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Partial compositeness is a mechanism for the generation of fermion masses which replaces a direct Higgs
coupling to the fermions by a linear mixing with heavy composite partners. We present the first calculation
of the relevant matrix element in a lattice model which is very close to a candidate theory containing a
composite Higgs boson and a partially composite top quark. Specifically, our model is an SUð4Þ gauge
theory coupled to dynamical fermions in the fundamental and two-index antisymmetric (sextet)
representations. The matrix element we obtain is small and hence our result disfavors the scenario of
obtaining a realistic top mass in this model.
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I. INTRODUCTION

Partial compositeness was introduced by Kaplan [1] as a
method for generating fermion masses via linear coupling
to heavy fermionic states in a new composite sector. In this
paper we use lattice gauge theory to study this mechanism
in an SUð4Þ gauge theory with dynamical fermions in two
representations, the fundamental 4 and the two-index anti-
symmetric 6. This theory is a slight modification of an
asymptotically free model due to Ferretti [2–4], which
contains a composite Higgs boson and a partially composite
top quark.
Our group has considered other aspects of this model in

previous work, including its meson and baryon spectrum
and its thermodynamic properties [5–7]. The present work
is our first to consider the mixing aspects of partial
compositeness. The particular focus of this paper is a
baryon matrix element which, within certain approxima-
tions, appears in the formula for the top quark’s effective
Yukawa coupling and mass. This work is the first lattice
study of partial compositeness in a realistic model.
Our main conclusion is that it is unlikely that partial

compositeness gives the top quark a realistic mass in this

model. This stems from the smallness of the calculated
matrix element. The result depends on two key approx-
imations. First, we change the numbers of flavors of the two
species of fermions compared to Ferretti’s model. Second,
we relate the top Yukawa coupling to the baryon matrix
element by saturating the relevant low-energy constant with
the lightest baryon intermediate state. We believe that
improving on these approximations will not supply the
orders of magnitude needed to make the model viable.
The outline of the paper is the following. Section II

reviews partially composite fermions and the physical
context for the nonperturbative calculation. Section III
describes the details of the lattice simulation. Section IV
summarizes our results. Technical details appear in the
Appendices.
For lattice work on a different composite Higgs model,

see Refs. [8,9]. For additional related phenomenological
work, see Refs. [10–13].

II. PARTIALLY COMPOSITE FERMIONS

A. The physical picture

Partial compositeness generates fermion masses through
linear coupling to heavy partner states. In principle, any
number of the fermions in the Standard Model could
acquire their mass through this mechanism. Guided, how-
ever, by the observation that the top quark is the only
fermion in the Standard Model with its mass at the weak
scale, we follow a common practice [14,15] and single it
out. Partial compositeness involves three energy scales:
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(1) the low-energy scale ΛEW of the electroweak (EW)
sector of the Standard Model, characterized by the
masses of the Higgs, W, and Z bosons and of the
top quark;

(2) an intermediate scale ΛHC, perhaps a few TeV,
associated with a new confining “hypercolor” (HC)
dynamics; and

(3) a high-energy scale ΛEHC of an “extended hyper-
color” (EHC) dynamics, associated with operators
needed to generate Standard Model fermion masses.

We shall assume that these energy scales are well separated:
ΛEW ≪ ΛHC ≪ ΛEHC. The setup is reminiscent of the
Standard Model itself, where quantum electrodynamics,
hadronic physics, and electroweak physics enjoy large
separations of scale: ΛQED ≪ ΛQCD ≪ ΛEW. At each scale,
this separation allows for an effective field theory descrip-
tion of the dynamics resulting from all the higher scales.
Our SUð4Þ gauge theory is the hypercolor theory at the
scale ΛHC.
This scenario contains four principal ingredients. First is

the fundamental top quark field, which starts out massless.
At low energies, the Standard Model adequately describes
its interactions, and the familiar formula, mt ¼ ytv, fur-
nishes its mass. If the Standard Model stands alone, both
the Higgs vacuum expectation value v and the top Yukawa
coupling yt are parameters which must be determined from
experiment.
Second enters a composite Higgs boson. The present

scenario imagines the Higgs to be a Goldstone boson of
the hypercolor theory, which confines and spontaneously
breaks its chiral symmetry. Its vacuum expectation value
and mass are calculable in terms of low-energy constants in
an effective theory after perturbative coupling to the
Standard Model. The fact that the Higgs is now composite
provides a solution to the naturalness problem.
Third, the confining hypercolor theory produces bound

states with the same quantum numbers as the top quark.
The masses of these new baryon states are fully calculable
within the hypercolor theory, just as the proton mass is
calculable in QCD. The overall scale ΛHC must be
determined from experiment.
Fourth and finally, we have the extended hypercolor

sector. For the present discussion, its precise dynamics and
particle content remain unspecified. Partial compositeness
only requires that, at the intermediate hypercolor scale, it
induces effective four-fermion interactions that couple the
top quark to its baryonic partners.
With all four pieces in place, the heavy partners of the

top quark may be integrated out. At the low-energy scale
ΛEW this generates an effective interaction between the top
quark and the Higgs boson, which reduces to the Yukawa
coupling of the Standard Model in the appropriate limit.
The structure of the effective interactions is constrained by
symmetry considerations, while the low-energy constants
depend on the masses and interactions of the top-partner
states, and, in particular, on the four-fermion interactions.

Schematically, matching between the physical descrip-
tions at the hypercolor scale and at low energy trades the
top Yukawa coupling yt for two analogues of Fermi’s
constantGF. We call these new couplingsGL andGR, since
they multiply the linear coupling of the top quark to
hypercolor baryon operators of definite chirality. As with
Fermi’s constant in the Standard Model, they would be
calculable once the UV-complete theory has been specified.
It should be noted, however, that the problem of writing
down a realistic extended hypercolor theory remains
unsolved. In brief, a successful solution would need to
overcome many of the same challenges faced by grand
unified theories, such as evading anomalies while uniting
quarks together with fermions of the hypercolor theory into
bigger representations of the EHC gauge force.
Appendix A describes the matching of the effective low-

energy theory at the electroweak scale to the hypercolor
theory in Ferretti’s model [16,17]. Resulting from the
calculation are the following expressions for the Yukawa
coupling and mass of the top quark,

