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We study the pressure anisotropy in anisotropic finite-size systems in SU(3) Yang-Mills theory at
nonzero temperature. Lattice simulations are performed on lattices with anisotropic spatial volumes with
periodic boundary conditions. The energy-momentum tensor defined through the gradient flow is used for
the analysis of the stress tensor on the lattice. We find that a clear finite-size effect in the pressure anisotropy
is observed only at a significantly shorter spatial extent compared with the free scalar theory, even when
accounting for a rather large mass in the latter.

DOI: 10.1103/PhysRevD.99.094507

I. INTRODUCTION

Thermodynamic quantities such as the pressure and
energy density are fundamental observables for investigat-
ing a thermal medium. In quantum chromodynamics
(QCD) and pure Yang-Mills (YM) theories, the analysis
of thermodynamics in first-principle numerical simulations
on the lattice has been performed actively, and successful
results have been established [1–16]. These results have
played a crucial role in revealing properties of the thermal
medium described by these theories, such as the onset of a
deconfinement phase transition. They also play a critical
role in phenomenological studies on the dynamics of
relativistic heavy-ion collisions.
Thermodynamic quantities are usually defined in the

thermodynamic limit, i.e., the infinite volume limit, which
conventionally refers to an isotropic system that is asymp-
totically large in all three spatial directions. In this limit, the
pressure is isotropic due to rotational symmetry. The stress
tensor σij, which is related to the spatial components of
the energy-momentum tensor (EMT) Tμν as σij ¼ −Tij

(i, j ¼ 1, 2, 3), is then given by

σij ¼ −Pδij; ð1Þ
with pressure P. As the force per unit area acting
on a surface with the unit normal vector nj is given by

Fi=S ¼ σijnj [17], Eq. (1) means that the pressure is
isotropic and always perpendicular to the surface. On
the other hand, in a thermal system with a finite volume,
rotational symmetry is broken due to the boundary con-
ditions and this effect can give rise to a deviation of the
stress tensor from the form in Eq. (1).
A well-known example of such a pressure anisotropy is

the Casimir effect [18]; see for reviews [19–21]. When two
perfectly conducting plates are placed within a sufficiently
short distance, there appears an attractive force between the
plates due to quantum effects. This means that the pressure
along the direction perpendicular to the plates becomes
negative. At the spatial points inside the plates σij is no
longer proportional to the unit matrix; σij has a positive
eigenvalue with the eigenvector perpendicular to the plates,
while the other two eigenvalues are negative [22]. Such an
anisotropic structure of σij is known to survive even at
nonzero temperature [19–23].
Recently, the numerical simulations for the Casimir

effect in YM theory have been performed for 2þ 1
dimension [24] and SU(2) gauge theory [25]. In the present
study we investigate Casimir-type effects in the 3þ 1-
dimensional SU(3) YM theory focusing on the anisotropy
of the stress tensor in lattice numerical simulations.
Phenomenologically, the goal of relativistic heavy-ion

collisions is to connect experimental measurements to
verify fundamental knowledge of QCD. The success of
the hydrodynamic models for describing the experimental
data measured at the Relativistic Heavy Ion Collider and
the Large Hadron Collider [26–28] implies that these
experiments generate the hottest matter in the Universe
[29] with a viscosity to entropy density ratio η=s ∼ 2=4π
[26,27] close to the conjectured lowest bound [30].
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A fundamental input into these hydrodynamics simulations
is the equation of state (EoS), which is the thermodynamic
energy as a function of pressure εðPÞ. Lattice calculations
on isotropic lattices extrapolated to the thermodynamic
limit have so far provided the most realistic EoS used in
these hydrodynamics calculations [26–28,31,32]. More
recently, hydrodynamic models have shown remarkable
agreement with particle distributions measured in small
system collisions [28,33]. There have also been recent
advances in hydrodynamic theory to systems with large
pressure anisotropies [34]. This recent research begs for an
investigation into the QCD EoS in finite-sized, anisotropic
systems. Jet tomography is another important avenue of
research in heavy-ion collision phenomenology [35,36].
While hydrodynamic studies of high multiplicity small
system collisions suggest that small droplets of quark-
gluon plasma are generated in these collisions, high
momentum particles do not appear to appreciably lose
energy in these small collision systems [37]. It is therefore
interesting to investigate the small system corrections to
energy loss models based on perturbative QCD methods
[35,36,38], especially the transverse gluon self-energy and
its relation to the Debye screening scale of QCD [39].
In the present study, in order to investigate a manifes-

tation of the pressure anisotropy in SU(3) YM theory at
nonzero temperature we measure thermal expectation
values of the EMT on lattices with an anisotropic spatial
volume with periodic boundary conditions (PBC). To carry
out this analysis, we use the so-called gradient flow method
[13,40]. In this method, thermodynamic quantities are
obtained from the thermal expectation values of the
EMT [40] defined through the gradient flow [41–43].
The direct determination of the anisotropic stress tensor
can indeed be performed with this method. We note that
other methods for the measurement of thermodynamic
quantities on the lattice, see, e.g., Refs. [1–3,14,15], cannot
deal with the anisotropic stress tensor because they rely on
thermodynamic relations valid only in the infinite and
isotropic volume limit.1

