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Truncating the low-lying modes of the lattice Dirac operator results in an emergence of the chiral-spin
symmetry SU(2)¢ and its flavor extension SU(2Ny) in hadrons. These are symmetries of the quark-
chromoelectric interaction and include chiral symmetries as subgroups. Hence the quark-chromomagnetic
interaction, which breaks both symmetries, is located at least predominantly in the near-zero modes.
Using as a tool the expansion of propagators into eigenmodes of the Dirac operator we here analytically
study effects of a gap in the eigenmode spectrum on baryon correlators. We find that both U(1), and
SU(2), x SU(2)y emerge automatically if there is a gap around zero. Emergence of larger SU(2).¢ and
SU(4) symmetries requires in addition a microscopical dynamical input about the higher-lying modes and

their symmetry structure.
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I. INTRODUCTION

In a number of lattice spectroscopical studies with a
chirally invariant Dirac operator upon artificial truncation
of the lowest modes of the Dirac operator [1,2] a large
degeneracy was discovered in mesons [3—5] and baryons [6].
Corresponding symmetry groups, SU(2)s and SU(2Nf)
[7,8], turned out to be larger than the chiral symmetry
SU(Ng), x SU(Ng)g x U(1), of the QCD Lagrangian.
The chiral-spin symmetry group SU(2).s has U(1), as a
subgroup while its flavor extension SU(2N ) contains both
SU(Np); x SU(Np)g x U(1),4 and SU(2) g as subgroups.
The chiral-spin transformations from SU(2).¢ includes
rotations that mix the left- and right-handed components
of the quark field. Obviously these symmetries are not
symmetries of a free Dirac equation or of the QCD
Lagrangian. However, they are symmetries of the Lorentz-
invariant fermion charge operator and (in a given reference
frame) of the quark-chromoelectric interaction while the
interaction of quarks with the chromomagnetic field and the
quark kinetic term break them. Consequently the emergence
of SU(2) g and SU(2N ) upon truncation of the low-lying
modes tells that while the confining quark-electric interaction
is distributed among all modes of the Dirac operator, the
quark-magnetic interaction is located at least predominantly
in the near-zero modes. Some unknown microscopic dynam-
ics should be responsible for this phenomenon.
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These symmetries emerge naturally, i.e., without any
explicit truncation, in hot QCD above the pseudocritical
temperature [9—11], where the near-zero modes of the Dirac
operator are suppressed by temperature [12]. Consequently
elementary objects in that range are not free quarks and
gluons but rather chirally symmetric quarks bound by the
chromoelectric field into color singlet objects, such as a
“string.”

According to the Banks-Casher relation [13] the chiral
symmetry breaking quark condensate is proportional to the
density of the near-zero modes. A gap in the low-lying
Dirac eigenmode spectrum induces restoration of
SU(Ng), x SU(Np)g symmetry. It was shown that it also
induces restoration of U(1), in the J =0 mesons [14].
Analytical study of the / = 0 and J = 1 isovector meson
propagators in terms of the eigenmodes of the Dirac
operator revealed that all meson correlators that are con-
nected by the U(1), and/or SU(2), x SU(2) transforma-
tions get necessarily degenerate if such a gap exists in the
Dirac spectrum [15]. However, a possible emergence of
SU(2)¢cs and of SU(2Np) requires further dynamical
properties encoded in certain matrix elements. Here we
extend this analysis to baryons and show that the same
conclusions remain valid in this case as well.

II. CHIRAL-SPIN SYMMETRY

The SU(2) g chiral-spin transformations for quarks are
given by

ensn
w — ' =exp (l 5 )l//, (1)
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where generators, defined in the Dirac spinor space, are

= {yk’ _iy57k7 75} (2)

Here y;, k=1, 2, 3, 4, are hermitian Euclidean gamma
matrices, obeying the anticommutation relations

vivitviri =208y ¥s =rirarra (3)
Different k define four-dimensional representations that can
be reduced into two-dimensional irreducible ones. The
31(2) algebra

(24, 28] = 2ieexe (4)

is satisfied for any k in Eq. (2).

U(1), is a subgroup of SU(2)s. The SU(2)g trans-
formations mix the left- and right-handed fermions and
different representations of the Lorentz group. The free
massless quark Lagrangian and Dirac equation do not have
this symmetry.

Extending the direct product SU(2).g x SU(Nf) one
obtains an SU(2Ny) group. The chiral symmetry group
of QCD SU(Ng); x SU(Ng)g x U(1), is a subgroup of
SU(2Np). The SU(2Ny) transformations are given by

W =y =exp <%6‘me>1//, (5)

where m = 1,2, ..., (2Ny)* — 1. The set of (2Ng)*>—1
generators is

™ ={(®1p).(1Fr®Z"). (" ®X")}.  (6)

with the flavor generators 7 with flavor index a and n = 1,
2, 3 is the SU(2).g index.
The fundamental vector of SU(2Ng) at Ny =2 is

W= : (7)

The SU(2) g and SU(2Nf) groups are not symmetries of
the QCD Lagrangian as a whole.

