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Working in a two-representation lattice gauge theory that is close to a composite-Higgs model, we
calculate the low-energy constant CLR which controls the contribution of the electroweak gauge bosons to
the Higgs potential. In QCD, the corresponding low-energy constant governs the mass splitting of the pion
multiplet. Taking the continuum and chiral limits, we find that CLR, in units of the pseudoscalar decay
constant, is roughly of the same size as its QCD counterpart.

DOI: 10.1103/PhysRevD.99.094504

I. INTRODUCTION

Composite Higgs theories of the “Goldstone Higgs”
variety [1,2] use a weakly broken global symmetry to
protect the Higgs from large mass renormalizations. The
models are often written down as effective field theories in
the form of nonlinear sigma models [3–5]. The sigma
model describes a set of exactly massless Nambu–
Goldstone bosons that live in a coset manifold G=H.
This set contains the Higgs multiplet of the Standard
Model (SM). The Higgs potential then comes mainly from
coupling to the electroweak gauge bosons and to the top
quark, via one-loop diagrams. This potential should induce
the Higgs phenomenon of the SM.
The sigma model is only an effective low-energy

description with the correct symmetry properties. The
coupling of the Higgs multiplet to the SM fields, which
in turn yields the Higgs potential, is given by a number of
low-energy constants. These are, in principle, calculable if
an ultraviolet completion of the theory is given. We
continue here a study of a model that is close to such an
ultraviolet theory, one of a set catalogued by Ferretti and

Karateev [6–9] that accommodate both a composite Higgs
and a partially composite top quark [10]. For that theory,
the Higgs potential was discussed in Refs. [8,11,12].
The model we study is an SU(4) gauge theory containing

two multiplets of fermions. The first consists of Nf ¼ 2
Dirac fermions in the sextet representation of SU(4), which
is the antisymmetric two-index representation—a real
representation. The second contains Dirac fermions in
the fundamental representation of SU(4), again with
Nf ¼ 2. A Goldstone multiplet arises when the global
SU(4) symmetry carried by the sextet fermions is sponta-
neously broken to SO(4). In Ferretti’s composite-Higgs
model [7], 5 flavors of Majorana fermions in the sextet
representation of SU(4) give rise to a composite Higgs
within a SUð5Þ=SOð5Þ coset. Ferretti’s model also contains
fundamental Dirac fermions, but with Nf ¼ 3, to allow
construction of a top partner.
When the fermions are weakly coupled to a gauge field

outside this model, the Goldstone fields acquire a potential.
We present a lattice calculation of the low-energy constant
CLR that enters this potential. In Ferretti’s model and in
similar theories, the latter is given by [3,11,13]

VeffðΣÞ ¼ CLR

X
Q

trðQΣQ�Σ�Þ; ð1:1Þ

where Σ is the nonlinear field representing the multiplet of
pseudo-Goldstone bosons. The sum over Q runs over the
SUð2ÞL generators gTa

L and the hypercharge generator g0Y,
with g and g0 the electroweak coupling constants of the SM.
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In accordance with vacuum alignment [14], the low-energy
constantCLR is positive [13,15], and the minimum of Veff is
attained at hΣi ¼ 1. The physics of Eq. (1.1) is analogous to
the electromagnetic mass splitting between pions in QCD,
a point which we revisit in the discussion. Realization of
the Higgs phenomenon requires Veff to have a negative
curvature at Σ ¼ 1. This is expected to arise from coupling
to the top quark [7,8,11,12,16], which we do not treat here.
For phenomenological use of CLR, see, for example,
Ref. [17].
We obtain CLR in terms of a correlation function of the

ultraviolet theory [18],

CLR ¼ 16π2
Z

d4q
ð2πÞ4ΠLRðqμÞ: ð1:2Þ

Here ΠLRðq2Þ is the transverse part of the current–current
correlation function,

1

2
δabΠμνðqÞ ¼ −

Z
d4xeiqxhJLμaðxÞJRνbð0Þi; ð1:3Þ

which defines ΠLRðq2Þ via the decomposition,

ΠμνðqÞ ¼ ðq2δμν − qμqνÞΠLRðq2Þ þ qμqνΠ0ðq2Þ: ð1:4Þ

The chiral currents, constructed from the sextet fermions,
are

JLμa ¼ ψ̄γμð1 − γ5ÞTaψ ¼ Vμa − Aμa;

JRμa ¼ ψ̄γμð1þ γ5ÞTaψ ¼ Vμa þ Aμa; ð1:5Þ

where Ta are the isospin generators. In the chiral limit,
where the low-energy constant in Eq. (1.1) is defined, the
current correlator (1.3) is automatically transverse.
In a previous exploratory study, we calculated CLR in the

same theory but without the fundamental fermions [19].
The present calculation differs from the earlier one in
several ways:
(1) As noted, we have added fermions in the funda-

mental representation. This brings the theory closer
to Ferretti’s composite-Higgs model [7]. We do not
actually simulate Ferretti’s model for technical
reasons, namely, the well-known difficulty of sim-
ulating lattice theories with anything other than an
even number of Dirac flavors.