We perform numerical simulations on the lattice above
the critical temperature Tc. One spatial extent, Lx, is set to
be shorter than the others, and the effect of the chosen
spatial boundary condition on pressure anisotropy is
studied. The result is compared with the anisotropic
pressure in the free massless and massive scalar field
theories. We find that the effect of the periodic spatial
boundary in SU(3) YM theory is remarkably weaker
compared to the one in a free scalar theory, i.e., that a
manifestation of the anisotropy in the stress tensor occurs
at significantly smaller LxT.

This paper is organized as follows. In the next section we
summarize basic properties of the EMT in an anisotropic
thermal system. We then introduce the EMT operator on
the lattice in Sec. III. After describing the setup of our
numerical simulations in Sec. IV, we discuss numerical
results in Sec. V. The last section is devoted to discussions
and outlook.

II. ANISOTROPIC PRESSURE

In this section, we summarize basic properties of the
EMT in anisotropic thermal systems.
Throughout this paper, we consider three-dimensional

finite-size systems with PBC along all spatial directions at
nonzero temperature T. We further suppose that the spatial
extent along the y and z directions is sufficiently long, Ly,
Lz ≫ 1=T, and discuss the response of the system with
respect to the size along the x direction, Lx.
In the Matsubara formalism, a system at nonzero temper-

ature is described by a field theory in Euclidean four-
dimensional space where the temporal extent Lτ ¼ 1=T
with PBC imposed for bosonic fields. We denote the EMT
in Euclidean space as TE

μνðxÞ with μ, ν ¼ 1, 2, 3, 4. Its
thermal expectation value hTE

μνðxÞi is related to those in
Minkowski space TμνðxÞ with μ, ν ¼ 0, 1, 2, 3 as

hT00i ¼ −hTE
44i; hTiji ¼ hTE

iji; ð2Þ

for i, j ¼ 1, 2, 3. The vacuum expectation value of the EMT
at T ¼ 0 is normalized to vanish, hTμνi0 ¼ 0. The energy
density is given by ε ¼ hT00i ¼ −hTE

44i.
When all spatial lengths are sufficiently large, Lx, Ly,

Lz ≫ 1=T, the system obviously has an approximate
rotational symmetry, and hTμνi is diagonal with spatial
components given by

hTiji ¼ Pδij; ð3Þ

where P is the pressure in an isotropic thermal system.
When Lx ≠ Ly or Lz, the rotational symmetry is broken due
to the boundary conditions. From the reflection symmetries
along individual axes, hTμνi is diagonal even in this case2

with

hTμνi ¼ diagðε; Px; Pz; PzÞ; ð4Þ

where Px ¼ hT11i and Pz ¼ hT22i ¼ hT33i are the stress
along longitudinal and transverse directions. hT22i ¼ hT33i
due to the rotational symmetry in the y − z plane.

1In SU(3) YM theory, there is an excellent agreement on
numerous thermodynamic quantities computed using various
lattice methods in the limit of infinite and isotropic volume
[15,16].

2Choosing to rotate the coordinate system outside of the y − z
symmetric plane would break this reflection symmetry, and
the resulting spatial components of hTμνi would no longer be
diagonal.
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For Lx ¼ Lτ ¼ 1=T, the τ and x directions become
symmetric in the Euclidean space and one obtains
hT11i ¼ hTE

11i ¼ hTE
44i ¼ −hT00i, or

Px ¼ −ε ðrecall only forLx ¼ 1=TÞ: ð5Þ

By writing the trace of the EMT as3

Δ ¼
X3

μ¼0

hTμ
μi ¼ −

X

μ

hTE
μμi ¼ ε − Px − 2Pz; ð6Þ

Eq. (5) shows that in this case

Px ¼ −Pz −
1

2
Δ ðfor Lx ¼ 1=TÞ: ð7Þ

In particular, when the theory has conformal symmetry one
has Δ ¼ 0 and Px=Pz ¼ −1 for Lx ¼ 1=T. We see below
that the quantum breaking of conformal symmetry in SU(3)
YM theory yields Px=Pz ≠ −1 for Lx ¼ 1=T.
As PBC are imposed for all directions in the Euclidean

space, the role of the axes can be exchanged. For example, a
Euclidean system of hypervolume Lτ × Lx × Ly × Lz can
be interpreted in two different ways [22]:
(A) Volume Lx × Ly × Lz at temperature T ¼ 1=Lτ;
(B) Volume Lτ × Ly × Lz at temperature T ¼ 1=Lx.

