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Matching the meson quasidistribution amplitude in the RI/MOM scheme
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The x dependence of light-cone distribution amplitude (LCDA) can be directly calculated from a
quasidistribution amplitude (DA) in lattice QCD within the framework of large-momentum effective
theory. In this paper, we study the one-loop renormalization of the quasi-DA in the regularization-
independent momentum subtraction (RI/MOM) scheme. The renormalization factor for the quasiparton
distribution function can be used to renormalize the quasi-DA provided that they are implemented on lattice
and in perturbation theory in the same manner. We derive the one-loop matching coefficient that matches
quasi-DA in the RI/MOM scheme onto LCDA in the MS scheme. Our result provides the crucial step to
extract the LCDAs from lattice matrix elements of quasi-DAs.
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I. INTRODUCTION

Exclusive processes at high energy play a vital role in
understanding the strong interactions in hadronic reactions.
The large momentum transfer in many processes guaran-
tees the use of operator product expansion that separates
short-distance and long-distance degrees of freedom. This
separation is often achieved through the factorization
theorem. When collinear factorization is applicable, the
scattering/decay amplitude of a hard exclusive reaction
can then be written in terms of a convolution of a
hard-scattering kernel with a nonperturbative function—
light-cone distribution amplitudes (LCDAs). The LCDAs
characterize the momentum distribution of quarks and
antiquarks inside a meson.

LCDAs show a few facets. First, in the perturbative
region, the evolution of LCDAS is governed by the renorm-
alization group equation, namely Efremov-Radyushkin-
Brodsky-Lepage (ERBL) equation [1-4]. Large logarithms
of hard momentum scale and hadronic scale in the amplitude

“mestelqure @ gmail.com
"wei.wang @sjtu.edu.cn
*Xujil991 @sjtu.edu.cn
Szhangqa@ihep.ac.cn

'” shuai.zhao @sjtu.edu.cn
‘yzhaoch@mit.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2019/99(9)/094036(7)

094036-1

can be resummed using renormalization group. Second,
LCDAs can be expanded into series of Gegenbauer poly-
nomials which are eigenfunctions of the ERBL kernel.
When the involved energy is high, we expect that LCDA in
pion or kaon approaches its asymptotic form, 6x(1 — x), for
the leading-twist contributions. At accessible energies, such
an expectation is challenged, for instance, by the scaling
violation in the BABAR measurement [5] of the yy* -
form factor. Higher Gegenbauer moments and high power
corrections are shown not negligible [6]. Most notably,
being nonperturbative in nature, LCDAs cannot be evalu-
ated in perturbation theory. Our current knowledge on
LCDAs largely relies on phenomenological approaches like
QCD sum rules or global analyses of data. Nonperturbative
approaches based on first principle methods, e.g., lattice
QCD (LQCD) can be utilized to calculate only the lowest
moments of LCDAs. So far, the pion LCDA is only known
up to its second moment from LQCD [7,8]. The kaon
LCDA, an indispensable input to calculating the differential
decay width of B - K£"#~ and probing new physics
effects therein [9], also receives light efforts from the lattice
[10-12].

Recently, a groundbreaking approach to calculate
LCDA and more general parton physics from lattice
QCD is formulated as large-momentum effective theory
(LaMET) [13,14], where the full x dependence of LCDAs
as well as other parton distributions can be accessed.
In LaMET, instead of directly calculating light-cone
correlations, one can start from equal-time correla-
tions in a large-momentum hadron state, which are
known as quasiparton distribution functions (quasi-PDFs),
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quasi-DAs, etc. At finite but large hadron momentum
P* > Aqcp, the quasiobservables can be factorized as
the convolution of a perturbatively calculable matching
coefficient and the corresponding light-cone observable,
up to power corrections suppressed by 1/P%. Through this
factorization, one can extract light-cone observables from
quasi ones calculated on the lattice.