yt ≈GLGR
ZLZR

MBF6

; ð2:1Þ

mt ≈ ytv: ð2:2Þ

Here MB is the mass of the top partner and F6 is the decay
constant associated with the composite Higgs boson. The
factors ZL and ZR are defined in terms of matrix elements
that describe the overlap of the four-fermion operators with
a top partner state. They arise in Eq. (2.1) after making the
approximation that the relevant low-energy constant,
defined in terms of a top-partner two-point function, is
saturated by the lowest state. In the present framework, the
familiar formula for the top mass, mt ¼ ytv, is not an
identity but is recovered in the approximation where
sinðv=F6Þ ≈ v=F6, which is supported by experimental
constraints [14,15,18].
In general, the four-fermi Lagrangian contains several

independent couplings for the left-handed top as well as for
the right-handed top. As a result, the top Yukawa coupling
is given by a sum of terms of the form of Eq. (2.1).
Mass generation through partial compositeness is some-

what similar to the well-known seesaw mechanism, where a
massive state (here the hypercolor baryon) couples linearly
to a massless state (here the top quark), thereby generating
a mass for the latter. There is one important difference,
though. While the baryons of the hypercolor sector are
indeed massive from the outset, the top quark can receive a
mass only after the Higgs field develops an expectation
value. Instead of directly generating a mass for the top, the
linear coupling between the top and the hypercolor sector
generates a Yukawa coupling for the top quark.
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B. The scope of the lattice calculation

Equation (2.1) gives the mass of the top quark in terms of
physical observables in the hypercolor and extended hyper-
color sectors. The couplings GL;R are external to the lattice
calculation and are not calculable without a specific UV
completion. All the other factors are calculable on the
lattice in terms of dimensionless ratios, given a concrete
hypercolor theory like Ferretti’s model. Our group has
previously calculated the mass of the top partner MB and
the pseudoscalar decay constant F6 [5,7].
In this work we compute the normalization factors ZL;R.

Each four-fermion interaction couples a third-generation
quark field to a hypercolor-singlet three-fermion operator,
which serves as an interpolating field for the (left-handed or
right-handed) top partner. ZL;R are defined from the matrix
elements of the interpolating fields between the vacuum
and a single top partner state. A lattice-regulated matrix
element is converted into a continuum-regulated (MS)
matrix element at a reference scale, which, in turn, is
defined in terms of ΛHC. We will take ΛHC ≡ F6 to define
the characteristic scale of the hypercolor theory.

C. Symmetries and the top partner

We now discuss the symmetries of Ferretti’s model and
of ours. Let N4 and N6 denote the number of flavors of
Dirac fermions in the fundamental and sextet representa-
tions, respectively. The fundamental representation is
complex, while the sextet is real. In the present study
N4 ¼ N6 ¼ 2, to be compared with N4 ¼ 3 and N6 ¼ 5=2
in Ferretti’s model (that is, Ferretti’s model has five
Majorana fermions in the 6 representation). The global
symmetry group in the massless limit is SUð2N6Þ in the
sextet sector and SUðN4ÞL × SUðN4ÞR × Uð1ÞB in the
fundamental sector, where Uð1ÞB is the fermion number
of the fundamental fermions. In addition, the model
contains a nonanomalous Uð1ÞA axial symmetry. After
spontaneous breaking of chiral symmetry, the unbroken
symmetry group is SOð2N6Þ × SUðN4ÞV × Uð1ÞB.
Reference [5] discusses some phenomenological conse-
quences related to the fact that the 6 representation of
SUð4Þ is real, while Ref. [19] contains additional group
theoretical details.
We have changed the flavor numbers from Ferretti’s

model to simplify the lattice calculation. We do not expect
the matrix elements we compute to change significantly
from this simplification. The situation is similar to that of
QCD, where most matrix elements show only weak
dependence on the number of flavors of fermions active
in the simulations. For a related discussion, see Ref. [20].
In Ferretti’s model, the Standard Model’s gauge group

lies in the unbroken global subgroup SOð5Þ × SUð3ÞV×
Uð1ÞB. The custodial symmetry group of the Standard
Model, SUð2ÞL × SUð2ÞR ≃ SOð4Þ, is embedded in the
unbroken SOð5Þ. Because the electroweak symmetry is

embedded in the global symmetry of the sextet fermions,
these fermions carry electroweak charges. The fundamental
fermions’ unbroken SUð3ÞV subgroup is identified with the
gauge group of QCD. Thus, the fundamental fermions
carry color charge in the Standard Model. Because the top
quark carries both electroweak and color charges, the top
partner must be a fermionic resonance containing both
fundamental and sextet fermions. Specifically, the top
partner is made of one sextet and two fundamental
fermions, forming a singlet of the SUð4Þ gauge group.
Our previous work on the baryon spectrum of the N4 ¼

N6 ¼ 2 theory considered just such mixed-representation
objects, referring to them as chimera baryons due to their
hybrid nature [7]. The chimera states may be classified
according to their total spin J and the “isospin” I of the
fundamental fermions. Moreover, the spectrum of the
chimera states invites understanding through analogy with
the hyperons of QCD, with the sextet playing the role of a
light strange quark. The top partner in Ferretti’s model
corresponds to the ðJ; IÞ ¼ ð1=2; 0Þ chimera baryon. This
state is the analogue of the Λ hyperon and gets its spin from
the sextet fermion. Reference [7] offers more group
theoretical details relating to this identification.

III. THE LATTICE COMPUTATION

A. Simulation details

This study uses ensembles with simultaneous dynamical
fermions in both the fundamental 4 and the two-index
antisymmetric 6 representation of SUð4Þ, with two Dirac
flavors of each. We use a Wilson-clover action, with
normalized hypercubic (nHYP) smeared gauge links
[21,22]. The clover coefficient is set equal to unity for
both fermion species [23]. For the gauge field, we use the
nHYP dislocation suppressing (NDS) action, a smeared
action designed to reduce gauge-field roughness that would
create large fermion forces in the molecular dynamics
evolution [24]. This study reuses lattices and propagators
generated in previous studies. We therefore refer the reader
to these papers for other technical details [5,7].
Table I summarizes some important properties of the

nine ensembles used in this study. Appendix B contains
more information: Table II gives the parameters of the

TABLE I. Summary of basic physical properties of the ensem-
bles used in this study. MPr and MVr denote the mass of the
pseudoscalar and vector mesons, respectively, in the two repre-
sentations (r ¼ 4, 6). L denotes the spatial extent of the lattice.

Min Max

t0=a2 1.06 1.85
MP4=MV4 0.55 0.79
MP6=MV6 0.47 0.73
MP4L 4.23 8.16
MP6L 4.03 8.91
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individual ensembles, while Table III provides the mea-
sured values of the fermion masses m̂4 and m̂6 and of the
Wilson flow scale t0=a2. As in our previous studies of this
model, hatted variables denote dimensionless quantities
constructed by multiplying by appropriate powers of t0=a2.
For instance, m̂4 ≡ ðm4aÞ × ð

ffiffiffiffiffiffiffiffiffiffiffi
t0=a2

p
Þ.

