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Truncating the low-lying modes of the lattice Dirac operator results in an emergence of the chiral-spin
symmetry SUð2ÞCS and its flavor extension SUð2NFÞ in hadrons. These are symmetries of the quark-
chromoelectric interaction and include chiral symmetries as subgroups. Hence the quark-chromomagnetic
interaction, which breaks both symmetries, is located at least predominantly in the near-zero modes.
Using as a tool the expansion of propagators into eigenmodes of the Dirac operator we here analytically
study effects of a gap in the eigenmode spectrum on baryon correlators. We find that both Uð1ÞA and
SUð2ÞL × SUð2ÞR emerge automatically if there is a gap around zero. Emergence of larger SUð2ÞCS and
SUð4Þ symmetries requires in addition a microscopical dynamical input about the higher-lying modes and
their symmetry structure.

DOI: 10.1103/PhysRevD.99.094040

I. INTRODUCTION

In a number of lattice spectroscopical studies with a
chirally invariant Dirac operator upon artificial truncation
of the lowest modes of the Dirac operator [1,2] a large
degeneracywas discovered inmesons [3–5] and baryons [6].
Corresponding symmetry groups, SUð2ÞCS and SUð2NFÞ
[7,8], turned out to be larger than the chiral symmetry
SUðNFÞL × SUðNFÞR ×Uð1ÞA of the QCD Lagrangian.
The chiral-spin symmetry group SUð2ÞCS has Uð1ÞA as a
subgroup while its flavor extension SUð2NFÞ contains both
SUðNFÞL × SUðNFÞR ×Uð1ÞA and SUð2ÞCS as subgroups.
The chiral-spin transformations from SUð2ÞCS includes
rotations that mix the left- and right-handed components
of the quark field. Obviously these symmetries are not
symmetries of a free Dirac equation or of the QCD
Lagrangian. However, they are symmetries of the Lorentz-
invariant fermion charge operator and (in a given reference
frame) of the quark-chromoelectric interaction while the
interaction of quarks with the chromomagnetic field and the
quark kinetic term break them. Consequently the emergence
of SUð2ÞCS and SUð2NFÞ upon truncation of the low-lying
modes tells thatwhile the confiningquark-electric interaction
is distributed among all modes of the Dirac operator, the
quark-magnetic interaction is located at least predominantly
in the near-zeromodes. Some unknownmicroscopic dynam-
ics should be responsible for this phenomenon.

These symmetries emerge naturally, i.e., without any
explicit truncation, in hot QCD above the pseudocritical
temperature [9–11], where the near-zero modes of the Dirac
operator are suppressed by temperature [12]. Consequently
elementary objects in that range are not free quarks and
gluons but rather chirally symmetric quarks bound by the
chromoelectric field into color singlet objects, such as a
“string.”
According to the Banks-Casher relation [13] the chiral

symmetry breaking quark condensate is proportional to the
density of the near-zero modes. A gap in the low-lying
Dirac eigenmode spectrum induces restoration of
SUðNFÞL × SUðNFÞR symmetry. It was shown that it also
induces restoration of Uð1ÞA in the J ¼ 0 mesons [14].
Analytical study of the J ¼ 0 and J ¼ 1 isovector meson
propagators in terms of the eigenmodes of the Dirac
operator revealed that all meson correlators that are con-
nected by the Uð1ÞA and/or SUð2ÞL × SUð2ÞR transforma-
tions get necessarily degenerate if such a gap exists in the
Dirac spectrum [15]. However, a possible emergence of
SUð2ÞCS and of SUð2NFÞ requires further dynamical
properties encoded in certain matrix elements. Here we
extend this analysis to baryons and show that the same
conclusions remain valid in this case as well.

II. CHIRAL-SPIN SYMMETRY

The SUð2ÞCS chiral-spin transformations for quarks are
given by

ψ → ψ 0 ¼ exp

�
i
εnΣn

2

�
ψ ; ð1Þ
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where generators, defined in the Dirac spinor space, are

Σ ¼ fγk;−iγ5γk; γ5g: ð2Þ

Here γk, k ¼ 1, 2, 3, 4, are hermitian Euclidean gamma
matrices, obeying the anticommutation relations

γiγj þ γjγi ¼ 2δij; γ5 ¼ γ1γ2γ3γ4: ð3Þ

Different k define four-dimensional representations that can
be reduced into two-dimensional irreducible ones. The
suð2Þ algebra

½Σa;Σb� ¼ 2iϵabcΣc ð4Þ

is satisfied for any k in Eq. (2).
Uð1ÞA is a subgroup of SUð2ÞCS. The SUð2ÞCS trans-

formations mix the left- and right-handed fermions and
different representations of the Lorentz group. The free
massless quark Lagrangian and Dirac equation do not have
this symmetry.
Extending the direct product SUð2ÞCS × SUðNFÞ one

obtains an SUð2NFÞ group. The chiral symmetry group
of QCD SUðNFÞL × SUðNFÞR × Uð1ÞA is a subgroup of
SUð2NFÞ. The SUð2NFÞ transformations are given by

ψ → ψ 0 ¼ exp

�
i
2
ϵmTm

�
ψ ; ð5Þ

where m ¼ 1; 2;…; ð2NFÞ2 − 1. The set of ð2NFÞ2 − 1
generators is

Tm ¼ fðτa ⊗ 1DÞ; ð1F ⊗ ΣnÞ; ðτa ⊗ ΣnÞg; ð6Þ

with the flavor generators τ with flavor index a and n ¼ 1,
2, 3 is the SUð2ÞCS index.
The fundamental vector of SUð2NFÞ at NF ¼ 2 is

ψ ¼

0
BBB@

uR
uL
dR
dL

1
CCCA: ð7Þ

The SUð2ÞCS and SUð2NFÞ groups are not symmetries of
the QCD Lagrangian as a whole.
In a given reference frame the quark-gluon interaction

Lagrangian in Minkowski space can be split into temporal
and spatial parts:

ψ̄γμDμψ ¼ ψ̄γ0D0ψ þ ψ̄γiDiψ : ð8Þ

HereDμ is a covariant derivative that includes interaction of
the quark field ψ with the gluon field Aμ,