(2) Exact chirality is important when constructing the
currents (1.5) (see Sec. II). In Ref. [19] we calculated
the current correlators with valence overlap fer-
mions. Here we use a more economical prescription,
constructing the correlators with valence staggered
fermions. The limited chiral symmetry of the latter
is enough to guarantee the desired properties
of the correlators. (Other calculations of ΠLRðqÞ
in QCD and beyond [20–22] have used overlap or

domain-wall fermions. For calculations of the vector
current two-point function using staggered fermions,
see Refs. [23–27].)

(3) Our previous work used only two ensembles, gen-
erated with different lattice actions (both based on
improved Wilson fermions) but with roughly equal
lattice spacings and similar physical properties.
While we took a chiral limit for the valence
fermions, we did not attempt to take a continuum
limit or to extrapolate to the chiral limit of the sea
fermions. In this work we measure CLR in ten
ensembles with a range of sea masses and lattice
spacings. We have studied these ensembles at length
[28–30]. For each ensemble we have set a scale via
the flow variable t0 and measured the meson
spectrum. Hence we are now able to fit CLR as a
function of lattice spacing and sea masses, and to
take the continuum and chiral limits in the dynami-
cal theory.

Our paper is organized as follows. In Sec. II we review
properties of the current correlation function ΠLR, the
importance of chiral symmetry in its calculation, and its
definition on the lattice with staggered fermions. In Sec. III
we present the calculation of ΠLR and its integral CLR on
each ensemble, along with the extrapolation to massless
valence fermions. In Sec. IV we take all the ensembles
together in order to fit CLR and extrapolate it to the
continuum and chiral limits. We conclude with discussion
of our results in Sec. V.

II. CHIRAL SYMMETRY AND
STAGGERED FERMIONS

A. Chiral symmetry

In infinite volume, the value of CLR depends a priori on
the dynamical infrared scale Λ of the theory, on the fermion
mass m, and on an ultraviolet cutoffM. Chiral symmetry is
essential in removing the effects of the ultraviolet cutoff
from CLR. To see this, we recall [19] the operator product
expansion for the two-current correlator, which is, sche-
matically,

ΠXXðq2;mÞ∼ 1þm2

q2
þ g2hGμνGμνi þmhψ̄ψi

q4
þΛ6

q6
þ � � � ;

ð2:1Þ

where XX ¼ VV or AA. Each term is to be multiplied by a
coefficient function that depends logarithmically on q2. In
the differenceΠVV − ΠAA, the identity term drops out, as do
all purely gluonic condensates, and we have

ΠLRðq2;mÞ ∼m2

q2
þmΛ3

q4
þ Λ6

q6
þ � � � ; ð2:2Þ
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where, for each power of 1=q2, we show only the leading
dependence on the fermion mass.
We introduce the ultraviolet cutoff M into Eq. (1.2) via

CLRðm;MÞ ¼
Z

M2

0

dq2q2ΠLRðq2;mÞ: ð2:3Þ

Inserting the expansion (2.2) we obtain

CLRðm;MÞ ∼m2M2 þmΛ3 logðMÞ þ Λ4 þOð1=M2Þ;
ð2:4Þ

where Λ4 comes from the infrared part of the integral.
Hence CLRðm;MÞ is quadratically divergent for m ≠ 0.
Nonetheless, CLRð0;MÞ is finite in the M → ∞ limit,
giving the desired low-energy constant CLR. In other
words, we must take the (valence) chiral limit before the
continuum limit. This result could have been anticipated by
noting that CLR is an order parameter for the spontaneous
breaking of chiral symmetry.
If the cutoff procedure breaks chiral symmetry, on the

other hand, the constant term in Eq. (2.1) does not cancel
between VV and AA, and CLRðm → 0Þ remains (quarti-
cally) divergent. Thus it is important to use chiral valence
fermions in defining the currents on the lattice. In our
numerical calculation we use a discretized version of
Eq. (1.2). We impose an upper limit M in the summation
over momenta, along the lines of Eq. (2.3), with M < π=a.
For nonzero valence mass mv, one expects the dependence
of CLRðmv;MÞ to contain a quadratically divergent term
∼m2

v=a2; this dependence should vanish when mv → 0.