In (A) and (B), the role of the components of the EMT is
also exchanged. The energy density for (A) and (B) is
given by ε ¼ −hTE

44i and ε ¼ −hTE
11i, respectively. Also,

the spatial component of the EMT for (B) is given by
diagðTE

44; T
E
22; T

E
33Þ.

In order to see this explicitly, let us consider a system at
T ¼ 0 with finite Lx. With an infinitesimal variation of Lx
given by dLx, the energy per unit area in the y − z plane
increases as −ð∂LxhTE

44iLx
Þ=ð∂LxÞdLx, where hTE

μνiLx
is

the expectation value of TE
μν at the length Lx. According to

the principle of virtual work, this change is related to Px as

hTE
11iLx

¼ Px ¼
∂

∂Lx
ðLxhTE

44iLx
Þ: ð8Þ

Next, by exchanging the roles of the τ and x axes in the
Euclidean space, this system can be regarded as a nonzero
temperature system with T ¼ 1=Lx. By relabeling sub-
scripts of EMT in accordance with the exchange of axes,
Eq. (8) reads

hTE
44i ¼

∂
∂ð1=TÞ

hTE
11i
T

; ð9Þ

which is nothing but the Gibbs-Helmholtz relation

ε ¼ −
∂

∂ð1=TÞ
P
T
; ð10Þ

where we substituted hTE
11i ¼ P because three spatial

directions are infinitely large in the exchanged coordinates.
In the following numerical analyses, we constrain our

attention to the case Lx ≥ 1=T. These results can also be
regarded as the system with Lx ≤ 1=T by exchanging the τ
and x axes.

III. ENERGY-MOMENTUM TENSOR
ON THE LATTICE

In this study we measure the components of the EMTon
the lattice with the use of the EMToperator defined through
the gradient flow [40].
The gradient flow for the YM field Aμ in Euclidean space

is a continuous transformation of the gauge field according
to the flow equation [41],4

dAμðt; xÞ
dt

¼ −g20
δSYMðtÞ
δAμðt; xÞ

; ð11Þ

where the flow time t is a parameter controlling the
magnitude of the transformation. The YM action SYMðtÞ
is composed of Aμðt; xÞ, whose initial condition at t ¼ 0

is the ordinary gauge field AμðxÞ in the four-dimensional
Euclidean space. The gradient flow for positive t smooths
the gauge field with the radius

ffiffiffiffi
2t

p
.

Using the flowed field, the renormalized EMT operator
in Euclidean space is defined as [40]

TE
μνðxÞ ¼ lim

t→0
TE
μνðt; xÞ; ð12Þ

TE
μνðt; xÞ ¼ c1ðtÞUμνðt; xÞ

þ c2ðtÞδμν½Eðt; xÞ − hEðt; xÞi0�; ð13Þ

where

Eðt; xÞ ¼ Ga
μνðt; xÞGa

μνðt; xÞ; ð14Þ

Uμνðt; xÞ ¼ Ga
μρðt; xÞGa

νρðt; xÞ −
1

4
δμνEðt; xÞ; ð15Þ

with the field strength Ga
μνðt; xÞ composed of the flowed

gauge field Aμðt; xÞ. The vacuum expectation value
hTE

μνðt; xÞi0 is normalized to be 0 by the subtraction of
hEðt; xÞi0. We use the perturbative coefficients c1ðtÞ and
c2ðtÞ at two- and three-loop orders [16,40,46], respectively,
in the following analysis [16]. The EMT operator Eq. (12)
has been applied to the analysis of various observables
in YM theories and QCD with dynamical fermions

3We employ the metric gμν ¼ diagð1;−1;−1;−1Þ in the
Minkowski space. 4For the gradient flow for a fermion field, see Refs. [44,45].
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[7,12,13,47–50]. In particular, it has been shown that
thermodynamics in SU(3) YM theory is obtained accu-
rately from the expectation values of Eq. (12) [13,16].
In practical numerical simulations we measure hTE

μνðt; xÞi
at nonzero t and lattice spacing a. The flow time t should be
small enough to justify the use of the perturbative coefficients
for c1ðtÞ and c2ðtÞ as well as to suppress the oversmearing
effect, which occurs when the operator is smeared larger
than the temporal length [13]. In this range of t, the small
flow time expansion [43] implies that

hTμνðt; xÞi ¼ hTμνðxÞi þ tcμν; ð16Þ

where cμν is a contribution fromdimension six operators, and
contributions from yet higher dimensional operators are
neglected. As the lattice discretization effect on Eq. (16)
for t > 0 is given by the powers of a2=t [51] and diverges in
the t → 0 limit, the flow time must also satisfy a≲ ffiffiffiffi

2t
p

to
suppress the discretization error.