In a given reference frame the quark-gluon interaction
Lagrangian in Minkowski space can be split into temporal
and spatial parts:

"Dy = wy° Doy + yy' Dy (8)

Here D, 1s a covariant derivative that includes interaction of
the quark field y with the gluon field A,

";“”)w. 9)

The temporal term includes an interaction of the color-octet
charge density

Dy = <8ﬂ —ig

t

PP 5w () = y()' Sw() (10)

with the electric part of the gluonic gauge field. It is
invariant under any unitary transformation acting in the
Dirac and/or flavor spaces. In particular, it is a singlet under
SU(2)¢g and SU(2N) groups. The spatial part consists of
a quark kinetic term and interaction with the magnetic part
of the gauge field. It breaks SU(2).¢ and SU(2Ny). We
conclude that interaction of electric and magnetic compo-
nents of the gauge field with fermions can be distinguished
by symmetry.

In order to discuss the notions “electric” and “magnetic”
one needs to fix the reference frame. An invariant mass of
the hadron is the rest frame energy. Consequently, to
discuss physics of hadron mass generation it is natural
to use the hadron rest frame.

In Refs. [3-6] meson and baryon masses have been
extracted from the asymptotic slope of the rest frame
t-direction Euclidean correlator

Cr() = SO (xy. 200 0.0)7). (1)

XYz

where Or(x,y,z,t) is an operator that creates a quark-
antiquark pair for mesons or three quarks for baryons
with fixed quantum numbers. Truncation of the near-
zero modes of the Dirac operator resulted in the
emergence of the SU(2).y and SU(2Ny) symmetries
in hadrons.

This implies that a confining SU(2)- and SU(2N)-
symmetric quark-electric interaction is distributed among
all modes of the Dirac operator. At the same time the quark-
magnetic interaction that breaks both symmetries is located
only in the low-lying modes. Consequently truncating the
low-lying modes results in the emergence of symmetries in
the spectrum of hadrons.

III. CHIRAL AND CHIRAL-SPIN
TRANSFORMATIONS OF NUCLEON
OPERATORS

In Ref. [6] the emergence of the SU(2) ¢ symmetry in
nucleons upon truncation of the lowest-lying modes of the
Dirac operator was studied on the lattice. In particular, it
was demonstrated that correlators along the time direction
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TABLE I. List of Dirac structures for the N baryon fields with

scalar or pseudoscalar diquarks, where I is the isospin and J?
indicates spin and parity. The sg'>

raly s = 513

come from the relation

1J* r) ry) 55 i
NO@E 1) 1 Cys +1 1
vs c -1 2
il Cysys +1 3
iys Crq +1 4

calculated with different nucleon operators that are not
connected by chiral U(1), and/or SU(2), x SU(2)g
transformations but are connected by the chiral-spin trans-
formation (1) and (2) with k =4 get degenerate. As
discussed in the Introduction our main objective here is
to analyze which conditions would be sufficient for the
emergence of chiral and chiral-spin symmetries in nucleons
upon the low-mode truncation (or suppression). To this end
we first classify the nucleon operators with respect to chiral
and chiral-spin transformations. Such a classification of
nucleon operators (with spin zero diquark) for U(1),,
SU(2), xSU(2)g and SU(2)cg, k=4 transformations
is discussed below.

A complete set of nucleon operators (J/ = 1/2,1 =1/2,
P = +1) with spin-zero diquarks consists of four operators
[16] of the following form:

N(il) = €abcPiF§i>ua{d£rgi)uc - uz;rgi)dc}’ (12)

where P = 1 (1 & y,) is the parity projector. The matrices
" and T{" are given in Table I In our case the diquark
{dlrg’)uc - ulfl“g)dc} has spin 0 and isospin / = 0.

It is known that only two local nucleon operators
are linearly independent if one takes into account the
requirements of Lorentz and Fierz invariance [17].
However, the chiral-spin symmetry is not a symmetry
of the Dirac equation and the chiral-spin transforma-
tions mix different irreducible representations of the
Lorentz group. Consequently if one discusses properties
of operators under the chiral-spin transformations one
needs a complete set of such operators with respect to
SU(2)¢s- Since a single-quark field transforms under a
two-dimensional irreducible representation (1) and (2)
of SU2)cs, k=4, a complete set of three-quark
nucleon interpolators with respect to SU(2).¢ should
contain eight independent operators of positive and
negative parity because 2@®2®2=2, &2, & 4.
Such operators with the J =0 diquark are listed in
Table I.

SU(2)cs

(75, C) U(1)a
SU(4)
N®(5.57) NG
(1117(/;75%1) U(1)4 (i]l-C:/r,M)
SU(2)a P SU(2)4

SU(2)cs

U(D)a

FIG. 1. The nucleons linked by dashed red arrows are con-
nected by SU(2),,, and those linked by blue arrows are connected
by U(1),. The nucleons inside the green boxes are all connected
via SU(2) .y and inside the violet box are connected via SU(4).

