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We present the polynomiality sum rules for all leading-twist quark and gluon generalized parton
distributions (GPDs) of spin-1 targets such as the deuteron nucleus. The sum rules connect the Mellin
moments of these GPDs to polynomials in skewness parameter ξ, which contain generalized form factors as
their coefficients. The decompositions of local currents in terms of generalized form factors for spin-1
targets are obtained as a by-product of this derivation.
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I. INTRODUCTION

Generalized parton distributions encode nonperturbative
QCD dynamics of hadrons and appear in the Lorentz-
covariant decomposition of off-forward matrix elements of
quark and gluon correlators [1,2]. Due to QCD factoriza-
tion theorems, these generalized parton distributions
(GPDs) appear as the soft part in scattering amplitudes
of hard exclusive processes such as deeply virtual Compton
scattering and deeply virtual meson production. The GPDs
permit a physical interpretation as a partonic density and
more specifically can be related by a 2D Fourier transform
to three-dimensional (light cone momentumþ transverse
spatial coordinates) partonic distributions [3–7].
Lorentz covariance yields polynomiality sum rules for

the Mellin moments of GPDs, where the sth Mellin
moment corresponds to an integral over xs−1 times the
GPD. This remarkable property arises in the following way.
Mellin moments of the bilocal light cone operators appear-
ing in the parton correlators lead to towers of local
operators. Off-forward matrix elements of these local
operators are parametrized in terms of generalized form
factors (GFFs). The sth Mellin moments of GPDs then
correspond to finite polynomials in the skewness variable ξ
[see Eq. (A2)], with the GFFs appearing linearly in
the coefficients. These polynomiality conditions impose

strong constraints on the modeling of the correspond-
ing GPDs.
First Mellin moments of GPDs result in regular form

factors of local currents. Second Mellin moments of
helicity conserving GPDs can be connected to the gravi-
tational form factors, which appear in the Lorentz-covariant
decomposition of the energy-momentum tensor and can be
used to study the spin, mass, and pressure properties of
hadrons [8–13].
As GFFs appear in the decomposition of local operators,

they can be calculated on the lattice [14–19]. From the
computation of these local matrix elements, after perform-
ing an inverse Mellin transform, the GPDs or collinear
parton distribution functions (in the case of forward matrix
elements) can in principle be recovered.
The GFF decomposition for spin-1=2 targets and the

resulting polynomiality sum rules for the leading-twist
GPDs have been extensively covered in the literature
[20–23]. For spins 0 and 1, there has not been a similar
systematic study, but for spin-0 the decompositions of local
currents and polynomiality sum rules are comparatively
simple and results can be found in literature on pion GFFs
(see for instance [24,25]). For spin-1 the picture is still
incomplete. While the leading-twist helicity conserving
GPDs for a spin-1 target were introduced and studied quite
some time ago [26,27], the twist-2 transversity GPDs for
spin-1 were only introduced recently [28]. In this article we
present a systematic derivation of the polynomiality sum
rules for all leading-twist quark and gluon GPDs of spin-1
targets with the GFF decomposition of local operators for
spin-1 targets as an important byproduct of this derivation.
A complete picture of polynomiality for spin-1 targets is

desirable due to an emerging interest in the partonic
structure of particular spin-1 targets and hard exclusive
reactions involving such targets. Generalized parton
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distributions of the deuteron [26–35], rho meson [36–39],
phi meson [19], and photon [40–42] have been the subjects
of theoretical studies. Deeply virtual Compton scattering
from the deuteron has been performed at HERMES
[43,44], and is a topic of interest at Jefferson Lab
[45,46], as well as the proposed Electron Ion Collider
[47]. Generalized distribution amplitudes (GDAs, see
Refs. [48,49] for details) for the rho-rho meson pair
[50,51] (which can be probed by the crossed reaction
γ�γ → ρρ) could potentially be studied at Belle II. Peculiar
aspects of diphoton GDAs have also been discussed [52].
The material in this article is organized as follows. We

restate the leading-twist quark and gluon light cone
correlator decompositions in GPDs for spin-1 targets in
Sec. II. In Sec. III, the general relation between the Mellin
moments of bilocal gauge-invariant light cone operators
and local operators is rederived. In Sec. IV, based on the
method developed by Ji and Lebed [21], we discuss the
counting of the number of GFFs that appear in the
decomposition of the local operators found in Sec. III
based on symmetries and selection rules. This counting
provides an important check on the further results in this
paper. Section V contains the main results of this paper,
viz., the decomposition of the local operators in GFFs and
the resulting polynomiality sum rules for the GPDs of spin-
1 targets. We find agreement between our decompositions
and the counting established in Sec. IV. Finally, conclu-
sions are stated in Sec. VI. Appendix A summarizes the
conventions we use in this work, and Appendix B outlines
the correspondence between this work and a second gluon
spin-1 GFF decomposition in the literature [19]. The
connection with the gravitational form factors of spin-1
targets is left for a future study [53].

II. LEADING-TWIST GPDs
OF SPIN-1 HADRONS

Quark and gluon GPDs are defined as Lorentz-invariant
functions appearing in the decompositions of light cone
correlators [1,2]. GPDs are classified by their collinear
twist, which is equal to their dimension minus the projec-
tion of their spin onto the lightlike vector n defining the
“plus” direction [54]. GPDs of higher twist1 make smaller
contributions to cross sections for hard processes such as
deeply virtual Compton scattering, and at high Q2 the
lowest-twist GPDs dominate the cross section. The lowest-
twist GPDs are twist-2 and are often called leading twist.
The leading-twist GPDs are specifically what we con-
sider here.
There are three leading-twist quark correlators, which

are defined by the following off-forward matrix elements
(conventions used in this work are summarized in
Appendix A):

Vq
λ0λ ¼

Z
∞

−∞

dκ
2π

e2ixðPnÞκhp0;λ0jq̄ð−nκÞ=n½−nκ;nκ�qðnκÞjp;λi;

ð1aÞ

Aq
λ0λ¼

Z
∞

−∞

dκ
2π

e2ixðPnÞκhp0;λ0jq̄ð−nκÞ=nγ5½−nκ;nκ�qðnκÞjp;λi;

ð1bÞ

Tq
λ0λ¼

Z
∞

−∞

dκ
2π

e2ixðPnÞκhp0;λ0jq̄ð−nκÞσni½−nκ;nκ�qðnκÞjp;λi;

ð1cÞ

where

½x; y� ¼ P exp
�
ig
Z

x

y
AðzÞdz

�
ð2Þ

is aWilson line from x to y, withP signifying path ordering.
There are also three leading-twist gluon correlators, which
are defined by

Vg
λ0λ ¼

2

ðPnÞ
Z

∞

−∞

dκ
2π

e2ixðPnÞκhp0; λ0j

2Trf½nκ;−nκ�Gnπð−nκÞ½−nκ; nκ�GπnðnκÞgjp; λi;
ð3aÞ

Ag
λ0λ ¼ −i

2

ðPnÞ
Z

∞

−∞

dκ
2π

e2ixðPnÞκhp0; λ0j

2Trf½nκ;−nκ�Gnπð−nκÞ½−nκ; nκ�G̃πnðnκÞgjp; λi;
ð3bÞ

Tg
λ0λ ¼ S

fijg
2

ðPnÞ
Z

∞

−∞

dκ
2π

e2ixðPnÞκhp0; λ0j

2Trf½nκ;−nκ�Gnið−nκÞ½−nκ; nκ�GjnðnκÞgjp; λi;
ð3cÞ

where the symmetrization operator S is defined in Eq. (A4).
Here, and elsewhere in this work, the indices i and j signify
transverse light cone coordinates. Each of these correlators
has an additional dependence on the renormalization scale
μ2, which we have not notated for brevity.
The correlators defined in Eqs. (1) and (3) apply to any

hadron, but the number of independent Lorentz structures
this can be decomposed into, and thus the number of GPDs
a hadron has, depends on the hadron’s spin. Here, we give
the decompositions of the light cone correlators for spin-1
specifically. The vector quark and gluon correlators have
the following decomposition:

1Higher-twist GPDs are needed to ensure the QED gauge
invariance of the amplitude [33,34].
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Vi
λ0λ ¼ −ðϵ0�ϵÞHi