Dμψ ¼
�
∂μ − ig

t · Aμ

2

�
ψ : ð9Þ

The temporal term includes an interaction of the color-octet
charge density

ψ̄ðxÞγ0 t
2
ψðxÞ ¼ ψðxÞ† t

2
ψðxÞ ð10Þ

with the electric part of the gluonic gauge field. It is
invariant under any unitary transformation acting in the
Dirac and/or flavor spaces. In particular, it is a singlet under
SUð2ÞCS and SUð2NFÞ groups. The spatial part consists of
a quark kinetic term and interaction with the magnetic part
of the gauge field. It breaks SUð2ÞCS and SUð2NFÞ. We
conclude that interaction of electric and magnetic compo-
nents of the gauge field with fermions can be distinguished
by symmetry.
In order to discuss the notions “electric” and “magnetic”

one needs to fix the reference frame. An invariant mass of
the hadron is the rest frame energy. Consequently, to
discuss physics of hadron mass generation it is natural
to use the hadron rest frame.
In Refs. [3–6] meson and baryon masses have been

extracted from the asymptotic slope of the rest frame
t-direction Euclidean correlator

CΓðtÞ ¼
X
x;y;z

hOΓðx; y; z; tÞOΓð0; 0Þ†i; ð11Þ

where OΓðx; y; z; tÞ is an operator that creates a quark-
antiquark pair for mesons or three quarks for baryons
with fixed quantum numbers. Truncation of the near-
zero modes of the Dirac operator resulted in the
emergence of the SUð2ÞCS and SUð2NFÞ symmetries
in hadrons.
This implies that a confining SUð2ÞCS- and SUð2NFÞ-

symmetric quark-electric interaction is distributed among
all modes of the Dirac operator. At the same time the quark-
magnetic interaction that breaks both symmetries is located
only in the low-lying modes. Consequently truncating the
low-lying modes results in the emergence of symmetries in
the spectrum of hadrons.

III. CHIRAL AND CHIRAL-SPIN
TRANSFORMATIONS OF NUCLEON

OPERATORS

In Ref. [6] the emergence of the SUð2ÞCS symmetry in
nucleons upon truncation of the lowest-lying modes of the
Dirac operator was studied on the lattice. In particular, it
was demonstrated that correlators along the time direction
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calculated with different nucleon operators that are not
connected by chiral Uð1ÞA and/or SUð2ÞL × SUð2ÞR
transformations but are connected by the chiral-spin trans-
formation (1) and (2) with k ¼ 4 get degenerate. As
discussed in the Introduction our main objective here is
to analyze which conditions would be sufficient for the
emergence of chiral and chiral-spin symmetries in nucleons
upon the low-mode truncation (or suppression). To this end
we first classify the nucleon operators with respect to chiral
and chiral-spin transformations. Such a classification of
nucleon operators (with spin zero diquark) for Uð1ÞA,
SUð2ÞL × SUð2ÞR and SUð2ÞCS, k ¼ 4 transformations
is discussed below.
A complete set of nucleon operators (J ¼ 1=2, I ¼ 1=2,

P ¼ �1) with spin-zero diquarks consists of four operators
[16] of the following form:

NðiÞ
� ¼ ϵabcP�Γ

ðiÞ
1 uafdTbΓðiÞ

2 uc − uTbΓ
ðiÞ
2 dcg; ð12Þ

where P� ¼ 1
2
ð1� γ4Þ is the parity projector. The matrices

ΓðiÞ
1 and ΓðiÞ

2 are given in Table I. In our case the diquark

fdTbΓðiÞ
2 uc − uTbΓ

ðiÞ
2 dcg has spin 0 and isospin I ¼ 0.

It is known that only two local nucleon operators
are linearly independent if one takes into account the
requirements of Lorentz and Fierz invariance [17].
However, the chiral-spin symmetry is not a symmetry
of the Dirac equation and the chiral-spin transforma-
tions mix different irreducible representations of the
Lorentz group. Consequently if one discusses properties
of operators under the chiral-spin transformations one
needs a complete set of such operators with respect to
SUð2ÞCS. Since a single-quark field transforms under a
two-dimensional irreducible representation (1) and (2)
of SUð2ÞCS, k ¼ 4, a complete set of three-quark
nucleon interpolators with respect to SUð2ÞCS should
contain eight independent operators of positive and
negative parity because 2 ⊗ 2 ⊗ 2 ¼ 21 ⊕ 22 ⊕ 4.
Such operators with the J ¼ 0 diquark are listed in
Table I.

Applying the Uð1ÞA transformation on the given oper-
ator of Table I, one obtains a linear combination of some
operators that are connected by blue arrows in Fig. 1.
Consequently the operators connected by blue arrows form
reducible representations of Uð1ÞA. The irreducible repre-
sentations of Uð1ÞA are one dimensional and can be
obtained as certain linear combinations of operators con-
nected by blue arrows.
The axial part of SUð2ÞL × SUð2ÞR [abbreviated as

SUð2ÞA] transforms the given operator into a linear super-
position of operators connected by dashed red lines in
Fig. 1. For example, both the operators of positive and
negative parity Nð1Þð1

2
; 1
2
�Þ form a four-dimensional irre-

ducible representation ð0; 1=2Þ þ ð1=2; 0Þ of the parity-
chiral group. The same is true for the operators Nð2Þð1

2
; 1
2
�Þ.

For the operators Nð3Þð1
2
; 1
2
�Þ as well as Nð4Þð1

2
; 1
2
�Þ

the situation is a bit more complicated. Applying the
SUð2ÞL × SUð2ÞR transformation on each of these oper-
ators, one obtains linear combinations of these operators as
well as of Δ operators (isospin I ¼ 3=2) of the same spin.
This is because certain linear combinations of Nð3Þð1

2
; 1
2
�Þ

and Nð4Þð1
2
; 1
2
�Þ form along with their Δ partners the

irreducible representations ð1; 1=2Þ þ ð1=2; 1Þ.
The SUð2ÞCS, k ¼ 4 transformations connect all oper-

ators inside the green boxes of Fig. 1. Finally the SUð4Þ
transformations connect all eight operators of Fig. 1 along
with the respective Δ partners.
Below we present a set of nucleon operators that trans-

form under irreducible representations of SUð2ÞCS, k ¼ 4
[16]. These operators are linear combinations of the
operators from Table I:

FIG. 1. The nucleons linked by dashed red arrows are con-
nected by SUð2ÞA, and those linked by blue arrows are connected
by Uð1ÞA. The nucleons inside the green boxes are all connected
via SUð2ÞCS and inside the violet box are connected via SUð4Þ.