B. Lattice

We have seen that we require an axial current that is
exactly conserved in the chiral limit. In our previous work
[19], we chose to use overlap fermions for this purpose.
Here, for reasons of economy, we work with staggered
fermions. The conserved U(1) vector current is (see, for
example, Ref. [31])

VμðxÞ ¼
ημðxÞ
2

ðχ̄ðxÞUμðxÞχðxþ μ̂Þ þ χ̄ðxþ μ̂ÞU†
μðxÞχðxÞÞ;

ð2:5Þ

while the partially conserved Uð1Þϵ axial current is

AμðxÞ ¼
ημðxÞϵðxÞ

2

× ðχ̄ðxÞUμðxÞχðxþ μ̂Þ − χ̄ðxþ μ̂ÞU†
μðxÞχðxÞÞ:

ð2:6Þ

The sign factors are, as usual,

η1ðxÞ ¼ 1; η2ðxÞ ¼ ð−1Þx1 ;
η3ðxÞ ¼ ð−1Þx1þx2 ; η4ðxÞ ¼ ð−1Þx1þx2þx3 ; ð2:7Þ

and ϵðxÞ ¼ ð−1Þx1þx2þx3þx4 . These currents correspond to
the nearest-neighbor staggered action. The vector current
satisfies the continuity equation

X
μ

∂−
μVμðxÞ ¼

X
μ

ðVμðxÞ − Vμðx − μ̂ÞÞ ¼ 0; ð2:8Þ

and the axial current satisfies a similar continuity equation
in the massless limit.
We calculate the current–current correlation function

ΠLRðqÞ with the staggered currents (2.5), (2.6) exactly as
was done with the overlap currents in Ref. [19]. Writing the
chiral currents,

JLμa ¼ Vμa − Aμa;

JRμa ¼ Vμa þ Aμa; ð2:9Þ

we define the lattice correlator,

1

2
δabΠlat

μνðqÞ ¼ −
1

4
a4
X
x

eiqxhJLμaðxÞJRνbð0Þi: ð2:10Þ

The factor of 1
4
corrects for the summation over the four

tastes inherent in the staggered field. The 1
2
is the normali-

zation of isospin generators, trTaTb ¼ 1
2
δab. As usual,1

qμ ¼ ð2π=LμÞnμ for periodic boundary conditions with
period Lμ, where −Nμ=2 < nμ ≤ Nμ=2. The desired
ΠLRðqÞ is the transverse piece of the correlation function.
We use a lattice definition,

ΠLRðqÞ ¼
P

μνP
T
μνðqÞΠlat

μνðqÞ
3ðq̂2Þ2 ; ð2:11Þ

that uses the lattice projector,

PT
μνðqÞ ¼ q̂2δμν − q̂μq̂ν; ð2:12Þ

where q̂μ ¼ ð2=aÞ sinðqμa=2Þ and q̂2 ≡P
μq̂

2
μ. Any lattice

projector of course introduces lattice artifacts. Their effects
will vanish when we take the continuum limit.

III. LATTICE CALCULATIONS

Our results are based on the measurement of ΠLRðqÞ on
ten ensembles, to be described below. In this section we
give the methods applied to each ensemble separately,
using one ensemble for illustration. First we present our
smearing procedure and describe its effect on the taste
spectrum, as a function of the valence mass mv. Then we

1Our lattice has N3
s × Nt sites, and we define Lμ ¼ Nμa.
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present ΠLRðqÞ and compare it to a physical model, the
minimal hadron approximation. Finally, using values of fπ
obtained from valence spectroscopy, we calculate CLRðmvÞ
from ΠLR and take the chiral limit, mv → 0, for the
staggered valence fermions on each ensemble. We combine
the ensemble results in Sec. IV, giving a fit for CLR where
the independent variables are the lattice spacing and the
masses of the two sea fermions, measured in each ensem-
ble; this fit produces continuum and chiral limits for CLR.