1ðx; ξ; tÞ þ
ðϵnÞðϵ0�PÞ þ ðϵ0�nÞðϵPÞ

ðPnÞ Hi
2ðx; ξ; tÞ −

2ðϵPÞðϵ0�PÞ
M2

Hi
3ðx; ξ; tÞ

þ ðϵnÞðϵ0�PÞ − ðϵ0�nÞðϵPÞ
ðPnÞ Hi

4ðx; ξ; tÞ þ
�
M2ðϵnÞðϵ0�nÞ

ðPnÞ2 þ 1

3
ðϵϵ0�Þ

�
Hi

5ðx; ξ; tÞ for i ¼ q; g; ð4Þ

while the axial vector quark and gluon correlators decompose as

Ai
λ0λ ¼ −

iϵnϵ0�ϵP
ðPnÞ H̃i

1ðx; ξ; tÞ þ
2iϵnΔPπ
M2

ϵπðϵ0�PÞ þ ϵ0�πðϵPÞ
ðPnÞ H̃i

2ðx; ξ; tÞ

þ 2iϵnΔPπ
M2

ϵπðϵ0�PÞ − ϵ0�πðϵPÞ
ðPnÞ H̃i

3ðx; ξ; tÞ þ
iϵnΔPπ
2ðPnÞ

ϵπðϵ0�nÞ þ ϵ0�πðϵnÞ
ðPnÞ H̃i

4ðx; ξ; tÞ for i ¼ q; g; ð5Þ

where we use the shorthand ϵxyzw ¼ ϵμνρσxμyνzρwσ whenever x, y, z, w are four-vectors. These were first found in Ref. [26],
though we define P to be half of the P used in the same source, producing some superficial differences in the formulas.
The decompositions for the quark and gluon transversities for spin-1 hadrons were found later, in Ref. [28]. For the quark

transversity, we have

Tq
λ0λ ¼ M

ðϵ0�nÞϵi − ϵ0�iðϵnÞ
2

ffiffiffi
2

p ðPnÞ HqT
1 ðx; ξ; tÞ þM

�
2PiðϵnÞðϵ0�nÞ
2

ffiffiffi
2

p ðPnÞ2 −
ðϵnÞϵ0i� þ ϵiðϵ0�nÞ

2
ffiffiffi
2

p ðPnÞ

�
HqT

2 ðx; ξ; tÞ

þ
�ðϵ0�nÞΔi − ϵ0i�ðΔnÞ

MðPnÞ ðϵPÞ − ðϵnÞΔi − ϵiðΔnÞ
MðPnÞ ðϵ0�PÞ

�
HqT

3 ðx; ξ; tÞ

þ
�ðϵ0�nÞΔi − ϵ0i�ðΔnÞ

MðPnÞ ðϵPÞ þ ðϵnÞΔi − ϵiðΔnÞ
MðPnÞ ðϵ0�PÞ

�
HqT

4 ðx; ξ; tÞ

þM

�ðϵ0�nÞΔi − ϵ0i�ðΔnÞ
2

ffiffiffi
2

p ðPnÞ2 ðϵnÞ þ ðϵnÞΔi − ϵiðΔnÞ
2

ffiffiffi
2

p ðPnÞ2 ðϵ0�nÞ
�
HqT

5 ðx; ξ; tÞ

þ ðΔi þ 2ξPiÞ
M

ðϵ0�ϵÞHqT
6 ðx; ξ; tÞ þ ðΔi þ 2ξPiÞ

M
ðϵ0�PÞðϵPÞ

M2
HqT

7 ðx; ξ; tÞ

þ
�ðϵ0�nÞPi − ϵ0i�ðPnÞ

MðPnÞ ðϵPÞ þ ðϵnÞPi − ϵiðPnÞ
MðPnÞ ðϵ0�PÞ

�
HqT

8 ðx; ξ; tÞ

þ
�ðϵ0�nÞPi − ϵ0i�ðPnÞ

MðPnÞ ðϵPÞ − ðϵnÞPi − ϵiðPnÞ
MðPnÞ ðϵ0�PÞ

�
HqT

9 ðx; ξ; tÞ; ð6Þ

and for the gluon transversity

Tg
λ0λ ¼ S

fijg

�
ðΔi þ 2ξPiÞ ðϵ

0�nÞϵj − ϵ0j�ðϵnÞ
2

ffiffiffi
2

p ðPnÞ HgT
1 ðx; ξ; tÞ þ ðΔi þ 2ξPiÞ

�
2PjðϵnÞðϵ0�nÞ
2

ffiffiffi
2

p ðPnÞ2 −
ðϵnÞϵ0j� þ ϵjðϵ0�nÞ

2
ffiffiffi
2

p ðPnÞ

�
HgT

2 ðx; ξ; tÞ

þ ðΔi þ 2ξPiÞ
M

�ðϵ0�nÞΔj − ϵ0j�ðΔnÞ
MðPnÞ ðϵPÞ − ðϵnÞΔj − ϵjðΔnÞ

MðPnÞ ðϵ0�PÞ
�
HgT

3 ðx; ξ; tÞ

þ ðΔi þ 2ξPiÞ
M

�ðϵ0�nÞΔj − ϵ0j�ðΔnÞ
MðPnÞ ðϵPÞ þ ðϵnÞΔj − ϵjðΔnÞ

MðPnÞ ðϵ0�PÞ
�
HgT

4 ðx; ξ; tÞ

−
�ðϵ0�nÞPi − ðPnÞϵ0i�

ðPnÞ
��ðϵnÞPj − ðPnÞϵj

ðPnÞ
�
HgT

5 ðx; ξ; tÞ þ
�ðϵ0�nÞΔi − ðΔnÞϵ0i�

2ðPnÞ
��ðϵnÞΔj − ðΔnÞϵj

2ðPnÞ
�
HgT

6 ðx; ξ; tÞ

þ ðΔi þ 2ξPiÞ
M

ðΔj þ 2ξPjÞ
M

ðϵ0�PÞðϵPÞ
M2

HgT
7 ðx; ξ; tÞ

þ Δi þ 2ξPi

M

�ðϵ0�nÞPj − ϵ0j�ðPnÞ
MðPnÞ ðϵPÞ þ ðϵnÞPj − ϵjðPnÞ

MðPnÞ ðϵ0�PÞ
�
HgT

8 ðx; ξ; tÞ

þ Δi þ 2ξPi

M

�ðϵ0�nÞPj − ϵ0j�ðPnÞ
MðPnÞ ðϵPÞ − ðϵnÞPj − ϵjðPnÞ

MðPnÞ ðϵ0�PÞ
�
HgT

9 ðx; ξ; tÞ
�
: ð7Þ
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III. MELLIN MOMENTS
OF BILOCAL OPERATORS

In this section, we consider the relationship between
Mellin moments of generalized parton distributions and
matrix elements of local currents. The Mellin moments of
the GPDs defined in Sec. II can be found by evaluating the
Mellin moments of the bilocal operators that define the
correlators in Eqs. (1) and (3). The three quark operators of
interest here are

OqV ¼
Z

∞

−∞

dκ
2π

e2ixðPnÞκq̄ð−nκÞ=n½−nκ; nκ�qðnκÞ; ð8aÞ

OqA ¼
Z

∞

−∞

dκ
2π

e2ixðPnÞκq̄ð−nκÞ=nγ5½−nκ; nκ�qðnκÞ; ð8bÞ

OqT ¼
Z

∞

−∞

dκ
2π

e2ixðPnÞκq̄ð−nκÞσni½−nκ; nκ�qðnκÞ; ð8cÞ

while the gluon operators are

OgV ¼
2

ðPnÞ
Z

∞

−∞

dκ
2π

e2ixðPnÞκ

×2Trf½nκ;−nκ�Gnπð−nκÞ½−nκ;nκ�GπnðnκÞg; ð9aÞ

OgA ¼−i
2

ðPnÞ
Z

∞

−∞

dκ
2π

e2ixðPnÞκ

×2Trf½nκ;−nκ�Gnπð−nκÞ½−nκ;nκ�G̃πnðnκÞg; ð9bÞ

OgT ¼ S
fijg

2

ðPnÞ
Z

∞

−∞

dκ
2π

e2ixðPnÞκ

×2Trf½nκ;−nκ�Gnið−nκÞ½−nκ;nκ�GjnðnκÞg: ð9cÞ

Like the correlators they produce through their off-forward
matrix elements, these operators have an implicit depend-
ence on a renormalization scale μ2.
The identity xs

R
dκe2ixðPnÞκfðκÞ ¼ ð i

2ðPnÞÞs ×R
dκe2ixðPnÞκfðsÞðκÞ can be used in the Mellin transforms

of the bilocal operators and combined with the Leibniz
product rule and chain rule to recast xs in terms of the
gauge-covariant derivative. The action of the covariant
derivative depends on which representation of SUð3;CÞ the
object being differentiated transforms under, and its actions
on the field operators of interest are

DμqðxÞ ¼ ∂μqðxÞ − igAμðxÞqðxÞ; ð10aÞ

Dμq̄ðxÞ ¼ ∂μq̄ðxÞ þ igq̄ðxÞAμðxÞ; ð10bÞ

DμGνπðxÞ ¼ ∂μGνπðxÞ − ig½AμðxÞ; GνπðxÞ�: ð10cÞ

If we define a two-sided covariant derivative using

gðyÞD
↔

μfðxÞ≡ 1

2
ðgðyÞ½y; x�ðDμfðxÞÞ − ðDμgðyÞÞ½y; x�fðxÞÞ

ð11Þ

(where we have absorbed the gauge link in order to make
the notation less cumbersome), then we find that

ds

dκs
½q̄ð−nκÞΓ½−nκ; nκ�qðnκÞ� ¼ 2sq̄ð−nκÞΓðnD

↔
ÞsqðnκÞ;