TABLE I. List of Dirac structures for the N baryon fields with
scalar or pseudoscalar diquarks, where I is the isospin and JP

indicates spin and parity. The sðiÞ2 come from the relation

γ4Γ
ðiÞ†
2 γ4 ¼ sðiÞ2 ΓðiÞ

2 .

I; JP ΓðiÞ
1 ΓðiÞ

2 sðiÞ2 i

NðiÞð1
2
; 1
2
�Þ 1 Cγ5 þ1 1

γ5 C −1 2
i1 Cγ5γ4 þ1 3
iγ5 Cγ4 þ1 4
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B21
ð−1=2Þ ¼ 1

4
ffiffiffi
2

p γ−½−ðNð1Þ
þ − Nð1Þ

− Þ þ ðNð2Þ
þ − Nð2Þ

− Þ − iðNð3Þ
þ þ Nð3Þ

− Þ þ iðNð4Þ
þ þ Nð4Þ

− Þ�;

B21
ð1=2Þ ¼ 1

4
ffiffiffi
2

p γ−½ðNð1Þ
þ þ Nð1Þ

− Þ − ðNð2Þ
þ þ Nð2Þ

− Þ þ iðNð3Þ
þ − Nð3Þ

− Þ − iðNð4Þ
þ − Nð4Þ

− Þ�;

B22
ð−1=2Þ ¼ 1

8

ffiffiffi
2

3

r
γ−½−ðNð1Þ

þ − Nð1Þ
− Þ þ ðNð2Þ

þ − Nð2Þ
− Þ − iðNð3Þ

þ þ Nð3Þ
− Þ − 3iðNð4Þ

þ þ Nð4Þ
− Þ�;

B22
ð1=2Þ ¼ 1

8

ffiffiffi
2

3

r
γ−½ðNð1Þ

þ þ Nð1Þ
− Þ − ðNð2Þ

þ þ Nð2Þ
− Þ þ iðNð3Þ

þ − Nð3Þ
− Þ þ 3iðNð4Þ

þ − Nð4Þ
− Þ�;

B4ð−3=2Þ ¼
1

4
γ−½ðNð1Þ

þ þ Nð1Þ
− Þ þ ðNð2Þ

þ þ Nð2Þ
− Þ�;

B4ð−1=2Þ ¼
1

4

ffiffiffi
1

3

r
γ−½ðNð1Þ

þ − Nð1Þ
− Þ − ðNð2Þ

þ − Nð2Þ
− Þ − 2iðNð3Þ

þ þ Nð3Þ
− Þ�;

B4ð1=2Þ ¼
1

4

ffiffiffi
1

3

r
γ−½ðNð1Þ

þ þ Nð1Þ
− Þ − ðNð2Þ

þ þ Nð2Þ
− Þ − 2iðNð3Þ

þ − Nð3Þ
− Þ�;

B4ð3=2Þ ¼
1

4
γ−½ðNð1Þ

þ − Nð1Þ
− Þ þ ðNð2Þ

þ − Nð2Þ
− Þ�: ð13Þ

Explicitly these operators are

B21
ð−1=2Þ ¼ ϵabc

ffiffiffi
1

2

r
γ−½γ4uafdTbCγ−ucg þ uafdTbCγ4γ−ucg�;

B21
ð1=2Þ ¼ ϵabc

ffiffiffi
1

2

r
γ−½uafdTbCγþucg þ γ4uafdTbCγ4γþucg�;

B22
ð−1=2Þ ¼ ϵabc

ffiffiffi
1

6

r
γ−½−2uafdTbCγ4γþucg − uafdTbCγ4γ−ucg þ γ4uafdTbCγ−ucg�;

B22
ð1=2Þ ¼ ϵabc

ffiffiffi
1

6

r
γ−½−2γ4uafdTbCγ4γ−ucg − γ4uafdTbCγ4γþucg þ uafdTbCγþucg�;

B4ð−3=2Þ ¼ −ϵabcγ−uafdTbCγ−ucg;

B4ð−1=2Þ ¼ ϵabc

ffiffiffi
1

3

r
γ−½−uafdTbCγ4γþucg þ uafdTbCγ4γ−ucg − γ4uafdTbCγ−ucg�;

B4ð1=2Þ ¼ ϵabc

ffiffiffi
1

3

r
γ−½γ4uafdTbCγ4γ−ucg − γ4uafdTbCγ4γþucg þ uafdTbCγþucg�;

B4ð3=2Þ ¼ ϵabcγ−γ4uafdTbCγþucg: ð14Þ

Here γ� ¼ 1
2
ð1� γ5Þ and BrðχzÞ is the nucleon inter-

polator in the irreducible representation of dimension r ¼
2χ þ 1 of SUð2ÞCS and with chiral-spin index χz (z
projection of the chiral-spin χ). In (14) the curly brackets
f� � �g mean antisymmetrization between db and uc quarks
as in (12). Upon the chiral-spin transformation (1) and (2)
with k ¼ 4 only those nucleon operators are connected that
belong to the same irreducible representation, as illustrated
in Fig. 2.

IV. SPECTRAL DECOMPOSITION

In this section we analyze the Euclidean nucleon
propagators along t direction upon truncation of the

low-lying modes of the Dirac operator. We follow the
procedure that was developed in Ref. [15] for a similar
study of meson propagators. This approach is based on the
spectral decomposition of the quark propagator in terms of
the eigenmodes of the Dirac operator. The eigenmodes
contain complete information about the interaction of a
quark with a gluonic field.
We work in Euclidean spacetime and consider a hermi-

tian massless Dirac operator D0 ≡ iγμDμ. The eigenfunc-
tions and eigenvalues of the Dirac operator are defined by
the relation

D0ψ
ðnÞ ¼ ηnψ

ðnÞ: ð15Þ
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Because of fγ5; D0g ¼ 0, the eigenvalues come in pairs
with opposite signs ðηn;−ηnÞ since

D0γ5ψ
ðnÞ ¼ −ηnγ5ψ ðnÞ: ð16Þ

In the following we will use the notation η−n ≡ −ηn. Here
and in the rest of this work we assume that the Dirac
operatorD0 does not have exact zero modes in its spectrum,
which is equivalent to selecting gauge configurations with
zero global topological charge. The contribution of exact
zero modes to observables vanishes in the thermodynamic
limit. Therefore in Eqs. (15) and (16), ηn ≠ 0, for all ψ ðnÞ.
The full Dirac operator for a quark field with massm can

be decomposed as

D¼D0þ im¼
X
n

ðηnþ imÞψ ðnÞψ ðnÞ†

¼
X
n>0

½ðηnþ imÞψ ðnÞψ ðnÞ†þð−ηnþ imÞγ5ψ ðnÞψ ðnÞ†γ5�;

