
 

Thermal quarkonium mass shift from Euclidean correlators
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Brambilla, Escobedo, Soto, and Vairo have derived an effective description of quarkonium with two
parameters; a momentum diffusion term and a real self-energy term. We point out that the real self-energy
term can be expressed directly in terms of Euclidean electric-field correlators along a Polyakov line. This
quantity can be directly studied on the lattice without the need for analytical continuation. We show that
existing Minkowski-space calculations of this correlator correspond with the known NLO Euclidean value
of the relevant electric-field two-point function.
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I. INTRODUCTION

Quarkonium (bound heavy quark-antiquark states) are an
intriguing probe of the quark-gluon plasma [1]. Originally
proposed by Matsui and Satz [2], the suppression of
quarkonia has remained an active topic of experimental
[3–8] and theoretical [9–15] investigation ever since. The
central idea is that a thermal medium tends to break up
quarkonium bound states; one then investigates how strong
this effect is expected to be theoretically and how much
such states are suppressed experimentally. Recently, it has
become clear that for charmonium at the highest energies,
there are also important recombination effects from the
many open charm quarks in the plasma [16–18].
Recently, Brambilla, Escobedo, Soto, and Vairo have

used potential nonrelativistic QCD (pNRQCD) [19–21] at
second order in the multipole expansion to rigorously
derive, in Ref. [14], an open-quantum-system effective
description for quarkonium evolution in a quark-gluon
plasma for m ≫ 1=a0 ≫ T, where m is the heavy quark
mass and a0 ∼ 1=ðmαsÞ the Bohr radius. Their description
depends on two (in principle, nonperturbative) parameters
describing the interaction of the thermal medium with
heavy quarks. One parameter is the well-known heavy-
quark momentum-diffusion coefficient [22],

κ ¼ g2

6Nc
Re

Z
∞

−∞
dshTEa;iðs; 0ÞEa;ið0; 0Þi; ð1Þ

where Ea;i is the color electric field, s is the Minkowski
time value, both E fields are at the same space coordinate 0,
Nc ¼ 3 is the number of colors, T is the time-ordering
symbol, and a fundamental-representation forward-time
Wilson line is implicitly included in the time-ordered
correlator indicated. This quantity has been extensively
investigated in the literature, in weak-coupling QCD
[23–26], effective models [27], holographic dual theories
[22,28], and via analytical continuation from lattice data
[29–33].
The second parameter is a real nondissipative plasma

effect, which induces a mass shift in the heavy-quark bound
states. At lowest order in pNRQCD, the shift is δm ¼ 3

2
a20γ

[10], where γ is the following electric-field correlator:

γ ¼ g2

6Nc
Im

Z
∞

−∞
dshTEa;iðs; 0ÞEa;ið0; 0Þi: ð2Þ

This correlator has received less attention in the literature,
and as we will show, it will actually be much easier to
determine via lattice QCD methods than the coefficient κ.
Therefore, in this paper, we focus on investigating the
coefficient γ.
In the next section, we show how to analytically continue

Eq. (2) to Euclidean time. This continuation leads to a time
integral of a correlator of electric fields along a Polyakov
loop. In the remainder of the paper, we check this derivation
by showing that the known next-to-leading order (NLO)
value of γ, derived by Minkowski space methods in
Ref. [10], correctly corresponds to the appropriate integral
moment of the known NLO Euclidean correlator from
Ref. [34]. This is a nice check of our continuation.
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However, to us, the most interesting result is the possibility
of a future nonperturbative determination of γ on the lattice.