ð12aÞ

ds

dκs
½Trf½nκ;−nκ�Gð−nκÞ½−nκ; nκ�G0ðnκÞg�

¼ 2sTrf½nκ;−nκ�Gð−nκÞðnD
↔
ÞsG0ðnκÞg; ð12bÞ

where Γ is a generic Clifford matrix, and we have used G
and G0 to denote generic components of the gluon field
strength or its dual. Lastly, if we define an auxiliary variable
λ ¼ 2ðPnÞx, then one has

Z
dxe2ixðPnÞκ ¼ 1

2ðPnÞ
Z

dλeiλκ ¼ 2π

2ðPnÞ δðκÞ; ð13Þ

and the Mellin moments of generic quark and gluon
operators become

Z
1

−1
xsOqXdx ¼ 1

2

nμ1…nμs
ðPnÞsþ1

q̄ð0ÞΓðiD
↔μ1Þ…ðiD

↔μsÞqð0Þ

≡ nμnμ1…nμs
ðPnÞsþ1

Oμμ1…μs
qX ; ð14aÞ

Z
1

−1
xsOgXdx ¼ nμ1…nμs

ðPnÞsþ2
2TrfGð0ÞðiD

↔μ1Þ…ðiD
↔μsÞG0ð0Þg

≡ nμnνnμ1…nμs
ðPnÞsþ2

Oμνμ1…μs
gX ; ð14bÞ

where additional instances of n are pulled out of the
operator, having come from the definitions of the light
cone correlators. The Mellin moments of the bilocal
operator have thus become local operators.
It is worth noting that, since nμ1…nμs is symmetric and

traceless, we can additionally symmetrize and subtract the
trace of the matrices between the quark or gluon fields in
Eqs. (14)—that is, we can apply the operator S [see
Eq. (A4)]—without changing the result. Moreover, since
the actual matrices (quark case) or field operators (gluon
case) are contracted with n at leading twist, the results for
specific correlators can be symmetrized further. In particu-
lar, for quarks we find
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Oμμ1…μs
qV ¼ 1

2
S

fμμ1…μsg
q̄ð0ÞγμðiD

↔μ1Þ…ðiD
↔μsÞqð0Þ; ð15aÞ

Oμμ1…μs
qA ¼ 1

2
S

fμμ1…μsg
q̄ð0Þγμγ5ðiD

↔μ1Þ…ðiD
↔μsÞqð0Þ; ð15bÞ

Oμνμ1…μs
qT ¼ 1

2
A
½μν�

S
fμμ1…μsg

q̄ð0ÞσμνðiD
↔μ1Þ…ðiD

↔μsÞqð0Þ:

ð15cÞ

Here, A is defined in Eq. (A5) and signifies explicit
antisymmetrization of the indices denoted under it.2 For
the gluons, we have

Oμνμ1…μs
gV ¼ S

fμνμ1…μsg
2TrfGμπð0ÞðiD

↔μ1Þ…ðiD
↔μsÞGν

πð0Þg;

ð16aÞ

Oμνμ1…μs
gA ¼ −i S

fμνμ1…μsg
2TrfGμπð0ÞðiD

↔μ1Þ…ðiD
↔μsÞG̃ν

πð0Þg;

ð16bÞ

Oμνρσμ1…μs
gT ¼ A

½μρ�
A
½νσ�

S
fρσg

S
fμνμ1…μsg

2TrfGμρð0ÞðiD
↔μ1Þ…ðiD

↔μsÞGσνð0Þg: ð16cÞ

These symmetrizations (and trace subtractions) serve two
purposes: first, they refine the local operators to transform
under irreducible representations of the Lorentz group,
allowing straightforward classification and decomposition
of the operators; and second, they ensure that none of the
form factors in the decomposition of matrix elements of the
local operators contain terms that will contract with
nμnμ1…nμs to zero. This ensures that each of the gener-
alized form factors we find is actually present in the Mellin
moment of a GPD.
The local operators defined in Eqs. (15) and (16), like the

bilocal operators we have derived them from, have an
additional dependence on the renormalization scale μ2

which we have not notated. Consequently, the form factors
obtained from decomposing their matrix elements will
generally have dependence on the renormalization
scale as well. Electromagnetic form factors are a special
exception to this rule.

IV. COUNTING GENERALIZED
FORM FACTORS

In this section, we look at the decomposition of matrix
elements of the local operators given in Eqs. (15) and (16)
when sandwiched between initial and final state kets jp; λi
and hp0; λ0j, namely,

hp0; λ0jOμν…jp; λi ð17Þ

for a hadron h, where λðλ0Þ is the light front helicity of the
initial (final) state hadron. These matrix elements can be
decomposed into a number of Lorentz structures containing
the momenta P and Δ, and possibly Clifford matrices
sandwiched between spinors (in the spin-half case) or
polarization vectors (in the spin-one case). The Lorentz-
invariant functions of the Lorentz scalar t ¼ Δ2 multiplying
these structures constitute the generalized form factors that
we seek.
The number of GFFs that should appear in the decom-

position of Eq. (17) can be determined by using the method
outlined in Refs. [21,22]. This method involves looking at
the crossed channel

hhh̄jOμν…j0i ð18Þ

for hadron-antihadron production from the vacuum and
determining the number of form factors for this process by
matching the JPC quantum numbers between the final state
hhh̄j and the operator Oμν…. More specifically, the pro-
cedure is as follows:
(1) For an operator Oμν…, the possible JPC quantum

numbers are determined using its transformation
properties under the Lorentz group.

(2) For each JPC quantum number, the total number of
states (i.e., L values) that are possible in an hh̄
system with this JPC are counted.

(3) These counts for all possible JPC numbers are
added up.

The number of form factors obtained for the crossed
channel is equal to the number of GFFs for the original
channel due to crossing symmetry.

A. JPC of local operators

The JPC decompositions of the local operators of interest
are independent of the hadron. These decompositions have
been derived elsewhere [21–23,55–57], and here we only
recall the results.
The vector operators Oμμ1…μs

qV and Oμνμ1…μs−1
gV defined in

Eqs. (15) and (16) both transform under the ðsþ1
2
; sþ1

2
Þ

representation of the proper Lorentz group and have JPC

quantum numbers

JPC ¼ jð−Þjð−Þsþ1 ∶ j ∈ f0; 1;…; sþ 1g : ð19Þ

2Although σμν is already antisymmetric, the sequence of
covariant derivatives following is not, so this antisymmetrization
following the denoted symmetrization is nontrivial. However, the
additional antisymmetrizing terms this introduces into Oνμμ1…μs

σ

contract with nμnμ1…nμs to zero, so we are free to introduce them
here. These terms are necessary for the local operator to transform
under the ðnþ2

2
; n
2
Þ ⊕ ðn

2
; nþ2

2
Þ representation of the Lorentz group.

See Ref. [55] for details.
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Meanwhile, the axial vector operators Oμμ1…μs
qA and

Oμνμ1…μs−1
gA defined in Eqs. (15b) and (16b) also transform

under the ðsþ1
2
; sþ1

2
Þ representation of the proper Lorentz

group, but have opposite parity and charge conjugation
quantum numbers, giving

JPC ¼ jð−Þjþ1ð−Þs ∶ j ∈ f0; 1;…; sþ 1g : ð20Þ

In both cases, operators associated with the (sþ 1)th
Mellin moment of a quark GPD and the sth moment of
a gluon GPD transform the same way under the Lorentz
group and will accordingly have the same number of
generalized form factors. As a consequence these operators
mix under QCD evolution. This will no longer be the case
when we consider transversity operators.
The transversity operator for the quark, defined in

Eq. (15c), transforms under the ðsþ2
2
; s
2
Þ ⊕ ðs

2
; sþ2

2
Þ repre-

sentation of the proper Lorentz group. Both parity quantum
numbers are available for each j value in the decomposi-
tion, giving two sequences of allowed JPC numbers,

JPC ¼ jð−Þjþ1ð−Þsþ1

;

JPC ¼ jð−Þjð−Þsþ1 ∶ j ∈ f1;…; sþ 1g : ð21Þ

The helicity-flip operator for the gluon, defined in
Eq. (16c), transforms under the ðsþ4

2
; s
2
Þ ⊕ ðs

2
; sþ4

2
Þ repre-

sentation of the proper Lorentz group. As with the quark
transversity, both parities contribute for each available j.
We thus again get two sequences of JPC [23]

JPC ¼ jð−Þjð−Þs ; JPC ¼ jð−Þjþ1ð−Þs ∶ j∈ f2;…; sþ 2g :
ð22Þ

B. JPC counting and matching for spin-0

As explained above, the number of expected generalized
form factors in the matrix element of a local operator is
counted by matching the number of JPC states available to a
hadron-antihadron state and the JPC decomposition of the
local operator. This matching scheme has been performed
for spin-half hadrons extensively elsewhere, so we will not
repeat this for the spin-half case. We will look in detail at
the bosonic cases spin-0 and spin-1.
First, we consider spin-0 as a simple case. The allowed

JPC quantum numbers for a hadron-antihadron state are
determined by the relations for two-boson states,

P ¼ ð−1ÞL; C ¼ ð−1ÞLþS; ð23Þ

where J ¼ jL − Sj;…; Lþ S. Since S ¼ 0 for a system of
two spin-0 particles, one simply has J ¼ L. The allowed
states are given by the sequence JPC ¼ jð−Þjð−Þj (j ≥ 0)
with one state per j value.

