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We discuss real-time evolution for the quantum Ising model in one spatial dimension withNs sites. In the
limit where the nearest-neighbor interactions J in the spatial directions are small, there is a simple physical
picture where qubit states can be interpreted as approximate particle occupations. Using exact
diagonalization, for initial states with one or two particles, we show that for small J, discrete Bessel
functions provide very accurate expressions for the evolution of the occupancies corresponding to initial
states with one and two particles. Boundary conditions play an important role when the evolution time is
long enough. We discuss a Trotter procedure to implement the evolution on existing quantum computers
and discuss the error associated with the Trotter step size. We discuss the effects of gate and measurement
errors on the evolution of one- and two-particle states using four and eight-qubits circuits approximately
corresponding to existing or near-term quantum computers.
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I. INTRODUCTION

There has been fast-growing interest for quantum com-
putation in the context of high energy and nuclear physics
[1–18]. One important motivation is to calculate the real-
time evolution of states in large Hilbert spaces which
cannot be handled with standard sampling methods. The
long-term goals include jet physics and early cosmology.
However, in the near term, it is important to demonstrate
that it is possible to make progress towards these major
goals using quantum computers or quantum simulation
experiments with a limited number of qubits [19].
In view of the limitations of the existing quantum

computers and of our ability to do real-time calculations,
it is necessary to start with very simple examples such as
the quantum Ising model in 1þ 1 dimensions [6] or the
Schwinger model [3,5]. In the following, we focus on the
quantum Ising model. It plays an important role in under-
standing the relation between the Lagrangian and
Hamiltonian approaches [20]. It is a necessary step to
work with more complicated lattice models [21] with
continuous symmetries. Numerical lattice gauge theory
started in the late 1970s by studying Z2 (Ising) gauge
theories on 34 lattices. Importance sampling methods were
developed with the Ising and clock models on small lattices
[22]. We are thus following a path similar to the one that

successfully paved the way for lattice QCD, namely solving
basic questions one step at a time with simplified models.
This steadily developed as a reliable tool that today allows
different collaborations to compare numerical estimates for
hadronic processes with errors of a few percent.
In one spatial dimension, the quantum Ising model with a

transverse magnetic field is solvable [23–28] by either
using the time-continuum limit of the transfer matrix or
working directly in the Hilbert space with the Hamiltonian
in Eq. (3). Solutions are based on a Wigner-Jordan trans-
formation, followed by a Fourier transform and a
Bogolioubov transformation. In addition, the Hilbert space
of the quantum Ising model can be interpreted as a direct
product of qubits. For these reasons, it plays a prominent
role in the development of quantum computing methods.
Quantum simulations dedicated to studying this model with
antiferromagnetic interactions have been performed with
trapped ions [29] and cold neutral atoms trapped in an
optical lattice [30]. The computational resources necessary
to apply the quantum phase estimation circuit to calculate
the ground state energy with a fault-tolerant computer have
been discussed by Refs. [31,32]. Existing quantum com-
puters such as IBM or Rigetti have been used to calculate the
response to a sudden quench [6] or the energy eigenstates
[33] of the same model.
In the following, we use the quantum Ising model

discussed above to describe real-time evolution in a setup
related to the scattering formalism in a way inspired by
Refs. [1,2]. We use numbers of sites of the same order as
the number of qubits in devices existing or expected to exist
in the near future. The main goal is to provide reliable
benchmark calculations for initial states that can be easily
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prepared in practical situations and that will allow com-
parison among different platforms. As quantum computing
technology improves, we expect to become able to prepare
initial states closer to ideal plane waves [1,2] and deal with
models such the O(3) nonlinear sigma model of which the
phase shifts are known [34] and of which the behavior is
closer to non-Abelian gauge theories in four dimensions.
Note also that the Ising model has a second order phase
transitionwhich allows the use of finite size scaling to extract
interesting information using systemswith a small number of
lattice sites. This strategy is explained in Ref. [35].
The paper is organized as follows. In Sec. II, we present

the model, and in Sec. III, we present some perturbative
results. In Sec. IV, the Suzuki-Trotter formulation of the
time evolution operator for the quantum Ising model is
derived. In Sec. V, we discuss how artificial noise is
introduced into our simulations as well as the results of
our simulations for both free propagation and “scattering”
of particles. We follow the methodology inspired by the one
laid out in Ref. [1]. We first prepare highly localized “wave
packets” which can be considered a two-particle state.
Then, we let the packets spread and “interact” using the
corresponding Hamiltonian.