II. ANALYTIC CONTINUATION OF
ELECTRIC-FIELD CORRELATOR

The analytic continuation of the electric-field correlator,
Eq. (2), is not trivially doable. However, we do not consider
this correlator directly but instead use the heavy-quark
current-current correlator

Z
∞

−∞
dteiωt

Z
d3xh½Ĵ μðt;xÞ; Ĵ νð0; 0Þ�i; ð3Þ

from which Eq. (2) originates. Here, Ĵ μ ≡ ˆ̄ψγμψ̂ is the
heavy-quark current, and ψ̂ is the heavy-quark field
operator. The definition of the heavy-quark momentum-
diffusion coefficient κ as the spectral function of Eq. (3) in
the Mkin → ∞ limit is derived in Ref. [29]. Its authors also
show that in the heavy-quark limit, the current-current
correlator can be analytically continued to Euclidean time,
leading to the Euclidean color-electric correlator

GHQ
E ðτÞ¼−

X3−2ϵ
i¼1

hReTr½Uðβ;τÞgBEiðτ;0ÞUðτ;0ÞgBEið0;0Þ�i
3hReTr½Uðβ;0Þ�i :

ð4Þ

For the details of the continuation, we refer the reader to the
original paper [29].
In order to analytically continue γ, we need to relate the

imaginary part of Eq. (3) with its analytic continuation
Eq. (4). Therefore, we remind the reader of the relation
between the imaginary part of a two-point function of
two Hermitian operators A, B in real time with the zero
Matsubara frequency limit of the corresponding Euclidean
correlator, such that

ImGAB
R ðω ¼ 0Þ ¼ Im

Z
∞

0

dtGABðtÞ

¼
Z

β

0

dτGAB
E ðτÞ ¼ G̃Eðωn ¼ 0Þ: ð5Þ

The two-point functions are defined in the usual way,
GABðtÞ¼iTrfρ̂½AðtÞ;Bð0Þ�g and GAB

E ðτÞ¼Trfρ̂Að−iτÞBð0Þg,
with ρ̂≡ 1

Z e
−βH the finite-temperature equilibrium density

matrix. [Note that
R
∞
0 dtGABðtÞ is purely imaginary since

the commutator of Hermitian operators gives twice the
imaginary part. Nevertheless, we take the imaginary part
explicitly because the finite-frequency transform contains
real and imaginary parts.]
We insert two complete sets of energy eigenstates in the

definition of the two-point function such that the lhs of
Eq. (5) becomes

Z
∞

0

dt
X
n;m

2i
Z
Re½AmnBnm�e−

β
2
ðEnþEmÞ

× sinh

�
βðEn − EmÞ

2

�
e−iðEn−EmÞt

¼
X
n;m

2

Z
Re½AmnBnm�

e−
β
2
ðEnþEmÞ

En − Em
sinh

�
βðEn − EmÞ

2

�
;

where we use the notation Anm ¼ hnjAðt ¼ 0Þjmi. Using
the same procedure on the rhs of Eq. (5) yields

Z
β

0

dτ
X
n;m

1

Z
AmnBnme−βEme−ðEn−EmÞτ

¼
X
n;m

2

Z
AmnBnm

e−
β
2
ðEnþEmÞ

En − Em
sinh

�
βðEn − EmÞ

2

�
:

So as long as AmnBnm has no imaginary part, which
happens if A and B are Hermitian operators or if
A ¼ B†, Eq. (5) is true. From this we conclude that the
analytic continuation of the mass shift correlator γ is

γ ¼ −
Z

β

0

dτGHQ
E ðτÞ; ð6Þ

where the minus sign emerges from different factors of i in
the definition of the color-electric field in real and imagi-
nary time. The main result of this paper is therefore that the
thermal effects on the mass shift γ can be determined by a
nonperturbative calculation using the vacuum subtracted
Euclidean color-electric correlator on the lattice.
To further clarify the need for vacuum subtraction, let us

look at the Euclidean color-electric correlator at leading
order (LO), Oðg2Þ. It is obtained trivially by connecting
the two chromoelectric fields with a gluon propagator,
yielding [29,34]

