 72 80 88 96
0
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0.1
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0.2

0.25

0.3

0.35

FIG. 4. Solution to the equation δσðE⋆; E⋆Þ ¼ 0.05 as a
function of tmax for three different values of E⋆ in the case
where B½g� ¼ 0. The solution indicates the smallest possible
choice of σ that ensures that the relative error on the target
smearing function is below 5%.
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FIG. 3. Comparison of the target smearing function ΔσðE⋆; EÞ
(blue curves) at E⋆ ¼ 0.5 and σ ¼ 0.1 with the functions
Δ̄σðE⋆; EÞ (red curves) obtained with our method. In each row
the different panels correspond to different values of tmax. The
panels in the first row correspond to the choice of b∞ðt; EÞ as
basis functions while the panels in the second row correspond to
the choice of bTðt; EÞ with T ¼ 2ðtmax þ 1Þ. In all plots the
yellow curve shows the difference, and as expected, it goes to
zero in the limit of large tmax.

4Notice that tmax < T=2 [see Eq. (25)], so that in order to send
tmax to infinity one also has to send T to infinity.
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parameters by solving the equation δσðE⋆; E⋆Þ ¼ 0.05 for
different choices of E⋆ and tmax. The solution indicates the
smallest possible choice of σ ensuring that the relative error
on the target smearing function is less than 5% at the peak.
In the original Backus-Gilbert method, the choice of σ is
automatically optimized, but in our method a scan like this
can be used to choose an optimal value for the smearing
parameter.
In principle, by knowing the quantity δσðE⋆; EÞ one can

write an exact expression for the bias on the smeared
spectral density associated with our method,

Δbias ¼
Z

∞

0

dEδσðE⋆; EÞΔσðE⋆; EÞρLðEÞ: ð35Þ

In practice we cannot use the previous formula for the
obvious reasons that we do not know the true spectral
density and we cannot explore the full energy range ½0;∞Þ.
The quality of the results obtained with our method can
nevertheless be assessed by monitoring the relative
deviation δσðE⋆; EÞ. This will be illustrated in the next
section where, by using a benchmark system where the
exact spectral density is known, we will show that a
trustable estimate of the systematic error associated with
our method can be obtained by using the formula

Δsyst ¼ jδσðE⋆; E⋆Þjρ̂Lðσ; E⋆Þ: ð36Þ

The relative sizes of the statistical and systematic errors
can be regulated by changing the parameter λ and, if the
estimate of the systematic uncertainty is reliable, results
corresponding to different values of λ have to be compatible
within the total uncertainties. In our method the choice of
the trade-off parameter can be optimized by using

Wðλ; E⋆Þ ¼ W½λ; gðλ; E⋆Þ�; ð37Þ

i.e., the function of λ obtained by evaluating the functional
W½λ; g� at the solution gtðλ; E⋆Þ of the minimization
procedure. This function has a characteristic shape that
we show in Fig. 5. At very small values λ [the contribution
to W coming from the error functional λB=Cð0Þ2] is very
small for generic values of the coefficients and the
minimization procedure acts on the deterministic functional
ð1 − λÞA in order to obtain the best approximation of the
target smearing function. Conversely, at very small values
of (1 − λ) the contribution of the error functional λB=Cð0Þ2
is dominant and the minimization procedure acts to reduce
the statistical errors at the price of distorting the smearing
function. The interplay between these two regimes gen-
erates a maximum in Wðλ; E⋆Þ,

max
λ

fWðλ; E⋆Þg ¼ Wðλ⋆; E⋆Þ; ð38Þ

at the value λ⋆ where the deterministic and error func-
tionals are balanced. Therefore our method automatically

suggests the optimal5 choice for the trade-off parameter,
i.e., λ ¼ λ⋆.
In all our numerical experiments we have checked that

the results corresponding to values of λ smaller than λ⋆ are
compatible within the corresponding total uncertainties.
Indeed, statistical errors increase by decreasing λ while the
relative deviation δσðE⋆; EÞ gets smaller and smaller and, in
this region, Eq. (36) can safely be used to get a reliable
estimate of the systematic error. For values of λmuch larger
than λ⋆, the results are instead affected by unacceptably
large systematic uncertainties.