II. QUANTUM ISING MODEL

A. Hamiltonian and boundary conditions

The one-dimensional quantum Ising model is the stan-
dard example of a quantum field theory with continuous
time that is obtained from a classical lattice model with one
extra dimension corresponding to the Euclidean time
[20,21]. In this example, the classical model is the usual
two-dimensional Ising model solved by Onsager [23] and
Kaufman [24]. The Hilbert space of the quantum model is a
tensor product of qubits, and the connection to quantum
computing is immediate [see Eq. (2) for an illustration].
The connection to the classical model makes the choice

of a basis where the nearest-neighbor interactions in the
spatial direction are diagonal very natural. We call this
choice the “spin basis.” For reasons that will become clear
soon, we use a representation where the other term, often
referred to as the transverse magnetic field term, is
diagonal. We call this choice the “particle basis.” The
two representations are connected by a Hadamard unitary
transformation.
In the particle basis, the nearest-neighbor interactions

(particle hopping) use adjacent pairs of σ̂x, governed by J,
while the transverse magnetic field interactions (on-site
coupling) governed by hT use σ̂z, where σ̂z and σ̂x are the
traditional Pauli matrices. In the particle basis, we define
the “particle number” at each site, l, as

n̂l ¼ ð1 − σ̂zl Þ=2: ð1Þ
We will use these quantum numbers to specify the Hilbert
space, which is a direct product of two-dimensional qubit

spaces at each of the Ns spatial sites. Just to give an
example for Ns ¼ 4, the action of a sample operator on a
sample state can be illustrated as

σ̂x3j1011i ¼ j1001i: ð2Þ
We will see that the Hamiltonian only connects states for
which the total particle number (n̂ ¼ P

in̂i) is the same
modulo 2.
We define the Hamiltonian corresponding to open

boundary conditions (OBCs), as

Hobc ¼ −J
XNs−1

i¼1

σ̂xi σ̂
x
iþ1 − hT

XNs

i¼1

σ̂zi : ð3Þ

The Hamiltonian corresponding to periodic boundary
conditions (PBCs) is defined as

Hpbc ¼ Hobc − Jσ̂x1σ̂
x
Ns
; ð4Þ

while it is also interesting to consider a Hamiltonian with
antiperiodic boundary conditions (ABCs),

Habc ¼ Hobc þ Jσ̂x1σ̂
x
Ns
: ð5Þ

For any of these Hamiltonians, we define an operator to
carry out the exact time evolution in units where ℏ ¼ 1 as

UðtÞ ¼ e−itH: ð6Þ

B. Symmetries

The model has a Z2 global symmetry corresponding to
flipping all the spins in the spin basis. In the particle basis,
this corresponds to multiplying the states by σ̂z at each site.
This defines a unitary transformation that flips the sign of
the operator σ̂x at each site. As such operators come in
nearest-neighbor pairs, the transformation leaves the
Hamiltonian invariant, regardless of boundary conditions.
This is equivalent to saying that the particle number n̂
defined above is conserved modulo 2.
When Ns is even, it is also possible to invent a two-step

transformation which changes the sign of the entire
Hamiltonian. Similar equivalences appear for classical
gauge theories [36]. We first apply a σ̂x transformation
at each site. This changes the sign of the on-site term and
leaves the hopping term unchanged. In a second step, we
apply a σ̂z on every other site. The full transformation flips
the sign of both terms of the Hamiltonian. Consequently, all
the states appear in pairs with opposite signs. This property
appears clearly in Fig. 1 forNs ¼ 4. In this case, the 16 states
split into approximately degenerate groups of 1 (zero
particles), 4 (one particle), 6 (two particles), 4 (three particles
or one hole), and 1 (four particles) when J ≪ hT . In the next
section,we discuss the splitting using degenerate perturbation
theory. Perturbation theory allows for very accurate calcu-
lations of real-time evolution when J is sufficiently small.
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III. APPROXIMATE EVOLUTION FOR J ≪ hT