Applying the U(1), transformation on the given oper-
ator of Table I, one obtains a linear combination of some
operators that are connected by blue arrows in Fig. 1.
Consequently the operators connected by blue arrows form
reducible representations of U(1),. The irreducible repre-
sentations of U(1), are one dimensional and can be
obtained as certain linear combinations of operators con-
nected by blue arrows.

The axial part of SU(2), x SU(2); [abbreviated as
SU(2),] transforms the given operator into a linear super-
position of operators connected by dashed red lines in
Fig. 1. For example, both the operators of positive and
negative parity N'(1,1%) form a four-dimensional irre-
ducible representation (0,1/2) 4+ (1/2,0) of the parity-
chiral group. The same is true for the operators N® (1, 1+).

For the operators N®)(1,1) as well as N® (1 1¥)
the situation is a bit more complicated. Applying the
SU(2); x SU(2)p transformation on each of these oper-
ators, one obtains linear combinations of these operators as
well as of A operators (isospin I = 3/2) of the same spin.

This is because certain linear combinations of N (},1%)

and NW(1 1) form along with their A partners the
irreducible representations (1,1/2) + (1/2,1).

The SU(2)g, k = 4 transformations connect all oper-
ators inside the green boxes of Fig. 1. Finally the SU(4)
transformations connect all eight operators of Fig. 1 along
with the respective A partners.

Below we present a set of nucleon operators that trans-
form under irreducible representations of SU(2) g, k = 4
[16]. These operators are linear combinations of the
operators from Table I:
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1
By, (=1/2) = - [=(N = NU) o+ (V) = NE) (W + NO) (VY + NE)
1
B (1/2) = 57 (VY + ND) = (NP 4 N®) +i(N = NO) —i(N = N®)),
12 (1) _ nit @ _ ni (3)
1922(—1/2):§ §y_[—(N+ — N+ (NP = N®) =N + NO) = 3N + N9,
1 /2
By,(1/2) = g\ [37- [V + NO) = (V2 + NO) (N = V) 4 3i(VE - N9,
1
By(=3/2) = gr- (VY + NO) + (N + D))
1 /1
By(=1/2) = 1 [37-IVY) = N) = (N = NE)) = 2i(NT 4 NO)
1 /1
By(1/2) = 7 [57- [N+ NO) = (N2 + N®) =2V = NO)),
1 M) _ () @ _ N
B4(3/2) = J7-[(NY) = NU) + (N = NO)). (13)

Explicitly these operators are
BZI (_1/2) = €abc
(1/2) = €abc

BZZ( 1/2) = €abc

ﬁﬁ&ﬁ

322(1/2) = €abe

B4(_3/2) = —€abc¥- ua{dgcy—uc}’

( 1/2) = €abc

B4(1/2) = €abe

B4(3/2) = €abc7—74ua{dgc}’+”c}‘

ﬁﬁ

Here y, =1 (1 £ys) and B,(r,) is the nucleon inter-
polator in the irreducible representation of dimension r =
2y +1 of SU(2)cg and with chiral-spin index y, (z
projection of the chiral-spin y). In (14) the curly brackets
{---} mean antisymmetrization between d, and u, quarks
as in (12). Upon the chiral-spin transformation (1) and (2)
with & = 4 only those nucleon operators are connected that
belong to the same irreducible representation, as illustrated
in Fig. 2.

IV. SPECTRAL DECOMPOSITION

In this section we analyze the Euclidean nucleon
propagators along ¢ direction upon truncation of the

—y_[—2u,{d} Cyay u.} -

y-lrau{dyCy_u.} + u{d; Cyay_u.}),

=7 - [ua{dlfchruc} + 7/4uu{dlfc7/47/+uc}]’

u{dyCyay_u.} + yau{d; Cy_u.}],

—y_[2yqu,{d}, Cyay_u.} — yau{dy Cyayu.} + udd;Cy u.}],

y-l—udd} Crayuc} + ud{d) Cyay_u.} — yqu {djCy_u.}],

y_lyau{d} Cyay_u.} — yau{dyCray u.}y + u{dyCyou.}).

(14)

[

low-lying modes of the Dirac operator. We follow the
procedure that was developed in Ref. [15] for a similar
study of meson propagators. This approach is based on the
spectral decomposition of the quark propagator in terms of
the eigenmodes of the Dirac operator. The eigenmodes
contain complete information about the interaction of a
quark with a gluonic field.

We work in Euclidean spacetime and consider a hermi-
tian massless Dirac operator Dy = iy,D,. The eigenfunc-
tions and eigenvalues of the Dirac operator are defined by
the relation

Doy = ™. (15)
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By, (1/2) By, (=1/2) | SU(2)cs
322(1/2) 322(—1/2) SU(Q)CS
By(1/2) By(-1/2)

SU(2)cs
B4(3/2) By(-3/2)

FIG. 2. Nucleons B, (y.) in the irreducible representations of
SU(2)¢g. Operators inside the green boxes form the basis of the
corresponding irreducible representation and are connected via
SU(2) g transformations.