IV. THE BENCHMARK SYSTEM

In order to test our method and to compare it with the
original Backus-Gilbert proposal we consider in this
section a benchmark system where we know the exact
spectral density. This information is used to build an exact
synthetic correlator which we can then manually distort by
adding random noise. We decided to consider the same
benchmark system used in Ref. [1] where additional details
on the model can be found.
The benchmark system is a toy model of three scalar

particles—the pion π, the kaon K and the ϕ meson—with
physical masses such that

3mπ < 2mK < mϕ: ð39Þ
The particles are subject to the interaction Lagrangian
density

LintðxÞ ¼
gπ
6
ϕðxÞπ3ðxÞ þ gKmϕ

2
ϕðxÞK2ðxÞ ð40Þ
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FIG. 5. The function Wðλ; E⋆Þ in the case of the lattice QCD
correlator discussed in section Vat E⋆ ¼ 0.5. This function has a
characteristic shape exhibiting a maximum at the optimal value λ⋆
of the trade-off parameter where the deterministic and error
functionals are equally important in the minimization procedure.

5We cannot exclude the presence of more than one maximum
inWðλ; E⋆Þ. We never encountered this situation in our numerical
experiments but, if this happens, we suggest to define λ⋆ as the
smallest value of λ where Wðλ; E⋆Þ has a maximum.
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and the interactions are assumed to be perturbative. The
authors of Ref. [1] have considered a correlator in this
theory with the following finite-volume spectral density:

ρLðEÞ ¼
g2Km

2
ϕ

2ðmπLÞ3
X
p

δðE− 2EKðpÞÞ
4E2

KðpÞ

þ g2π
48m3

πL6

X
p;q

δðE−EπðpÞ−EπðqÞ−Eπðpþ qÞÞ
EπðpÞEπðqÞEπðpþ qÞ ;

ð41Þ

where the momenta are the ones allowed by periodic
boundary conditions in space, i.e., p ¼ 2πN3=L, and where
the energies are

E2
πðpÞ ¼ m2

π þ p2; E2
KðpÞ ¼ m2

K þ p2: ð42Þ
The infinite-volume spectral density is given by

ρðEÞ ¼ g2Km
2
ϕ

32π2m3
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
K

E2

r
θðE − 2mKÞ

þ g2π
3072π4mπ

�
E
mπ

�
2

F
�
E
mπ

�
θðE − 3mπÞ; ð43Þ

where

F ðxÞ ¼ 2

x4

Z ðx−1Þ2

4

dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy− 4Þ

�ðx2 − 1Þ2
y

−2ðx2þ 1Þþ y
�s
:

ð44Þ

The previous result agrees6 with the one originally given
in Ref. [1].
In our numerical experimentswe have set the parameters of

themodel to the same values used in Ref. [1], i.e., we have set
mπ ¼ 0.066, mK=mπ ¼ 3.55, mϕ=mπ ¼ 7.30, gK ¼ 1 and
gπ ¼ 10

ffiffiffi
8

p
. Sincewe areworking in lattice units the previous

numbers have to be read under the formal assumption that
a ¼ 1. In evaluating the finite-volume spectral density we
have used a cutoff in the energy by replacing ρLðEÞ with
ρLðEÞθðΛ − EÞ using the value Λ ≈ 19mπ.

A. Exact data

In Fig. 6 we compare the results obtained with our
method (blue points) in the absence of statistical errors with
the results obtained by using the Backus-Gilbert method
(orange points). The two plots in the figure have been
obtained by starting from the correlator

CðtÞ ¼
Z

∞

0

dEρLðEÞb∞ðt; EÞ ð45Þ

on the volumes L ¼ 24 (first row) and L ¼ 32 (second
row) with tmax ¼ 30. In the case of our method the results
have been obtained by setting E0 ¼ 0 and by using the
target smearing function in Eq. (24) with σ ¼ 0.1. In both
plots the solid black curve corresponds to the exact smeared
spectral density,