We now proceed to match the JPC sequence arising from
hadron-antihadron states with the JPC decomposition of the
local operators of interest. We begin with the vector
operators Oμμ1…μs

qV for quarks or Oμνμ1…μs−1
gV for gluons.

The available JPC states in the operator are jð−Þjð−Þsþ1

, with
j ∈ f0; 1;…; sþ 1g. The hadron-antihadron pair gives us
states JPC ¼ jð−Þjð−Þj , with j ≥ 0. Summing over all pos-
sible coincidences between these sequences, we get

NðsÞ ¼
Xsþ1

j¼0

Θðð−1Þsþjþ1 ¼ 1Þ; ð24Þ

whereΘðPÞ ¼ 1 if P is true, andΘðPÞ ¼ 0 otherwise. If we
reindex the sum using r ¼ sþ jþ 1, we have

NðsÞ ¼
X2sþ2

r¼sþ1

Θðð−1Þr ¼ 1Þ ¼
�
sþ 1

2

�
þ 1: ð25Þ

The number of generalized form factors for s ¼
0; 1; 2; 3;… should thus be 1; 2; 2; 3;…, which is exactly
what is seen in existing literature on pion GFFs (see, e.g.,
[24]). Note that s ≥ 0 for quarks, and s ≥ 1 for gluons,
since in the latter case we are taking the sth Mellin moment.
We next consider the axial operators. From their decom-

position, we found JPC ¼ jð−Þjþ1ð−Þs . There are no matches
between this and the JPC of allowed hadron-antihadron
states due to the mismatch in parity. We thus reproduce the
well-known result that the helicity-dependent GPDs of
spin-0 particles identically vanish. The helicity-flip (trans-
versity) GPDs, however, do not vanish for spin-0, so we
have two more cases—the quark and gluon transversities—
to consider.
For quark transversity operators, the cases JPC ¼

jð−Þjð−Þsþ1

and jð−Þjþ1ð−Þsþ1

must both be matched against
JPC ¼ jð−Þjð−Þj . Clearly, only the first of these sequences
has matches. The limits are given by j ∈ f1; 2;…; sþ 1g.
Except for the lower limit in j being different, this looks
identical to the helicity-independent case. Summing over
all possible matches gives us

NðsÞ ¼
Xsþ1

j¼1

Θðð−1Þsþjþ1 ¼ 1Þ ¼
�
s
2

�
þ 1; ð26Þ

producing the sequence 1, 1, 2, 2, … for the number of
GFFs when taking the (sþ 1)th Mellin moment (s ≥ 0).
This sequence agrees with what is seen in Ref. [25].
For gluon transversity operators, we considerOμναβμ1…μs

gT ,
which means (in contrast to the other gluon cases) we are
taking the (sþ 1)th Mellin moments of the transversity
GPDs. Doing so gives us the sequences
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JPC ¼ jð−Þjð−Þs ; JPC ¼ jð−Þjþ1ð−Þs ∶ j∈ f2;…; sþ 2g :
ð27Þ

Only the first of these sequences has matches with
JPC ¼ jð−Þjð−Þj . The number of matches we get is

NðsÞ ¼
Xsþ2

j¼2

Θðð−1Þsþj ¼ 1Þ ¼
�
s
2

�
þ 1: ð28Þ

The number of GFFs for the (sþ 1)th moments of the
gluon transversity GPDs thus follows the sequence 1, 1, 2,
2,…, which is the same as the number of transversity GFFs
for the quarks. However, unlike in the nonhelicity-flip
cases, the moments of the quark and gluon operators are not
offset from one another. This curious fact was also noted for
spin-half in Ref. [23].

C. JPC counting and matching for spin-1

The allowed JPC for a hadron-antihadron state consisting
of two spin-1 particles are given by the relations (23) for
two-boson states. The limits for J are given by
J ¼ jL − Sj;…; Lþ S, and the possible values for S are
given by S ¼ 0, 1, 2. This gives us three sequences of JPC

quantum numbers—one for each S value. We can codify
rules for counting the number of states as follows.
For the S ¼ 0 states, we replicate the spin-0 case.

We have J ¼ L, giving us a sequence JPC ¼ jð−Þjð−Þj of
allowed quantum numbers, with one L value for each JPC.
For S ¼ 1, we have three sequences of states to count.
(1) States for which j ¼ Lþ 1, which begin at L ¼ 0.

These have JPC ¼ jð−Þjþ1ð−Þj ðj ≥ 1Þ.
(2) States for which j ¼ L. These begin at L ¼ 1, since

j ≥ jL − 1j when S ¼ 1, forbidding us to get j ¼ 0

when L ¼ 0. These have JPC ¼ jð−Þjð−Þjþ1 ðj ≥ 1Þ.
(3) States for which j ¼ jL − 1j. The L ¼ 0 state is

already counted in the j ¼ Lþ 1 sequence, so we
count only the L ≥ 1 states. These have JPC ¼
jð−Þjþ1ð−Þj ðj ≥ 0Þ.

For S ¼ 2, we have five sequences of states to count.
(1) States for which j ¼ Lþ 2, which begin at L ¼ 0.

These have JPC ¼ jð−Þjð−Þj ðj ≥ 2Þ.
(2) States for which j ¼ Lþ 1. These begin at L ¼ 1,

since j ≥ jL − 2j when S ¼ 2, forbidding us
to get j ¼ 1 when L ¼ 0. These have JPC ¼
jð−Þjþ1ð−Þjþ1 ðj ≥ 2Þ.

(3) States for which j ¼ L, which begin at L ¼ 1 (for
reasons also relating to forbidden states). These have
JPC ¼ jð−Þjð−Þj ðj ≥ 1Þ.

(4) States for which j ¼ jL − 1j. The L ¼ 0 and L ¼ 1
states are both forbidden, so this sequence starts at
L ¼ 2. These states have JPC ¼ jð−Þjþ1ð−Þjþ1 ðj ≥ 1Þ.

(5) States for which j ¼ jL − 2j. The L ¼ 0 state is
already counted in the j ¼ Lþ 2 sequence, and the
L ¼ 1 state is already counted in the j ¼ L se-
quence, so we only count the L ≥ 2 states. These
have JPC ¼ jð−Þjð−Þj ðj ≥ 0Þ.

Adding these counts together, we have the following
number of L values available in each JPC sequence:

JPC¼ jð−Þjð−Þj ∶ 2þΘðj≥ 1ÞþΘðj≥ 2Þ; ð29aÞ

JPC ¼ jð−Þjþ1ð−Þj ∶ 1þ Θðj ≥ 1Þ; ð29bÞ

JPC ¼ jð−Þjð−Þjþ1 ∶ Θðj ≥ 1Þ; ð29cÞ

JPC ¼ jð−Þjþ1ð−Þjþ1 ∶ Θðj ≥ 1Þ þ Θðj ≥ 2Þ. ð29dÞ

As an illustrative guide, we tabulate in Table I the
allowed JPC quantum numbers for all three sequences
up to J ¼ 4. The L values are explicitly included, and one
can confirm the formulas given in Eqs. (29) for J up to
J ¼ 4 by counting the L values in this table. When
comparable, the JPC and L values we find coincide with
those found in Refs. [58,59].
With the JPC sequences for spin-1 hadron-antihadron

states in hand, we now proceed to count matches between
these and the JPC decompositions of local operators.

1. GFF counting for spin-1: Vector operators

We first consider the number of GFFs arising from the
(sþ 1)th moment of the helicity-independent quark corre-
lator, or the sth moment of the gluon correlator. The JPC

decomposition of the relevant operator is JPC ¼ jð−Þjð−Þsþ1

,
with j ∈ f0; 1;…; sþ 1g. The JPC counts for the hadron-
antihadron states are noted in Eqs. (29). Two of the
sequences noted contribute, namely, those from Eqs. (29a)
and (29c). Counting the number of matches we get gives

TABLE I. Possible JPC quantum numbers for hh̄ states of
spin-1 particles.

S ¼ 0

JPC 0þþ 1−− 2þþ 3−− 4þþ � � �
L 0 1 2 3 4 � � �

S ¼ 1

JPC 0−þ 1þ− 1−þ 2þ− 2−þ 3þ− 3−þ 4þ− 4−þ � � �
L 1 0, 2 1 2 1, 3 2, 4 3 4 3, 5 � � �

S ¼ 2

JPC 0þþ 1−− 1þþ 2−− 2þþ 3−− 3þþ 4−− 4þþ � � �
L 2 1, 3 2 1, 3 0, 2, 4 1, 3, 5 2, 4 3, 5 2, 4, 6 � � �
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NðsÞ¼
Xsþ1

j¼1

1þ2
Xsþ1

j¼0

Θðð−1Þjþsþ1¼1Þþ
Xsþ1

j¼2

Θðð−1Þjþs¼1Þ

¼ðsþ1Þþ2
X2sþ2

r¼sþ1

Θðð−1Þr¼1Þþ
X2sþ1

r¼sþ2

Θðð−1Þr¼1Þ

¼ðsþ1Þþ2

	�
sþ1

2

�
þ1



þΘðs≥1Þ

�
sþ1

2

�

¼3þsþð2þΘðs≥1ÞÞ
�
sþ1

2

�

¼3

	
1þ

�
sþ1

2

�

þs; ð30Þ

which produces the sequence 3, 7, 8, 12, 13, … for the
number of GFFs. This gives us a pattern of numbers which
alternatively increases by four and one. For illustrative
purposes, we provide in Table II an explicit tabulation of
JPC matches for s values up to s ¼ 3, which require J
values up to J ¼ 4.