B. Correlation functions

Our goal is to calculate the overlap factors ZL;R, which
we define according to

h0jOα
L;Rð0; 0ÞjΛ; 0; σi ¼ ZL;Ruð0; σÞα; ð3:1Þ

where jΛ;p; σi is a top-partner chimera state of definite
momentum and spin, and uðp; σÞα is an on-shell Dirac
spinor. The operatorsOL;Rðx; tÞ are listed below. To extract
the lattice regulated version of this amplitude, we conduct
joint correlated fits to the following time-slice correlation
functions:

CPS
� ðtÞ¼

X
x

Tr½P�h0jOL;Rðx;tÞΛ̄ð0;0Þj0i�∼ZL;RZΛe−MBjtj;

ð3:2Þ

CSS
� ðtÞ ¼

X
x

Tr½P�h0jΛðx; tÞΛ̄ð0; 0Þj0i� ∼ Z2
Λe

−MBjtj;

ð3:3Þ

with ZL;R, ZΛ, and MB as free parameters. The mass MB

was computed already in Ref. [7], and we verified that the
new operators used in this study reproduce the masses on
each ensemble. In these expressions, P� ¼ 1

2
ð1� γ4Þ is a

parity projection operator and Tr denotes a trace over the
free spinor indices. In order to isolate the lowest-lying
baryon state, we perform the fit to an exponential on Cþ for
positive times and C− for negative times; see Appendix C
for details. OL;R is a point operator, while Λ and Λ̄ are
smeared. We employ Gaussian smearing on time slices,
fixing to the Coulomb gauge before smearing.
Λ is the baryon interpolating field. In analogy with

hyperons in QCD, let u and d denote the two different
flavors of fundamental fermions and s denote a sextet
fermion. Then

Λ ¼ 2sðuCγ5dÞ þ dðuCγ5sÞ − uðdCγ5sÞ ð3:4Þ

where C is the charge-conjugation matrix. We use the
following shorthand,

uðdΓsÞ≡ ϵABCDuAαðdBβΓβγsCDγ Þ; ð3:5Þ

sðuΓdÞ≡ ϵABCDsABα ðuCβ ΓβγdDγ Þ; ð3:6Þ

with Greek spinor indices and uppercase Latin hypercolor
SU(4) indices. This operator, familiar from baryon spec-
troscopy in QCD [25], has quantum numbers ðJ; IÞ ¼
ð1=2; 0Þ and is chosen to have strong overlap with the Λ
baryon.
As written, the global flavor structure of Eqs. (3.5) and

(3.6) only makes sense for the theory we are simulating and
not for the enlarged global symmetry of Ferretti’s model.
For the latter, let qa denote a fundamental fermion with
flavor SUð3Þ index a, and Qi denote a sextet fermion with
flavor SOð5Þ index i. With the same spin and hypercolor
structure as above, the counterparts of Eqs. (3.5) and (3.6)
with manifest flavor transformation properties are

qðqΓQÞ≡ ϵabcqbðqcΓQiÞ; ð3:7Þ

QðqΓqÞ≡ ϵabcQiðqbΓqcÞ: ð3:8Þ

For OX, X ¼ L, R, we use the following four operators
relevant to partial compositeness in this model
[3,16,17,26],

TABLE II. The ensembles used in this study. All ensembles
have volume V ¼ N3

s × Nt ¼ 163 × 32. The numbering of the
ensembles matches that of Ref. [7]; we have dropped ensembles
8, 11, and 12 because fits to propagators involving point operators
were unsuccessful. More details relating to these ensembles may
be found in Refs. [5,7].

Ensemble β κ4 κ6 Configurations

1 7.25 0.13095 0.13418 61
2 7.25 0.13147 0.13395 71
3 7.30 0.13117 0.13363 61
4 7.30 0.13162 0.13340 71
5 7.55 0.13000 0.13250 84
6 7.65 0.12900 0.13080 49
7 7.65 0.13000 0.13100 84
9 7.75 0.12800 0.13100 84
10 7.75 0.12900 0.13080 54

TABLE III. Fermion masses and flow scales. Fermion masses
are defined via the axial Ward identity. Measurement of these
quantities is described in Ref. [5].

Ensemble t0=a2 m̂4 m̂6

1 1.093(9) 0.0422(7) 0.020(1)
2 1.135(9) 0.028(1) 0.025(1)
3 1.13(1) 0.0345(8) 0.032(1)
4 1.111(9) 0.0228(6) 0.0381(8)
5 1.85(2) 0.050(1) 0.034(1)
6 1.068(5) 0.082(1) 0.0896(8)
7 1.46(2) 0.046(2) 0.080(2)
9 1.56(1) 0.108(1) 0.071(1)
10 1.75(2) 0.073(2) 0.077(2)
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OX ∈

(
BX ¼ 1

2
½PXsðuCPRdÞ − ðu ↔ dÞ�;

B0
X ¼ 1

2
½PXsðuCPLdÞ − ðu ↔ dÞ�: ð3:9Þ

The pair of fundamental fermions is antisymmetric in
flavor, spin, and hypercolor. The primed and unprimed
operators differ only in the choice of chiral projector
PL;R ¼ 1

2
ð1� γ5Þ inside the diquark. In this study we do

not consider two additional operators discussed in
Ref. [17].
Some of the overlap factors are related by symmetry.

Under the usual parity transformation which maps fermions
according to ψðx; tÞ ↦ γ4ψð−x; tÞ, the operators in
Eqs. (3.4) and (3.9) transform as

Λðx; tÞ ↦ γ4Λð−x; tÞ ð3:10Þ

BR;Lðx; tÞ ↦ γ4B0
L;Rð−x; tÞ ð3:11Þ

B0
R;Lðx; tÞ ↦ γ4BL;Rð−x; tÞ; ð3:12Þ

which follow from standard properties of the charge
conjugation matrix, CγμC ¼ γTμ and C2 ¼ −1. The trans-
formation properties of the operators imply the following
transformation for the correlation function:

X
x

Tr½P�h0jBR;Lðx; tÞΛ̄ð0; 0Þj0i�

↦ −
X
x

Tr½P�h0jB0
L;Rðx; tÞΛ̄ð0; 0Þj0i�: ð3:13Þ

Therefore, the overlap factors are related according to
ZR;L ¼ −Z0

L;R. To improve statistics, our analysis combines
correlation functions related by symmetry. Appendix C
contains more technical details related to this point. Below
we report results for the two independent overlap factors ZL
and ZR only.