ρ̂Lðσ; E⋆Þ ¼
Z

∞

0

dEρLðEÞΔσðE⋆; EÞ; ð46Þ

which our method is expected to reproduce in the
infinite-tmax limit. As it can be seen, in both plots the
agreement between the numerical results obtained with our
method and the exact result is excellent. Notice that the
results obtained with the Backus-Gilbert method are not
expected to reproduce the black line. In fact, because the
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FIG. 6. Comparison of the results obtained with our method
(blue points) with the results obtained by using the Backus-
Gilbert method (orange points) in the absence of statistical errors.
The two plots correspond to the volumes L ¼ 24 (first row) and
L ¼ 32 (second row) with tmax ¼ 30 in both cases. In the case of
our method the results have been obtained by setting E0 ¼ 0 and
by using the Gaussian of Eq. (24) as the target smearing function
with σ ¼ 0.1. In both plots the solid black curve corresponds to
the exact smeared spectral density that our method (not the
Backus-Gilbert one) is expected to reproduce in the infinite-tmax
limit.

6Notice that our definition of ρðEÞ corresponds to ρðEÞ=2π in
Ref. [1].
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smearing function is an output of the procedure, it can only
be controlled by changing tmax and, moreover, it is different
at different values of E⋆. We can only notice that our choice
of setting σ ¼ 0.1 is similar to the choice made by the
Backus-Gilbert method on the volume L ¼ 32 at high
energies where the smeared spectral density is more smooth
and starts to have an infinite-volume-like behavior.
Additional examples of applications of our method in the

case of exact synthetic data can be found in Appendix B.

B. Noisy data

In order to test our method in the case of a noisy
correlator, we add uncorrelated random noise to the
synthetic correlator in such a way that the signal-to-noise
ratio is constant. For the results presented here, on average,
the relative standard deviation of the correlator is chosen to
be around 2%. For all the numerical examples shown in the
rest of the paper, we only use the diagonal part of the
covariance matrix in the minimization procedure.
In the reconstruction of the spectral density we estimate

the statistical and systematic uncertainty independently and
combine them in quadrature. To estimate the statistical
uncertainty we use a bootstrapping procedure, i.e., we
apply our method to a set of bootstrap samples, from which
we derive the mean and standard deviation of the recon-
structed spectral density. For the systematic uncertainty we
use Eq. (36) such that the total uncertainty is given by

Δtotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔstatÞ2 þ ð0.68 × ΔsystÞ2

q
; ð47Þ

where the factor 0.68 is introduced to give a consistent 1σ
uncertainty on the final result.
In Fig. 7 we show three plots in order to discuss the

impact of the choice of the trade-off parameter λ and the
significance of our estimate of the systematic error. In all
the plots the black curve is the exact smeared spectral
density. The data in the top panel have been obtained at the
value of λ⋆ determined from the maximum of Wðλ; E⋆Þ at
E⋆=mπ ¼ 7 and, after having checked that in this case λ⋆ is
not strongly dependent upon E⋆, we have used the same
value of the trade-off parameter at all energies. In the first
plot, the orange band shows the statistical error, while in all
plots, the blue band corresponds to the total uncertainty. As
it can be seen, the data are in very good agreement with the
exact result already at the 1σ level of uncertainty. The plots
in the center and bottom panels have been obtained by
using respectively λ ¼ λ⋆=4 and λ ¼ λ⋆=8 at all energies.
For this particular case, where L ¼ 24 and tmax ¼ 30 with
σ ¼ 0.1, the dependence on λ is practically negligible.
Similar results can be shown at different volumes, at
different values of tmax and at different values of σ. The
results shown in the rest of this section have all been
obtained at the value of λ⋆ determined from the maximum
of Wðλ; E⋆Þ at E⋆=mπ ¼ 7 for all energies.