A. Overview of the ensembles

We base this study on 10 ensembles created for previous
work. They were generated with a lattice action containing
an SU(4) gauge field coupled to dynamical fermions in
both the fundamental 4 and the two-index antisymmetric 6
representation of SU(4), with two Dirac flavors of each. For
the fermions we use a Wilson-clover action, with normal-
ized hypercubic (nHYP) smeared gauge links [32,33]. The
clover coefficient is set equal to unity for both fermion
species [34,35]. The pure gauge part of the action is the
usual plaquette term plus an nHYP dislocation-suppressing
(NDS) term, a smeared action designed to reduce gauge-
field roughness that would create large fermion forces in
the molecular dynamics evolution [36].
The ensembles have lattice volumes of N3

s × Nt ¼ 163 ×
32 and 243 × 48. They were generated and first used to
calculate the meson spectrum of this model [28]. Twelve
ensembles with volume 163 × 32 were then used to
calculate the baryon spectrum, including mixed-represen-
tation “chimera” baryons [29]; a subset of these was used in
calculating matrix elements of baryonic currents, in con-
nection with partial compositeness [30]. In the present
calculation of CLR we use nine of the 163 × 32 ensembles
and one ensemble of volume 243 × 48.
Details relating to the ensembles appear in the Appendix.

Table II gives the values of the bare parameters used to
generate the ensembles: the gauge coupling β and the two
hopping parameters, κ4 and κ6, for the two fermion types.
We connect them to physics by the calculated values of the
flow parameter t0=a2 and the fermion massesm4a andm6a,
obtained from the axial Ward identities (AWI). We use t0
for setting the scale [28] [for example, t0 ≃ ð1.4 GeVÞ−2 in
QCD], whence we define the dimensionless lattice spacing
â ¼ a=

ffiffiffiffi
t0

p
for each ensemble and the dimensionless AWI

masses m̂4 ¼ m4

ffiffiffiffi
t0

p
and m̂6 ¼ m6

ffiffiffiffi
t0

p
, as well as

ĈLR ¼ CLRt20. We will use these quantities in taking
continuum and chiral limits. The measured values for these
quantities appear in Table III. We refer the reader to
Refs. [28,29] for more information about the ensembles.

B. Staggered valence fermions: Smearing
and the taste spectrum

As discussed above, in order to maintain an exact chiral
symmetry, we calculate valence propagators with a

staggered fermion action. We use a nearest-neighbor action,
improved by smearing the SU(4) gauge field before
promoting it to the sextet representation. As in the
Wilson action of the sea fermions, the smearing is a
nHYP scheme; the smearing parameters are the same for
the valence and the sea fermions. In an effort to reduce
lattice artifacts, we smear more than once to derive the
valence action. We calculate the valence propagators for
seven values of the valence mass for all the ensembles,
with 0.01 ≤ mva ≤ 0.05.
Figure 1 shows the splitting of the eight pion multiplets

(that differ in their internal taste structure [37,38]) in
ensemble 2, calculated with one to four levels of smearing.
Going from one to two levels of smearing dramatically
reduces the taste splittings, while additional smearing
produces only marginal improvement. The slope of the
Goldstone pion’s mass squared, which is a low energy
constant, also changes only slightly after two smearings.
For production, we stop at two smearing levels, for two
reasons.
(1) We eventually combine the ensembles to arrive at a

continuum extrapolation. There is no reason to
eliminate lattice artifacts before then; we only
require them to be small enough that they do not
hamper the extrapolation.

(2) Repeated smearing increases the range of the action.
This may introduce a sensitivity to the finite volume.

C. Minimal hadron approximation and f π
The minimal hadron approximation (MHA) provides a

physically appealing interpretation of ΠLRðqÞ at low
momentum. The MHA supposes that ΠLRðqÞ may be
modeled by retaining poles from the pion and the lightest
states in the axial and vector channels (the analogues of the
a1 and ρ mesons in QCD, respectively):

ΠLRðqÞ ≈
f2π
q2

þ f2a1
q2 þm2

a1

−
f2ρ

q2 þm2
ρ
: ð3:1Þ

The first term comes from applying the transverse projec-
tion to the fπ-dependent term in the current correlator
and does not depend the pion mass (see Ref. [19]). We
conducted fits to this function on each ensemble. For
illustration, Fig. 2 shows q̂2ΠLRðq̂Þ calculated and fit for
each valence mass mv for ensemble 2. We fit to data in the
range q̂2 < 0.5, since the MHA is only expected to hold at
low momentum. The figure shows that the fit works well at
least up to q̂2 ¼ 1.
We can compare the value of fπ emerging from the fit to