IV. NUMERICAL SETUP

We have performed numerical simulations of SU(3) YM
theory on four-dimensional Euclidean lattices with the PBC
for all directions. The simulations are performed with the
standard Wilson gauge action for an isotropic lattice [52]5

for several values of β ¼ 6=g20 and the lattice volume Nx ×
N2

z × Nτ summarized in Table I. The lattice spacing a and
temperature T are determined according to the relation
between β and a in Ref. [13]. The lattice size along y and z
directions is fixed toNz=Nτ ¼ 6, except for the Nx × 962 ×
12 lattices at T=Tc ¼ 1.68 used for the analysis of the
dependence on Nz=Nτ in Sec. V B. In the conventional
analysis of the isotropic thermodynamics on lattices with
N3

s × Nτ, it is practically known that the finite-size effect is
well suppressed at the aspect ratioNs=Nτ ¼ 4 [2]. The ratio
Nz=Nτ ¼ 6 in our simulations is larger than this value.6 For
the vacuum subtraction, we use the data obtained on N4

vac
lattices. Except for the simulation at β ¼ 6.891, we use the
data used in Ref. [13].
As our code cannot deal with odd Nx, we have

performed the analyses for an even number of Nx shown
in Table I. Under this constraint, it is difficult to perform the
simulations at the same lattice volume Lx × L2

z and T with
different a in general. Therefore, in the present study we do
not take the continuum extrapolation. Instead, we perform
numerical analyses with two different lattice spacings at
Nτ ¼ 12 and 16 for 1.12 ≤ T=Tc ≤ 2.1 to investigate the
lattice discretization effect, which is discussed in Sec. VA.
We restrict ourselves to T > Tc in the present study, as the

results for T < Tc currently have statistical errors too large
to draw meaningful conclusions.
We perform 2; 100–4; 000 measurements for each set

of parameters at nonzero T. Each measurement is separated
by 100 sweeps, where one sweep is composed of one
pseudoheat bath and five over relaxation updates [13]. The
number of measurements for the vacuum is 560−1; 020.
All statistical errors are estimated by the jackknife method
with bin size 20, at which the bin size dependence of the
statistical error is not observed.
Other procedures and the implementation of the simu-

lation are the same as those in Ref. [13]. We use the Wilson
gauge action forSYMðtÞ in the flow equationEq. (11). For the
operator Uμνðt; xÞ in Eq. (15), we use Ga

μνðt; xÞ written in
terms of the clover-leaf representation [52]. For Eðt; xÞ in
Eq. (14), we use the tree-level improved representation
[13,47,51],

Eðt; xÞimp ¼
3

4
Eðt; xÞclover þ

1

4
Eðt; xÞplaq; ð17Þ

where Eðt; xÞclover is constructed from the clover-leaf repre-
sentation of Ga

μνðt; xÞ and Eðt; xÞplaq is defined from the
plaquette [41]. We use the iterative formula for four-loop
running coupling [53] and the value of ΛMS determined in
Ref. [13] for the perturbative coefficients c1ðtÞ and c2ðtÞ.
This combination of the running coupling and the perturba-
tive coefficients at different orders is known to give a good
description of thermodynamics [16]. We estimate the sys-
tematic error from an uncertainty of ΛMS by varying the
value by �3% in the following unless otherwise stated.

V. NUMERICAL RESULTS

A. t → 0 extrapolation

We first focus on the result for T ¼ 1.68Tc and discuss
the t and a dependences of the numerical results. In Fig. 1,

TABLE I. Simulation parameters β ¼ 6=g20 and lattice volume
Nx × N2

z × Nτ for each temperature T. The vacuum subtraction is
performed on lattices with N4

vac.

T=Tc β Nz Nτ Nx Nvac

1.12 6.418 72 12 12, 14, 16, 18 64
6.631 96 16 16, 18, 20, 22, 24 96

1.40 6.582 72 12 12, 14, 16, 18 64
6.800 96 16 16, 18, 20, 22, 24 128

1.68 6.719 72 12 12, 14, 16, 18, 24 64
6.719 96 12 14, 18 64
6.941 96 16 16, 18, 20, 22, 24 96

2.10 6.891 72 12 12, 14, 16, 18, 24 72
7.117 96 16 16, 18, 20, 22, 24 128

2.69 7.086 72 12 12, 14, 16, 18 � � �
≃8.1 8.0 72 12 12, 14, 16, 18 � � �
≃25 9.0 72 12 12, 14, 16, 18 � � �

5Note that here isotropy refers to the equal spacing between all
lattice points, as was done in this work.