The results shown in Fig. 7 correspond to a relatively
challenging situation because on small volumes and/or at
small values of σ the smeared spectral function exhibits
an oscillating behavior induced by the fact that the
energy levels spaced far apart (see also Appendix B for
other examples). In cases where the smeared spectral
density is very smooth, either because the smearing
parameter σ is larger, or because the volume is larger,
the quality of the reconstruction is much better. This can
be seen in Fig. 8 where we show results on the volume
L ¼ 24 corresponding to a larger value of σ with respect
to the one used in Fig. 7 and results on the volume L ¼ 48
for two different values of tmax. In this cases the use of
Eq. (36) to quantify the systematic uncertainty results in
an overestimate of the error. This feature makes us pretty
confident about the reliability of the results obtained with
our method.
We close this section by illustrating the approach to the

infinite-volume limit of the reconstructed smeared spectral
densities in the case of this benchmark model. The plots
in Fig. 9 show the results obtained on different volumes by
setting the smearing radius parameter to σ ¼ 0.1 and by using
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FIG. 7. Examples of how the reconstructed spectral density
depends on the λ parameter. In the topmost plot, the orange band
shows the statistical uncertainty, while in all cases the blue band
shows the combined uncertainty (statistical and systematic). For
this particular case, where L ¼ 24 and tmax ¼ 30 with σ ¼ 0.1,
the dependence on λ is practically negligible. These results have
been obtained by using b∞ðt; EÞ as basis functions.
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bTðt; EÞ as basis functions with T ¼ 2ðtmax þ 1Þ and tmax ¼
31 (see Appendix B for another example of this analysis).
More precisely, the plot in the first panel (starting from the top)
corresponds toL ¼ 24, the one in the second panel toL ¼ 30,
the one in the third panel corresponds toL ¼ 36 and the one in
the last panel corresponds to L ¼ 48. In all plots the green
curve corresponds to ρðEÞ of Eq. (43) while the black curve
corresponds to the exact smeared infinite-volume spectral
density, namely

ρ̂ðσ; E⋆Þ ¼
Z

∞

0

dEρðEÞΔσðE⋆; EÞ: ð48Þ

As it can be seen, ρðEÞ is a continuous function of the energy
for E ≥ 3mπ but it has a cusp at E ¼ 2mK , i.e., in corre-
spondence of the two-kaon threshold. In the infinite-volume
limit the numerical data are expected to reproduce the smeared
spectral density that is instead a smooth function. This already
happens, within the errors, atL ¼ 36 for medium-high values

of the energy and for all the explored energies at L ¼ 48.
Remarkably, at L ¼ 48 the numerical data agree with the
infinite-volume curve up to energies of order E⋆=mπ ≃ 11 at
the level of the statistical uncertainties (orange band) thus
confirming that on largevolumes Eq. (36) gives a conservative
estimate of the systematic uncertainties.
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FIG. 8. In cases where the smeared spectral density is very
smooth, either because the smearing parameter σ is larger (top-
most plot), or because we are closer to the infinite-volume result
(second and third plots), the quality of the reconstruction is much
better. For the second and third plots we use two different values
of tmax, and while increasing tmax does improve the result slightly,
already at tmax ¼ 30 we have full control over the reconstruction
of the spectral density. These results have been obtained by using
b∞ðt; EÞ as basis functions.
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FIG. 9. Approach to the infinite-volume limit of the recon-
structed smeared spectral densities. The results correspond to σ ¼
0.1 and have been obtained by using bTðt; EÞ as basis functions
with E0 ¼ 0, T ¼ 2ðtmax þ 1Þ and tmax ¼ 31. Starting from the
top, the data in the first panel correspond to L ¼ 24, those in the
second panel correspond to L ¼ 30, those in the third panel
correspond to L ¼ 36 and those in the last panel correspond to
L ¼ 48. In all plots the green and black curves correspond
respectively to the exact infinite-volume unsmeared and smeared
spectral densities. The orange band in the last plot corresponds
to the statistical uncertainties. The numerical data have to
reproduce the black curve in the infinite-volume limit and, within
the errors, the agreement is already very good at L ¼ 36.
Remarkably, at L ¼ 48 the numerical data agree with the
infinite-volume curve up to energies of order E⋆=mπ ≃ 11 at
the level of the statistical uncertainties.
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V. LATTICE CORRELATORS