A. Approximate particle description

In the limit where J ¼ 0, we obtain a very simple picture
for the quantum Ising model. The energy is then the sum of
the on-site energies. We have a unique ground state where
all sites have an energy −hT and so Eð0Þ ¼ −NshT . We now
have degenerate “one-particle” states where one on-site
state with energy þhT can be placed at Ns locations. If the
hT energy is located at the site j, we call this state jji. These
states have an energy −ðNs − 2ÞhT. Similarly, we have
Ns!=ðn!ðNs − nÞ!Þ totally antisymmetrized states with n
“particles” and an energy ð−Ns þ 2nÞhT. The effect of the
nearest-neighbor interactions can be included perturba-
tively [21]. The model can also be solved exactly by
performing a Wigner-Jordan transformation [24]. However,
at finite volume, boundary conditions should be treated
carefully. To be more explicit, the term a†Nsa1 needs to be
supplemented with a product of σ̂zl in order to reproduce the
original spin Hamiltonian, which requires a separate dis-
cussion for the even and odd sectors [24].

B. One particle

At order J in the one-particle sector, we have a particle
hopping that stays in the one-particle sector. It isworth noting
that the particle conservation picture makes this model in the
small J limit equivalent to the XY model, which has been
studied thoroughly. In particular, the eigenstates and energies
of thismodel are discussed inRefs. [37,38], and the zero field
case is examined in Refs. [26,28,39]; time dependent zz spin
correlations were studied in Refs. [40,41], and xx spin
correlations were studied in Ref. [27]. If periodic boundary
conditions are imposed, as in Eq. (4), Fourier modes
diagonalize the perturbation. This lifts the degeneracy by
a term proportional to 2J cosð2πm=NsÞ. The perturbation
also contains operators that connect to the three-particle
states; this leads to energy shifts OðJ2=hTÞ. If we neglect
these second order effects, we have a simple approximate
quantum mechanical behavior.

We can then prepare the system in an initial state jψi and
calculate hψðtÞjn̂ljψðtÞi, where the calculations in the
quantum mechanical approximation are relatively easy.
For instance, for jψð0Þi ¼ jji, we obtain

hψ jðtÞjn̂ljψ jðtÞi ≃ jJðNsÞ
l−j ð2JtÞj2; ð7Þ

where the “discrete” Bessel functions are defined as

JðNsÞ
n ðxÞ ¼ ð−iÞn

Ns

XNs−1

m¼0

eiðð
2πmn
Ns

þx cosð2πmNs
ÞÞÞ; ð8Þ

which corresponds to the usual definition in the limit of
large Ns. In fact these “Bessel” functions appear in the XY
model for the zz correlations as shown in Ref. [41]. The
approximation is accurate when t is less than OðhT=ðJ2ÞÞ
(see Fig. 2). The implication of this is that pair creation in
this model is driven by the hopping parameter J, rather than
the size of the model. The peaks in the occupation values
shown in Fig. 2 suggest that for J ¼ 0.02, perturbation
theory would be accurate for a system of up to 32 sites
because approximately four resurgences happen before
noticeable discrepancies begin to appear.

C. Two particles

The results for one-particle states can be generalized to
two-particle states provided that ABCs are used. Using
lowest order degenerate perturbation theory with ABCs, we
find that the occupation number is

hi; jðtÞjn̂lji; jðtÞi ≃ jJðNsÞ
l−i ð2JtÞj2 þ jJðNsÞ

l−j ð2JtÞj2; ð9Þ

where jiji ¼ j0…0; 1i; 0…0; 1j; 0…i. Agreement is excel-
lent for long timescales, with only a small discrepancy for
(c) in Fig. 2. It is interesting that after a time, such that Jt is
of order 1, the three types of boundary conditions start to
give very different values of hniðtÞi (see Fig. 3). For OBCs,
one can compare the situation with that of an ideal gas
where the forces exerted on the particles are due to the walls
and generate the pressure.

D. Finite volume corrections

It is possible to calculate the difference between the finite
volume discrete Bessel functions JðNsÞ

n ðxÞ and the usual
infinite volume expressions JnðxÞ. Using the Poisson
formula, one finds that

JðNsÞ
n ðxÞ ¼ JnðxÞ þ

X

l≠0
ðiÞNslJnþNslðxÞ; ð10Þ

where the sum over l runs over strictly positive and

negative integers. The difference between JðNsÞ
n ðxÞ and

JnðxÞ is small for small argument. This is illustrated for
Ns ¼ 8 and n ¼ 0 in Fig. 4. One sees that the difference

between Jð8Þ0 ðxÞ and J0ðxÞ becomes visible near x ∼ 4. At
that point, the difference is almost saturated by the l ¼ �1

FIG. 1. Spectrum for Ns ¼ 4 in units of hT . Here, hT is the
transverse magnetic field, and J is the strength of the nearest-
neighbor interaction. As J=hT increases, the degenerate energy
levels split.
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terms J8ðxÞ þ J−8ðxÞ. The l ¼ �2 terms become impor-
tant near x ∼ 12.