2. GFF counting for spin-1: Axial vector operators

Next we consider the helicity-dependent correlators,
namely, the (sþ 1)th moment of the quark correlator or
the sth moment of the gluon correlator. The JPC sequence
for the operator is jð−Þjþ1ð−Þs . The hadron-antihadron states
this can be matched with are those appearing in Eqs. (29b)
and (29d). Counting the number of matches we have
gives us

NðsÞ ¼
Xsþ1

j¼1

1þ
Xsþ1

j¼0

Θðð−1Þjþs ¼ 1Þ

þ
Xsþ1

j¼2

Θðð−1Þjþsþ1 ¼ 1Þ ¼ 2ðsþ 1Þ: ð31Þ

An explicit tabulation for matches for s up to s ¼ 3 is
included in Table III.

3. GFF counting for spin-1: Quark
transversity operators

For the quark helicity-flip form factors, two sequences of
JPC are present in the decomposition of the operator:
jð−Þjð−Þsþ1

and jð−Þjþ1ð−Þsþ1

. Since both parties are present, all
of the sequences for hadron-antihadron states notated in
Eqs. (29) contribute to the count. Counting all of the
matches gives us

NðsÞ ¼
Xsþ1

j¼1

fΘðð−1Þjþsþ1 ¼ 1Þð3þ 2Θðj ≥ 1Þ

þ Θðj ≥ 2ÞÞ þ Θðð−1Þjþs ¼ 1Þð2Θðj ≥ 1Þ
þ Θðj ≥ 2ÞÞg

¼ 5þ 3

	
sþ

�
s
2

�

: ð32Þ

This follows the sequence 5, 8, 14, 17, 23, … for the
number of GFFs, with the sequence alternatively increasing
by three and six. An explicit tabulation for matches for s up
to s ¼ 3 is included in Table IV.

4. GFF counting for spin-1: Gluon
transversity operators

Lastly, we look at helicity-flip correlators for the gluon.
As in the spin-0 case, we consider the (sþ 1)th Mellin
moment, not offsetting this like we did with the nonflip
moments. The JPC decomposition of the operators give
us two sequences, namely, jð−Þjð−Þs and jð−Þjþ1ð−Þs , with
j ∈ f2; 3;…; sþ 2g. Since both parities are present in
this decomposition, all of the sequences in the hadron-
antihadron state spectrum notated in Eqs. (29) contribute to
our counting. Counting the matches, we find

NðsÞ ¼
Xsþ2

j¼2

fΘðð−1Þjþs ¼ 1Þð3þ 2Θðj ≥ 1Þ þ Θðj ≥ 2ÞÞ

þ Θðð−1Þjþsþ1 ¼ 1Þð2Θðj ≥ 1Þ þ Θðj ≥ 2ÞÞg

¼ 6þ 3

	
sþ

�
s
2

�

: ð33Þ

TABLE II. Matches of JPC quantum numbers between the spin-1
hadron-antihadron spectrum and a local vector operator, for several
values of s. The bold subscripts inTables II–Vspecify the number of
L values associatedwith the JPC value tabulated. These subscripted
numbers are summed to give the value in the rightmost column.

J

s 0 1 2 3 4 � � � No. of GFFs

0 0þ− 1−−3 3
1 0þþ

2 1−þ1 2þþ
4 7

2 0þ− 1−−3 2þ−
1 3−−4 8

3 0þþ
2 1−þ1 2þþ

4 3−þ1 4þþ
4 12

… … … … … … … …

TABLE III. Matches of JPC for the local axial vector operators.
See caption of Table II for more details.

J

s 0 1 2 3 4 � � � No. of GFFs

0 0−þ1 1þþ
1 2

1 0−−0 1þ−
2 2−−2 4

2 0−þ1 1þþ
1 2−þ2 3þþ

2 6
3 0−−0 1þ−

2 2−−2 3þ−
2 4−−2 8

… … … … … … … …
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This produces the sequence 6, 9, 15, 18, 24, … for
the number of gluon transversity GFFs. Like with the
quark transversity GFFs, this sequences alternatively
increases by three and six. However, in contrast to the
spin-0 and spin-half cases, the number of quark and gluon
transversity GFFs do not coincide. Instead, for each value
of s, there is one more gluon transversity GFF. An explicit
tabulation for matches for s up to s ¼ 3 is included in
Table V.

V. RESULTS: GENERALIZED FORM FACTORS
AND POLYNOMIALITY

In this section, we give explicit expressions for the
matrix elements of the local operators that appear in Mellin

moments of light cone correlators when the operators are
sandwiched between kets for spin-1 hadrons. The spin-0
and spin-half cases have been considered elsewhere. We
start by considering the operators with free indices and then
contract their decompositions with the appropriate number
of n vectors and compare to the correlator decompositions
to obtain polynomiality sum rules for the GPDs. The
correspondence between our decompositions for local
gluon currents and a second decomposition in the literature
[19] are discussed in Appendix B.

A. Vector operators

For the vector operator towers, we can write the
following decomposition:

hp0jOμμ1…μs
qV jpi

¼ S
fμμ1…μsg

�
−ðϵϵ0�ÞPμ

Xs

i¼0
even

Δμ1…ΔμiPμiþ1…PμsAq
sþ1;iðtÞþ ½ϵμðϵ0�PÞþ ϵ0�μðϵPÞ�

Xs
i¼0
even

Δμ1…ΔμiPμiþ1…PμsBq
sþ1;iðtÞ

−
2ðϵ0�PÞðϵPÞ

M2
Pμ

Xs
i¼0
even

Δμ1…ΔμiPμiþ1…PμsCq
sþ1;iðtÞþ ½ϵμðϵ0�PÞ− ϵ0�μðϵPÞ�

Xs
i¼1
odd

Δμ1…ΔμiPμiþ1…PμsDq
sþ1;iðtÞ

þM2ϵμϵ0�μ1
Xs−1
i¼0
even

Δμ2…Δμiþ1Pμiþ2…PμsEq
sþ1;iðtÞ−modðs;2Þ

�
ðϵ0�ϵÞFq

sþ1ðtÞþ
2ðϵ0�PÞðϵPÞ

M2
Gq

sþ1ðtÞ
�
ΔμΔμ1…Δμs

�
; ð34Þ

where the number of factorsΔ is related to the T-even or odd
nature of the accompanying tensor, and the last term
contains two terms comparable to the D-term for the

spin-1=2 case [60]. Polarization four-vectors of the initial
(final) hadron are denoted by ϵ (ϵ0�), where the helicity index
λ (λ0) is implicit in both these vectors and the bra and ket.

TABLE IV. Matches of JPC for the local transverse quark
operators. Two tabulations are present because there are two JPC

sequences (with opposite parity) in the decomposition of the
transversity operator. See caption of Table II for more details.

J

s 1 2 3 4 � � � No.

0 1−−3 3
1 1−þ1 2þþ

4 5
2 1−−3 2þ−

2 3−−4 8
3 1−þ1 2þþ

4 3−þ1 4þþ
4 10

… … … … … … …

J

s 1 2 3 4 � � � No.

0 1þ−
2 2

1 1þþ
1 2−þ2 3

2 1þ−
2 2−−2 3þ−

2 6
3 1þþ

1 2−þ2 3þþ
2 4−þ2 7

… … … … … … …

TABLE V. Matches of JPC for the local transverse gluon
operators. Two tabulations are present because there are two
JPC sequences (with opposite parity) in the decomposition of the
transversity operator. See caption of Table II for more details.

J

s 2 3 4 5 � � � No.

0 2þþ
4 4

1 2þ−
1 3−−4 5

2 2þþ
4 3−þ1 4þþ

4 9
3 2þ−

1 3−−4 4þ−
1 5−−4 10

… … … … … … …

J

s 2 3 4 5 � � � No.