In the past years, vast progress has been made in the
development of LaMET. The factorization formulas have
been studied for the cases of flavor-nonsinglet quasiquark
PDFs [15-17], transverse momentum dependent (TMD)
PDFs [18-20], generalized parton distributions [21,22] and
DAs [23], and the gluon PDF [24,25]. The effectiveness of
LaMET has also been explored in solvable scenarios for
QCD such as heavy quarkonia [26] and 1 + 1 dimensional
theories [27-29]. The multiplicative renormalizability of
quasi-PDF in coordinate space has been proven for the
quark [30-33] and gluon [34,35] cases, which enables a
nonperturbative renormalization of the quasi-PDFs on the
lattice using the regularization independent momentum
subtraction (RI/MOM) scheme [36—42]. Meanwhile, the
lattice calculations of parton distributions with LaMET
have been carried out and improved over the past years
[37,43-55], and the most recent results at physical pion
mass [49,50,52,53,55] and large nucleon momenta
[50,53,55] have seen remarkable agreements with the
global analysis of PDFs in the moderate-to-large x region
(see [56] for a recent review).

For quasi-DAs, the matching coefficients have been
calculated in dimensional regularization and transverse-
momentum cutoff schemes [23,47,48,57]. Unfortunately,
neither scheme is suitable for a nonperturbative renormal-
ization of the quasi-PDF on the lattice. The RI/MOM
scheme was proposed to serve this purpose [38,41] and has
been used for the lattice renormalization of quasi-PDFs
[37,39,40,42,49,50,52,53]. Since the quasi-DAs are defined
from the same spatial correlator as the quasi-PDFs, the
RI/MOM scheme can be readily applied to their lattice
renormalization. However, a perturbative matching coeffi-
cient that converts the quasi-DA in the RI/MOM scheme to
LCDA in MS scheme is still not available yet. In this work,
our main motive is to calculate this matching coefficient at
one loop. Our result will be a key element of the lattice
calculation of LCDAs with LaMET.

The rest of this paper is organized as follows: In Sec. 1I,
we briefly review the twist-2 LCDA and quasi-DA.
In Sec. III, we review the RI/MOM scheme on the lattice.
In Sec. IV, we show one-loop matching coefficients from
quasi-DAs in the R/MOM scheme to LCDAs in MS
scheme. A summary is presented in Sec. V.

I1. DISTRIBUTION AMPLITUDE

To define the meson LCDA, we introduce the Fourier
transform of a light-cone correlator (P, e|O(T, £7)[0),

F(L.xu) =Pt / & erer (p o, £)00), (1)

2w

where &+ = (& +&)/v2; x€0,1] is the momentum
fraction of quark with respect to meson in the + direction; y
is the renormalization scale; the meson state |P, €> is
denoted by its momentum P* = (P°, 0,0, P?) (and polari-
zation e for vector mesons). The nonlocal operator
O(T, &) is defined as

O(".&7) = w(&)TAW(E, 0)w(0), (2)

where T'=ytys, y*, yty, correspond to pseudo-
scalar, longitudinally polarized vector, and transversely
polarized vector meson LCDAs; 4 is a Gell-Mann matrix
as a flavor space projection, e.g., for pseudoscalar meson,
24 =23, (2* £i2%)/2, and A% correspond to z°, K*, and 5
meson states, respectively; the Wilson line W(&,0) =
Pexp[—ig foéi At (n7)dn7] is introduced to maintain the
gauge invariance of the operator. The meson LCDA
¢(T, x, ) is then defined through

where
V([ 1) = (P, €[O(T,0)[0) (4)

is the renormalized matrix element of the local operator
0(1_“, 0) which defines the decay constant [58,59]

(PlO(r"75,0)|0) = if pP*, (5)

(P.ej|O(r*.0)[0) = fi,Mye]", (6)

(P.e,]0(c".0)[0) = ify (e'P" —ePP").  (7)
where My, is mass of the vector meson. In QCD, fp and f U,
are not renormalized while fy; depends on the scale. This
definition guarantees the normalization of LCDA to be 1,

1 _
/ dxp(T, x, 1) = 1. (8)
0

To access the x dependence of meson LCDA in LaMET,
we consider Fourier transformation of an equal-time
correlator (P,e|O(T,z)|0) with spatial separation in the
z direction,

~ dz . . ~
FOxpi =2 [ 2P0 2)0). ()
T

where i is the renormalization scale for quasi-DA,

094036-2



MATCHING THE MESON QUASIDISTRIBUTION AMPLITUDE ...