6In our simulation Nx=Nτ ∼ 1 < 4 because we are explicitly
interested in numerically determining the finite-size corrections.
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we show the t dependence of PxðtÞ ¼ hT11ðt; xÞi and
PzðtÞ ¼ hT22ðt; xÞi ¼ hT33ðt; xÞi at T=Tc ¼ 1.68 and
LxT ¼ Nx=Nτ ¼ 1, 9=8, and 3=2. The lower panel is a
magnified plot of the upper panel for the range
0.45 ≤ PxðtÞ=T4, PzðtÞ=T4 ≤ 1.35. For LxT ¼ 1 and
3=2, we show results for two lattice spacings, Nτ ¼ 16
(filled symbols) and 12 (open symbols). The statistical
errors are shown by the shaded area (error bars) for Nτ ¼
16 (Nτ ¼ 12). From Fig. 1, one finds that PxðtÞ and PzðtÞ
behave almost linearly as functions of t in the range
0.005≲ tT2 ≲ 0.02 [13,16].7 The deviations from this
behavior at small and large t come from lattice discretiza-
tion and oversmearing effects, respectively [13].

The expectation value of the EMT is obtained by taking
the t → 0 limit of these results. In Refs. [13,16], the t → 0
limit is taken after the continuum extrapolation for each
value of t. From the data sets in the present study, however,
the continuum extrapolation cannot be taken because we do
not have the results with different lattice spacings with the
same volume Lx × L2

z except for LxT ¼ 1 and 1.5. We thus
take the t → 0 limit for each Nτ assuming a linear t
dependence Eq. (16). For the fitting range of the extrapo-
lation, we employ three ranges [13,16],

Range 1: 0.01 ≤ tT2 ≤ 0.015,
Range 2: 0.005 ≤ tT2 ≤ 0.015,
Range 3: 0.01 ≤ tT2 ≤ 0.02,

which are shown in the lower panel of Fig. 1 by the arrows.
The t → 0 extrapolation for Nτ ¼ 16 with range 1 is shown
by the solid line in Fig. 1, while the extrapolated values of
Px=T4 and Pz=T4 are plotted on the tT2 ¼ 0 axis with the
statistical error. The fitting results for Nτ ¼ 16 with range 2
and range 3 are shown by the dotted lines. We use the result
with range 1 as a central value, while those with range 2 and
range 3 are used to estimate the systematic error associated
with the fitting range. As Fig. 1 shows, this systematic error
is at most comparable with the statistical one in spite of the
large variation of the fit range [13]. In Fig. 1, the t → 0
extrapolation forNτ ¼ 12with range 1 is also shown by the
dashed lines for LxT ¼ 1 and 3=2.

Comments on the t → 0 extrapolation are in order. First,
unlike the analysis in Refs. [13,16], the results in the
present study are not the continuum extrapolated one.
However, the numerical results in this analysis are expected
to be close to these after the continuum extrapolation
because of the following reasons. First, when the lattice
spacing becomes finer, our analysis converges to the
continuum extrapolated analysis in Refs. [13,16], as the
difference is proportional to a2 for sufficiently small a.
Second, the discretization effect is expected to be well
suppressed already at Nτ ¼ 12. In fact, Fig. 1 shows
that the values of PxðtÞ and PzðtÞ for Nτ ¼ 16 and 12 at
LxT ¼ 1 and 3=2 agree with each other within statistics
for 0.005 ≤ tT2. As a result, the t → 0 extrapolated values
Px and Pz also agree within statistics. Furthermore, we
performed the analysis of the data at Nτ ¼ 12 and 16 in
Ref. [13] by the method in the present study, and compared
them with the continuum extrapolated results in Ref. [16].
From this analysis we have checked that the results agree
with each other within 2σ for 1.12 ≤ T=Tc ≤ 2.1.
Therefore, given the uncertainty in the t → 0 extrapolation,
the lattice spacing is expected to be sufficiently small for
suppressing the discretization effects of hTE

μνi already at
Nτ ¼ 12 and 16.

B. Nz=Nτ dependence

We study the finite-size corrections in lattice simulations
of thermodynamic properties when only one direction is

FIG. 1. Flow time t dependences of PxðtÞ=T4 and PzðtÞ=T4 for
T=Tc ¼ 1.68 with Nτ ¼ 16, 12 and LxT ¼ 1; 9=8; 3=2. Statis-
tical errors forNτ ¼ 16 are shown by the shaded area, while those
for Nτ ¼ 12 are shown by error bars. The lower panel is an
expansion of the upper panel. Solid (dashed) lines show the t → 0
extrapolation obtained with the data for Nτ ¼ 16 (12) in range 1.
Dotted lines show the extrapolations with range 2 and range 3
with Nτ ¼ 16. Extrapolated results of Px=T4 and Pz=T4 to t → 0
with range 1 at Nτ ¼ 16 and their statistical errors are shown on
the tT2 ¼ 0 axis.