0 2−þ2 2
1 2−−2 3þ−

2 4
2 2−þ2 3þþ

2 4−þ2 6
3 2−−2 3þ−

2 4−−2 5þ−
2 8

… … … … … … …
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The number of GFFs appearing at each value of s in
Eq. (34) can be counted as follows: each odd value of s, one
gets an additional Dsþ1;i, Esþ1;i, Fsþ1, and Gsþ1, so the
count increases by four. At each even value, an additional
Asþ1;i, Bsþ1;i, and Csþ1;i appear, but the D-term-like GFFs
Fsþ1 and Gsþ1 drop out, so the count increases by one.
Only three GFFs are nonzero at s ¼ 0, namely, A1;0, B1;0,
and C1;0, so the count starts at three, the sequence goes as 3,
7, 8, 12, 13, …, and can be written sþ 3ð1þ bsþ1

2
cÞ. This

agrees with the number derived through JPC matching.
Combining the decomposition of Eq. (34) with that of

Eq. (4) gives the following sum rules for moments of quark
GPDs:

Hq
1;sþ1ðξ; tÞ≡

Z
1

−1
dxxsH1ðx; ξ; tÞ

¼
Xs

i¼0
even

ð−2ξÞiAq
sþ1;iðtÞ

þ 1

3

Xs−1
i¼0
even

ð−2ξÞiEq
sþ1;iðtÞ

þmodðs; 2Þð−2ξÞsþ1Fq
nþ1ðtÞ; ð35aÞ

Hq
2;sþ1ðξ; tÞ ¼

Xs
i¼0
even

ð−2ξÞiBq
sþ1;iðtÞ; ð35bÞ

Hq
3;sþ1ðξ; tÞ ¼

Xs

i¼0
even

ð−2ξÞiCq
sþ1;iðtÞ

þmodðs; 2Þð−2ξÞsþ1Gq
sþ1ðtÞ; ð35cÞ

Hq
4;sþ1ðξ; tÞ ¼

Xs
i¼1
odd

ð−2ξÞiDq
sþ1;iðtÞ; ð35dÞ

Hq
5;sþ1ðξ; tÞ ¼

Xs−1
i¼0
even

ð−2ξÞiEq
sþ1;iðtÞ: ð35eÞ

Note that H5;1 ¼ 0, which is related to the Close-
Kumano sum rule [61]. The electromagnetic structure
function b1ðxÞ appearing in the sum rule, which states
that

R
1
0 b1ðxÞdx ¼ 0, is related to the GPD H5 at leading

order and leading twist by

b1ðx;Q2Þ ¼
X
q

e2q½Hq
5ðx; 0; 0; μ2 ¼ Q2Þ

−Hq
5ð−x; 0; 0; μ2 ¼ Q2Þ�; ð36Þ

where x ∈ ½0; 1� is the support region for b1. The Close-
Kumano sum rule follows from Hq

5;1 ¼ 0 if Hq
5 vanishes in

the forward limit at negative x values. This sum rule can be
violated if the sea carries tensor polarization [61], but
Hq

5;1 ¼ 0 is an inviolate consequence of Lorentz symmetry.
The tower of local operators arising from the vector

gluon correlator is related to the tower from the quark
operator we just explored, but with the value of s offset.
Specifically, the (sþ 1)th moment of the vector quark
correlator has the same Lorentz transformation properties
and quantum numbers as the sth moment of the vector
gluon correlator, where s ≥ 1 in this context since there is
not a zeroth Mellin moment. This tower thus has a familiar
decomposition,

hp0jOμμsμ1…μs−1
gV jpi

¼ S
fμμ1…μsg

2

�
−ðϵϵ0�ÞPμ

Xs

i¼0
even

Δμ1…ΔμiPμiþ1…PμsAg
sþ1;iðtÞþ½ϵμðϵ0�PÞþϵ0�μðϵPÞ�

Xs
i¼0
even

Δμ1…ΔμiPμiþ1…PμsBg
sþ1;iðtÞ

−
2ðϵ0�PÞðϵPÞ

M2
Pμ

Xs
i¼0
even

Δμ1…ΔμiPμiþ1…PμsCg
sþ1;iðtÞþ½ϵμðϵ0�PÞ−ϵ0�μðϵPÞ�

Xs
i¼1
odd

Δμ1…ΔμiPμiþ1…PμsDg
sþ1;iðtÞ

þM2ϵμϵ0�μ1
Xs−1
i¼0
even

Δμ2…Δμiþ1Pμiþ2…PμsEg
sþ1;iðtÞ−modðs;2Þ

�
ðϵ0�ϵÞFg

sþ1ðtÞþ
2ðϵ0�PÞðϵPÞ

M2
Gg

sþ1ðtÞ
�
ΔμΔμ1…Δμs

�
; ð37Þ

where we have an extra factor of 2 relative to the quark
case, by convention, and where we have chosen to label the
second index as μs rather than ν in order to make the
correspondence with the quark decomposition clearer. If we
compare this to the definitions of the helicity-independent
gluon GPDs, we get the following polynomiality relations
for odd values of s:

Hg
1;sþ1ðξ; tÞ≡

Z
1

0

dxxs−1H1ðx; ξ; tÞ

¼
Xs
i¼0
even

ð−2ξÞiAg
sþ1;iðtÞ þ

1

3

Xs−1
i¼0
even

ð−2ξÞiEg
sþ1;iðtÞ

þmodðs; 2Þð−2ξÞsþ1Fg
nþ1ðtÞ; ð38aÞ
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Hg
2;sþ1ðξ; tÞ ¼

Xs
i¼0
even

ð−2ξÞiBg
sþ1;iðtÞ; ð38bÞ

Hg
3;sþ1ðξ; tÞ ¼

Xs

i¼0
even

ð−2ξÞiCg
sþ1;iðtÞ

þmodðs; 2Þð−2ξÞsþ1Gg
sþ1ðtÞ; ð38cÞ

Hg
4;sþ1ðξ; tÞ ¼

Xs
i¼1
odd

ð−2ξÞiDg
sþ1;iðtÞ; ð38dÞ

Hg
5;sþ1ðξ; tÞ ¼

Xs−1
i¼0
even

ð−2ξÞiEg
sþ1;iðtÞ; ð38eÞ

where the reflection symmetry around x ¼ 0 of gluon
GPDs was used to reduce the integration range to [0, 1], and
where the GPD moments for even s are zero because of this
same symmetry.

B. Axial vector operators

For the axial vector operator towers, we can write the
following decomposition:

hp0jOμμ1…μs
qA jpi ¼ S

fμμ1…μsg

�
−iϵμνρσϵ0�ν ϵρPσ

Xs
i¼0
even

Δμ1…ΔμiPμiþ1…Pμs Ãq
sþ1;iðtÞ

þ iϵμνρσΔνPρ2

�
ϵσðϵ0�PÞ þ ϵ0�σ ðϵPÞ

M2

�Xs

i¼0
even

Δμ1…ΔμiPμiþ1…Pμs B̃q
sþ1;iðtÞ

þ iϵμνρσΔνPρ2

�
ϵσðϵ0�PÞ − ϵ0�σ ðϵPÞ

M2

�Xs

i¼1
odd

Δμ1…ΔμiPμiþ1…Pμs C̃q
sþ1;iðtÞ

þ iϵμνρσΔνPρ

�
ϵσϵ

0�μ1 þ ϵ0�σ ϵμ1

2

�Xs−1
i¼0
even

Δμ2…Δμiþ1Pμiþ2…Pμs D̃q
sþ1;iðtÞ

�
; ð39Þ

where the number of factors Δ is related to the T-even or
odd nature of the accompanying remaining tensor. The
number of GFFs for any value of s is 2ðsþ 1Þ, which is
equal to the number derived through JPC matching.
Combining the decomposition of Eq. (39) with that of

Eq. (5) gives the following sum rules for moments of
helicity-dependent quark GPDs:

H̃q
1;sþ1ðξ; tÞ ¼

Xs

i¼0
even

ð−2ξÞiÃq
sþ1;iðtÞ; ð40aÞ

H̃q
2;sþ1ðξ; tÞ ¼

Xs

i¼0
even

ð−2ξÞiB̃q
sþ1;iðtÞ; ð40bÞ

H̃q
3;sþ1ðξ; tÞ ¼

Xs
i¼1
odd

ð−2ξÞiC̃q
sþ1;iðtÞ; ð40cÞ

H̃q
4;sþ1ðξ; tÞ ¼

Xs−1
i¼0
even

ð−2ξÞiD̃q
nþ1;iðtÞ; ð40dÞ

and we see that H̃q
3;1 ¼ 0 and H̃q

4;1 ¼ 0.
As in the vector case, the tower of local axial vector

gluon operators matches up with the axial vector quark
operators, with s offset to (s − 1). We obtain the following
decomposition for this gluon tower:

hp0jOμμsμ1…μs−1
gA jpi ¼ S

fμμ1…μsg
2

�
−iϵμνρσϵ0�ν ϵρPσ

Xs

i¼0
even

Δμ1…ΔμiPμiþ1…Pμs Ãg
sþ1;iðtÞ

þ iϵμνρσΔνPρ2

�
ϵσðϵ0�PÞ þ ϵ0�σ ðϵPÞ

M2

�Xs

i¼0
even

Δμ1…ΔμiPμiþ1…Pμs B̃g
sþ1;iðtÞ

þ iϵμνρσΔνPρ2

�
ϵσðϵ0�PÞ − ϵ0�σ ðϵPÞ

M2

�Xs
i¼1
odd

Δμ1…ΔμiPμiþ1…Pμs C̃g
sþ1;iðtÞ

þ iϵμνρσΔνPρ

�
ϵσϵ

0�μ1 þ ϵ0�σ ϵμ1

2

�Xs−1
i¼0
even

Δμ2…Δμiþ1Pμiþ2…Pμs D̃g
sþ1;iðtÞ

�
; ð41Þ
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which leads us to the following sum rules for even values
of s:

H̃g
1;sþ1ðξ; tÞ ¼

Xs

i¼0
even

ð−2ξÞiÃg
sþ1;iðtÞ; ð42aÞ

H̃g
2;sþ1ðξ; tÞ ¼

Xs

i¼0
even

ð−2ξÞiB̃g
sþ1;iðtÞ; ð42bÞ

H̃g
3;sþ1ðξ; tÞ ¼

Xs
i¼1
odd

ð−2ξÞiC̃g
sþ1;iðtÞ; ð42cÞ

H̃g
4;sþ1ðξ; tÞ ¼

Xs−1
i¼0
even

ð−2ξÞiD̃g
nþ1;iðtÞ; ð42dÞ

with the moments vanishing for odd s since the helicity-
dependent gluon GPDs are odd under reflection about
x ¼ 0.