IV. FORMULATION OF
REAL-TIME EVOLUTION

For systemswith a small number of spins, theHilbert space
of the model defined by Eq. (3), and Eq. (4) is small, and this
evolution operator is tractable for exact implementation on a

classical computer; however, the Hilbert space of the model
scales like 2N for N spins. For large N (N ≫ 20), it would
only be possible to implement this on a quantum computer as
the computational resources instead scale linearly.
Since a quantum computer cannot exactly implement the

operator given in Eq. (6), we need to use the Suzuki-Trotter
(ST) approximation to evaluate the time evolution. We use
the first order approximation in order to limit the gate depth
of the system:

(a) (a)

(b)

(b)

(c)

(d)

(c)

(d)

(e)

FIG. 2. Comparison of exact diagonalization and perturbation theory. Left: one particle with PBCs, where J ¼ 0.02, hT ¼ 1.0, and
Ns ¼ 8. (a) Site 1, (b) sites 2 and 8, (c) sites 3 and 7, (d) sites 4 and 6, and (e) site 5. Right: two particles with ABCs, where J ¼ 0.02,
hT ¼ 1.0, and Ns ¼ 8. (a) Sites 1 and 5, (b) sites 2 and 6, (c) sites 3 and 7, and (d) sites 4 and 8. Small discrepancies are most visible in
the bottom of (c) on the graphs on the right side.
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UðδtÞ ≃ eiδtJ
P

σ̂xi σ̂
x
iþ1eiδthT

P
σ̂zi þOðδt2Þ: ð11Þ

However, we have to apply this operator multiple times
to evolve the system to some final time t. This iterative

process leads to a new expression for the time evolution
operator:

Uðt; δtÞ ≃ ðeiδtJ
P

σ̂xi σ̂
x
iþ1eiδthT

P
σ̂zi Þt=δt þOððδtÞtÞ: ð12Þ

While the estimated worse case error OðtδtÞ is true in
general, this bound overestimates the ST truncation error,
which should be approximately OðJhTtδtÞ because the σ̂z

terms only add phase shifts to the state vectors of the
Hilbert space, and does not affect any measurement of the
basis state. The next order correction to the ST formula is

USTð2ÞðtÞ ¼ ðeiδthT2
P

σ̂zi eiδtJ
P

σ̂xi σ̂
x
iþ1eiδt

hT
2

P
σ̂zi Þt=δt; ð13Þ

which can be found using the methodology proposed in
Ref. [42]. The second order ST approximation essentially
becomes the first order approximation; at this point, we can
justify the error beginning at the second order ST approxi-
mation being OðJ3tðδtÞ2Þ.
It is relatively straightforward to implement the simplest

ST approximation as a quantum circuit (see Fig. 5). The
Hamiltonian is split as follows: H ¼ H1 þH2 þH3,
where,

H1 ¼ −hT
XN

i¼1

σzi ;

H2 ¼ −J
XN

i¼1;3;5…

σxi σ
x
iþ1;

H3 ¼ −J
XN

i¼2;4;6…

σxi σ
x
iþ1: ð14Þ

TheH1 term can easily be implemented as a single moment
in a quantum circuit. WhileH2 andH3 commute, they have
to be implemented as separate moments in the quantum
circuit because each of these contain terms which entangle

FIG. 3. The average particle number, ni, for site i, for all four
sites as a function of Jt. Here, three different cases of boundary
conditions are shown with PBCs, OBCs, and ABCs correspond-
ing to periodic (solid), open (dashed), and antiperiodic boundary
conditions (dotted), respectively.