In this section, in order to show the quality of the results
that can be obtained by applying our method to true data,
we discuss two analyses of simulated lattice correlators
from which we extract the associated smeared spectral
densities.
In the first example we consider a meson pseudoscalar-

pseudoscalar correlator obtained by performing a lattice
simulation of QCD with three degenerate flavors on a
lattice volume L3 × T ¼ 243 × 48 with periodic boundary
conditions in time and C� boundary conditions [9] along
the spatial directions. The bare parameters of the simulation
correspond to the CLS ensemble H101 and can be found
in Table 1 of Ref. [10]. More precisely, the correlator is
given by

CQCDðtÞ ¼
1

2L3

X
x

Th0jPð0ÞPðxÞj0i;

PðxÞ ¼ fd̄γ5uþ ūγ5dgðxÞ; ð49Þ

where u and d are the up- and down-quark fields that, in
this unphysical simulation, have the same mass. The
lightest states contributing to the finite-volume spectral
density associated with the correlator CQCDðtÞ are expected
to be the pion and the three-pion states with vanishing total
momentum allowed by the boundary conditions. This
means that we expect the leading contributions to ρLðEÞ
to be proportional to δðE −mπÞ and to δðE − E3πÞ, where
mπ is the mass of the pion and E3π ≃ 3mπ . In the top panel
of Fig. 10 we show the numerical determination ofmπ from
a standard effective-mass analysis. In the bottom panel of
the same figure we show the smeared spectral density
obtained by applying our method with σ ¼ 0.1 and by
using the value of λ⋆ determined at E⋆ ¼ 0.5 ≃ 3.7mπ (see
Fig. 5) for all the energies explored. As it can be seen, the
reconstructed smeared spectral density clearly shows a
peak centred around E⋆=mπ ≃ 1 and another structure
around E⋆=mπ ≃ 3.
In the second example we consider again a meson

pseudoscalar-pseudoscalar correlator, but in this case it
has been obtained from a QCDþ QED simulation per-
formed at the unphysical value αem ¼ 0.05 of the electro-
magnetic coupling constant with dynamical up, down and
strange quarks. The masses of the down and strange quarks,
having the same negative electric charge, have been set
equal in this simulation and different from the mass of the
positively charged up quark. The simulation has been
performed on a lattice volume L3 × T ¼ 243 × 48 with
periodic boundary conditions in time and C� boundary
conditions [9] along the spatial directions. More details
about the simulation can be found in Ref. [11]. The plot in
the top panel of Fig. 11 shows the effective mass extracted
from the correlator

CQCDþQEDðtÞ ¼
1

2L3

X
x

Th0jPð0ÞPðxÞj0i;

PðxÞ ¼ fS̄γ5U þ Ūγ5SgðxÞ; ð50Þ

where SðxÞ and UðxÞ are the gauge-invariant interpolating
operators for the strange and up quarks described in detail
in Refs. [9,11]. In this case the effective mass analysis
measuresmKþ , the mass of the charged kaon, and this is the
lightest state contributing to the finite-volume spectral
density. Increasing the energy, we expect contributions
to the spectral density coming from states corresponding to
the charged kaon plus photons and from states with three
kaons. Since the volume is rather small in this case and the
boundary conditions do not allow for the propagation of
photons with zero momenta, after the charged kaon peak we
expect a contribution to ρLðEÞ proportional to δðE − E3KÞ
with E3K ≃mKþ þ 2mK0 . By using the value of mK0

measured in Ref. [11] we have E3K=mKþ ≃ 2.6. This
expectation is confirmed by the plot in the bottom panel
of Fig. 11 where the smeared spectral density shows an
isolated peak in correspondence of E⋆=mKþ ≃ 1 and a
structure that starts in proximity of E⋆=mKþ ≃ 2.4.
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FIG. 10. Extraction of the smeared spectral density from the
correlator CQCDðtÞ discussed in the text. The top panel shows
the calculation of the pionmass, the lightest state contributing to the
spectral density in this case, extracted from a standard effective-
mass analysis. The bottom panel shows the reconstructed smeared
spectral density obtained by applying our method with σ ¼ 0.1, by
using bTðt; EÞ as basis functions with T ¼ 48 ¼ ð2tmax þ 1Þ, by
setting E0 ¼ 0.37mπ and by using the value of λ⋆ determined at
E⋆ ¼ 3.7mπ for all the energies explored. As expected, the smeared
spectral density shows a peak in correspondence ofE⋆=mπ ≃ 1 and
another structure around E⋆=mπ ≃ 3.
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VI. CONCLUSIONS