C. Quark transversity operators

For the quark tensor operator towers, we can write the
following decomposition:

hp0jOμνμ1…μs
qT jpi ¼ A

½μν�
S

fμμ1…μsg
2

�
M

2
ffiffiffi
2

p ðϵ0�μϵνÞ
Xs

i¼0
even

Δμ1…ΔμiPμiþ1…PμsAqT
sþ1;iðtÞ

þ M

2
ffiffiffi
2

p ðϵ0�μPνϵμ1 þ ϵμPνϵ0�μ1Þ
Xs−1
i¼1
odd

Δμ2…Δμiþ1Pμiþ2…PμsBqT
sþ1;iðtÞ

þ
�
ϵ0�μΔνðϵPÞ

M
−
ϵμΔνðϵ0�PÞ

M

�Xs
i¼1
odd

Δμ1…ΔμiPμiþ1…PμsCqT
sþ1;iðtÞ

þ
�
ϵ0�μΔνðϵPÞ

M
þ ϵμΔνðϵ0�PÞ

M

�Xs
i¼0
even

Δμ1…ΔμiPμiþ1…PμsDqT
sþ1;iðtÞ

þ M

2
ffiffiffi
2

p ½ϵ0�μΔνϵμ1 þ ϵμΔνϵ0�μ1 �
Xs−1
i¼0
even

Δμ2…Δμiþ1Pμiþ2…PμsEqT
sþ1;iðtÞ

þ PμΔν

M
ðϵ0�ϵÞ

Xs
i¼0
even

Δμ1…ΔμiPμiþ1…PμsFqT
sþ1;iðtÞ

þ PμΔν

M
ðϵ0�PÞðϵPÞ

M2

Xs
i¼0
even

Δμ1…ΔμiPμiþ1…PμsGqT
sþ1;iðtÞ

þ
�
ϵ0�μPνðϵPÞ

M
þ ϵμPνðϵ0�PÞ

M

�Xs
i¼1
odd

Δμ1…ΔμiPμiþ1…PμsHqT
sþ1;iðtÞ

þ
�
ϵ0�μPνðϵPÞ

M
−
ϵμPνðϵ0�PÞ

M

�Xs

i¼0
even

Δμ1…ΔμiPμiþ1…Pμs IqTnþ1;iðtÞ
�
: ð43Þ

The number of GFFs present for any particular s value is
5þ 3ðsþ bs

2
cÞ, which is exactly what was found above

through JPC matching. One can determine this number by
noting that four of the Lorentz structures in this decom-
position are zero when s ¼ 0, that three GFFs are added
with each power of s, and that six are added with each even
power of s—meaning that, as observed in the JPC matching
section, the number of GFFs follows a sequence that starts

with five and increases alternatively by three and six: 5, 8,
14, 17, 23, … .
Unlike with the vector and axial vector operator towers,

there is no special correspondence with gluon transver-
sity GFFs.
Using Eq. (43) with the definition of the quark trans-

versity GPDs in Eq. (6) yields the following sum rules for
Mellin moments of quark transversity GPDs:
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HqT
1;sþ1ðξ; tÞ ¼

Xs

i¼0
even

ð−2ξÞiAqT
sþ1;iðtÞ; ð44aÞ

HqT
2;sþ1ðξ; tÞ ¼

Xs−1
i¼1
odd

ð−2ξÞiBqT
sþ1;iðtÞ; ð44bÞ

HqT
3;sþ1ðξ; tÞ ¼

Xs
i¼1
odd

ð−2ξÞiCqT
sþ1;iðtÞ; ð44cÞ

HqT
4;sþ1ðξ; tÞ ¼

Xs
i¼0
even

ð−2ξÞiDqT
sþ1;iðtÞ; ð44dÞ

HqT
5;sþ1ðξ; tÞ ¼

Xs−1
i¼0
even

ð−2ξÞiEqT
sþ1;iðtÞ; ð44eÞ

HqT
6;sþ1ðξ; tÞ ¼

Xs
i¼0
even

ð−2ξÞiFqT
sþ1;iðtÞ; ð44fÞ

HqT
7;sþ1ðξ; tÞ ¼

Xs
i¼0
even

ð−2ξÞiGqT
sþ1;iðtÞ; ð44gÞ

HqT
8;sþ1ðξ; tÞ ¼

Xs
i¼1
odd

ð−2ξÞiHqT
sþ1;iðtÞ; ð44hÞ

HqT
9;sþ1ðξ; tÞ ¼

Xs
i¼0
even

ð−2ξÞiIqTsþ1;i; ð44iÞ

where we note that HqT
2;1 ¼ HqT

3;1 ¼ HqT
5;1 ¼ HqT

8;1 ¼ 0 are the
four first Mellin moments that vanish.

D. Gluon transversity operators

We lastly look at the tower of gluon transversity
operators, for which we can write the following
decomposition:

hp0jOμνρσμ1…μs
gT jpi ¼ A

½μρ�
A
½σν�

S
fρσg

S
fμνμ1…μsg

8

�
PνΔσ

M

�
M

2
ffiffiffi
2

p ðϵ0�μϵρÞ
Xs
i¼0
even

Δμ1…ΔμiPμiþ1…PμsAgT
sþ1;iðtÞ

þ M

2
ffiffiffi
2

p ðϵ0�μPρϵμ1 þ ϵμPρϵ0�μ1Þ
Xs−1
i¼1
odd

Δμ2…Δμiþ1Pμiþ2…PμsBgT
sþ1;iðtÞ

þ
	
ϵ0�μΔρðϵPÞ

M
−
ϵμΔρðϵ0�PÞ

M


Xs

i¼1
odd

Δμ1…ΔμiPμiþ1…PμsCgT
sþ1;iðtÞ

þ
	
ϵ0�μΔρðϵPÞ

M
þ ϵμΔρðϵ0�PÞ

M


Xs
i¼0
even

Δμ1…ΔμiPμiþ1…PμsDgT
sþ1;iðtÞ

þ PμΔρ

M
ðϵ0�PÞðϵPÞ

M2

Xs
i¼0
even

Δμ1…ΔμiPμiþ1…PμsGgT
sþ1;iðtÞ

þ
	
ϵ0�μPρðϵPÞ

M
þ ϵμPρðϵ0�PÞ

M


Xs

i¼1
odd

Δμ1…ΔμiPμiþ1…PμsHgT
sþ1;iðtÞ

þ
	
ϵ0�μPρðϵPÞ

M
−
ϵμPρðϵ0�PÞ

M


Xs

i¼0
even

Δμ1…ΔμiPμiþ1…Pμs IgTsþ1;iðtÞ
�

− ϵ0�μPρϵνPσ
Xs
i¼0
even

Δμ1…ΔμiPμiþ1…PμsEgT
sþ1;iðtÞ

þ 1

4
ϵ0�μΔρϵνΔσ

Xs

i¼0
even

Δμ1…ΔμiPμiþ1…PμsFgT
sþ1;iðtÞ

�
: ð45Þ
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One can observe that the number of GFFs arising from this
decomposition at order (sþ 1) is 3þ 3ðsþ bs

2
cÞ by notic-

ing that there are six GFFs when s ¼ 0, and that the number
of GFFs increases by one at odd s and six at even s. This
gives the sequence 6, 9, 15, 18, 24,…, which is exactly the
number of GFFs derived from JPC matching above.
Finally, this gives us the following relations for the

moments of the gluon transversity GPDs, with s ≥ 0 and s
even:

HgT
1;sþ1ðξ; tÞ≡

Z
1

0

dxxsHgT
1 ðx; ξ; tÞ

¼
Xs
i¼0
even

ð−2ξÞiAgT
sþ1;iðtÞ; ð46aÞ

HgT
2;sþ1ðξ; tÞ ¼

Xs−1
i¼1
odd

ð−2ξÞiBgT
sþ1;iðtÞ; ð46bÞ

HgT
3;sþ1ðξ; tÞ ¼

Xs
i¼1
odd

ð−2ξÞiCgT
sþ1;iðtÞ; ð46cÞ

HgT
4;sþ1ðξ; tÞ ¼

Xs
i¼0
even

ð−2ξÞiDgT
sþ1;iðtÞ; ð46dÞ

HgT
5;sþ1ðξ; tÞ ¼

Xs

i¼0
even

ð−2ξÞiEgT
sþ1;iðtÞ; ð46eÞ

HgT
6;sþ1ðξ; tÞ ¼

Xs
i¼0
even

ð−2ξÞiFgT
sþ1;iðtÞ; ð46fÞ

HgT
7;sþ1ðξ; tÞ ¼

Xs
i¼0
even

ð−2ξÞiGgT
sþ1;iðtÞ; ð46gÞ

HgT
8;sþ1ðξ; tÞ ¼

Xs

i¼1
odd

ð−2ξÞiHgT
sþ1;iðtÞ; ð46hÞ

HgT
9;sþ1ðξ; tÞ ¼

Xs
i¼0
even

ð−2ξÞiIgTsþ1;iðtÞ; ð46iÞ

where HgT
2;1 ¼ HgT

3;1 ¼ HgT
8;1 ¼ 0 are the three first Mellin

moments that vanish. Moments with odd s are zero due to
the reflection symmetry of the gluon transversity GPDs
about x ¼ 0.