FIG. 4. Illustration of the difference between JðNsÞ
n ðxÞ and JnðxÞ

for Ns ¼ 8 and n ¼ 0. The solid line represents the usual J0ðxÞ,
the dash line represents the discrete approximation JðNsÞ

n ðxÞ, the
dot-dash line represents their difference, and the dotted line
represents the contribution of the l ¼ �1 terms in Eq. (10).
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two-qubits. This corresponds to the idea [43] of splitting
the Hamiltonian into pieces that can be implemented easily
separately and when combined correspond to the original
Hamiltonian with a Trotter error. On the other hand, the on-
site terms can be executed in a single moment in a quantum
circuit as these are single-qubit operators. The implemen-
tation of this circuit for an arbitrary number of qubits has a
gate depth (dl),

dl ¼ 7Nt; ð15Þ

and a total number of gate operations,

Npbc
gates ¼ 2ðNs2ÞNt ð16Þ

Nobc
gates ¼ ððNsÞ2 − 1ÞNt þ ððNs − 1Þ2ÞNt; ð17Þ

where Ns is the number of sites and Nt is the number of
Trotter steps.

V. RESULTS OF REAL-TIME EVOLUTION

We examined two different cases of the one-dimensional
Ising model with eight sites (with both OBCs and PBCs):
the time evolution of a single-particle initial state and
scattering of two particles. For all cases, we examined the
system with the nearest-neighbor coupling J ¼ 0.02 and

TABLE I. Initial state of the system.

Simulation type OBCs PBCs

Free propagation j10000000i j10000000i
Scattering j10000001i j10001000i

FIG. 6. Fidelity of the ST operator at multiple different Trotter steps for (A) free propogation and (B) scattering with different
boundary conditions for a fixed total time interval with J ¼ 0.02, hT ¼ 1.0 and Ns ¼ 8.

FIG. 5. Circuit for four-qubits with open boundary conditions.
The gates are defined as follows: RZa ¼ eihT tσ

z
is a Z rotation

about the Bloch sphere, and RXb ¼ eiJtσ
x
is a X rotation about the

Bloch sphere. When this X rotation is combined with the CNOT
gates, which flips the target qubit when the control qubit is 1, this
is equivalent to the operation: eiJtσ

x
i σ

x
iþ1 .
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on-site coupling hT ¼ 1.0. We define the initial states for
the system in Table I.

A. Sources of error

Because the ST approximation is an iterative process, we
want to know how many operations can be carried out
before imperfections in the approximations and the noisy
gates of a quantum computer will produce substantial
issues with our simulations. A first step is to measure
the fidelity of the Trotter operator with the exact evolution
operator over the timescales of interest in these processes
[see Figs. 6(a) and 6(b)]. The fidelity of the ST operator is

F ðt; δtÞ ¼ jhψð0ÞjðUexactðtÞÞ†USTðt; δtÞjψð0Þij: ð18Þ

For both OBCs and PBCs, it appears that a Trotter step of
δt ¼ 10.0 for J ¼ 0.02 is satisfactory to describe the time
evolution for small timescales.

It is important to have an understanding of how frequent
quantum gate errors will be when applying the SToperator.
We expect the number of gate errors to increase the more
Trotter steps we apply. In Fig. 7, we show the average
number of gate errors (the Pauli error channel) at a given
evolution time for a state-of-the-art trapped ion system
(p1-qubit ¼ 1.0 × 10−4 and p2-qubit ¼ 5.0 × 10−4 [44,45])
and for slight improvements of current typical digital
quantum computers [46,47] by deflating their errors by a
factor of 10.
The Pauli error channel for single-qubit gates is defined

in terms of the density matrix ρ̂:

Eðρ̂;px; py; pzÞ ¼ ð1 − pÞρ̂þ pxσ̂
xρ̂σ̂x

þ pyσ̂
yρ̂σ̂y þ pzσ̂

zρ̂σ̂z: ð19Þ
FIG. 7. Average number of gate errors (y axis) for state-of-the-
art trapped ion (a) and expected near-term noisy digital quantum
computer (b) for a fixed total time interval.

TABLE II. Optimistic error rates for current trapped ions.

Pauli channel 1-qubit error 2-qubit error

px, py 0.00002 0.0001
pz 0.00006 0.0003
Measurement channel 1-qubit error 2-qubit error
pmeasure 0.05 � � �

TABLE III. Optimistic error rates for near-term superconduct-
ing qubits.