Because of {ys,Dy} = 0, the eigenvalues come in pairs
with opposite signs (»,, —1,) since

Doysy™ = —n,ysy™. (16)

In the following we will use the notation #_, = —n,,. Here
and in the rest of this work we assume that the Dirac
operator D does not have exact zero modes in its spectrum,
which is equivalent to selecting gauge configurations with
zero global topological charge. The contribution of exact
zero modes to observables vanishes in the thermodynamic
limit. Therefore in Egs. (15) and (16), ,, # 0, for all z//(">.

The full Dirac operator for a quark field with mass m can
be decomposed as

D=Dy+im=" _(n,+im)y "y

= [ +im)y Wy 4 (=, 4 im)ysy Dy ys),

n>0

(17)

where we used (15) and (16).

Now we consider baryon propagators and their decom-
position using (17) for a theory with two mass degenerate
quark flavors. A general baryon interpolator [see Eq. (14)]
can be written as

O(x) = ZC,OU)(X), (18)

for some choice of the coefficients ¢; € C, in which
00 () = ewelua{d] Ty ue i Td}. (19)

where IA“(li) is given by a linear combination of products of

Dirac matrices, Fg> is a generic product of gamma matrices,

and it satisfies the relation y4F§i>%y4 = sg)l“g), where
sV =41,

The propagator associated with the operators O")(x) and
0Y)(y), after the application of the Wick contractions, is
given by

Clid) (x,y) = (0D (x)0Y) (),
i (i d ' [
= Sg )€ubc€a’b'c' (F(l ))fa(rg >)/f}’(l—éj>)}’/ﬁ/(y4r<lj) )a’if
1 -1 -1
xaayd' o drb/i\yb,/f/

x [Dy
e L e ) e (20)

xaalyc'y! xbp|yb' p' Mx(:ﬂyulu

Ureylyey'

Furthermore we have called, e.g., D;! =
— xaalyd' o

(Uyaqllygw)a the quark propagator of the up quark
between the spacetime points x and y, with color indices
a and &', and Dirac indices a and «'. In the case of two
degenerate quark masses, then D~! = D! = D!

In the absence of zero modes in the Dirac spectrum, the
quark propagator D~! can be expanded [see Ref. [15] and

Eq. (17)] as

_ n n)t n n)t
Dxa115|ya’a’ = anwgca)al//;a)/a/ + f—n (YS)(xfl//)(caéw;a)’é’(yS)éf’a”
n>0
1)
where
1
= =h - i s
fn ’1n + im n lgn
1
- — —h —ig.. 2
f n ’1_” + im n lgn ( )
with
My
h,=h(m,n,) =—>,
n=him.m,) =577 7
m
gn = glmm) =575 o 0. (23)

Substituting Eq. (21) in the full propagator

C(x.y) = (0(x)0(y))a = ZCiC}*C“’” (x,y), (24

we can express it in terms of h(m,n) and g(m,n),
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30 \
m = 0.02
25 m=0.06 - - - -
m=0.08 ------
20 E
/g M~
E“ 15 g
= L
10 g
5 i
0 . =
0 0.1 0.2 0.3 0.4 0.5
n
FIG. 3.

Clxy) = Y (9ugegiS™(x.y) + gugchyS¥" (x.y)

n>0,k>0,/>0
+ guhihy ST (x, y) + hyh S (x, ). (25)

The functions S$%9(x,y), S%"(x,y), S9"(x,y), and
S"h(x,y) contain the information about the eigenfunctions
of the Dirac operator and the structure of the baryon field
under consideration.

Therefore the correlator C(x,y) has terms proportional
to the g(m,n) function, such as g¢,g;9;5%(x,y),
n9ichiS9" (x,y), and g, h h; S (x, y), that we call g terms,
and terms proportional only to the A (m, 1) function that we
call h terms. A sketch of these two functions for different
mass values is shown in Fig. 3.

In the chiral limit m — 0 the function g(m, n) approaches
the delta function £6(i7). Hence a gap around zero in the
spectrum of the Dirac operator will induce the vanishing of
the terms in Eq. (25) that contain at least one factor of g. In
other words, all g terms in Eq. (25) vanish in the chiral limit
upon truncation of the near-zero modes of the Dirac
operator.

The h(m,n) function is peaked at 7 = m and falls slower
compared to the g(m,n) function at high eigenvalues 7.
Consequently while the h(m,n) function still suppresses
higher eigenvalues 7, making a small hole in the Dirac
eigenspectrum will not necessarily lead to the vanishing of
the 4 term in Eq. (25) in the chiral limit unless some
additional suppressing dynamical factors are contained
in S""(x,y).