For use in phenomenology, the lattice regulated operator
must be converted to a continuum renormalization scheme.
Technical details related to this conversion are covered in
Appendix D. In particular, Appendix D includes a dis-
cussion of operator mixing and our usage of clover
fermions. Using the matching factor from a one-loop
calculation following Lepage and Mackenzie [27] gives

ZMS
L;Rðμ ¼ 1=aÞ ¼

�
1þ αMSðq�Þ

4π
Z
�
Zlattice
L;R ðμ ¼ 1=aÞ;

ð3:14Þ

where α is the gauge coupling, q� is a matching scale
proportional to 1=a, and Z is a constant.
Throughout the rest of this paper we shall always report

the renormalized quantities ZMS
L;Rðμ ¼ 1=aÞ, denoted simply

as ZL;R. In line with our usual practice, we define the

dimensionless quantities ẐL;R ¼ ZL;Rt
3=2
0 .

C. Numerical results

Figure 1 shows our results for ẐL and ẐR, the renor-
malized overlap factors of the operators BL and BR with the
state jΛi in units of the Wilson flow scale t0. Table IV in
Appendix B contains the numerical results themselves. On
each ensemble, these two overlaps are equal within the
uncertainties of our computation, in agreement with theo-
retical expectations [16].
The fermion masses, m4 and m6, are free parameters of

Ferretti’s model. A sextet Majorana mass term respects the
unbroken SOð5Þ global symmetry and, therefore, the
embedded symmetries of the Standard Model. Similarly,
a fundamental Dirac mass respects the embedded SUð3Þ
color symmetry of QCD. However, the sextet mass does
have a qualitative constraint. If m6 becomes too large, it
will push the global minimum of the Higgs potential back
to the origin, thereby obstructing the Higgs mechanism.

FIG. 1. Lattice data for ẐL;R, the renormalized overlap factors in units of the flow scale t0. The data are plotted as a function of the mass
MB of the top partner in the continuum limit, taken from Ref. [7]. Horizontal positions have been offset slightly to aid readability, and
horizontal error bars have been suppressed.
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Without more detailed quantitative knowledge of the Higgs
potential and its low-energy constants, it is hard to specify
just how large m6 may safely be. For this reason, we are
most interested in the values of the overlap factors in the
continuum limit and when the sextet fermion mass is small.
Although one could imagine fitting these data using

heavy baryon chiral perturbation theory, we proceed along

more pedestrian lines. We use a simple four-parameter
linear model for the overlap factors ẐL;R:

ẐL;R ¼ p0 þ p4m̂4 þ p6m̂6 þ paâ: ð3:15Þ

The raw data motivate this model. As Fig. 1 suggests, the
overlap factors are fairly smooth as a function of the baryon
mass, which in turn can be approximated well as a linear
function of m̂4 and m̂6 [7], albeit with some scatter. Our
previous experience in this SUð4Þ model suggests that the
residual scatter may be the result of lattice artifacts. We
model this effect through the term linear in the lattice
spacing â≡ a=

ffiffiffiffi
t0

p
.

Figure 2 shows the results of fitting ẐR to the model in
Eq. (3.15); the fit for ẐL is similar. The fits are successful,
with χ2 ¼ 1.85 and 1.55 for ẐR and ẐL, respectively, each
with 5 degrees of freedom.
We use the fits to construct the overlap factors in various

limits. First, in Fig. 3 we construct the continuum (a → 0)
limit by subtracting from the data the lattice artifact
identified in the fits. This lattice artifact is large and

TABLE IV. Results for the renormalized overlap factors

ẐMS
L;Rðμ ¼ 1=aÞ associated with the operators BL;R.

Ensemble ẐR ẐL

1 0.00064(6) 0.00063(8)
2 0.00063(9) 0.00069(7)
3 0.00070(6) 0.00070(8)
4 0.00075(5) 0.00076(6)
5 0.00108(7) 0.00111(10)
6 0.00111(8) 0.00112(8)
7 0.00114(7) 0.00117(9)
9 0.00143(13) 0.00142(7)
10 0.00133(9) 0.00135(6)

FIG. 2. Fitting the renormalized overlap factor ẐR with Eq. (3.15). Solid symbols denote data, while hollow black symbols denote the
fit result. The corresponding result for ẐL is similar. The horizontal axis is the same as in Fig. 1.

FIG. 3. The overlap factors in the continuum limit. The horizontal axis is the same as in Fig. 1.
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negative. We also use the fits to construct the overlap
factors in the simultaneous continuum (a → 0) and chiral-
sextet ðm6 → 0Þ limit. Figure 4 shows these quantities in
units of the Wilson flow scale t0. Phenomenologists may
find the results more interesting as dimensionless ratios
with F6, the sextet pseudoscalar decay constant, which we
have studied previously [5,28]. Figure 5 shows the overlap
factors ZL;R=F3

6 as a function of ðMP4=F6Þ2, a dimension-
less proxy for the fundamental fermion mass. Taken
together, Figs. 3, 4, and 5 show that the overlap factors
are rather flat functions ofm4 andm6, the free parameters in
Ferretti’s model.
Lattice calculations can be affected by (among other

factors) the size of the simulation volume. We have not
simulated multiple volumes, so we cannot see this depend-
ence directly. However, we can compare our volumes to
those of QCD simulations if we temporarily set the flow
parameter to its QCDvalue,

ffiffiffiffi
t0

p
≃ 0.14 fm, and then present

our simulation volumes in fm: V ≃ ð1.6 fmÞ3–ð2.2 fmÞ3.
This is similar to the volumes of ð1.8 fmÞ3 and ð2.7 fmÞ3

used in a lattice calculation of the analogue quantity in QCD
(see below), which saw no noticeable finite-volume effects
[29]. We also note that MPL > 4 for all our data sets (as
shown in Table I). We therefore have grounds to claim that
finite-volume effects are small in our calculation.

IV. DISCUSSION

A. Comparison to QCD

The present results for the overlap factors ZL;R may be
compared to QCD studies related to proton decay. The low-
energy effective action of grand unified theories often
contains four-fermion operators OB which violate baryon
number [30–33]. Typical proton decay channels appearing
in this context include p → π0eþ and p → πþν̄e. A
common theoretical goal is therefore to compute the matrix

elements hπjO=BjPi. Studies of these matrix elements date
back more than thirty years and continue to this day;
Refs. [29,34–39] provide a useful but incomplete sampling
of the literature.

FIG. 4. The overlap factors in the joint continuum and sextet-chiral (m6 → 0) limit, as a function of the fundamental fermion mass m̂4.
These limits are taken from the fits to Eq. (3.15).