Pauli channel 1-qubit error 2-qubit error

px, py 0.00033 0.00033
pz 0.00033 0.00033
Measurement channel 1-qubit error 2-qubit error
pmeasure 0.05 � � �

FIG. 8. Occupation value for site 4 with a free propagating
particle with open boundary conditions as a function of Jt, for
J ¼ 0.02 and Jδt ¼ 0.2. Blue circles: numpy simulation; red
diamonds: QISKIT simulation; black line: exact Suzuki-Trotter
results; blue dashed: exact diagonalization results.
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The values px, py, and pz correspond to the probabilities of
an σx, σy, and σz error, respectively, occurring and
p ¼ px þ py þ pz. The value of p should approximately
be the probability of a gate error occurring. The error
channel for two-qubit gates is given by Eð2Þ ¼ E ⊗ E. The
values of px, py, and pz for the one- and two-qubit gates are
given in Tables II and III. We also introduce measurement
errors into our simulations. These are caused by misiden-
tifying the state that the qubit is in (i.e., reading a 1 as a 0 or
a 0 as a 1). We implemented this by changing the readout
value with a chance pmeasure given in Tables II and III.
Reference [48] identifies a procedure to address the readout
error in the supplementary material; we simplify their result
to using the following rescaling of the measured readout:

hZexacti ¼ hZnoisyi
pmeasure

: ð20Þ

B. Methods for dealing with error

Approximating the time evolution operator using the
ST method introduces an error OðδttÞ. It was suggested
in Refs. [49–51] that by using simulations at multiple
different Trotter steps and noise levels, it is possible to
systematically reduce the uncertainty in the measured
quantities.
In order to minimize the noise error, Ref. [50] sug-

gested several methods, one of which is an exponential
extrapolation,

FIG. 9. Occupation number for free propagation with J ¼ 0.02, hT ¼ 1.0, Jδt ¼ 0.2 with 10,000 shots at time steps: (A) Jt ¼ 0,
(B) Jt ¼ 1.6, (C) Jt ¼ 3.2, (D) Jt ¼ 4.8, (E) Jt ¼ 6.4, (F) Jt ¼ 8.0, and (G) Jt ¼ 9.6. Error bars include only statistical errors. Green
circles: QISKIT simulation for current trapped ions; red diamonds: numpy simulation for current trapped ion; blue triangle: QISKIT
simulation for near-future superconducting qubit quantum computers; cyan right arrow: numpy simulation for near-future super-
conducting qubit quantum computers; gray bars: exact diagonalization; black line: ST approximation.
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hOið0Þ ¼ ðhOðϵÞiÞ r
r−1ðhOðrϵÞiÞ 1

1−r: ð21Þ

In Eq. (21), ϵ is the noise rate for the system which is
nontrivially dependent upon the probability of gate errors
occurring as in Eq. (19), and r is a scale factor such that
r > 1. The actual value of ϵ is unimportant. It is only the
relative scale r which matters. Due to the computational
overhead of carrying out this methodology of error miti-
gation, we only demonstrate a modification of it in our
results for free propagation on a four site lattice. Our
modification to the error mitigation scheme proposed in
Refs. [49–51] involves changing the extrapolation equation

proposed in Eq. (21) to an exponential ansatz of the
form

hOðϵr; tÞi ¼ ABr þ C: ð22Þ

This form should retain the same general behaviors of the
ansatz proposed in Eq. (21).
The methods for reducing algorithmic errors are more

computationally intensive and discussed in Ref. [49]. They
argue that the algorithmic error rate, ϵN , scales as 1=N,
where N is the number of Trotter steps. Due to the
increased computational demand of this error mitigation
method, we currently have not implemented it.

FIG. 10. Occupation number for scattering with J ¼ 0.02, hT ¼ 1.0, Jδt ¼ 0.2 with 10,000 shots at time steps: (A) Jt ¼ 0,
(B) Jt ¼ 0.8, (C) Jt ¼ 1.6, (D) Jt ¼ 2.4, (E) Jt ¼ 3.2, (F) Jt ¼ 4.0, and (G) Jt ¼ 4.8. Error bars include only statistical errors. Green
circles: QISKIT simulation for current trapped ions; red diamonds: numpy simulation for current trapped ion; blue triangle: QISKIT
simulation for near-future superconducting qubit quantum computers; cyan right arrow: numpy simulation for near-future super-
conducting qubit quantum computers; gray bars: exact diagonalization; black line: ST approximation.
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C. Simulation results