In the following we call nucleon operators g equivalent if
the difference of their propagators contains only g terms.

V. SPECTRAL DECOMPOSITION OF
NUCLEON PROPAGATORS

A. Correlators of N operators

Now we apply results of the previous section to
correlators of nucleon operators from Table I. The details

30 ‘
m = 0.02

25 - m=0.06 - - -
m=0.08 ------

g(m,n) and h(m,n) functions from Ref. [15] for m = 0.02 (full line), 0.06 (dashed line), and 0.08 (dotted line).

of the expansion in g terms and h terms of the nucleon
propagators are given in Appendix A.

In Fig. 4 we show how the difference of two correlators
(25) calculated with any two operators from Table I is
expressed via the ggg, ggh, ghh, and hhh terms. We see
from Fig. 4 that all nucleons connected by U(1), and/or
SU(2), transformations (see Fig. 1) are g equivalent (for
details see Appendixes B and C). Consequently a gap in the
low-lying spectrum of the Dirac operator results (in the
chiral limit) in the degeneracy of all correlators obtained
with operators connected by dashed red and/or blue arrows
in Fig. 1. We conclude that a gap in the Dirac spectrum
implies necessarily restoration of both U(1), and SU(2), x
SU(2)g symmetries in nucleons. It is similar to the results
for meson correlators obtained in [15]. Such degeneracies

N, 1% ghh, 999 NO(L, LT
foomimecmenaan- 3
(1,Cs) N ’ (1,Cvs)
ghh, gghI Ighh, ggh
N®(L, 1) ghh, g99 R N®E 17)
(75, C) N ’ (75, C)
hhh © hhh
N®(,57) ghh, 999 N®(3,47)
.............. >
(1, Cysya) (i1, Cys7v4)
AN AN
ghh, ggh * + ghh, ggh
v v
N, 57) ghh, 999 NG5
(175, C4) (175, C4)

FIG. 4. g and & connections among nucleons of Table I. Below

each nucleon we have indicated its I" structure, i.e., (F(li), F(zi)).
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of the nucleon correlators have been observed on the lattice
in Ref. [6].

Let us summarize. Restoration of U(1), and SU(2); x
SU(2)z symmetries in nucleon correlators (24) is neces-
sarily provided by a gap in the spectrum of the Dirac
operator, i.e., all U(1), and SU(2); x SU(2)y breaking
dynamics are contained only in the near-zero modes.

However, the observations of Ref. [6] went essentially
further than simply U(1), and SU(2), x SU(2) restora-
tion. It was noticed that larger symmetries SU(2)qg
and SU(4) emerge in baryon masses upon low-mode
truncation.

From the analytical side we can now conclude the
following. Comparing Fig. 4 with Fig. 1 we observe that,
given a gap in the Dirac spectrum, the emergence of
SU(2)¢g and SU(4) requires in addition that the A ferm
in the difference of two correlators connected by the
SU(2) g transformation (and not connected by the chiral
transformations) should be at least strongly suppressed
for higher-lying eigenmodes of the Dirac operator. While
some suppression is indeed provided by the hhh factor
(see Fig. 3), this suppression is not as strong as in g terms.
In other words, a gap in the Dirac spectrum does not
automatically imply emergence of the SU(2) ¢ and SU(4)
symmetries in correlators (25).

This result is not unexpected. In contrast to the chiral
symmetries the SU(2),¢ and SU(4) symmetries are not
covariant. They are symmetries of the quark-electric
interaction in the given reference frame, while the quark
kinetic term and the quark-magnetic interaction break
them. They have been observed as symmetries of hadron
masses upon low-mode truncation, i.e., symmetries of the
rest frame correlation functions. The correlators (24) mix
different reference frames in Minkowski space and only
covariant symmetries, such as chiral symmetries, should
persist in these correlators. Consequently to address the
question of symmetries of hadron masses we need now to
analyze the rest frame correlators (11). This means we need
to study the correlators

() => (NY(x.y.2.0)N(0,0)).  (26)

X.¥.2

where the sum ) . is over all the space.

However, the summation over all spatial points x, y, z
does not convert an / connection between the N and N©)
operators in Fig. 4 into a g connection. We do not get
further g equivalence as compared to the ones indicated in
Fig. 4. The presence of a gap in the Dirac spectrum does not
automatically imply the emergence of SU(2).¢ and SU(4).

In full QCD studies with the explicit removal of the low-
lying modes in the propagators the SU(2).s and SU(4)
symmetries were observed in the hadron spectrum [6]. This
implies that a cancellation of ~Ahh terms occurs due to some
additional SU(2)-¢ and SU(4)-symmetric microscopic

dynamics, i.e., QCD dynamics beyond the chiral symmetry
breaking dynamics dominated by the low modes. Such
dynamics, as it follows from the symmetry classification of
the QCD Lagrangian in Sec. II, should be related with the
confining quark-chromoelectric interaction.