PHYS. REV. D 99, 094036 (2019)

O(T,z) = w(z)TA"W(z, 0)y(0) (10)

is a nonlocal operator separated in the z direction at equal
time, and the Wilson line W(z,0)=Pexplig, [{A*(z)dZ].
We define a quasi-DA through

F(T,x, P ) = V(L @)p(U, x, PA ). (11)

Unlike the LCDA, the quasi-DA has support x € (—o0, ).
Note that O(T',0) = O(T,0), so the quasi-DA is also
normalized to 1:

/oo dxd(T, x, P, i) = 1. (12)
In order to avoid operator mixing [38,39,60] on the lattice,
we choose I' = yys, y', y?y, for pseudoscalar, longitudi-
nally polarized vector, and transversely polarized vector
meson quasi-DAs, respectively.

According to LaMET [13,14], the distribution F and F
are related through a factorization formula, which can be
derived using the method in Ref. [17]:

- 1 - n P? _
f(F,x,PZ,ﬂ)ZA dyCr(x,y,g,z)}"(F,y,M)

M2 AG
o( M e (3)

PP P
where O(M?/(P%)?, Ajcp/(P)*) are mass and higher-
twist corrections. Since the choice of I' corresponds to a
unique I', we suppress the label I' of the matching

coefficient C‘F. On the other hand, the renormalized local
operators in Egs. (3) and (11) are related by

V([ p) = Z(T. T, pu, p) V(T i), (14)

where Z(f, I', u, i) contains kinematic factors in Eq. (5)
and the scheme conversion factor when LCDA and quasi-
DA are renormalized in different schemes. Combining
Egs. (13) and (14), we have the matching formula between
quasi-DA and LCDA [21,23]:

- L[ i PP\ | -
¢<F7X7P7,u)7 dyCF x’y7_7_ ¢(F’y7ﬂ)
0 H oM

M? A%
O(<PZ>2 ’ (1?5)2) ’ (15)

where Cp = ZCy- is still perturbatively calculable.

III. RENORMALIZATION

For each value of z, the RI/MOM renormalization factor
Z is calculated nonperturbatively on the lattice by imposing

the condition that the quantum corrections of the correlator
in an off-shell quark state vanish at scales {zi} [38,41]:

(P'lO(T. 2. a)|p")
<p/| O(F7 < a) |p”>trce {i}

where (p')?> = (p”)? in usual lattice setup; O(T, z, a) is the
discretized version of O(T, z) on the lattice in Eq. (10) with
spacing a; the bare matrix element (p'|O(T,z,a)|p")
is obtained from the amputated Green’s function
G, z,a,p',p") of O(T,z,a), which is calculated on
lattice, with a projection operator P for the Dirac matrix,

Z(T, z,a,{ii}) = . (16)

(PO, z.a)|p") = Tt[G(I.z,a. p', p")P].  (17)

The UV divergence of the quasi-DA only depends on the
operator O(F, z) itself, not the external states. In a higher-
order Feynman diagram, it originates from the limit of all
loop momentum components going to infinity, and is
universal for all kinds of external states. Therefore, we
can choose a symmetric RI'MOM scheme:

(p|O(T.z,a)|p)
<p|0(F7 2y a)|p>tree {i}

ZS(F’Z’a’ﬂR’p%) = ’ (18)

where {ji} = {p* = —u%, p* = p%} and the dependence
on pj is due to the breaking of Lorentz symmetry in the z
direction; “symmetric” refers to setting the initial and final
quark states to be the same, i.e., |p’) = |p”) = |p). This
choice is the same as the renormalization factor for the
quasi-PDF [41,42].