The initial state of the system for each case we looked at
is given in Table I. We evolved the system using exact
diagonalization of the Hamiltonian. We compared these
numerically accurate evolutions with those obtained with a
quantum virtual machine implemented through the python
library QISKIT provided by IBM. This library implements
the noise corresponding to the Pauli channel for the IBM
quantum computers. The results from the QISKIT simu-
lations were checked for consistency by implementing the
noise channel using matrix operations in numpy instead of
the QISKIT library’s methodology (see the Appendix). In
Fig. 8, we show the difference between calculations of the
average particle number for site four for the numpy and
QISKIT simulations, ST, and exact diagonalization simu-
lations. The results of the simulations are show in Figs. 9(a)
through 10(b). While the simulated results do not follow the
exact results, they match the trajectory of the ST approxi-
mation quite well for early times and slowly deviate from
those results as the gate errors begin to accumulate. This
shows that there are two types of systematic errors: those
corresponding to the ST approximation which are easily
quantifiable and those corresponding to the gate errors
which are less easily quantifiable. The ST errors are
significant around Jt ≈ 0 and Jt ≈ 4 through 5 and
Jt≳ 6.5. The difference between ST and the QISKIT
and numpy simulations becomes significant near Jt ¼ 4.
As we expect, the best result possible with the chosen time
step is the exact ST result.

D. Results of simulated superconducting
qubit quantum computer

In addition, it would be interesting to see if it is possible
to extract results using current superconducting qubit
quantum computers. In this case, we used px ¼ py ¼ pz ¼
0.0005 for the one-qubit gates and px ¼ py ¼ pz ¼ 0.004
for the two-qubit gates; this corresponds to a gate error of
approximately 0.01 for one-qubit gates and approximately
0.04 for two-qubit gates. In this case, we need to address
the issues of noisy quantum gates because of the number of
two-qubit gates we have in our system. To do this, we
simulated the system at four different noise levels by
introducing noisy identity operators into our circuit.
Similarities can be seen between Fig. 12 and Fig. 4 in
Ref. [5]. The only difference in the procedure that we
carried out is the extrapolation method that we used.
Reference [5] used a quadratic ansatz, while we used an
exponential ansatz of the form

hOðϵrÞi ¼ ABr þ C ð23Þ

to extrapolate the noiseless observable, where A. B, and C
are fit parameters. We used priors of A ¼ 0.0� 0.5,
B ¼ 0.0� 1.0, and C ¼ 0.5. For proof of concept, we
worked at four sites with J ¼ 0.02 and hT ¼ 1.0, and we

took 8000 measurements for each data point at each noise
level. The results of these simulations are shown in Figs. 11
and 12. The slightly larger errors found at later times in
Fig. 13 are likely due to the various noise rates being so
close together that fitting the ansatz to the tail end of an
exponential fit would yield a large variability in parameters
A and B of Eq. (23), which would yield fits with large
uncertainties for A and B. In addition, because the ansatz is
not a linear combination of variable parameters, the χ2

distribution in parameter space is significantly more com-
plex and highly non-Gaussian.

E. Continuation to larger J

We have briefly examined regions where J ¼ 0.2 and
hT ¼ 1.0. The most noticeable effect is that the particles
hop between sites far more quickly. While this case is
still far away from the continuum limit, i.e., J ¼ hT , in

FIG. 11. Plot of occupation of different sites as a function of Jt
for four-site PBCs propagation simulation with J ¼ 0.02,
hT ¼ 1.0, and Jδt ¼ 0.02; error bars include only statistical
errors. (a) site 1, (b) site 2, (c) site 3, and (d) site 4.
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this regime, pair creation and annihilation become more
frequent. This implies that the particle conservation picture
breaks down more quickly and second order effects in
degenerate perturbation theory become significant. In
addition, we find that the particle occupation at given sites
is not as regular as in the case where J ≪ hT .
The most significant change in working with a larger

value of J is that the Trotter time steps must be shrunk

because the Trotter truncation error still scales in a manner
similar to the regime J ¼ 0.02. We expect some issues
arising from noisy simulations will be similar to those
encountered in the Jδt ¼ 0.1 simulation shown in Fig. 13,
with noiseless extrapolation. Specifically, when the lowest
noise simulation observable is close to, or crosses, the
observed value for inflated noise simulations which no
longer have a discernible signal, the noiseless extrapolation
method produces substantially larger uncertainties for the
observable.