We have presented a new method for addressing inverse
problems in the presence of noisy observations. The
method can be used to extract smeared spectral densities
from measured correlation functions and it provides results
associated with a reliable estimate of both the statistical and
systematic uncertainties.
The function used for smearing the spectral density is an

input of ourmethod, and for this reason, it can be held fixed in
the analysis of data corresponding to different correlators.
This feature is particularly convenient in lattice applications
because it allows to study the infinite-volume limit of the
reconstructed smeared spectral densities in a systematic way.
The mechanism used in our method to keep statistical

errors under control has been inherited from the classical
Backus and Gilbert approach. The method has a natural
built-in mechanism to optimize the choice of the so-called
trade-off parameter and, moreover, the significance of the
estimate of the errors can be assessed by checking the
compatibility of the results obtained at suboptimal values of
this parameter.
In order to illustrate the quality of the results that can be

obtainedwith ourmethod,we have applied it to a benchmark

system where we know the exact spectral density, both on
finite volumes and in the infinite-volume limit. We have
shown that the results obtainedwith our approach reproduce
within the errors the expected finite-volume smeared spec-
tral densities and also that, by increasing the volume, they
approach the expected infinite-volume limit.
We have also applied the method to true data in the case

of correlators obtained from QCD and QCDþ QED lattice
simulations. Using these examples we have shown that
smeared spectral densities can be extracted with satisfac-
tory accuracy and that the numerical results are compatible
with the expectations coming from the knowledge of the
spectrum of the two theories.
We have discussed the method by using the language of

lattice correlators but, given its generality, we are pretty
confident that, together with other valuable approaches
already present in the literature (see for example the already
quoted Refs. [3–5]), it will be useful to address inverse
problems arising in other fields of research, particularly
those where the classical Backus-Gilbert method has
already proven useful.
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APPENDIX A

In this short appendix we collect the explicit expressions
for the formulas used in the numerical implementation of
the presented method. The smearing function in Eq. (24)
can be written as

ΔσðE⋆; EÞ ¼
1ffiffiffiffiffiffi
2π

p
σZ

exp

�
−ðE − E⋆Þ2

2σ2

�
; ðA1Þ

with the additional normalization factor

Z ¼ 1

2

�
1þ erf

�
E⋆ffiffiffi
2

p
σ

��
: ðA2Þ

In the numerical implementation, the functional A½g� is
defined as

A½g� ¼
Z

∞

E0

dEeαEfΔ̄σðE⋆; EÞ − ΔσðE⋆; EÞg2: ðA3Þ

With this definition, the matrix Atr is given by

Atr ¼
e−ðrþtþ2−αÞE0

rþ tþ 2 − α
þ e−ðT−rþt−αÞE0

T − rþ t − α

þ e−ðTþr−t−αÞE0

T þ r − t − α
þ e−ð2T−r−t−2−αÞE0

2T − r − t − 2 − α
: ðA4Þ
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FIG. 11. Extraction of the smeared spectral density from the
correlator CQCDþQEDðtÞ discussed in the text. The top panel
shows the calculation of the charged kaon mass, the lightest state
contributing to the spectral density in this case, extracted from a
standard effective-mass analysis. The bottom panel shows the
reconstructed smeared spectral density obtained by applying our
method with σ ¼ 0.1, by using bTðt; EÞ as basis functions with
T ¼ 48 ¼ ð2tmax þ 1Þ, by setting E0 ¼ 0.15mKþ and by using
the value of λ⋆ determined at E⋆ ¼ 1.5mKþ for all the energies
explored. As expected, the smeared spectral density shows an
isolated peak in correspondence of E⋆=mKþ ≃ 1 and another
structure that starts in proximity of E⋆=mKþ ≃ 2.4.
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The parameter α allows for changing the measure as a
function of the energy and it must satisfy α < 2. For all
results presented in this paper we simply use α ¼ 0. In the
limit T → ∞ only the first term contributes to the matrix.
The vector ft is similarly defined as