7As T and a are related with each other as a ¼ ðNτTÞ−1, the
lower boundary of this condition corresponds to
0.005≲ tðaNτÞ−2. For Nτ ¼ 12, we thus have 0.72≲ t=a2,
which is consistent with the argument below Eq. (16).
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of finite size, in this case the x direction. Since our
calculations are performed on the lattice, the y and z
directions are necessarily finite. We would therefore like to
see that our results are insensitive to this finite size in the y
and z directions. As noted previously, finite-size effects are
small in isotropic lattices with Ns=Nτ ¼ 4 [2]. All our
results were found using LzT ¼ Nz=Nτ ¼ 6, so we expect
any finite-size effects in the y and z directions to be well
suppressed. To test this hypothesis, we perform a numerical
analysis with LzT ¼ 8 at Nx ¼ 14 and 18 for T=Tc ¼ 1.68
and Nτ ¼ 12 and compare to our usual LzT ¼ 6 results. In
Fig. 2 we compare the t dependences of PxðtÞ and PzðtÞ.
(The number of measurements for LzT ¼ 8 is 1,000.) The
t → 0 extrapolation with range 1 is shown by the solid
(dashed) lines for LzT ¼ 8 (LzT ¼ 6), with the extrapo-
lated values of Px and Pz shown around tT2 ¼ 0. As can be
seen in the figure, the values of Px and Pz thus obtained for
LzT ¼ 8 and 6 agree within ≲1σ of their statistical errors.
These results suggest that the boundary effect along the y
and z directions in our lattice simulations is well sup-
pressed, while the data at nonzero tT2 in Fig. 2 might
suggest the existence of the LzT dependence at LzT ¼ 6,
which should be studied by the future numerical analysis
with much higher statistics.

C. Pressure anisotropy

Now, let us first focus on the ratio Px=Pz. In Fig. 3, we
show the t → 0 extrapolated results of Px=Pz as a function
of LxT at four temperatures, T=Tc ¼ 1.12, 1.40, 1.68, and
2.10. The results for Nτ ¼ 16 and 12 are shown by the
filled and open symbols, respectively. Error bars include

systematic error from the choice of the fitting range and the
uncertainty of ΛMS estimated from �3% variation, as well
as the statistical one. The comparison of the results for
Nτ ¼ 16 and 12 shows that a significant lattice spacing
dependence is not observed, as anticipated from the
discussion in Sec. VA.
In Fig. 3, we also show the ratio Px=Pz obtained in the

free scalar theory with mass m for several values of m=T.
The result for m ¼ 0 is taken from Ref. [23], while the
procedure to obtain the results atm ≠ 0will be reported in a
future publication [54].
As discussed in Sec. II, Px=Pz approaches unity in the

LxT → ∞ limit. In the free massless theory, a clear
deviation of Px=Pz from this limiting value is already
observed at LxT ¼ 2, and the ratio crosses 0 at LxT ≃ 1.5.
At LxT ¼ 1, the ratio is Px=Pz ¼ −1, as suggested from
Eq. (5) and the fact that Δ ¼ 0 in this theory.
The results of SU(3) YM theory shown in Fig. 3 behave

quite differently from the massless free theory. In SU(3)
YM theory, Px=Pz ¼ 1 within statistics at LxT ¼ 1.5 for
1.4 ≤ T=Tc ≤ 2.1. Even at LxT ¼ 1.333 and 1.375,
deviation from Px=Pz ¼ 1 is comparable with the error
for these temperatures. By decreasing LxT further, the ratio
suddenly becomes smaller and arrives at Px=Pz < −1 at
LxT ¼ 1. It is interesting to note that almost the same LxT
dependence is observed for 1.4 ≤ T=Tc ≤ 2.1, while the
result near Tc at T=Tc ¼ 1.12 shows a deviation from this
trend. From these results, it is concluded that the SU(3) YM
theory at 1.4 ≤ T=Tc ≤ 2.1 is remarkably insensitive to
the PBC with length Lx compared with the massless free
theory. At T=Tc ¼ 1.12, the SU(3) YM theory is however

FIG. 2. Flow time t dependences of PxðtÞ=T4 and PzðtÞ=T4 for
T=Tc ¼ 1.68 and Nτ ¼ 12 with different values of
LzT ¼ Nz=Nτ. Data points at LzT ¼ 6 are shifted towards the
left slightly. Solid (dashed) lines show the t → 0 extrapolation for
LzT ¼ 8 (6) with range 1. Extrapolated values of Px=T4 and
Pz=T4 are shown around tT2 ¼ 0 axis with their statistical error.