GHQ
ELOðτÞ ¼ −

g2CF

3

XZ
K

eiknτ
ðD − 1Þk2n þ k2

k2n þ k2
; ð7Þ

where
PR
K
≡ T

P
kn

R
k,

R
k ≡

R
ddk=ð2πÞd with D ¼ dþ 1

the dimension of spacetime and kn the bosonic Matsubara
frequency. One could immediately perform the τ integra-
tion of Eq. (6), obtaining βδkn , at which point the

R
k integral

would vanish in dimensional regularization (DR), as
would, in this scheme, the vacuum contribution, where
the τ integrations runs from −∞ to þ∞ and the Matsubara
sum is replaced with an integral over a continuous
Euclidean frequency k4. However, to better illustrate the
need for vacuum subtraction in other schemes, such as the
lattice, let us instead perform first the Matsubara sum and
then the

R
k, which gives [29]
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GHQ
ELOðτÞ ¼ g2CFπ

2T4

�
cos2ðπτTÞ
sin4ðπτTÞ þ

1

3sin2ðπτTÞ
�
: ð8Þ

The integration of this object over the compactified time
direction does not converge, as the integrand diverges as
τ−4 as τ → 0 and as ðβ − τÞ−4 as τ → β. But this divergence
is ultraviolet, as it comes about when the two E fields are
brought together. It is thus equal to the behavior observed in
vacuum, which can be easily obtained from the k4
integration, leading to

GHQ
ELOðτ; T ¼ 0Þ ¼ g2CF

π2τ4
: ð9Þ

Hence, vacuum subtraction in a non-DR scheme takes
the form

γ ¼ −2
Z

β=2

0

dτ½GHQ
ELOðτÞ −GHQ

ELOðτ; T ¼ 0Þ�

þ 2

Z
∞

β=2
dτGHQ

ELOðτ; T ¼ 0Þ ¼ 0þOðg4Þ; ð10Þ

where we have exploited the symmetry of the thermal
contribution at τ ¼ β=2 and that of the vacuum at τ ¼ 0. It
is precisely a subtraction of this kind that would need to
be performed on the lattice: for all τ < β=2 values, one
computes the difference between the correlator on the
thermal lattice and the vacuum lattice, and one then
subtracts the integral of the vacuum contribution over
τ > β=2. In practice, due to the noisy denominator in
Eq. (4), it may be impossible to subtract γ at very low
temperatures on the lattice; in practice, a subtraction at a
temperature where thermal effects are expected to be small
should be sufficient.
At small separation, where the vacuum and thermal

correlators diverge but the difference stays finite, it may be
difficult to extract the difference with good statistical
power. However, we believe that, while the individual
short-distance values are sensitive to even small amounts of
gradient flow [35–37], the difference should not be. This is
supported by existing analytical studies [38], and it would
be useful to investigate this issue further. We also refer to
[39] for the perturbativeOðαsÞ renormalization of Eq. (4) in
the lattice scheme.

III. NLO INTEGRATION OF EUCLIDEAN
CORRELATOR

In this section, we validate our result in a perturbative
calculation at next-to-leading order and present the
imaginary-time integration of the correlator in Eq. (4). The
Euclidean color-electric correlator was calculated in per-
turbation theory up to next-to-leading order in Ref. [34],
and the contributing diagrams are shown in Fig. 1. Since we

are interested in the thermal contributions to γ, we subtract
the vacuum contribution of the correlator during the
calculation. As previously highlighted, dimensional regu-
larization does that automatically, so in the following we
will not keep track of scale-free contributions that vanish in
any D.
Using the integral expression of GHQ

ENLOðτÞ obtained in
Ref. [34] from the diagrams above, we notice that the only τ
dependence is in the Fourier transform. After applying the
Kronecker delta βδkn arising from the τ integration, we
obtain that

γLO ¼ −
Z

β

0

dτGHQ
ENLOðτÞ

¼ g4CF

3
½NcðI1 þ 2ðD − 2ÞI2Þ − NfðĨ1 þ 4Ĩ2Þ�;