FIG. 5. The overlap factors in the joint continuum and sextet-chiral (m6 → 0) limit, plotted against the squared mass of the
fundamental pseudoscalar. The axis variables are dimensionless ratios constructed with the sextet’s pseudoscalar decay constant F6,
calculated in Ref. [5].
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Direct computation of these matrix elements amounts to
computing a three-point correlation function. Chiral sym-
metry and soft-pion theorems relate these matrix elements
to h0jO=BjPi. The latter matrix elements are easier to
compute on the lattice, requiring only two-point functions.
They are the QCD-analogues of the overlap factors defined
in Eq. (3.1) above.
How big are the overlap factors in QCD? In rough

physical terms, we expect them to be approximately the
square of the proton wave function at the origin.
Dimensional analysis provides an order-of-magnitude
estimate,

Z ≈ jΨð0Þj2 ≈ 1

πR3
≃ 0.005 GeV3; ð4:1Þ

where R ≃ 0.8 fm is the radius of the proton. Models in the
early literature typically yielded estimates falling roughly
between 0.004 GeV3 and 0.015 GeV3 [30]. To our knowl-
edge, the most precise lattice determination of the matrix
element in QCD appears in Ref. [39], where the authors
determine that Z ¼ 0.0144ð3Þð21Þ GeV3 at a renormaliza-
tion scale of μ ¼ 2 GeV in the MS NDR scheme. In terms
of dimensionless ratios, their result corresponds to

Zt3=20 ≃ 0.005
Z=f3π ≃ 7;

�
inQCD; ð4:2Þ

using
ffiffiffiffi
t0

p
≃ 0.14 fm ≃ 0.71 GeV−1 and fπ ≃ 130 MeV.

Returning to the present model, the values shown in
Fig. 4 for ẐL;R ¼ ZL;Rt

3=2
0 are about 2.5 times smaller than

their QCD counterparts, which places them at the lower
end of the range estimated in the early literature. More
dramatically, the results for ZL;R=F3

6, shown in Fig. 5, are
smaller than their QCD counterparts by about a factor of
20. This has significant phenomenological implications, as
we discuss next.

B. Implications for phenomenology

Returning to Eq. (2.1) and suppressing the L, R sub-
scripts, the top quark Yukawa coupling is, schematically,

yt ∼
G2Z2

MBF6

: ð4:3Þ

The effective coupling can be expressed as

G ∼ g2EHC=Λ2
EHC; ð4:4Þ

where the dimensionless coupling gEHC characterizes the
extended hypercolor dynamics. If the four-fermion inter-
action arises from the exchange of weakly coupled heavy
gauge bosons, one might expect g2EHC ∼ 0.1. Rearranging
terms, we find

yt ∼
�
gEHCF6

ΛEHC

�
4
�
Z
F3
6

�
2 F6

MB
: ð4:5Þ

This rearrangement is convenient since we see in Fig. 5
that Z=F3

6 ≃ 0.3, and our previous calculation found that
F6=MB ≃ 1=6 [7]. The product of the last two factors in
Eq. (4.5) is about 0.01. As yt ≃ 1, it follows that we need�

gEHCF6

ΛEHC

�
4

≃ 100; ð4:6Þ

or

gEHCF6

ΛEHC
≃ 3: ð4:7Þ

Even if we only make the very conservative assumption
that gEHC < 1, this result is not consistent with the expect-
ation that ΛEHC ≫ F6.
In the above discussion we have ignored the running of

the four-fermion coupling. This coupling is presumed to be
generated at the (high) EHC scale, where the estimate (4.4)
is applicable. The overlap factors are evaluated at the (low)
hypercolor scale, and so the strength of the four-fermion
coupling in Eq. (4.3) must be given at the hypercolor scale,

GðΛHCÞ ¼ GðΛEHCÞ exp
�
−
Z

ΛEHC

ΛHC

γðgHCðμÞÞ
dμ
μ

�
: ð4:8Þ

Here gHC is the running gauge coupling of the hypercolor
theory, while γ is the anomalous dimension of the top-
partner operator that couples to the quark field via the four-
fermion interaction. (We neglect the effect of all the
Standard Model gauge interactions, since they are pre-
sumed to be weak all the way from the EHC scale down to
the hypercolor scale.) If the anomalous dimension is large
and negative over many energy decades, this running
significantly enhances the four-fermion coupling at the
low scale.
Two considerations, however, prevent this enhancement.

First, our spectroscopy studies suggest that the model at
hand is QCD-like, and not nearly conformal—the spec-
troscopy of slowly running theories, for example SUð3Þ
with eight fundamental flavors, looks very different (see
Refs. [40,41] for reviews). This implies that as we raise the
energy scale above the hypercolor scale, the hypercolor
coupling rapidly becomes perturbative.
Moreover, a one-loop calculation of the anomalous

dimensions of the operators in Eq. (3.9) gives small values
[26]. This result has been corroborated by a higher-order
perturbative calculation [42]. While the anomalous dimen-
sions in the present theory have not been calculated non-
perturbatively, these results indicate that the running of the
four-fermion couplings in this model does not alleviate the
problem exposed by Eq. (4.7).
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We emphasize that even if this model were to exhibit
large anomalous dimensions, our results for the overlap
factor Z indicate a self-consistency problem for the
composite Higgs model. The requirement that yt ≃ 1 leads
to Eq. (4.6), which can be rewritten in terms of the low-
energy effective coupling as

G ≃
10

F2
6

; ð4:9Þ

or if we rewrite G≡ 1=Λ2
G to put the coupling in terms of

an energy scale,ΛG ≃ F6=3. Even if a large enhancement is
able to produce a G of this magnitude from a weakly-
coupled EHC theory, the energy scale associated with G is
well below the confinement scale, implying that this four-
fermion coupling is strong at the hypercolor scale. The
basic assumption that we can describe the hypercolor sector
in terms of a strongly coupled gauge-fermion system which
is weakly perturbed by the four-fermion couplings is thus
inconsistent; the dynamical effects of G must be included
from the outset.