Let us summarize. Restoration of U(1), and SU(2), x
SU(2)g symmetries in nucleon correlators (24) is neces-
sarily provided by a gap in the spectrum of the Dirac
operator; i.e., all U(1), and SU(2); x SU(2)y breaking
dynamics are contained only in the near-zero modes. The
SU(2) g and SU(4) symmetries in the rest-frame correla-
tors (26) do not automatically emerge. Their emergence
requires some additional microscopical dynamical input
that would guarantee that contributions of the high-lying
modes are SU(2).y and SU(4) symmetric.

B. B,(x.) baryon propagators

In Fig. 2 we have reported irreducible SU(2) ¢ repre-
sentations of the baryon operators defined in Eq. (14). Each
of these operators is a U(1), singlet, i.e., transforms into
itself upon the U(1), transformation. This is because by
definition the B, (y.) interpolators are eigenstates of ys in
the different representations 2, 2,, and 4 of SU(2) .

Regarding the SU(2), x SU(2)g, each operator from
Fig. 2 is a linear combination of positive and negative parity
operators (12). Different operators (12) belong to different
irreducible representations of the parity-chiral group, as
was discussed above, so no definite representation of
SU(2), x SU(2)g can be ascribed to the operators (14).

Now we apply a spectral decomposition of Sec. IV to the
propagators built with the baryon operators (14)

C(x. ). = (B, () (x)B, () (). (27)

We find that the difference between two generic propa-
gators C(x,y),  and C(x,y), ., always contains hhh
terms. This means that a gap in the spectrum of the
Dirac operator does not yet automatically imply emergence
of the SU(2)g and SU(4) symmetries. This result is not
unexpected since the correlators C(x,y),, mix different

reference frames in Minkowski spacetime and only covar-
iant symmetries can persist in such correlators. It is in
complete agreement with the result obtained for the
nucleon propagators; see Fig. 4.

Consequently we analyze now baryon correlators in the
rest frame; i.e., we consider the correlators

C(1)ry. = D (Brlx)(x.3,2.1)B,(x:)(0,0)), (28)

x.y.2

where the sum ) is over all the space.
Under parity transformations the
transform as

quark fields
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qxaai)qgaa = <y4)aﬁq73xaﬁ7 (29)
where Px=P,x, and P,, = diag(—1,-1,-1,1) is the
parity operator; hence, if x, = (x,y,z,1), then (Px)” =
(—x,—y,—2z,1). q is a generic quark field. Applying the
parity transformations (29) to the baryon operators in (14)
we get the following relation for generic representation r
and chiral spin projection y,:

B, (x)(Px) = nBy (=x.)(x). (30)

where we indicate B, (y,)(Px) = B,(y,)(—x, -y, —z.t) and
Bf(y.) is the baryon operator B,(y,) in (14), and we have
substituted u — u” and d — d¥; see (29). In Eq. (30)
n = %1, depending on r and y,, and we used that y,C =
—Cyy4 and that y4y,ys = y+. Plugging Eq. (30) in (28)
we get

C(1),, =D (B, (r:)(x..2.1)B,(x:)(0.0))

X, ),2

= Z(B,(;(Z)(—x, —-¥,—Z t>Br<Zz><0’0)>

X,).Z

= (BP(=r.)(x.y.2.1)BY (—.)(0,0))

X, ¥.Z

= Z<Br(_)(z)(xvyv Z5 I>Br(_)(z)(0’0)>

X, ¥.Z

=C(1) (31)

r=yx.’
where in the third line we used Eq. (30). Since we are
averaging over all possible quark fields we can remove the
label P in the last line of Eq. (31) (because parity is a
symmetry of the QCD action and the measure in the
average (-) is parity invariant).

Equation (31) tells us that for a given irreducible repre-
sentation r of SU(2)g we have C(t),, —C(1),_, =0, for
all y,. Hence in the rest frame the correlators for the
baryons within the doublet 2; and 2, representations are
equal. This is a general statement, irrespective of
whether there is or there is not a gap in the spectrum
of the Dirac operator. This fact does not mean, however,
that the SU(2) g symmetry is manifest in the rest-frame
correlators, because in the representation 4 the correla-
tors with y, = +1/2 are not equal to the correlators
with y, = £3/2.
|

The presence of a gap in the Dirac spectrum does not
automatically make the correlators with y, = +1/2 and
with y, = £3/2 g equivalent. The emergence of SU(2) ¢
requires some additional suppression of matrix elements
with higher-lying modes as was discussed in the previous
subsection.

VI. CONCLUSIONS

In this paper we have analyzed analytically, by
expansion of the propagators into eigenmodes of the
Dirac operator, which symmetries emerge in baryon
correlators (masses) if there is a gap around zero in the
spectrum of the Dirac operator. We have found that such a
gap results necessarily in the emergence of chiral U(1),
and SU(2); x SU(2), symmetries in baryons.