Eq. (3.1) to the spectroscopic value of fπ , which we
calculate from the correlation function of the pseudoscalar
density,
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−a3
X
x

hPaðx; tÞPbð0; 0Þi ¼ 4
f2πm3

π

8m2
q
δabe−mπ t; ð3:2Þ

where a, b are isospin indices and (again) the factor of 4 is
for the four staggered tastes. In our previous work [19], we
found that these two values for fπ match closely, for both
ensembles studied there. We compare the two determina-
tions of fπ in Fig. 3, which is typical of all our ensembles.
The discrepancies are a combination of the limitations of
the three-pole ansatz and scaling violations. We also show
fP6, the decay constant of the dynamical sextet Wilson
pions, calculated in Ref. [28]. Its rough agreement with the
valence values suggests that the added discretization error
due to the use of a mixed action, coming from the
difference in the finite parts of renormalization constants,
is not large.
In Ref. [19] we calculated CLR by integrating the MHA

fit as well as by direct summation of ΠLR in momentum
space. The MHA fits worked surprisingly well even in the

UV regime, allowing us to use them for the complete
momentum integral. In the current work, we find that the
fits do not work well at momenta outside the plot in Fig. 2,
perhaps because of large discretization effects in the
staggered formalism. (Often the fits do not converge when
larger momenta are included.) Hence, in Sec. III D below,
we discard the MHA fits in favor of direct summation.
Moreover, we use the spectroscopic value of fπ rather than
that which emerges from the MHA fit. Our correlator fitting
procedure, described in Ref. [28], takes into account the fit-
range systematics, and our spectroscopic error estimate
thus incorporates the effect of excited states. By contrast,
we do not have a reliable method to estimate the systematic
uncertainty in the MHA fit.

D. CLRðmvÞ and the valence chiral limit

To calculate CLRðmvÞ on each ensemble, we follow the
method of Ref. [19]. We compute the four-dimensional
integral in Eq. (1.2) as direct summation of ΠLRðqμÞ in

0.00 0.01 0.02 0.03 0.04 0.05
0.00

0.05

0.10

0.15

0.20

s = 1

0.00 0.01 0.02 0.03 0.04 0.05
0.00

0.05

0.10

0.15

0.20

s = 2

0.00 0.01 0.02 0.03 0.04 0.05
0.00

0.05

0.10

0.15

0.20

3s = 

0.00 0.01 0.02 0.03 0.04 0.05
0.00

0.05

0.10

0.15

0.20

4s = 

FIG. 1. Squared mass ðmπaÞ2 of the valence Goldstone pion and the seven additional pion multiplets, constructed from the staggered
valence fermions, in ensemble 2. The abscissa ismva, the valence fermion mass. The four plots correspond to s ¼ 1, 2, 3, and 4 levels of
smearing, carried out on the gauge field configurations before calculating the fermion propagators. The lines connect points of each
multiplet. The Goldstone pion is always the bottom curve.
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discrete momentum space. The discrete version of
Eq. (1.2) is

CLR ¼ 16π2

V

X
qμ

ΠLRðqμÞ; ð3:3Þ

where V ¼ L3
sLt. A sum over the entire Brillouin zone of

the lattice would run over momenta jqμaj < π, in steps of
Δqμa ¼ 2π=Nμ. In the present analysis with staggered
fermions, such a sum would include contributions from the
Brillouin zone face that represent currents with various
(adjoint) taste structures in the continuum limit. We limit
the summation in Eq. (3.3) to the “reduced Brillouin zone,”

jqμaj ≤ qmaxa ¼ π=2; ð3:4Þ

or to a subset thereof (see below). This retains only the
taste-singlet vector current and the partially conserved axial
current, which contains γ5ξ5 in Dirac-taste space. With any
prescription for the momentum sum, the lattice defines the
divergent part of CLRðmvÞ when mv is nonzero, propor-
tional to m2

v=a2.
Equation (3.3) requires special care at the origin of

momentum space. In the first place, the transverse projec-
tion (2.11) is undefined at q ¼ 0; in the second place, ΠLR
in the continuum contains a kinematical pole at q ¼ 0 (as is
seen, for instance, in the MHA). Near zero, then, we
approximate the continuum function as

ΠLRðqμÞ ≃
f2π
q2

þ p; ð3:5Þ

where we take the value of fπ from the spectroscopic data
and estimate the pedestal p from m neighboring momenta
(see Ref. [19]),

p ¼ 1

m

Xm
a¼1

�
ΠLRðqaÞ −

f2π
ðqaÞ2

�
: ð3:6Þ

That is, p is the average of the discrete ΠLR in the
neighboring cells, minus the pole term on those cells.
The contribution of q ¼ 0 to the discrete summation (3.3)
is then