FIG. 3. Ratio Px=Pz as a function of LxT for various values of
T=Tc. Error bars include statistical error and systematic ones
from (1) the choice of the fit range and (2) �3% uncertainty of
ΛMS; see the text. The behavior of Px=Pz in the free scalar theory
is also shown by the lines for several values of mass temperature
ratio m=T. Shaded bands connect error bars at Nτ ¼ 16. The data
points at T=Tc ¼ 1.40 (1.68) are shifted toward right (left)
slightly.
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clearly more sensitive to the PBC. This may be important
for future phenomenological applications.
In the free scalar theory, Px=Pz approaches unity asm=T

becomes larger for large LxT as shown in Fig. 3. Therefore,
the lattice results might be partially understood as the effect
of nonzero m. However, even at m=T ¼ 6 the behavior is
still inconsistent with the lattice result. Also, Px=Pz at
LxT ¼ 1 becomes smaller asm=T becomes larger, which is
inconsistent with the lattice result.
Shown in Fig. 4 is the behavior of the longitudinal and

transverse pressuresPx andPz, the energy density ε, andΔ as
functions of LxT. For guides of these results, we also show
the continuum extrapolated values of P=T4, ε=T4, and
ðε − 3PÞ=T4 in the isotropic case obtained in Ref. [16] by
the horizontal dashed lines forT=Tc ¼ 1.12, 1.40, 1.68, with
the errors shown by the shaded region. FromFig. 4, one finds
that these quantities are insensitive to the existence of the
boundary for LxT ≳ 1.3 for T=Tc ¼ 1.40, 1.68, 2.10.

D. High temperature

At asymptotically high temperature, the SU(3) YM
theory approaches a free gas composed of massless gluons.

In this limit, the LxT dependence of Px=Pz should
approach the massless free scalar theory. It is an interesting
question how the results in Fig. 3 approach this asymptotic
behavior. The extension of the numerical analysis to high
T, however, has two difficulties. First, as the lattice spacing
a ¼ ðNτTÞ−1 becomes smaller the lattice size required for
the vacuum subtraction becomes huge. Second, the relation
between β ¼ 6=g20 and a is not available for such fine lattice
spacings.
Here, to extend our analyses to high temperatures

avoiding these difficulties we focus on the ratio

Px þ δ

Pz þ δ
; ð18Þ

with δ ¼ Δ=4. This ratio does not depend on the second
term in Eq. (13) proportional to c2ðtÞ. One thus can obtain
the ratio without the vacuum subtraction. Furthermore, as
c1ðtÞ cancels between numerator and denominator in
Eq. (18), this ratio is obtained without using c1ðtÞ. This
means that the lattice spacing in physical units required for
the determination of the running coupling in c1ðtÞ [16] is
not needed to obtain Eq. (18).

FIG. 4. Dependences of Px=T4 (upper left), Pz=T4 (upper right), ε=T4 (lower left), andΔ=T4 (lower right) on LxT for several values of
T=Tc. Dashed vertical lines in each panel show the corresponding thermodynamic quantity in the isotropic case obtained in Ref. [16],
with the error shown by the shaded region.
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In Fig. 5, we show the behavior of Eq. (18) as functions
of LxT and T=Tc in the upper and lower panels, respec-
tively. The results at T=Tc ≃ 8.1 and 25 correspond to those
obtained at β ¼ 8.0 and 9.0, respectively; see Table I.
Temperatures are deduced from the relation between β and
a in Ref. [13], which is reliable for 6.3 ≤ β ≤ 7.4. As β ¼
8.0 and 9.0 are outside of this range, the values T=Tc
should be regarded just as a guide for the true value of
T=Tc. To depict this uncertainty, in the lower panel we
show 10% and 30% error bars in T=Tc for the data points at
β ¼ 8.0 and 9.0.
In the upper panel of Fig. 5, we show the ratio Eq. (18) in

the massless free scalar theory by the solid line, while in the
lower panel the ratio for each LxT is shown by arrows at the
right in the panel; note that in the massless theory δ ¼ 0.
The comparison of the lattice data with these results shows
that the former approaches the asymptotic value as T is
increased, but the difference is still large even at the highest
temperature T=Tc ≃ 25.