In a systematic calculation of LCDA, one starts with the
bare correlator for the meson on the lattice,

h(T,z,P*,a) = (P,e|O(T, z,a)|0), (19)

which is renormalized and taken the continuum limit as

hR(RZ’PZ,ﬂR,Pfe)
= liI%Z;1<F,Z,a,ﬂR,p%)Ijl(F,Z,Pz,a), (20)
a—

which is to be Fourier transformed into the x space to obtain
the distribution F:

F(,x, P*, ug, p%)
4 dz ixzP* Z z
=P ﬂe hR(FaZ’P muR?pR)' (21)
V(T, ug) is given by hy at z =0,

V(F7ﬂR) = ilR(F7Z = O’PZ7/'£R7 p;?)’ (22)

which is frame independent and only depends on pg. With
F and V calculated on the lattice, we acquire the quasi-DA
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(Z(F’ X, PZ?/"R? p;{)

_ ps /dZ ixzP? hg(r, ZvavﬂR7 p%) , (23)
2r I/lR(F,Z — O,I/lR)

which satisfies the normalization condition in Eq. (12).
Finally, we match quasi-DA in RI/MOM scheme to the
LCDA in MS scheme according to Eq. (15).

Since (T, x, P*, ug, p%) is independent of the UV
regulator, we can calculate the matching coefficient in
the continuum with perturbation theory using dimensional
regularization. The one-loop result is provided in Sec. IV.

IV. ONE-LOOP MATCHING COEFFICIENT

When the meson momentum P° is much greater than
mass of the meson and Agcp, the quasi-DA in the RFMOM
scheme can be matched to LCDA through the factorization
formula [17,21,23,41],

%(F X, PznuR9sz)

PZ PZ
/ d)’cr<x y.r, ,—Z>¢(F,y,ﬂ)
0 K D

R
M? A(ZQCD
* O((PZ)Z ’ (PZ)Z)’

where r = u%/(p%)?. Note that the dependence of Cr- on x
and y is different from the quasi-PDF case, which can be
proved using the same method in Ref. [17]. To obtain the
matching coefficient from quasi-DA in RI/MOM scheme to
LCDA in MS scheme, we calculate their off-shell quark
matrix element in perturbation theory by replacing the
meson state (P, ¢| in Egs. (3) and (11) to the lowest Fock
state (Q(yP)Q((1 —y)P)], (1 —y)P are the
momenta of the quark Q and antiquark Q, respectively.

At tree level, the LCDA and quasi-DA with quark
external state are

(24)

PO (C.xy) =d (T x.y) =6(x—y).  (25)
In order to combine the “real” and ‘“‘virtual” contributions
(defined in Ref. [41]) in a compact form at the one-loop

level, we introduce a plus function [A(x,y)],,) which is
defined as

/ dxlh(x,y)], )g(x) = / dxh(x.y)lg(x) - g()]  (26)

with two arbitrary functions A(x, y) and g(x). Following the
procedure in Refs. [41,42], we need to take the on-shell
(P> = 0) and large-momentum (P’ — P?) limits of the bare
quasi-DA ¢g(T, x, y, P?, —P?) to match it onto LCDA. We
obtain the bare matching coefficient,

=T, x,y,p,=P?), (27
—P? is the infrared
divergence regulator, which is canceled in C,(Bl) as expected.
As we have shown in Eq. (15), the matching coefficient
from quasi-DA in RI/MOM scheme to LCDA in MS
scheme contains the matching factor of the factorization
formula Eq. (13) as well as a perturbative conversion factor
4 (l_“, ', u, ii). The combination of these two factors not only
guarantee Cr(x,y, r, P*/u, P*/p%) to be unity after inte-
gration over x, but also allow us to write Cg(T, x,y, P*/u)
as a plus function by only considering the real contributions
of the Feynman diagrams, even for the case of non-
conserved current I = y%y .