A
L2
s

V
f2π þ

16π2

V
p; ð3:7Þ

where A¼∘ 22.5095963 is a geometric factor calculated for
the aspect ratio of our lattices, Lt=Ls ¼ 2.
Figure 4 shows the results for CLRðmvÞ for ensemble 2,

together with a cubic fit extrapolating to mv ¼ 0. The top
set of points corresponds to the summation (3.3) over the
entire reduced Brillouin zone, Eq. (3.4). The extrapolation
reaches mv ¼ 0 at the point plotted slightly to the left of

FIG. 2. The transverse part ΠLR of the current–current corre-
lation function, plotted against q̂2 ¼ P

μq̂
2
μ, in ensemble 2. We

plot the data and the fit to the MHA for the seven values of the
valence mass mv ¼ 0.05, 0.035, 0.03, 0.025, 0.02, 0.015, 0.01,
top to bottom.

FIG. 3. Comparison of fπ , the decay constant of the sextet
valence pions, calculated from the MHA fit to ΠLRðqÞ, to that
calculated directly from Eq. (3.2) in ensemble 2. The abscissa is
the mass of the valence fermions. The error bars of the green
circles are smaller than the symbols. Also shown is fP6, the decay
constant of the sextet pions in the Wilson sea. For this, the
abscissa is the sextet AWI mass measured in the ensemble.

VENKITESH AYYAR et al. PHYS. REV. D 99, 094504 (2019)

094504-6



zero. To examine the effect of the UV cutoff, we drop
the highest momenta in the reduced Brillouin zone.
Because ensemble 2 has volume 163 × 32, this amounts
to decreasing

qmaxa →
π

2
−
2π

Ns
¼ 3π

8
: ð3:8Þ

The resulting values for CLRðmvÞ give the middle data set
and curve in Fig. 4, extrapolated to the point plotted exactly
at mv ¼ 0. As a third variation, we decrease the cutoff
further, qmaxa → π=4, which gives the bottom data set and
curve, extrapolated to the point plotted slightly to the right
of zero. The result of varying the UV cutoff is as expected:
There is a marked change for nonzero valence mass, while
CLRð0Þ is unchanged given the error bar.
The corresponding results for all the ensembles are quite

similar. The χ2=dof of each fit is in the neighborhood of
0.3 for all ensembles. We list the extrapolated CLRð0Þ in
Table I. The use of a cubic for this fit, though arbitrary,
gives an extrapolation that is stable under changes in the
fitting polynomial. Chiral perturbation theory, which gives
formulas for many quantities, is not helpful here. It can only
treat ΠLRðqÞ at low q2, and hence it does not give a useful
formula for CLRðmvÞ.
The extrapolation to mv ¼ 0 also offers a means to test

for sensitivity to finite-volume effects in CLR. Regarding
mesonic quantities based on the sea fermions, the

possibility of finite-volume contamination was addressed
at length in Ref. [28] and dismissed. The new ingredient in
this work is the light valence fermions. Finite-volume
effects would of course be strongest for the smallest values
of mv. A simple test is thus to drop the smallest values and
examine anew the extrapolation of CLR to mv ¼ 0. We find
that dropping the two smallest masses, mv ¼ 0.01 and
0.015, shifts each extrapolation by less than its error bar.
Given the small χ2 of each fit, this is not surprising.
Moreover, the fits show no sign of requiring a term
proportional to 1=ðmv

ffiffiffiffi
V

p Þ, an expected consequence of
zero modes in a partially quenched theory. See Ref. [19] for
more discussion.
While chiral perturbation theory is not directly appli-

cable to CLR itself, one could argue that it can be used to
understand the finite-volume correction to CLR, which
is a large-distance quantity [39]. In our mixed-action
setup, finite-volume corrections are controlled by the mass
Mvs of the mixed (valence-sea) pion. The latter satisfies the
bound2 [40]

M2
vs ≥ ðM2

ss þM2
vvÞ=2; ð3:9Þ

whereMss andMvv are, respectively, the masses of the pure
sea and valence pions. For ensemble 2 we can readMvv off
Fig. 1 and Mss from Table III (the sextet pion mass MP6).
We find that MvsLs ≥ 3.9 when the smallest valence mass
is 0.01, and MvsLs ≥ 4.4 when it is 0.02. In all other
ensembles MvsLs satisfies more stringent bounds. The
increase of MvsLs from (at least) 3.9 to (at least) 4.4
thus lends further support to our conclusion that finite-
volume effects are negligible, within the precision of our
calculation.