VI. DISCUSSION AND OUTLOOK

In the present study, we investigated the energy-
momentum tensor in 3þ 1-dimensional SU(3) YM theory
at T > Tc in anisotropic finite volume systems with the
PBC.We chose to make one direction small, LxT ∼ 1, while
keeping the other two spatial dimensions large, Ly;zT ≫ 1.
We found that, as shown in Fig. 3, a clear anisotropy in
the stress tensor is observed only for LxT ≲ 1.3 for
1.4 ≤ T=Tc ≤ 2.1. In free scalar theory with the same
boundary condition, a significant anisotropy manifests itself
at much larger values of LxT. One therefore concludes that
SU(3)YMtheorynear but aboveTc is remarkably insensitive
to the existence of the periodic boundary. Even allowing the
free scalar particles to have a mass m ¼ 6T was insufficient
to reproduce the insensitivity to the presence of the finite
periodic boundary in SU(3) YM theory.
At the scales probed by these temperatures the running

coupling is gð2πTÞ ∼ 2, and the leading order, infinite
volume thermal field theory result for the Debye mass of
the gluon is mD ∼ gT. That the effective free quasiparticle
mass required to mimic the results of the full SU(3) YM
theory is so large indicates that (1) finite-size corrections to
the infinite and isotropic volume leading order thermal field
theory result are large [for example, the Debye gluon mass,
which by dimensional analysis is given by mD=g ¼
fTðLxTÞT þ fLx

ðLxTÞ=Lx, might pick up large finite-size
corrections], (2) the interactions of the full theory cannot
be easily approximated by a free quasiparticle theory, or
(3) that there are important nonperturbative dynamics at
these scales.
Investigating (1) is an important avenue for future

analytic research, especially as the work here possibly
suggests that the finite-size corrections to the effective
gluon mass are large. (2) is quite likely given than other
thermodynamic properties computed from the lattice at
these temperature scales are only well approximated by
resummed thermal field theory at three or four loops
[55–57]. (3) must also contribute: Forty years ago, Linde
demonstrated [58] the possibility for an infrared cutoff of
orderOðg2TÞ to appear in the thermodynamics of a YM gas
in an isotropic infinite volume. This effectively led to the
findings of a nonperturbative coefficient in the pressure,
when probed perturbatively [59]. More recently, the pres-
ence of the very same type of (Linde) problem was
discovered in an anisotropic volume of SU(3) YM theory
[60], such as the one we use here. These works obviously
raise the need for a better understanding of the possible
presence of a nonperturbative scale such as ∼g

ffiffiffiffiffiffiffiffiffiffiffi
T=Lx

p
in

the thermodynamics of anisotropic volumes of the SU(3)
YM theory. It is then an interesting future work to pursue
the physical origin from the knowledge of the Casimir
effect in various theories and settings [24,25,61–63].
The remarkably large effective quasiparticle mass

required to mimic the lattice results suggests a larger-
than-expected effective Debye mass for gluons at

FIG. 5. Ratio ðPx þ δÞ=ðPz þ δÞ for various values of T and
LxT. The upper (lower) panel shows the ratio as a function of LxT
(T=Tc). The solid line in the upper panel shows the ratio in the
massless free scalar theory. The arrows at the right in the lower
panel show the ratio in the massless free scalar theory for
each LxT.
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temperatures on the order of Tc. A larger Debye mass
implies a stronger-than-expected screening of color charges
in the thermal medium, which would lead to a smaller-than-
expected coupling of high momentum particles to the small
system plasma medium. This reduction in coupling would
naturally lead to a smaller-than-expected energy loss for
these high momentum particles compared to propagation in
larger systems at the same temperature. This reduction in
energy loss would provide a natural explanation for the
current lack of evidence for high momentum particle
suppression in small systems [37].
The finite-size effects investigated in the present study

are likely to have implications in the phenomenological
studies of relativistic heavy-ion collisions [26–28]. A direct
implication of our work is concerned with the finite-volume
effect in the hot medium created by the heavy-ion colli-
sions. Our results suggest that the effects of such aniso-
tropic finite volumes would not strongly affect the
thermodynamics of the medium, provided that our results
obtained with the PBC are directly applicable to heavy-ion
physics. The medium created in heavy-ion collisions
indeed has a finite volume and a strong anisotropic
geometry. It would also be an interesting subject to pursue
the connection of our study with systems having strong
pressure anisotropy, such as the initial stage of the
collisions.
Although we constrained our attention to a system with

PBC for one direction in the present study, it is a
straightforward extension of this study to perform similar
analyses with other boundary conditions (see Ref. [23] for

more details on the possible relevance of different boundary
conditions). For example, it is also possible to impose
antiperiodic or Dirichlet boundary conditions, instead of
the PBC. Furthermore, it is possible to impose boundary
conditions for two or all the directions [23]. Among them,
the simulation with the antiperiodic boundary conditions
seems especially interesting, because the numerical analy-
sis with this conditions can be carried out straightforwardly,
and this boundary condition eliminates the zero mode
contribution (in fact, much like the Dirichlet condition
[23]), which is the origin of the infrared divergences
plaguing all theories with massless bosonic fields.
Finally, although in the present study we focused on the

pressure anisotropy induced by the periodic boundary
conditions in the SU(3) YM theory at finite temperature,
our numerical analysis can be used for more general
systems having anisotropy such as full QCD with strong
magnetic field [64–67].
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