C. Summary and conclusions

In this paper we have continued our lattice investigation
of the SUð4Þ gauge theory coupled simultaneously to
fermions in the 4 and 6 representations. This theory is
closely related to a recent model of physics beyond the
Standard Model, due to Ferretti, which contains a
composite Higgs boson and a partially composite top
quark. In this scenario, the top quark couples linearly to
heavy baryonic partners through four-fermion operators.
We calculated baryon overlap factors ZL and ZR, defined in
Eq. (3.1), which describe the overlap of the mixing
operators with the top partner wave function. We found
that the overlap factors, while consistent with rough
dimensional expectations, are about 20 times smaller than
their analogues in QCD when measured in units of the
decay constant of the Goldstone bosons.
Turning to phenomenological implications, we used our

nonperturbative calculation of ZL;R to estimate the effective
Yukawa coupling of the top quark. Within our approx-
imations, we find an inconsistency in the model. Namely,
the model is incompatible with the assumed separation of
scales ΛEHC ≫ ΛHC, if a realistic top Yukawa coupling is to
be induced. This result is independent of the precise value
of the ratio of the hypercolor and electroweak scales. In the
case of two of our approximations it is difficult to estimate
the precise systematic uncertainty. These are the change in
the number of sextet and fundamental flavors and the
saturation of the low-energy constant in Eq. (A10) by the
lightest baryon. Nevertheless, it is unlikely that improving
on these approximations would reverse our negative
conclusion.

This outcome is perhaps not surprising [1,15].
Conventional thinking on partial compositeness typically
requires viable models to have near-conformal dynamics
and mixing operators with large anomalous dimensions. As
discussed in Sec. IV B above, the model we study exhibits
neither. Still, the overlap factors ZL;R can only be deter-
mined reliably by a nonperturbative lattice calculation. Had
these matrix elements been found to be much larger than
their QCD counterparts, instead of much smaller as they
actually turn out to be, the fate of the model might have
been different.
Ferretti offered the SUð4Þ gauge theory with fermions in

the 4 and 6 representations as a candidate model of new
physics [3]. Our calculation of the effective Yukawa
coupling of the top quark disfavors this particular model.
However, the SUð4Þ model was just one reasonably
minimal choice within the broader classification of
Ferretti and Karateev [2,4,10,11,13]. Other models in their
list remain interesting targets for lattice calculations. Some
of these models may exhibit near-conformal dynamics and
may thus produce enhanced overlap factors.
Alternatively, starting from the current model (or from

the model of Ref. [3]), one can introduce additional massive
fermions which are inert under all the Standard Model
symmetries, for the purpose of slowing down the running.
If the resulting theory has a “walking” coupling, meaning
that at ΛHC, where the coupling is strong, the beta function
is small, one might expect enhanced Z factors together with
larger anomalous dimensions. The latter will, in turn,
enhance the four-fermion couplings at the hypercolor scale;
the enhancement might stop at GðΛHCÞ ≃ g2eff=Λ2

HC for
some g2eff ≪ 1, thereby avoiding the situation of Eq. (4.9).
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APPENDIX A: MATCHING
TO THE LOW-ENERGY THEORY

The matching between the hypercolor and electroweak
scales has been treated in detail for Ferretti’s model in
Ref. [16], while related calculations from a slightly more
general perspective appear in Ref. [17]. In order to keep the
present work self-contained, we provide an abbreviated
discussion here.
Global symmetries together with matter content define

an effective field theory. As discussed in Sec. II C, the
structure of spontaneously broken global symmetries in the
hypercolor sector of Ferretti’s model is

�
SUð5Þ
SOð5Þ

�
×

�
SUð3Þ × SUð3Þ0

SUð3ÞV

�
×

�
Uð1ÞB × Uð1ÞA

Uð1ÞB

�
;

ðA1Þ

and each broken symmetry in this product gives rise to a
nonlinear field in the effective low-energy theory. We
denote the nonlinear field associated with the sextet
fermions as Σ ¼ e2iΠ=f. In total, this nonlinear field
describes 14 Goldstone bosons. Four of them are identified
as a composite Higgs doublet H ¼ ðHþ; H0Þ. Identifying
the Standard Model’s SUð2ÞL × SUð2ÞR with the SOð4Þ
subgroup in the upper-left corner, the concrete embedding
within the SUð5Þ=SOð5Þ coset is Π ¼ H þH† þ � � �
where [3]

H ¼

0
BBBBBBBBB@

0 0 0 0 − iffiffi
2

p Hþ

0 0 0 0 1ffiffi
2

p Hþ

0 0 0 0 iffiffi
2

p H0

0 0 0 0 1ffiffi
2

p H0

− iffiffi
2

p Hþ 1ffiffi
2

p Hþ iffiffi
2

p H0
1ffiffi
2

p H0 0

1
CCCCCCCCCA
:

ðA2Þ

The broken symmetries in the fundamental sector and the
conserved Uð1ÞA sector yield additional nonlinear fields, Ω
and Φ, which are discussed in Refs. [16,17]. Because they
play no role in the induced Yukawa couplings, we set them
equal to unity for the rest of our discussion.
In order to derive the interactions between the top sector

and the composite Higgs field one begins by embedding the
third-generation quark fields qL ¼ ðtL; bLÞ and tR into
spurions transforming as the 5 or 5̄ of SUð5Þ. Since both
the 5 and the 5̄ collapse to the defining representation of
SOð5Þ, this determines the embedding to be

TL ¼ 1ffiffiffi
2

p

0
BBBBBB@

ibL
bL
itL
−tL
0

1
CCCCCCA
; TR ¼

0
BBBBBB@

0

0

0

0

itR

1
CCCCCCA
: ðA3Þ

The extended hypercolor dynamics induce effective
four-fermion interactions at the hypercolor scale:

VHC
top ¼ GRT̄LBR þGLT̄RBL þ H:c: ðA4Þ

The operators BR;L are top-partner baryon fields of definite
chirality, which transform as the 5 and 5̄ of SUð5Þ,
respectively. Integrating out all the heavy hypercolor
states, including the top partners, produces an effective
Lagrangian coupling the third-generation quark fields to the
Goldstone bosons of the SUð5Þ=SOð5Þ coset. To leading
order in the power counting of the low-energy theory, the
effective Yukawa terms are

VEW
top ¼ μLT̄RΣ�TL þ μRT̄LΣTR; ðA5Þ

where the coefficients μL and μR are low-energy constants.
The key physical point is that left- and right-handed quarks
couple with an insertion of the nonlinear field Σ.
We now match the low-energy effective theory and the

hypercolor theory to determine the relationship between the
low-energy constants μL;R and the four-fermion couplings
GL;R. At the level of the partition functions, the matching
amounts to equating the functional derivatives