0.00 0.01 0.02 0.03 0.04 0.05
0.00

0.02

0.04

0.06

0.08

0.10
L

R
C

mv

FIG. 4. The low-energy constant CLR plotted against the
valence mass mv (both in lattice units) in ensemble 2. The three
sets of data and the corresponding curves come from three
different high-momentum cutoffs in the summation (3.3). The
points plotted at mv ¼ 0 (slightly shifted) are the cubic extrap-
olations of the data to zero. The correlated errors are calculated
from single-elimination jackknife.

TABLE I. The low-energy constant CLR, calculated via sum-
mation over the entire reduced Brillouin zone, extrapolated to
zero valence mass.

Ensemble CLRa4

2 0.0103(11)
3 0.0081(10)
4 0.0120(8)
5 0.0057(6)
6 0.0217(16)
8 0.0037(6)
9 0.0096(7)
11 0.0028(6)
12 0.0027(6)
40 0.0036(3)

2While Ref. [40] considered a different mixed-action setup, the
proof extends to all mixed-action theories.
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IV. CLR IN THE CHIRAL AND CONTINUUM LIMIT

The ultimate goal of this study is the value of the low-
energy constant CLR in the continuum limit. As discussed
above, CLR is finite and therefore physical only in the chiral
limit of the sextet fermion. In the present partially quenched
lattice calculation, unitarity requires a simultaneous chiral
limit for the sea and valence sextet fermions. Therefore, the
sole free parameter in the continuum limit is the mass of the
fundamental fermions. In Sec. III D we took the chiral limit
for the valence sextet fermions. We now turn our attention
to the continuum limit and chiral limit for the sextet sea
fermions.
To conduct this joint limit, we consider the dimension-

less product ĈLR ¼ CLRt20. We model our data with a
simple linear function,

ĈLR ¼ p0 þ paâþ p6m̂6; ð4:1Þ

which neglects dependence on the fundamental fermion
mass m̂4. Later we test the stability of the fit parameters
against alternative models, e.g., including dependence
on the fundamental fermion mass. First, we construct
jackknife correlation matrices among the lattice quantities
CLR, m4, and m6 on each ensemble. We do not include
correlations with the flow scale t0=a2 (i.e., with â≡ a=

ffiffiffiffi
t0

p
[28]), which has a negligible error compared to the other
quantities we extract. We then conduct a correlated fit to
Eq. (4.1), obtaining p0 ¼ 0.028ð4Þ, pa ¼ −0.021ð4Þ, and
p6 ¼ 0.16ð3Þ, for χ2 ¼ 9.2=7 dof.
Figure 5 displays the result of the fit. The hollow black

points show the fit at the values of â and m̂6 of the
individual ensembles; they follow the solid blue data points
closely. The lattice artifacts [ðpaâÞ from Eq. (4.1)] iden-
tified by the fit appear in red. The green points show the

data minus the lattice artifact. According to the model,
subtracting the artifacts from the full fit yields a linear
function of m̂6, which is displayed as a green band. This
band represents the continuum limit.
It is significant that the fit, Eq. (4.1), works so well

without including any dependence on m̂4, the mass of the
fundamental fermions. We have found before that the
fundamental fermions have only a weak influence on
quantities constructed from the sextet fermions [28,29].
We can test the stability of our fit against the inclusion of an
m̂4 term, as well as higher-order terms in m̂6 and â:

ĈLR ¼ p0 þ paâþ p6m̂6 þ p4m̂4

þ p66m̂2
6 þ pa6âm̂6 þ paaâ2: ð4:2Þ

Figure 6 shows the stability of the best-fit result p0 under
the inclusion of these additional terms, one at a time. No
significant discrepancy is seen; the largest deviation comes
from the fit “Base − pa þ paa,” where the term paâ in
Eq. (4.1) is replaced by paaâ2, thereby modeling the lattice-
spacing dependence as quadratic instead of linear. As can
be seen from Fig. 5, although the lattice-artifact contribu-
tions are significant, they vary little over the set of
ensembles considered, which makes it difficult to deter-
mine whether linear or quadratic dependence on â is a more
appropriate description of our results.
The fit including the quadratic paa yields a best-fit value

of p0 ¼ 0.020ð2Þ, as compared to the result p0 ¼ 0.028ð4Þ
from the base fit. Since we cannot reject either hypothesis,
we conservatively adopt half of the difference in central
values between these two fits as a systematic error, giving
our final result

ĈLR ¼ 0.024ð4Þstatð4Þsys: ð4:3Þ

FIG. 5. Fit of ĈLR to Eq. (4.1). The data appear in blue. The best fit is in hollow black points. The lattice artifact term paâ from
Eq. (4.1) identified by the fit appears in red. The green points show the data minus the lattice artifact. The smooth green band shows the
continuum prediction, i.e., Eq. (4.1) minus the paâ term.
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This is the chiral limit mv ¼ m6 ¼ 0 in both valence and
sea-sextet masses, as well as the continuum limit, of ĈLR.