Some specific dynamics in QCD leads to the accumu-
lation of the near-zero modes, i.e., to the breaking of
chiral symmetries. Given the y° anticommutativity of the
Euclidean Dirac operator we prove here that a gap in the
Dirac eigenmode spectrum implies necessarily restoration
of both U(1), and SU(2), x SU(2), symmetries. The root
of this statement is precisely the same as of the Banks-
Casher relation. We do not need to know which dynamics
and why it leads to the accumulation of the near-
zero modes.

Emergence of larger SU(2).y and SU(4) symmetries,
which was observed on the lattice upon truncation of the
near-zero modes of the Dirac operator and also at high
temperatures without any truncation, requires that the
electric interaction should be the most important
for higher-lying modes. This is buried in the eigenfunc-
tions of the Dirac operator and cannot be specified within
the present approach which does not use any dynami-
cal input.
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APPENDIX A: NUCLEON PROPAGATOR
EXPANSION

Using Eq. (20) and the expansion of the quark propa-
gator in (21), we can get the expansion of the propagator for
the nucleon interpolators given in Eq. (12) and specified in
Table I. It is given by

My _ O (i)t (i) (0) (i) -1 -1 -1 -1 -1 -1
C(N;t ) - s2 eabcea’b’c’(74rl )a’w(Pi)ws(Fl )ea(FZ )ﬂ}/(rz )}’/ﬂ’ [Dxaa‘ya/a/thﬁ‘yb/ﬂ/Dxcy‘yc/}/_Dxa(x‘yc/y/Dxb/j‘yb/ﬂ/Dxcy‘ya/a/]'

(A1)
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The last line of Eq. (A1) can be written as the following sum:

D—l

-1
D xcylyd'o

xbp|yb'p

= Z [fnfkfl [Wxaall/;azafl//ib)ﬁlllgb)rﬂr’//)(cc)y’//;a/} + fufif- [‘//xaall/ga)ar’//ib?gl//;b)/ﬂ/ (}’S)yﬂl//)(cc)a‘//§2/g/ (75)9’ ’]

n>0,k>0,/>0

— D!

xaalyc'y'

D—l

-1
b xeylye'y!

-1
D xbPlyb'p

xaalyd' o

0t
+ fnf kfl [l//xaal//ya/a/ (}/S)ﬁmll,xba)l//yb’ f(}/5>w’/}’ll’xcyl//ycr},l] + f—nfkfl[(yS)(z§Wxa§W§;a)§’ (7/5)f’a’W,(rb?ﬂl//i;/j’wig}’l//ig’y’]

+ fuf if _z[wxaawijar(?s)ﬂwwihl,w;b)rwf (75)w’ﬂ’<75)y9‘/’ical//ydg/ (¥s)oy]

n)  (n)t k) (k)T n (D
+ o if - [(75)015‘//;(1)15‘//;“25’(75)5’ 'Wib)ﬁllfib)rﬂr(VS)yall’,(cgglllinggr (rs)oy]

+ f nf kfl [(yS)afl//)(ca)fl//)(ya)f’ (},5)5/ ’(yS )ﬂwl//)(cb)mw;b)/ ’(7/5)(1) "B l//)(CC)}’l//Eg 4 }

0T
+ f—nf—kf—l[(}/5>a§l//)(ca)§w§vaz§’ (7/5)5/(1' (75 )/}(l)wih)u}l//;b)la)/ (}/S)m'/)” (75)79W1(629W§2/9f (yS)é)’y/}

— (same terms as above witha' <>y’ and ' < ¢')]. (A2)

Using (22) we can rewrite the coefficients in front of the eigenfunction products in (A2) in terms of g, and 4, i.e.,

Il 1= 1909191 — M9k 91 — Gnhrgr — 1hyhign — gugichi — 1h,gichy — g, hichy + hy,hyhy; (A3)

moreover other coefficients can be found exploiting that f_, = —f;; [see Eq. (22)]. Therefore by linearity of (A2), we can
get the expression of C(NE?) in terms proportional to g,9:9;, 9,9x1> 9uhihy, and h,hh;.

APPENDIX B: C(NY)-C(N®)
The difference C(N 5?) — C(NY) can be written using (Al) as

i ; i i)t i i i
C(Ngr)) - C(N(—>) = sé)eabcea’b’ o (74F( ) 7/4)(1’11)((P+)(1)e + (’P—)méj(ri ))e(z(r( ))/iy(r<2>)y’/3’
[D_ /ajD /j/D i D / ID ID

xaalya xbp|yb’ xcd |yd'd ]

xcd |yc'y xaalyc'y = xbp|yb'p

1.0 (i) (i) - - -1 -1 -1 -1
- (_l)hL 52 €abc€a’b/c’5a’a(r‘2 )ﬂJ’(Fz )}”ﬂ’ [Dxaa\ya/a’Dxb/}|yb’/i’Dxca’|yc’y’_Dxaa\yc/y’Dxb/}\yb’/i’Dxca’|ya’a’}’
(B1)

where we used that y,P, = £P., (P,),e + (P-)ye = 64 and that F(i) F( V=1, for all values of i; see Table L
We expand the quark propagator according to (A2) and use y(™) = y5y") and y5F2 Y5 = Ss(i >Fg') with s§<i) = 1to get