ð11Þ

where we have introduced the sum integrals

I1; Ĩ1 ¼
Z
k

XZ
Q;fQg

1

Q2ðK −QÞ2
����
kn¼0

; ð12Þ

I2; Ĩ2 ¼
Z
k

XZ
Q;fQg

q2n
K2Q2ðK −QÞ2

����
kn¼0

; ð13Þ

where K2 ¼ k2n þ k2. The notation fQg represents the
fermionic Matsubara frequencies qn ¼ πTð2nþ 1Þ for the
fermionic sum integrals, denoted by Ĩ. These are directly
related to the bosonic ones via

σfðTÞ ¼ T
X
fqng

fðqn;…Þ ¼ 2σbðT=2Þ − σbðTÞ: ð14Þ

(b) (c) (d) (e) (f)

(g) (h) (j)(i) (k)

FIG. 1. Feynman diagrams contributing to the correlation
function at order g4. The circle represents the Polyakov line,
and the heavy dots are the electric-field insertions. Diagram
(k) includes the full gluon self-energy and therefore fermionic and
ghost contributions. The labeling of the diagrams parallels that of
Ref. [34]; diagram (a), not shown, is the order-g2 graph.
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The bosonic integrals are easily evaluated as

I1 ¼
Γ2ð1 − d=2Þζð4 − 2dÞ

8π4−dT3−2d ¼d→3
0; ð15Þ

I2 ¼ −
ðd − 2ÞΓ2ð1 − d=2Þζð4 − 2dÞ

16ðd − 3Þπ4−dT3−2d ¼d→3 −
ζð3Þ
8π2β3

; ð16Þ

where we have used a Feynman parameter for I2. The
fermionic counterparts, obtained from Eq. (14), are

Ia ∝
1

β2d−3
→ Ĩa ¼ Ia × ð42−d − 1Þ:

Putting everything together, we find

γLO ¼ −2α2sT3ζð3ÞCF

�
4

3
Nc þ Nf

�
: ð17Þ

This is the known result from the real-time calculation of
the mass shift in quarkonium given in Ref. [10].
Consequently, we have shown that the imaginary time
correlator in Eq. (4) reproduces the leading-order result
of Eq. (2).
Interestingly, it is also possible to check the agreement

beyond LO. Our analysis has so far used unresummed
perturbation theory, which is appropriate when all momenta
are of order T and the Matsubara frequency qn is nonzero.
Unlike κ, which receives a contribution from the gT scale at
LO, γ does not. Inspection of Eqs. (6) and (7) shows that
k ∼ gT contributes to γ atOðg5Þ. This contribution is easily
obtained by replacing Eq. (7) with its resummed version.
Since the τ integration forces kn ¼ 0, it suffices to use
electrostatic QCD (EQCD) [40–44], where E ≈ −i∇A0.
Then the temporal component of the gauge field gets
Debye-screened, yielding

γNLO ¼ g2CF

3

Z
k

k2

k2 þm2
D
¼ αsCFm3

D

3
; ð18Þ

where m2
D ¼ g2T2ðNc=3þ Nf=6Þ is the Debye mass.

Equation (18) agrees with Eq. (87) of [10], recalling that

ReδVsðrÞ½10�11 ¼ γr2=2. This Oðg5Þ term is the only NLO
contribution to γ; to the best of our knowledge, this was not
observed in the previous literature.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we showed that the coefficient γ, intro-
duced by Brambilla, Escobedo, Soto, and Vairo [14], and
representing a thermal medium effect on the heavy quark
bound state energies, can be reexpressed in terms of a
Euclidean correlation function, (4), which is highly ame-
nable to a lattice determination. With the vacuum contri-
butions removed, the time integral of the correlator, (6),
should not suffer from divergences, and the computational
cost should be reasonable if smoothing techniques like
gradient flow are employed. We confirmed that the LO
results for γ, evaluated via real-time techniques in Ref. [10],
agree with the Euclidean time integration of the results of
Ref. [34], which is a nontrivial check on our derivation. We
also obtained the NLO correction to γ in Eq. (18).
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