V. DISCUSSION

In this paper we computed the low-energy constant CLR
for the sextet representation. We used staggered valence
fermions to define the currents, instead of overlap fermions
as in our previous work. We indeed found this to be an
economical way to impose exact chiral symmetry. On the
other hand, we find a strong dependence of CLRðmv;MÞ on
the cutoff momentum M, when the valence mass mv is
nonzero. When using overlap fermions, we could not
resolve any dependence at all on M. In any case, the
divergent cutoff dependence disappears in the valence
chiral limit, as expected for the quadratic divergence
m2

vM2 ∼m2
v=a2.

Taking the continuum limit as well as the chiral limit
for both sea and valence sextet fermions we find
ĈLR ¼ CLRt20 ¼ 0.024ð4Þð4Þ. Within error, this result turns
out to be independent of the mass of the fundamental
fermions for the mass range covered by our ensembles. To
simplify the lattice calculation we have considered a

fermion content that is slightly different from Ferretti’s
model so that our result is not directly applicable. We
expect, however, that our result for CLR will be numerically
similar to that in Ferretti’s actual model.
In Ferretti’s model, the ratio CLR=f4P6, where fP6 is the

sextet pseudoscalar decay constant, controls the contribu-
tion of the electroweak gauge bosons to the Higgs potential.
From [28], the value of fP6 in the sextet chiral limit isffiffiffiffi
t0

p
fP6 ¼ 0.17ð1Þ. Our determinations of CLR and fP6 are

found to be weakly correlated, so we can take the ratio and
combine the errors in quadrature, finding the result

CLR

f4P6
¼ 29ð8Þð5Þ: ð5:1Þ

In the notation of [17], this result translates to
ĉLR ¼ 1

2
ð3g2 þ g02ÞðCLR=f4P6Þ ¼ 19ð5Þð3Þ. Certain combi-

nations of ĉLR with other low-energy constants in the
theory must be of order 10−2 to reproduce the observed
properties of the Higgs boson, so this result implies some
amount of fine-tuning in the theory.
It is interesting to compare our result with QCD. Das

et al. [18] showed long ago that the electromagnetic mass
splitting among pions is given by

m2
π� −m2

π0
¼ 3α

4π

CLR

f2π
: ð5:2Þ

Solving for CLR in terms of the experimental values gives,
for QCD, CLR ≈ 0.012 GeV4, and CLR=f4π ≈ 42, where our
convention for the decay constant is fπ ≃ 130 MeV. Our
result in the present model is thus comparable with the
QCD value. Expectations from large-Nc [28] are that CLR
should scale as the dimension of the representation, i.e.,
similar to f2P6. The dimension of the antisymmetric
representation is NcðNc − 1Þ=2, and so our smaller value
for CLR=f4P6 is in rough agreement with such scaling, too.
We have recently computed the top-quark mass induced

via partial compositeness in this model, finding it to be
too small by several orders of magnitude. This makes it
extremely unlikely that Ferretti’s model could generate a
realistic top mass [30]. However, the model might be
rescued by introducing additional fermion species which
are inert under all Standard Model interactions. These will
slow down the running, ultimately producing a nearly
conformal but confining theory, which, in principle, might
allow for large enhancement of the induced top mass. Other
models from the Ferretti-Karateev list [6] might give a more
realistic top mass as well [41,42].
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APPENDIX: THE ENSEMBLES

Table II lists the ensembles used in this study. The nine
ensembles labeled 2–12 are lattices with volume 163 × 32,
numbered as in Ref. [29] for easy reference; ensemble 40
has volume 243 × 48 (see Ref. [28]). We have excluded
ensembles (1, 7, 10) because large fluctuations in the
observable CLRðmvÞ indicate that the simulations are much
too short. Of our 243 × 48 ensembles, only ensemble 40
avoids this problem.
Table III presents some physical properties of the ensem-

bles. These are the flow parameter t0; the fermion masses
from the axial Ward identities, rendered dimensionless as
m̂4 ¼ m4

ffiffiffiffi
t0

p
, and m̂6 ¼ m6

ffiffiffiffi
t0

p
; and the pseudoscalar

meson masses, M̂P4 ¼ MP4
ffiffiffiffi
t0

p
and M̂P6 ¼ MP6

ffiffiffiffi
t0

p
.
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