CNY) = C(ND) = (=) e upecodaa(TS)) 5 (T8

x 3 [(fnfkfl  Fonf o =) e o G 0 — o )
n>0,k>0,/>0

n n k k)t / l
 (Fafifmt + Fnd ) s s o0 (75 o gy Oy (5

— oy o (15) W g oy (75

(f wf—kf1+ fonfif - )[‘//xaallfv,}a/(Ys)p’(,)ll/)(cbl,ll/;b/ r(?’s)w’/}”l/xcﬂlfic)y

_ U/)(Cdllwvc Y (yS)ﬂwl’/,(vb)wy/Exb)’ r(yS)w/ﬂ/V/J(CL)YWia) o ]
t Fanf 1+ Faf e f D 1r5) a0 ()t r &y,

n n)t T
= (s )aél//)(cu)fy/;c2§’ (75)ey l//)(cb>/}l//§vb)’/}’ ‘/’)(fc)rllfitz)’a’“ :

Using (22) the coefficients in front of the eigenfunction products can be written as
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S o1+ fonf —if <1 = 21(9n9k91 —

(
Fufef =i+ Fonf—ifi = 21(9a9x9:

(

(

hyhign — hogihy — gnhkhl),

— hyhygy + hugihy + gohihy),
Fuf—if1+ fonfif =1 = 2(gngkgr + huhign = hugihy + g.hichy),
fonefi+ fuf —cf =i = 2(9n9x91 + huhign + hugihy — ghichy).

(B2)

Hence the difference of nucleon propagators with opposite parity contains no terms proportional to hhh as indicated

in Fig. 4.

APPENDIX C: c(N")-c(N?) AND c(vY)-c(v)

In order to prove that the propagators C(N gﬁ)) and C(N <'H)) for i = 1, 3 are also g equivalent, we notice that from Table I
we have F(ZIH) = y5F§) and F<1’+1> = y5F§ ). Therefore from Eq. (A2) and considering i = 1, 3, we have

i i+1
(V) -cve™)

=ttty (P Ty S ((Faf b1t Fafif o= Fafif -1=fnf -1F1)

n>0,k>0,/>0

n n)t k k
[me)awija/wib}wib)ﬁ/v/)(cfywﬁf/y/ (Vs)agwia)gwijg(rs)grdwxbﬁwyb/

Ys )agwmgv/vc)g (75)ew /wib),;wiﬁ,,/wﬁgywi) ]

Infifi=F-nfif- )[Wxaav/yc)y’W)(cb)ﬂwib)’/}’wfw)}’w)(mz’d (s

0

t Dt
W (75) oW gy (7))
t (Fafrf i fafiF 1= Fonf i 1= Fnf i) % s o S (s o gy oy (15 vy

)afl//xa.fwyc’f’

(k) (k)T

0

. o
L (75)e, ’l//xbﬂl//»b’/i’(75)}’9WX09W§H>"9'(yS)gl(’/]

Faf 1= Fnf e 1) X Wy g (75) W g oy (5 ) v — (15 e e (75)

(k) (k)T

(k) ()7 0

)

7s )a:‘//xaeg‘//yc)g(%)g/ ’(Ys)ﬂa)‘//xbw‘/’yb/ (75)ap (Ys)yallfxcell’i,z o (75)ow]

0

Faf i <= Fonf i 1) % a2 (15) gt s oy (7)ot (75) 0 g iy (75) 1

)afl//xacfwyc?.f’ (7/5)5/ '(7/5 )/3(1)1//)(cb)a)l//$b)’ ’(y5>a//)" WSVC)}’W)()J’QJ

= (
=
—(
—(Faf —f1=F—af i f =) X W 0 (r5) g e (75)
=
=
—(r

Ik

(k) (ot (D)

()]

& 'l//xbﬂl//}b’ﬂ’ l//xq’l//ya ad

Using (22) we can rewrite the coefficients in front of the eigenfunction products in terms of £, and g,, namely

Fufifi = fonff =i = =2(hugkgr + ihyhig, + gugihy +ig,hyhy),

Safif—i=fonfif1= -2

IS =S =i = f=nff1=—2(h

(

(hugrgr + ihyhig) = gugihy — ig,hihy),
Snf=xf1=f-nfif=1 = _Z(hngkgl —ih, g1 + gugihy — ignhkhl),

(hagxgr = ihyheg; = gugichy 4 ig,hihy).

Therefore as we can see from Egs. (C1) and (C2) the differences C(N(iw) - C(Nf)) and C(Nf)) — C(Ngf)

proportional to ggh and ghh terms, as indicated in Fig. 4.
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