ð17Þ

where we used (15) and (16).
Now we consider baryon propagators and their decom-

position using (17) for a theory with two mass degenerate
quark flavors. A general baryon interpolator [see Eq. (14)]
can be written as

OðxÞ ¼
X
i

ciOðiÞðxÞ; ð18Þ

for some choice of the coefficients ci ∈ C, in which

OðiÞðxÞ ¼ ϵabcΓ̂
ðiÞ
1 uafdTbΓðiÞ

2 uc − uTbΓ
ðiÞ
2 dcg; ð19Þ

where Γ̂ðiÞ
1 is given by a linear combination of products of

Dirac matrices, ΓðiÞ
2 is a generic product of gamma matrices,

and it satisfies the relation γ4Γ
ðiÞ†
2 γ4 ¼ sðiÞ2 ΓðiÞ

2 , where

sðiÞ2 ¼ �1.
The propagator associated with the operatorsOðiÞðxÞ and

OðjÞðyÞ, after the application of the Wick contractions, is
given by

Cði;jÞðx;yÞ¼hOðiÞðxÞŌðjÞðyÞiA
¼ sðiÞ2 ϵabcϵa0b0c0 ðΓ̃ðiÞ

1 ÞξαðΓðiÞ
2 ÞβγðΓðjÞ

2 Þγ0β0 ðγ4Γ̃ðjÞ†
1 Þα0ξ

× ½D−1
uxaαjya0α0D

−1
dxbβjyb0β0

D−1
uxcγjyc0γ0

−D−1
uxaαjyc0γ0D

−1
dxbβjyb0β0

D−1
uxcγjya0α0 �: ð20Þ

Furthermore we have called, e.g., D−1
uxaαjya0α0 ¼huxaαūya0α0 iA the quark propagator of the up quark

between the spacetime points x and y, with color indices
a and a0, and Dirac indices α and α0. In the case of two
degenerate quark masses, then D−1 ≡D−1

u ¼ D−1
d .

In the absence of zero modes in the Dirac spectrum, the
quark propagator D−1 can be expanded [see Ref. [15] and
Eq. (17)] as

D−1
xaδjya0α0 ¼

X
n>0

fnψ
ðnÞ
xaαψ

ðnÞ†
ya0α0 þ f−nðγ5Þαξψ ðnÞ

xaξψ
ðnÞ†
ya0ξ0 ðγ5Þξ0α0 ;

ð21Þ

where

fn ¼
1

ηn þ im
¼ hn − ign;

f−n ¼
1

η−n þ im
¼ −hn − ign; ð22Þ

with

hn ≡ hðm; ηnÞ ¼
ηn

m2 þ η2n
;

gn ≡ gðm; ηnÞ ¼
m

m2 þ η2n
; n > 0: ð23Þ

Substituting Eq. (21) in the full propagator

Cðx; yÞ ¼ hOðxÞŌðyÞiA ¼
X
i;j

cic�jC
ði;jÞðx; yÞ; ð24Þ

we can express it in terms of hðm; ηÞ and gðm; ηÞ,

FIG. 2. Nucleons BrðχzÞ in the irreducible representations of
SUð2ÞCS. Operators inside the green boxes form the basis of the
corresponding irreducible representation and are connected via
SUð2ÞCS transformations.
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Cðx; yÞ ¼
X

n>0;k>0;l>0

ðgngkglSgggðx; yÞ þ gngkhlSgghðx; yÞ

þ gnhkhlSghhðx; yÞ þ hnhkhlShhhðx; yÞÞ: ð25Þ

The functions Sgggðx; yÞ, Sgghðx; yÞ, Sghhðx; yÞ, and
Shhhðx; yÞ contain the information about the eigenfunctions
of the Dirac operator and the structure of the baryon field
under consideration.
Therefore the correlator Cðx; yÞ has terms proportional

to the gðm; ηÞ function, such as gngkglSgggðx; yÞ,
gngkhlSgghðx; yÞ, and gnhkhlSghhðx; yÞ, that we call g terms,
and terms proportional only to the hðm; ηÞ function that we
call h terms. A sketch of these two functions for different
mass values is shown in Fig. 3.
In the chiral limitm → 0 the function gðm; ηÞ approaches

the delta function π
2
δðηÞ. Hence a gap around zero in the

spectrum of the Dirac operator will induce the vanishing of
the terms in Eq. (25) that contain at least one factor of g. In
other words, all g terms in Eq. (25) vanish in the chiral limit
upon truncation of the near-zero modes of the Dirac
operator.
The hðm; ηÞ function is peaked at η ¼ m and falls slower

compared to the gðm; ηÞ function at high eigenvalues η.
Consequently while the hðm; ηÞ function still suppresses
higher eigenvalues η, making a small hole in the Dirac
eigenspectrum will not necessarily lead to the vanishing of
the h term in Eq. (25) in the chiral limit unless some
additional suppressing dynamical factors are contained
in Shhhðx; yÞ.
In the following we call nucleon operators g equivalent if

the difference of their propagators contains only g terms.

V. SPECTRAL DECOMPOSITION OF
NUCLEON PROPAGATORS

A. Correlators of NðiÞ operators

Now we apply results of the previous section to
correlators of nucleon operators from Table I. The details

of the expansion in g terms and h terms of the nucleon
propagators are given in Appendix A.
In Fig. 4 we show how the difference of two correlators

(25) calculated with any two operators from Table I is
expressed via the ggg, ggh, ghh, and hhh terms. We see
from Fig. 4 that all nucleons connected by Uð1ÞA and/or
SUð2ÞA transformations (see Fig. 1) are g equivalent (for
details see Appendixes B and C). Consequently a gap in the
low-lying spectrum of the Dirac operator results (in the
chiral limit) in the degeneracy of all correlators obtained
with operators connected by dashed red and/or blue arrows
in Fig. 1. We conclude that a gap in the Dirac spectrum
implies necessarily restoration of bothUð1ÞA and SUð2ÞL×
SUð2ÞR symmetries in nucleons. It is similar to the results
for meson correlators obtained in [15]. Such degeneracies

FIG. 4. g and h connections among nucleons of Table I. Below

each nucleon we have indicated its Γ structure, i.e., (ΓðiÞ
1 , ΓðiÞ

2 ).