∂2 logZEW

∂TL∂T̄R
¼ ∂2 logZHC

∂TL∂T̄R
; ðA6Þ

(and similarly for R ↔ L). The result is

μLPL ¼ −GLGRPLSBð0ÞPL; ðA7Þ

μRPR ¼ −GLGRPRSBð0ÞPR; ðA8Þ

where

SBðpÞ≡
Z

d4xeipxhBðxÞB̄ð0Þi; ðA9Þ

and the four-component baryon field is B ¼ BL þ BR. The
appearance of the baryon two-point function corresponds to
the fact that the functional derivatives on the right-hand side
of Eq. (A6) isolate two insertions of the interactions in
Eq. (A4). For pμ ¼ 0, one expects that SBð0Þ is propor-
tional to the identity in Dirac space. Correspondingly, with
slight abuse of notation, μL ¼ μR ¼ −GLGRSBð0Þ.
The baryon two-point function SBðpÞ contains power-

law divergences that originate when the baryon and
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antibaryon are at the same point. However, PLSBðpÞPL and
PRSBðpÞPR are order parameters for SUð5Þ=SOð5Þ sym-
metry breaking, and therefore their power divergences must
be proportional to a positive power of the sextet fermion
mass m6. In this way, all power-law divergences vanish in
the sextet-chiral limit, m6 → 0. On the lattice, avoiding
such power divergences requires a fermion formulation
with some chiral symmetry. Because we have used Wilson
fermions in our dynamical fermion simulations, this nec-
essarily leads to a more complicated, mixed-action setup.
We leave a direct study of SBð0Þ to a future project.
Instead, we conduct the following more modest calcu-

lation. We expect the two-point function to be dominated
by the lowest-lying baryon which couples to the operators
BL and BR. Inserting a complete set of states reveals that

SBð0Þ ¼
ZLZR

2MB
þ…; ðA10Þ

where MB is the mass of the lightest top-partner state and
the dots denote contributions from excited states. The
factors ZL and ZR describe the overlap of the local chiral
operators BL and BR with the baryon state. They are the
target of our lattice calculation and are defined in Eq. (3.1).
To see what mass is induced for the top quark, we set the

Higgs to its vacuum expectation value v and the spurion
fields to their Standard Model values. Using the concrete
embeddings given in Eqs. (A2) and (A3), one readily
discovers that

μLT̄RΣ�TL þ μRT̄LΣTR → −mtt̄t; ðA11Þ

where t ¼ tL þ tR is the Standard Model’s top quark, and
the top quark mass is

mt ¼
GLGRSBð0Þffiffiffi

2
p sin

�
2

ffiffiffi
2

p
v

F6

�
≈GLGR

ZLZR

MB

v
F6

: ðA12Þ

The right-most expression is valid after making the
approximation of saturating the baryon two-point function
by the lowest state, cf. Eq. (A10), as well as the small-angle
approximation v=F6 ≪ 1. We can also infer the top quark’s
effective Yukawa coupling:

yt ≈GLGR
ZLZR

MBF6

: ðA13Þ

APPENDIX B: DATA TABLES

This brief Appendix collects tables of our simulation
parameters and results for the baryon spectrum. In order to
keep the discussion self-contained, several of the tables
have been reproduced from [7]. Table II lists the ensembles
used in our calculation, while Table III gives the fermion
masses and Wilson flow scales for these ensembles.

Table IV contains the results for the renormalized overlap
factors.

APPENDIX C: LATTICE SPECTROSCOPY

As with a general baryon interpolating field in QCD, the
operator Λ of Eq. (3.4) couples strongly to states of two
different parities. One of these states is the desired ground
state, while the other is an excited state. The mass and
amplitude of the individual states are difficult to disen-
tangle when both states are present. The inclusion of a
parity projection operator in Eqs. (3.2) and (3.3) isolates
each state. On a lattice of infinite temporal extent, the
correlator with Pþ would couple to the ground state only;
the correlator with P− would couple to the excited state
only. The amplitudes ZL;R are defined as the overlap factors
between the ground state and the point operators.
On a lattice of finite temporal extent, contributions are

present from a backward-propagating state of opposite
parity, evenwith the inclusion of the explicit parity projection
P� [25]. A benefit of this fact is that both projections contain
information about the ground state. Our analysis follows
common practice in lattice baryon spectroscopy and com-
bines the two projected correlation functions CþðtÞ and
C−ðNt − tÞ. In this way, we obtain a single smeared-source,
point-sink correlator which decays exponentially until t ≈
Nt=2 and with amplitude ZBZΛ.
In Sec. III B, we showed that pairs of correlation

functions are related by discrete symmetry according to
Eq. (3.13). We have verified that our code which computes
the correlations function satisfies Eq. (3.13) to machine
precision in free field theory. We have also verified that the
correlation functions in our simulations satisfy this relation
with good agreement. Our analysis also combines the
correlations functions related by discrete symmetry.
Overall, on a configuration-by-configuration basis and

before constructing any correlation matrix, we combine the

correlation functions associated with BR and B0
L: C

BRΛ̄þ ðtÞ,
C
B0
LΛ̄þ ðtÞ, CBRΛ̄− ðNt − tÞ, and C

B0
LΛ̄− ðNt − tÞ. When combin-

ing the correlation functions, one must take care to mind
overall signs [cf. Eq. (3.13)]. Similarly, we combine the
correlation functions with the sinks operators BL and B0

R.
We then fit the correlation functions in Eqs. (3.2) and

(3.3) to a single decaying exponential instead of a hyper-
bolic function, neglecting the region with t≳ Nt=2 which
remains contaminated by the excited state of opposite
parity. For each correlator, we use the fitting procedure
described in Appendix B of Ref. [5]. In particular, we
include a systematic uncertainty stemming from the choice
of the initial and final times ½tmin; tmax�.
We use the publicly available PYTHON packages LSQFIT

[43] and GVAR [44] for nonlinear fitting and classical error
propagation. When computing ratios of quantities derived
from different fits, we use single-elimination jackknife to
propagate errors including correlations.
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To demonstrate the stability of our fits, we now show
some illustrative results from Ensemble 10; the other
ensembles are similar. Figure 6 shows the correlation
functions and effective masses of Eqs. (3.2) and (3.3) used
to determine ZRR. The effective mass is computed accord-
ing to

meffðtÞa ¼ arcosh

�
Cðtþ 1Þ þ Cðt − 1Þ

2CðtÞ
�
: ðC1Þ

Both correlation functions exhibit strong signals through-
out the fit region. The green band is the result of our best fit
and extends across the fit region chosen according to the
procedure in Appendix B of Ref. [5]. In order to achieve
strong signals and flat effective masses we tuned the
gaussian smearing radius on each ensemble, as described
in Ref. [7]. As a nontrivial check of our results, we verified

that the masses in this study agreed statistically with our
previous work using different interpolating fields [7].
Figures 7 and 8 demonstrate the stability of our determi-
nation of ZRR. Figure 7 shows the effective amplitude ZRR

eff ,
with the black points constructed according to

ZeffðtÞ ¼
CPSðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi

CSSðtÞ
p

e−mBt=2
; ðC2Þ

with mB taken from the best fit. Similar effective ampli-
tudes arise frequently in lattice QCD studies of flavor
physics (for one such example, see [45]). The signal for the
amplitude is stable and consistent with our best-fit result.
The outliers at early times likely contain excited-state
contamination. At large times not included in the best
fit, the effective amplitude remains statistically consistent
with the best-fit result. Figure 8 shows results for the

FIG. 6. The correlation functions and effective masses of Eqs. (3.2) and (3.3) used to extract ZRR for Ensemble 10. Both correlation
functions exhibit strong signals throughout the fit region. The green band indicates the mass of the best-fit result; the width indicates
statistical uncertainty only.