ft ¼ ð1 − λÞ
Z

∞

E0

dEeαEΔðE;E⋆; σÞbTðtþ 1; EÞ; ðA5Þ

whose components can be calculated as

ft ¼ Nðtþ 1ÞFðtþ 1Þ þNðT − t− 1ÞFðT − t− 1Þ; ðA6Þ

using the auxiliary functions

NðkÞ ¼ 1 − λ

2Z
exp

�ðα − kÞððα − kÞσ2 þ 2E⋆Þ
2

�
; ðA7Þ

FðkÞ ¼ 1þ erf

�ðα − kÞσ2 þ E⋆ − E0ffiffiffi
2

p
σ

�
: ðA8Þ

Again, in the limit T → ∞ only the first term contributes to
the vector ft because Fð∞Þ ¼ 0. Finally we define the
vector Rt as

Rt ¼
Z

∞

0

dEbTðtþ 1; EÞ ¼ 1

tþ 1
þ 1

T − t − 1
; ðA9Þ

where once again the second term vanishes for T → ∞.

APPENDIX B

In this appendix, in order to highlight some features of
our method, we present some more examples of the
reconstruction of synthetic spectral densities.
Our method does not require the knowledge of any prior

information on the spectral density and, therefore, is a
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FIG. 12. Example showing that our method is able to recon-
struct the smeared spectral density from Eq. (B1) regardless of the
sign of the peaks. For the plot we use b∞ðt; EÞ as the basis
functions with tmax ¼ 62 and the smallish value σ ¼ 0.05 to
properly separate the peaks.
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FIG. 13. Realistic example of a spectral density with a negative
contribution at low energy, as described by Eq. (B2). Because our
method has no constraints regarding the sign of the spectral
density, we also observe a good reconstruction at low energy even
when the spectral density is negative. The plot has been produced
by using b∞ðt; EÞ as the basis functions with tmax ¼ 126 and
σ ¼ 0.05.
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totally model-independent approach. In particular, all
spectral densities considered in the main text are non-
negative but, in fact, our method is oblivious to the sign of
the spectral density. In order to highlight this property we
have considered an artificial finite-volume spectral density
consisting of three separated peaks

ρðEÞ ¼ δðE − 0.2Þ � δðE − 0.5Þ þ δðE − 0.8Þ; ðB1Þ

where the second peak is either positive or negative. In
Fig. 12 we show the exact smeared spectral density and the
reconstruction, in the absence of statistical errors, for both
choices of sign. For the plot we use tmax ¼ 62 and σ ¼ 0.05
and we observe that the reconstruction is equally good,
regardless of the sign of the second peak.
As a more realistic example we consider the spectral

density from Eq. (41) and add a new bound state with an
energy E ¼ 2mπ such that the spectral density reads

ρLðEÞ → ρLðEÞ −
δðE − 2mπÞ

40mπ
: ðB2Þ

Because of the negative weight for this state, the smeared
spectral density will be negative at low energy, as shown in
Fig. 13. Starting from the top, the different rows of the
figure represent the results obtained by assigning an
increasing relative error to the correlator. For the plots
we use

σ ¼ 0.05; tmax ¼ 126; E0 ¼ 0.05;

and we observe that the reconstruction is excellent at low
energy and it captures the average behavior at high energy.
Throughout most of the paper we use σ ¼ 0.1 as a

reasonable choice of smearing parameter, a choice that is
supported by the scan in Fig. 4. To prove that our method
also works for other (reasonable) choices of the smearing
parameter, we reproduce Fig. 9 using the smaller value
σ ¼ 0.075. This result is shown in Fig. 14 where, as
expected, the peak at low energy and small volume
becomes sharper, and the errors at high energy increase
due to larger systematic uncertainties. However, the overall
quality of the reconstruction is mostly unchanged.
Redoing this figure with a significantly smaller value of

σ requires a substantial decrease of the statistical uncer-
tainty, combined with a longer time extent. Longer time
extents are already present in current state-of-the-art lattice
simulations, but the required decrease of the error is not yet
realistic.
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