FIG. 3. gðm; ηÞ and hðm; ηÞ functions from Ref. [15] for m ¼ 0.02 (full line), 0.06 (dashed line), and 0.08 (dotted line).
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of the nucleon correlators have been observed on the lattice
in Ref. [6].
Let us summarize. Restoration of Uð1ÞA and SUð2ÞL ×

SUð2ÞR symmetries in nucleon correlators (24) is neces-
sarily provided by a gap in the spectrum of the Dirac
operator, i.e., all Uð1ÞA and SUð2ÞL × SUð2ÞR breaking
dynamics are contained only in the near-zero modes.
However, the observations of Ref. [6] went essentially

further than simply Uð1ÞA and SUð2ÞL × SUð2ÞR restora-
tion. It was noticed that larger symmetries SUð2ÞCS
and SUð4Þ emerge in baryon masses upon low-mode
truncation.
From the analytical side we can now conclude the

following. Comparing Fig. 4 with Fig. 1 we observe that,
given a gap in the Dirac spectrum, the emergence of
SUð2ÞCS and SUð4Þ requires in addition that the h term
in the difference of two correlators connected by the
SUð2ÞCS transformation (and not connected by the chiral
transformations) should be at least strongly suppressed
for higher-lying eigenmodes of the Dirac operator. While
some suppression is indeed provided by the hhh factor
(see Fig. 3), this suppression is not as strong as in g terms.
In other words, a gap in the Dirac spectrum does not
automatically imply emergence of the SUð2ÞCS and SUð4Þ
symmetries in correlators (25).
This result is not unexpected. In contrast to the chiral

symmetries the SUð2ÞCS and SUð4Þ symmetries are not
covariant. They are symmetries of the quark-electric
interaction in the given reference frame, while the quark
kinetic term and the quark-magnetic interaction break
them. They have been observed as symmetries of hadron
masses upon low-mode truncation, i.e., symmetries of the
rest frame correlation functions. The correlators (24) mix
different reference frames in Minkowski space and only
covariant symmetries, such as chiral symmetries, should
persist in these correlators. Consequently to address the
question of symmetries of hadron masses we need now to
analyze the rest frame correlators (11). This means we need
to study the correlators

CðiÞ
� ðtÞ ¼

X
x;y;z

hNðiÞ
� ðx; y; z; tÞN̄ðiÞ

� ð0; 0Þi; ð26Þ

where the sum
P

x;y;z is over all the space.
However, the summation over all spatial points x, y, z

does not convert an h connection between the Nð2Þ and Nð3Þ
operators in Fig. 4 into a g connection. We do not get
further g equivalence as compared to the ones indicated in
Fig. 4. The presence of a gap in the Dirac spectrum does not
automatically imply the emergence of SUð2ÞCS and SUð4Þ.
In full QCD studies with the explicit removal of the low-

lying modes in the propagators the SUð2ÞCS and SUð4Þ
symmetries were observed in the hadron spectrum [6]. This
implies that a cancellation of hhh terms occurs due to some
additional SUð2ÞCS and SUð4Þ-symmetric microscopic

dynamics, i.e., QCD dynamics beyond the chiral symmetry
breaking dynamics dominated by the low modes. Such
dynamics, as it follows from the symmetry classification of
the QCD Lagrangian in Sec. II, should be related with the
confining quark-chromoelectric interaction.
Let us summarize. Restoration of Uð1ÞA and SUð2ÞL ×

SUð2ÞR symmetries in nucleon correlators (24) is neces-
sarily provided by a gap in the spectrum of the Dirac
operator; i.e., all Uð1ÞA and SUð2ÞL × SUð2ÞR breaking
dynamics are contained only in the near-zero modes. The
SUð2ÞCS and SUð4Þ symmetries in the rest-frame correla-
tors (26) do not automatically emerge. Their emergence
requires some additional microscopical dynamical input
that would guarantee that contributions of the high-lying
modes are SUð2ÞCS and SUð4Þ symmetric.

B. Brðχ zÞ baryon propagators

In Fig. 2 we have reported irreducible SUð2ÞCS repre-
sentations of the baryon operators defined in Eq. (14). Each
of these operators is a Uð1ÞA singlet, i.e., transforms into
itself upon the Uð1ÞA transformation. This is because by
definition the BrðχzÞ interpolators are eigenstates of γ5 in
the different representations 21, 22, and 4 of SUð2ÞCS.
Regarding the SUð2ÞL × SUð2ÞR, each operator from

Fig. 2 is a linear combination of positive and negative parity
operators (12). Different operators (12) belong to different
irreducible representations of the parity-chiral group, as
was discussed above, so no definite representation of
SUð2ÞL × SUð2ÞR can be ascribed to the operators (14).
Now we apply a spectral decomposition of Sec. IV to the

propagators built with the baryon operators (14)

Cðx; yÞr;χz ¼ hBrðχzÞðxÞB̄rðχzÞðyÞi: ð27Þ

We find that the difference between two generic propa-
gators Cðx; yÞr;χz and Cðx; yÞr0;χ0z , always contains hhh
terms. This means that a gap in the spectrum of the
Dirac operator does not yet automatically imply emergence
of the SUð2ÞCS and SUð4Þ symmetries. This result is not
unexpected since the correlators Cðx; yÞr;χz mix different
reference frames in Minkowski spacetime and only covar-
iant symmetries can persist in such correlators. It is in
complete agreement with the result obtained for the
nucleon propagators; see Fig. 4.
Consequently we analyze now baryon correlators in the

rest frame; i.e., we consider the correlators

CðtÞr;χz ¼
X
x;y;z

hBrðχzÞðx; y; z; tÞB̄rðχzÞð0; 0Þi; ð28Þ

where the sum
P

x;y;z is over all the space.
Under parity transformations the quark fields

transform as
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qxaα⟶
P

qPxaα ¼ ðγ4ÞαβqPxaβ; ð29Þ

where Px≡ Pμνxν and Pμν ¼ diagð−1;−1;−1; 1Þ is the
parity operator; hence, if xμ ¼ ðx; y; z; tÞ, then ðPxÞμ ¼
ð−x;−y;−z; tÞ. q is a generic quark field. Applying the
parity transformations (29) to the baryon operators in (14)
we get the following relation for generic representation r
and chiral spin projection χz:

BrðχzÞðPxÞ ¼ ηBP
r ð−χzÞðxÞ; ð30Þ

where we indicate BrðχzÞðPxÞ ¼ BrðχzÞð−x;−y;−z; tÞ and
BP
r ðχzÞ is the baryon operator BrðχzÞ in (14), and we have

substituted u → uP and d → dP; see (29). In Eq. (30)
η ¼ �1, depending on r and χz, and we used that γ4C ¼
−Cγ4 and that γ4γ�γ4 ¼ γ∓. Plugging Eq. (30) in (28)
we get

CðtÞr;χz ¼
X
x;y;z

hBrðχzÞðx;y;z;tÞB̄rðχzÞð0;0Þi

¼
X
x;y;z

hBrðχzÞð−x;−y;−z;tÞB̄rðχzÞð0;0Þi

¼
X
x;y;z

hBP
r ð−χzÞðx;y;z;tÞB̄P

r ð−χzÞð0;0Þi

¼
X
x;y;z

hBrð−χzÞðx;y;z;tÞB̄rð−χzÞð0;0Þi

¼CðtÞr;−χz ; ð31Þ

where in the third line we used Eq. (30). Since we are
averaging over all possible quark fields we can remove the
label P in the last line of Eq. (31) (because parity is a
symmetry of the QCD action and the measure in the
average h·i is parity invariant).
Equation (31) tells us that for a given irreducible repre-

sentation r of SUð2ÞCS we have CðtÞr;χz−CðtÞr;−χz¼0, for
all χz. Hence in the rest frame the correlators for the
baryons within the doublet 21 and 22 representations are
equal. This is a general statement, irrespective of
whether there is or there is not a gap in the spectrum
of the Dirac operator. This fact does not mean, however,
that the SUð2ÞCS symmetry is manifest in the rest-frame
correlators, because in the representation 4 the correla-
tors with χz ¼ �1=2 are not equal to the correlators
with χz ¼ �3=2.

The presence of a gap in the Dirac spectrum does not
automatically make the correlators with χz ¼ �1=2 and
with χz ¼ �3=2 g equivalent. The emergence of SUð2ÞCS
requires some additional suppression of matrix elements
with higher-lying modes as was discussed in the previous
subsection.

VI. CONCLUSIONS

In this paper we have analyzed analytically, by
expansion of the propagators into eigenmodes of the
Dirac operator, which symmetries emerge in baryon
correlators (masses) if there is a gap around zero in the
spectrum of the Dirac operator. We have found that such a
gap results necessarily in the emergence of chiral Uð1ÞA
and SUð2ÞL × SUð2ÞR symmetries in baryons.
Some specific dynamics in QCD leads to the accumu-

lation of the near-zero modes, i.e., to the breaking of
chiral symmetries. Given the γ5 anticommutativity of the
Euclidean Dirac operator we prove here that a gap in the
Dirac eigenmode spectrum implies necessarily restoration
of bothUð1ÞA and SUð2ÞL × SUð2ÞR symmetries. The root
of this statement is precisely the same as of the Banks-
Casher relation. We do not need to know which dynamics
and why it leads to the accumulation of the near-
zero modes.
Emergence of larger SUð2ÞCS and SUð4Þ symmetries,

which was observed on the lattice upon truncation of the
near-zero modes of the Dirac operator and also at high
temperatures without any truncation, requires that the
electric interaction should be the most important
for higher-lying modes. This is buried in the eigenfunc-
tions of the Dirac operator and cannot be specified within
the present approach which does not use any dynami-
cal input.
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APPENDIX A: NUCLEON PROPAGATOR
EXPANSION

Using Eq. (20) and the expansion of the quark propa-
gator in (21), we can get the expansion of the propagator for
the nucleon interpolators given in Eq. (12) and specified in
Table I. It is given by

CðNðiÞ
� Þ ¼ sðiÞ2 ϵabcϵa0b0c0 ðγ4ΓðiÞ†

1 Þα0ωðP�ÞωϵðΓðiÞ
1 ÞϵαðΓðiÞ

2 ÞβγðΓðiÞ
2 Þγ0β0 ½D−1

xaαjya0α0D
−1
xbβjyb0β0D

−1
xcγjyc0γ0−D

−1
xaαjyc0γ0D

−1
xbβjyb0β0D

−1
xcγjya0α0 �:

ðA1Þ
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The last line of Eq. (A1) can be written as the following sum:

D−1
xaαjya0α0D

−1
xbβjyb0β0D

−1
xcγjyc0γ0 −D−1

xaαjyc0γ0D
−1
xbβjyb0β0D

−1
xcγjya0α0

¼
X

n>0;k>0;l>0

½fnfkfl½ψ ðnÞ
xaαψ

ðnÞ†
ya0α0ψ

ðkÞ
xbβψ

ðkÞ†
yb0β0ψ

ðlÞ
xcγψ

ðlÞ†
yc0γ0 � þ fnfkf−l½ψ ðnÞ

xaαψ
ðnÞ†
ya0α0ψ

ðkÞ
xbβψ

ðkÞ†
yb0β0 ðγ5Þγθψ ðlÞ

xcθψ
ðlÞ†
yc0θ0 ðγ5Þθ0γ0 �

þ fnf−kfl½ψ ðnÞ
xaαψ

ðnÞ†
ya0α0 ðγ5Þβωψ ðkÞ

xbωψ
ðkÞ†
yb0ω0 ðγ5Þω0β0ψ

ðlÞ
xcγψ

ðlÞ†
yc0γ0 � þ f−nfkfl½ðγ5Þαξψ ðnÞ

xaξψ
ðnÞ†
ya0ξ0 ðγ5Þξ0α0ψ ðkÞ

xbβψ
ðkÞ†
yb0β0ψ

ðlÞ
xcγψ

ðlÞ†
yc0γ0 �

þ fnf−kf−l½ψ ðnÞ
xaαψ

ðnÞ†
ya0α0 ðγ5Þβωψ ðkÞ

xbωψ
ðkÞ†
yb0ω0 ðγ5Þω0β0 ðγ5Þγθψ ðlÞ

xcθψ
ðlÞ†
yc0θ0 ðγ5Þθ0γ0 �

þ f−nfkf−l½ðγ5Þαξψ ðnÞ
xaξψ

ðnÞ†
ya0ξ0 ðγ5Þξ0α0ψ ðkÞ

xbβψ
ðkÞ†
yb0β0 ðγ5Þγθψ ðlÞ

xcθψ
ðlÞ†
yc0θ0 ðγ5Þθ0γ0 �

þ f−nf−kfl½ðγ5Þαξψ ðnÞ
xaξψ

ðnÞ†
ya0ξ0 ðγ5Þξ0α0 ðγ5Þβωψ ðkÞ

xbωψ
ðkÞ†
yb0ω0 ðγ5Þω0β0ψ

ðlÞ
xcγψ

ðlÞ†
yc0γ0 �

þ f−nf−kf−l½ðγ5Þαξψ ðnÞ
xaξψ

ðnÞ†
ya0ξ0 ðγ5Þξ0α0 ðγ5Þβωψ ðkÞ

xbωψ
ðkÞ†
yb0ω0 ðγ5Þω0β0 ðγ5Þγθψ ðlÞ

xcθψ
ðlÞ†
yc0θ0 ðγ5Þθ0γ0 �

− ðsame terms as above with α0 ↔ γ0 and a0 ↔ c0Þ�: ðA2Þ

Using (22) we can rewrite the coefficients in front of the eigenfunction products in (A2) in terms of gn and hn, i.e.,

fnfkfl ¼ igngkgl − hngkgl − gnhkgl − ihnhkgh − gngkhl − ihngkhl − ignhkhl þ hnhkhl; ðA3Þ

moreover other coefficients can be found exploiting that f−n ¼ −f�n [see Eq. (22)]. Therefore by linearity of (A2), we can

get the expression of CðNðiÞ
� Þ in terms proportional to gngkgl, gngkhl, gnhkhl, and hnhkhl.

APPENDIX B: CðNðiÞ
+ Þ−CðNðiÞ− Þ

The difference CðNðiÞ
þ Þ − CðNðiÞ

− Þ can be written using (A1) as

CðNðiÞ
þ Þ − CðNðiÞ

− Þ ¼ sðiÞ2 ϵabcϵa0b0c0 ðγ4ΓðiÞ†
1 γ4Þα0ωððPþÞωϵ þ ðP−ÞωϵðΓðiÞ

1 ÞϵαðΓðiÞ
2 ÞβγðΓðiÞ

2 Þγ0β0
× ½D−1

xaαjya0α0D
−1
xbβjyb0β0D

−1
xcα0jyc0γ0−D

−1
xaαjyc0γ0D

−1
xbβjyb0β0D

−1
xcα0jya0α0 �

¼ ð−1Þiþ1sðiÞ2 ϵabcϵa0b0c0δα0αðΓðiÞ
2 ÞβγðΓðiÞ

2 Þγ0β0 ½D−1
xaαjya0α0D

−1
xbβjyb0β0D

−1
xcα0jyc0γ0−D

−1
xaαjyc0γ0D

−1
xbβjyb0β0D

−1
xcα0jya0α0 �;

ðB1Þ

where we used that γ4P� ¼ �P�, ðPþÞωϵ þ ðP−Þωϵ ¼ δωϵ and that ΓðiÞ†
1 ΓðiÞ

1 ¼ 1, for all values of i; see Table I.
We expand the quark propagator according to (A2) and use ψ ð−nÞ ¼ γ5ψ

ðnÞ and γ5Γ
ðiÞ
2 γ5 ¼ s5ðiÞΓ

ðiÞ
2 with s2

5ðiÞ ¼ 1 to get

CðNðiÞ
þ Þ − CðNðiÞ

− Þ ¼ ð−1Þiþ1sðiÞ2 ϵabcϵa0b0c0δα0αðΓðiÞ
2 ÞβγðΓðiÞ

2 Þγ0β0
×

X
n>0;k>0;l>0

½ðfnfkfl þ f−nf−kf−lÞ½ψ ðnÞ
xaαψ

ðnÞ†
ya0α0ψ

ðkÞ
xbβψ

ðkÞ†
yb0β0ψ

ðlÞ
xcγψ

ðlÞ†
yc0γ0 − ψ ðnÞ

xaαψ
ðnÞ†
yc0γ0ψ

ðkÞ
xbβψ

ðkÞ†
yb0β0ψ

ðlÞ
xcγψ

ðlÞ†
ya0α0 �

þ ðfnfkf−l þ f−nf−kflÞ½ψ ðnÞ
xaαψ

ðnÞ†
ya0α0ψ

ðkÞ
xbβψ

ðkÞ†
yb0β0 ðγ5Þγθψ ðlÞ

xcθψ
ðlÞ†
yc0θ0 ðγ5Þθ0γ0

− ψ ðnÞ
xaαψ

ðnÞ†
yc0γ0ψ

ðkÞ
xbβψ

ðkÞ†
yb0β0 ðγ5Þγθψ ðlÞ

xcθψ
ðlÞ†
ya0θ0 ðγ5Þθ0α0 �

þ ðfnf−kfl þ f−nfkf−lÞ½ψ ðnÞ
xaαψ

ðnÞ†
ya0α0 ðγ5Þβωψ ðkÞ

xbωψ
ðkÞ†
yb0ω0 ðγ5Þω0β0ψ

ðlÞ
xcγψ

ðlÞ†
yc0γ0

− ψ ðnÞ
xaαψ

ðnÞ†
yc0γ0 ðγ5Þβωψ ðkÞ

xbωψ
ðkÞ†
yb0ω0 ðγ5Þω0β0ψ

ðlÞ
xcγψ

ðlÞ†
ya0α0 �

þ ðf−nfkfl þ fnf−kf−lÞ½ðγ5Þαξψ ðnÞ
xaξψ

ðnÞ†
ya0ξ0 ðγ5Þξ0α0ψ ðkÞ

xbβψ
ðkÞ†
yb0β0ψ

ðlÞ
xcγψ

ðlÞ†
yc0γ0

− ðγ5Þαξψ ðnÞ
xaξψ

ðnÞ†
yc0ξ0 ðγ5Þξ0γ0ψ ðkÞ

xbβψ
ðkÞ†
yb0β0ψ

ðlÞ
xcγψ

ðlÞ†
ya0α0 ��:

Using (22) the coefficients in front of the eigenfunction products can be written as
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fnfkfl þ f−nf−kf−l ¼ 2iðgngkgl − hnhkgh − hngkhl − gnhkhlÞ;
fnfkf−l þ f−nf−kfl ¼ 2iðgngkgl − hnhkgh þ hngkhl þ gnhkhlÞ;
fnf−kfl þ f−nfkf−l ¼ 2iðgngkgl þ hnhkgh − hngkhl þ gnhkhlÞ;
f−nfkfl þ fnf−kf−l ¼ 2iðgngkgl þ hnhkgh þ hngkhl − gnhkhlÞ: ðB2Þ

Hence the difference of nucleon propagators with opposite parity contains no terms proportional to hhh as indicated
in Fig. 4.