VI. CONCLUSION

In this work, we obtained polynomiality sum rules for
spin-1 targets. This was accomplished by decomposing off-
forward matrix elements of the local currents that appear in

Mellin moments of bilocal operators. Thus, as a byproduct
of this derivation, we have also obtained the decomposition
of said local currents into independent generalized form
factors. The method of Ji and Lebed [21] was used to count
the number of independent generalized form factors that
should appear in the decomposition of each local current,
and we find agreement with our results.
In principle, such work could be extended to systems

with greater spin. There exist spin-3=2 nuclei such as
Lithium-7 which may be of future experimental interest,
such as in studies of the polarized European muon
collaboration effect. On an alternative route, the meaning
of the generalized form factors appearing in the Mellin
moments of GPDs for spin-1 systems warrants more in-
depth exploration. The form factors appearing in the second
Mellin moment of the helicity-independent GPDs appear in
the Lorentz-covariant decomposition of the energy-
momentum tensor and encode properties of great interest,
such as the distribution of mass, angular momentum, and
forces (including shear and pressure forces) inside the
hadron.
One curious feature of spin-1 targets, which contrasts

with spin-0 and spin-1=2 targets, is the appearance of two
independent “D-like” terms, one each in the second Mellin
moment of H1 and H3. Two form factors may be necessary
to describe the distribution of forces inside a hadron with
more complicated structure, including three helicity states
and a quadrupole moment. This, and other aspects of the
spin-1 energy-momentum tensor, will be the focus of a
future work.
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APPENDIX A: CONVENTIONS USED

Since there are variations on conventions used in the
GPD literature, we feel it to be prudent to lay out the
conventions used in this work here. The four-momenta p
and p0 are carried by the initial and final state hadron,
respectively. We additionally use

P ¼ pþ p0

2
; Δ ¼ p0 − p; ðA1Þ
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for the average hadron momentum and momentum transfer,
with Mandelstam variable t ¼ Δ2. We use null vectors n
and n̄ to define the light cone, with ðnn̄Þ ¼ 1. These define
the “plus” and “minus” components of four-vectors as
xþ ¼ ðxnÞ and x− ¼ ðxn̄Þ. The skewness is defined as

ξ ¼ −
ðnΔÞ
2ðPnÞ : ðA2Þ

For the gluons, the dual field strength tensor can be
obtained through

G̃μν ¼
1

2
ϵμνρσGρσ; ðA3Þ

where we use the convention ϵ0123 ¼ þ1.
As the order of symmetrization and antisymmetrization

operations on the Lorentz tensors matters in this work, we
will abstain from using the ½� and fg notation within indices
and use explicit operators

S
fμ1…μsg

Tμ1…μs ¼ 1

n!

X
σ

Tσðμ1Þ…σðμ1Þ − removal of traces;

ðA4Þ

A
½μ1…μs�

Tμ1…μs ¼ 1

n!

X
σ

signðσÞTσðμ1Þ…σðμ1Þ for s ≤ 4;

ðA5Þ

where σ are permutations on the set fμ1;…; μng, and the
sign of σ is determined by an even (þ1) or odd (−1)
number of permutations. The “removal of traces” refers
specifically to subtracting off all possible combinations of
pairwise contractions (i.e., traces) of indices in the sym-
metrized tensor; because of a peculiarity of orthogonal
groups (such as the Lorentz group), this is needed for the
symmetrized tensor to transform under an irreducible
representation of the group (see Chap. 10-5 of Ref. [62]
for details).

APPENDIX B: COMPARISON WITH
A SECOND GFF DECOMPOSITION

For gluons and spin-1 targets, the GFF decomposition
has also been written down for all leading-twist cases in
Ref. [19] [Eqs. (7) and (8) and Appendix B therein, see also
the Erratum], denoted [DPS] in the following. Below, we
summarize the correspondences between the form factors
appearing in the two decompositions. Note that Ref. [19]
does not provide a decomposition in the minimal linearly
independent set of GFFs; hence the counting of form
factors provided in Ref. [19] differs from ours.

For the vector operator, we can make the following
identification between Eq. (7) [DPS] and our Eq. (37):

Bðsþ1Þ
1;i ðtÞ ¼ −2Eg

sþ1;iðtÞ; Bðsþ1Þ
2;i ðtÞ ¼ 2Ag

sþ1;iðtÞ;
Bðsþ1Þ
3;s−1ðtÞ ¼ 2Fg

sþ1ðtÞ; Bðsþ1Þ
4;i ðtÞ ¼ −2Bg

sþ1;iðtÞ;
Bðsþ1Þ
5;i ðtÞ ¼ −2Dg

sþ1;iðtÞ; Bðsþ1Þ
6;i ðtÞ ¼ 4Cg

sþ1;iðtÞ;
Bðsþ1Þ
7;s−1ðtÞ ¼ 4Gg

sþ1ðtÞ: ðB1Þ

The [DPS] GFFs Bðsþ1Þ
3;s−1 ; B

ðsþ1Þ
7;s−1 correspond to our D-terms,

and we can also identify Bðsþ1Þ
7;s−2 ¼ 4Cg

sþ1;s and Bðsþ1Þ
3;s−2 ¼

2Ag
sþ1;s. The other GFFs ð2 ≤ i ≤ s − 1Þ in these

towers 3 and 7 are also present in the Bðsþ1Þ
2;m ; Bðsþ1Þ

6;m towers,
respectively:

Bðsþ1Þ
2;i ðtÞ ¼ Bðsþ1Þ

3;i−2 ðtÞ; Bðsþ1Þ
6;i ðtÞ ¼ Bðsþ1Þ

7;i−2 ðtÞ: ðB2Þ

For the axial vector operators, we compare [DPS]
Appendix B with our Eq. (41). This results in the following
direct correspondences:

B̃ðsþ1Þ
1;i ðtÞ¼−2Ãg

sþ1;iðtÞ; B̃ðsþ1Þ
3;i ðtÞ¼−D̃g

sþ1;iðtÞ: ðB3Þ

The [DPS] towers B̃ðsþ1Þ
2;i ðtÞ and B̃ðsþ1Þ

4;i ðtÞ can be related to
our GFFs after application of the Schouten identities.
For the tensor currents, the identification between [DPS]

Eq. (8) and our Eq. (45) is as follows:

Aðsþ2Þ
1;i ¼ 2EgT

sþ1;i; Aðsþ2Þ
2;i ¼ −

1

2
FgT
sþ1;i;

Aðsþ2Þ
3;i ¼ 1ffiffiffi

2
p AgT

sþ1;i; Aðsþ2Þ
4;i ¼ 1ffiffiffi

2
p AgT

sþ1;i;

Aðsþ2Þ
5;i ¼ −2DgT

sþ1;i; Aðsþ2Þ
6;i ¼ −2IgTsþ1;i;

Aðsþ2Þ
8;i ¼ 2GgT

sþ1;i; Aðsþ2Þ
9;i ¼ 1ffiffiffi

2
p BgT

sþ1;i;

Aðsþ2Þ
10;i ¼ 2CgT

sþ1;i; Aðsþ2Þ
11;i ¼ 2HgT

sþ1;i; ðB4Þ

−Aðsþ2Þ
7;i þ Aðsþ2Þ

7;i−2

4
¼ 2DgT

sþ1;i −
DgT

sþ1;i−2

2
− 4IgTsþ1;i þ IgTsþ1;i−2

− 2
t
M2

EgT
sþ1;i − 2

	
1 −

t
4M2



EgT
sþ1;i−2

− 2

	
4þ t

M2



FgT
sþ1;i þ

t
2M2

FgT
sþ1;i−2:

ðB5Þ

Of the towers [DPS] list, two are not linearly independent
of the other nine (Aðsþ2Þ

7;i and Aðsþ2Þ
4;i ).
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