FIG. 7. The effective amplitude ZRR
eff a

3 of Eq. (C2) for Ensemble 10. The green band indicates the best-fit result and fit range; the width
indicates statistical uncertainty only.
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amplitude ZRR coming from other candidate fits using
different fit windows. The figure only shows successful fits
with χ2=DOF≲ 2.0. The figure demonstrates that the fit
result for the amplitude is robust to the choice of fitting
window. Following the procedure of Ref. [5], our final
results also include a conservative systematic error to
account for any possible bias arising from the choice of
the fit window. The systematic error for ZRR is 0.00015 for
this ensemble. The general features of the analyses are
similar for ZLR and for the other ensembles.

APPENDIX D: NORMALIZATION
AND RENORMALIZATION

The mass of the top partner is a renormalization group
invariant quantity. The amplitude ZB, however, depends on
the scale and must therefore be renormalized in order to
make contact with continuum physics. This process con-
sists of a couple of steps, which we now describe.
First, Wilson fermions carry a different overall normali-

zation from continuum fermions. Correcting this discrep-
ancy amounts to multiplying each fermion field by a factor
of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3κr=4κrc

p
, where κr is the hopping parameter

and κrc is its critical value [27]. The subscript r denotes
the representation of the fermion. Therefore, a baryon
operator of the form OB ∼Qqq acquires the following
normalization

OB →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

3

4

κ6
κ6c

s
×

�
1−

3

4

κ4
κ4c

�
OB≡Nðκ4;κ6ÞOB: ðD1Þ

Second, we require a matching coefficient Zðlatt → MSÞ
which converts a lattice regulated matrix element into its
dimensionally-regulated analog in the MS scheme. At one
loop, one finds

Zðlatt → MSÞ ¼ 1þ αMSðq�BÞ
4π

Z; ðD2Þ

where Z is the difference between the (finite portion of the)
MS integral in 4 − 2ϵ dimensions and a corresponding
integral in lattice perturbation theory

Z ¼ Ifinite
MS

− Ilattice: ðD3Þ

Ifinite
MS

and Ilattice are the results of one-loop calculations in
continuum and lattice perturbation theory, respectively.
Reference [26] carried out the relevant calculation in
continuum perturbation theory. A standard but rather
technical computation along the lines of Ref. [46] delivers
the result in lattice perturbation theory. Appendix D of
Ref. [5] contains more details relevant to the calculation in
the present SUð4Þ system.
This calculation makes a simplifying approximation. It

can be illustrated by looking at a vertex correction. Think of
a vertex operator as ψ̄αΓiψβ for Dirac matrix Γi and color
factors α and β on the spinors and write this quantity as Γi.
The one loop correction to Γ is

VΓ ¼ K0Γþ K1γμΓγμ þ K2γμγνΓγνγμ þ…: ðD4Þ

where the Ki’s are individual lattice integrals which can be
computed by projecting integrands onto elements of the
Clifford algebra.
The Wilson and clover actions have only K0, K1, and K2

nonzero. The overlap action only has nonzero K0 and K2

terms. The continuum calculation with massless fermions
only has nonzero K2. More complicated actions could have
additional terms. The K1 term is responsible for “bad”
operator mixing into opposite-chirality operators. It is the
source of the biggest artifacts in lattice calculations of
four fermion operators like BK with Wilson-type quarks.
However, lattice studies using clover-improved Wilson
quarks have successfully suppressed this mixing using
smearing [46,47]. In the present study we use clover-
improved Wilson fermions with nHYP smearing, which
may be therefore expected to reduce mixing.
Calculation shows that with nHYP clover fermions and

the usual Wilson gauge action, K0 ¼ 4.38, K1 ¼ −0.02,
K2 ¼ −0.47. The tiny value of K1 suggests that we should
not worry about lattice induced mixing effects and just take
K1 ¼ 0. For comparison, the value of K1 with thin links is
nearly 20 times larger [46]. This allows us to quickly extend
the mnemonic of Eq. (D4) to all the one loop perturbative
diagrams, even ones which are not so easily Fiertz-rotated
into a product of a dressed current times an undressed.

FIG. 8. Values for the amplitude ZRRa3 emerging from other candidate fits for Ensemble 10. The green band indicates the best-fit
result; the width indicates statistical uncertainty only.
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The matching factor is the same for all four operators in
Eq. (3.9). We find Z ¼ −4.83.
Equation (D2) contains a well-understood ambiguity:

what are the correct value and scale for the running coupling?
Many reasonable solutions exist to this problem. We elect to
use the scheme due to Lepage and Mackenzie [27], which
defines the coupling αV from a non-perturbative measure-
ment of the trace of the plaquette operator on each ensemble.
After converting this coupling to an MS value [48,49], we
run it to a momentum scale q⋆Ba characteristic of the operator
OB. Hornbostel, Lepage, and Morningstar provide a pre-
scription for computing q⋆Ba in lattice perturbation theory
[49,50]. Their procedure requires slight modification for
operators with an anomalous dimension; our precise tech-
nique is that of Ref. [46]. We find q⋆Ba ¼ 1.15.

We remark that the values for Z and for q⋆B agree (within
the quoted digits) for the NDS action used in this study with
the corresponding results using the Wilson gauge action.
Assembling all of our pieces,

ZMS
B ðμ ¼ 1=aÞ ¼ Zðlatt → MSÞNðκ4; κ6ÞZlattice

B ðμ ¼ 1=aÞ:
ðD5Þ

The quantity Zlattice
B is what emerges from the fits to lattice

data; the physical quantity is ZMS
B ðμ ¼ 1=aÞ. In the

ensembles of this study, the overall multiplicative factor is

Zðlatt → MSÞNðκ4; κ6Þ ≃ 0.12: ðD6Þ
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