APPENDIX C: CðNð1Þ
� Þ−CðNð2Þ

� Þ AND CðNð3Þ
� Þ−CðNð4Þ

� Þ

In order to prove that the propagators CðNðiÞ
� Þ and CðNðiþ1Þ

� Þ for i ¼ 1, 3 are also g equivalent, we notice that from Table I

we have Γðiþ1Þ
2 ¼ γ5Γ

ðiÞ
2 and Γðiþ1Þ

1 ¼ γ5Γ
ðiÞ
1 . Therefore from Eq. (A2) and considering i ¼ 1, 3, we have

CðNðiÞ
� Þ−CðNðiþ1Þ

� Þ
¼�ϵabcϵa0b0c0 ðP�Þα0αðΓðiÞ

2 ÞβγðΓðiÞ
2 Þγ0β0

X
n>0;k>0;l>0

½ðfnfkflþfnf−kf−l−f−nfkf−l−f−nf−kflÞ

× ½ψ ðnÞ
xaαψ

ðnÞ†
ya0α0ψ

ðkÞ
xbβψ

ðkÞ†
yb0β0ψ

ðlÞ
xcγψ

ðlÞ†
yc0γ0 −ðγ5Þαξψ ðnÞ

xaξψ
ðnÞ†
ya0ξ0 ðγ5Þξ0α0ψ ðkÞ

xbβψ
ðkÞ†
yb0β0 ðγ5Þγθψ ðlÞ

xcθψ
ðlÞ†
yc0θ0 ðγ5Þθ0γ0 �

þðfnfkf−lþfnf−kfl−f−nfkfl−f−nf−kf−lÞ× ½ψ ðnÞ
xaαψ

ðnÞ†
ya0α0ψ

ðkÞ
xbβψ

ðkÞ†
yb0β0 ðγ5Þγθψ ðlÞ

xcθψ
ðlÞ†
yc0θ0 ðγ5Þθ0γ0

−ðγ5Þαξψ ðnÞ
xaξψ

ðnÞ†
ya0ξ0 ðγ5Þξ0α0ψ ðkÞ

xbβψ
ðkÞ†
yb0β0ψ

ðlÞ
xcγψ

ðlÞ†
yc0γ0 �

−ðfnfkfl−f−nfkf−lÞ½ψ ðnÞ
xaαψ

ðnÞ†
yc0γ0ψ

ðkÞ
xbβψ

ðkÞ†
yb0β0ψ

ðlÞ
xcγψ

ðlÞ†
ya0α0 −ðγ5Þαξψ ðnÞ

xaξψ
ðnÞ†
yc0ξ0 ðγ5Þξ0γ0ψ ðkÞ

xbβψ
ðkÞ†
yb0β0 ðγ5Þγθψ ðlÞ

xcθψ
ðlÞ†
ya0θ0 ðγ5Þθ0α0 �

−ðfnfkf−l−f−nfkflÞ× ½ψ ðnÞ
xaαψ

ðnÞ†
yc0γ0ψ

ðkÞ
xbβψ

ðkÞ†
yb0β0 ðγ5Þγθψ ðlÞ

xcθψ
ðlÞ†
ya0θ0 ðγ5Þθ0α0 −ðγ5Þαξψ ðnÞ

xaξψ
ðnÞ†
yc0ξ0 ðγ5Þξ0γ0ψ ðkÞ

xbβψ
ðkÞ†
yb0β0ψ

ðlÞ
xcγψ

ðlÞ†
ya0α0 �

−ðfnf−kfl−f−nf−kf−lÞ× ½ψ ðnÞ
xaαψ

ðnÞ†
yc0γ0 ðγ5Þβωψ ðkÞ

xbωψ
ðkÞ†
yb0ω0 ðγ5Þω0β0ψ

ðlÞ
xcγψ

ðlÞ†
ya0α0

−ðγ5Þαξψ ðnÞ
xaξψ

ðnÞ†
yc0ξ0 ðγ5Þξ0γ0 ðγ5Þβωψ ðkÞ

xbωψ
ðkÞ†
yb0ω0 ðγ5Þω0β0 ðγ5Þγθψ ðlÞ

xcθψ
ðlÞ†
ya0θ0 ðγ5Þθ0α0 �

−ðfnf−kf−l−f−nf−kflÞ× ½ψ ðnÞ
xaαψ

ðnÞ†
yc0γ0 ðγ5Þβωψ ðkÞ

xbωψ
ðkÞ†
yb0ω0 ðγ5Þω0β0 ðγ5Þγθψ ðlÞ

xcθψ
ðlÞ†
ya0θ0 ðγ5Þθ0α0

−ðγ5Þαξψ ðnÞ
xaξψ

ðnÞ†
yc0ξ0 ðγ5Þξ0γ0 ðγ5Þβωψ ðkÞ

xbωψ
ðkÞ†
yb0ω0 ðγ5Þω0β0ψ

ðlÞ
xcγψ

ðlÞ†
ya0α0 ��: ðC1Þ

Using (22) we can rewrite the coefficients in front of the eigenfunction products in terms of hn and gn, namely

fnfkfl − f−nfkf−l ¼ −2ðhngkgl þ ihnhkgl þ gngkhl þ ignhkhlÞ;
fnfkf−l − f−nfkfl ¼ −2ðhngkgl þ ihnhkgl − gngkhl − ignhkhlÞ;

fnf−kfl − f−nf−kf−l ¼ −2ðhngkgl − ihnhkgl þ gngkhl − ignhkhlÞ;
fnf−kf−l − f−nf−kfl ¼ −2ðhngkgl − ihnhkgl − gngkhl þ ignhkhlÞ: ðC2Þ

Therefore as we can see from Eqs. (C1) and (C2) the differences CðNð1Þ
� Þ − CðNð2Þ

� Þ and CðNð3Þ
� Þ − CðNð4Þ

� Þ are only
proportional to ggh and ghh terms, as indicated in Fig. 4.
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