Since one needs to take the on-shell limit to obtain the

bare matching coefficient, cﬁ;), it is independent of the
choices of gauge and projection operator P defined in

Eq. (17). The results of the bare matching coefficients are

where the subscript B denotes “bare;”

[H (T x, )] x<0<y
Pr C [Hz(F x,y, P~ /ﬂ)] 0<x<y
A (rxy —) =% (28)
2r | [Hy(T, 1 —x, l—y,PZ/,u)] y<x<l
[H](r l—x 1— )] (y) y<1<x,
where
1+x— \l—x y=x | I4+y—xxq,y=x _ 2 t
- In= +—=="3In"=— I'=y%s and vy
H1<r,x,y>:{f T ey (29)
= “ }ln —I—V x;ln — I'=vy%y,,
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(P

1+y—x£1 4x(y

y=x y :

H

I4x—y
+5=

e

PZ _ Ax(y—x 22 _ _
H, (r,x,y,—ﬂ) = 1jfx";—‘,(ln wogtF) —1) s D=y (30)
1 Ay=0)(P)? 1 1= _
s In e : +5= <1 )y‘ln == ;—‘) I=y%,.

Next we need to determine the counterterm of the quasi-DA in RI/MOM scheme. As we argued in Sec. I1I, we can use the
renormalization factor for the quasi-PDF to renormalize the quasi-DA, which leads to the RI/MOM counterterm,

PZ
PRk

(1)
cT

C — g0

(

PZ
Oox,y,r, —)
PR

P
)(r’_z
p

Z

(x—y)—i—l,r) (31)

R +()

g (T, x, r) is the real contribution of quasi-PDF at the RI/MOM subtraction scales yy and pj. We choose Landau gauge,

which is convenient for lattice simulation, and the minimal

projection defined in Ref. [42] to calculate (”1(1>(F, X, 7).

The results of q“)(r ,x, r) for different spin structures are [42,55]

3r—(1-2x)%  4x2(2-3r42x+4rx—12>48x%) 2-3r4242 1Vl
2(r—1)(lfx)_ : = 1)<Xr 4xi4x2))62 . +(r-1)3r/3L(xX-1)tan = x> 1
a,C _ _
3 (rys.xr) = 25 SRS+ Ay an V= 1 0<x<1 (32
3r—(1-2x)% | 4x*(2=3r+2x+4rx—12x>+8x%) 2-3742x2 1V
_2(2—1)(13) : (ril)(xr—4;j»4x2))cz . _(r—1)3/J2r(xx—1)tan =] x <0,
—3r24+13rx—8x2—10rx>+8x> —3r+-8x—rx—4x? —1/r=1
e ravre e T e LR x>1
~ aSCF =3r+7x— r— r. -
g0 x.r) = 5 e f;) + g(r_gf;/;f(ﬁ);) tan~' v/r — 1 0<x<l1 (33)
=324 13rx—8:2—10rx2 483 _ —3r+8x—ra—4 -1 yVr=1
- z(ig(f_lﬁr—uf&)x - 2(r+1f*/2(x x) tan~' Y5 x <0,
3 r=2. r=2x=+r. — \/;:T
M (r—l)(r—4))€c+4x2) o= 1)*7;( . - tan = x> 1
~ asCF — — —
M (ryL.xr) = e Tt + g e Vr—1 O<x<l (34)
3 -2 ) -1vr=1
e (r—l)(rr—4))cc+4x2) - (r—rl);/(ja)ix) tan”' Y= x <0
Finally, combining Egs. (28) and (31), we obtain the one-loop matching coefficient Cr in Eq. (24),
PZ PZ PZ PZ
CF<X,Y»”,_’_Z>:5(x_Y)+CJ<B])(va’y’_) C(C]Z(ny’r_>+0(a5) (35)
H Dk H Pr

V. SUMMARY

In this work, we have pointed out that the quasi-DA can
be renormalized in the RI/MOM scheme with the same
renormalization factor that has already been calculated for
the quasi-PDF case. We have derived the one-loop match-
ing coefficient that matches RI/MOM quasi-DA in the
Landau gauge to MS LCDA within the framework of
LaMET. Our results include the matching coefficients for
pseudoscalar, longitudinally polarized vector, and trans-
versely polarized vector DAs with T" = y%ys, ¥/, and y%y |,

respectively. Our results are ready to be applied to extract
the LCDAs from the lattice matrix elements of quasi-DAs.
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