FIG. 13. Plot of occupation of different sites as a function of Jt
for four-site PBCs propagation simulation with J ¼ 0.02,
hT ¼ 1.0, and Jδt ¼ 0.1; error bars include only statistical errors.
(a) site 1, (b) site 2, (c) site 3, and (d) site 4.FIG. 12. Plot of occupation of different sites as a function of Jt

for four-site PBCs propagation simulation with J ¼ 0.02,
hT ¼ 1.0, and Jδt ¼ 0.05; error bars include only statistical
errors. (a) site 1, (b) site 2, (c) site 3, and (d) site 4.
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VI. CONCLUSION

We have demonstrated through simulations on an emu-
lated quantum computer that it is possible to use current
trapped ion systems to simulate the real-time evolution of the
quantum Isingmodelwith both four and eight sites, and in the
near future, it will be possible to simulate it on quantum
computers using superconducting qubits. Currently, the
density matrix renormalization group and tensor networks
are the only methods we have of examining real-time
scattering; however, in the near future, quantum computers
will be able to join this group of tools so that we can examine
these systems in real time. We have derived a simple
perturbative expression that can be used to check the
consistency of the results done on a system of trapped ions
or, in the near future, on superconducting qubits. These
perturbative expressions can be used formuch larger systems
and can be easily handled analytically and numerically.
Much work remains to be done in order to study the real-

time evolution of interacting particles close to the con-
tinuum limit. We plan to examine related theories, such as
the Oð3Þ nonlinear sigma model where the triplet and
singlet states could be implemented with a pair of qubits or
slight modifications to the Ising model such as changes in
the transverse field, because these models allow us to
examine a richer volume of observables such as phase
shifts, scattering cross sections, and bound states.
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APPENDIX: NUMPY SIMULATION

To emulate a circuit like that in Fig. 5 on a classical
computer, we construct each time-step layer out of the
appropriate operators. In the case of Fig. 5, there are three
layers. The first layer consists of the Kronecker product of
Ns matrices (Ns ¼ 4 in Fig. 5) of the form eiðδtÞð1−σz;iÞ for

i ¼ 1; 2; 3;…; Ns. The second layer is built from three
smaller sublayers: a CNOT gate sublayer, a matrix
e−iJðδtÞσx;i sublayer, and another CNOT gate sublayer.
This second layer is only applied to the even sites and
their neighbors simultaneously, i.e., i ¼ 0, 1 together,
i ¼ 2, 3 together, etc. Each sublayer is constructed by
taking the Kronecker product of the operators along the
sublayer. Finally, the third layer is also built from three
sublayers that follow a pattern similar to the second layer: a
CNOT gate sublayer, a matrix e−iJðδtÞσx;i sublayer, and
another CNOT sublayer. In contrast to the second layer, this
layer only operates on the odd sites and their immediate
neighbors, i.e., i ¼ 1, 2 together, i ¼ 3, 4 together, etc. One
then applies these three layers in sequence to make a time
step of evolution.
To include stochastic errors beyond the ST approxima-

tion errors, one can include random noise in the form of
multiplication between layers by a random Pauli matrix or
the identity. Here, we implement this noise after each
sublayer. Therefore, after we apply the first layer, we
multiply each qubit by one of the four random possible
matrices (1 or σ⃗) of which the probability is chosen from
Table II for a single-qubit gate. Then, for the second layer,
for each qubit acted on by a CNOT gate in the first sublayer,
we again multiply by a random matrix using the two-qubit
gate probabilities from Table III. For the second sublayer,
we apply a random matrix on each quibt acted on by the
matrix e−iJðδtÞσx;i , i.e., the even sites. For the third sublayer,
we repeat what we did for the first sublayer. Finally, for the
third layer, we repeat what we did for the second layer
except for the odd sites.
In order to simulate measurements in an actual experi-

ment, we choose “up” or “down” for our qubits with
some probability given by the expectation value for “being
up.” We calculate that expectation value by computing
hPið1 − σz;iÞ=2i from our current state vector at time t. We
then randomly sample a 0 or 1 from this expectation value.
To further include stochastic errors associated with meas-
urement, we can flip a measurement readout by adding
either 0 or −1 to our measurements and taking the absolute
value. This qubit flip is done using the measurement
probability from Table II.
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