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We study entanglement in the Hatsugai-Kohmoto model, which exhibits a continuous interaction-driven
Mott transition. By virtue of the all-to-all nature of its center-of-mass-conserving interactions, the model
lacks dynamical spectral weight transfer, which is the key to the intractability of the Hubbard model for
d > 1. In order to maintain a nontrivial Mott-like electron propagator, SU(2) symmetry is preserved in the
Hamiltonian, leading to a ground state that is mixed on both sides of the phase transition. Because of this
mixture, even the metal in this model is unentangled between any pair of sites, unlike free fermions whose
ground state carries a filling-dependent site-site entanglement. We focus on the scaling behavior of the one-
and two-site entropies s1 and s2, as well as the entropy density s, of the ground state near the Mott
transition. At low temperatures in the two-dimensional Hubbard model, Walsh et al. [Phys. Rev. B 99,
075122 (2019)] observed numerically that s1 and s increase continuously into the metal, across a first-order
Mott transition. In the Hatsugai-Kohmoto model, s1 acquires the constant value ln 4 even at the Mott
transition. On the other hand, s2 and s each act as a sharp signal of the Mott transition, in any dimension, by
decreasing at the transition into the metal. Specifically, we find that in one dimension, s2 and s exhibit kinks
at the transition while in two dimensions, only s exhibits a kink.
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I. INTRODUCTION

It is well known for the Hubbard model that in the
vicinity of half filling, adding and removing electrons
changes [1–3] the spectrum at all energies. This state of
affairs obtains because electrons are not the propagating
degrees of freedom (d.o.f.). For example, it has been known
since the early work of Harris and Lange [1] in 1967 that
the low-energy spectral weight is not determined solely by
the number of sites, a static quantity, but additionally
depends on microscopic parameters in the Hamiltonian,
specifically the ratio of the hopping, t, to the on-site
interaction, U. This dependence, dubbed dynamical spec-
tral weight transfer (DSWT) [2–4], renders the ground state
adiabatically distinct from a Fermi liquid because in such
systems no dynamical corrections to the spectral weight
exist. That is, simply counting electrons exhausts the
spectral weight. It is this dynamical mixing that makes
the Hubbard model nontrivial and gives rise to a slew of
nontrivial properties, in particular 1) an oxygen K-edge
absorption [5,6] spectrum that increases faster than twice
the doping level, 2) an integrated weight of the optical
conductivity [7,8] in the lower Hubbard band that exceeds
the nominal doping level, and 3) an upper cutoff on
the integral of the optical conductivity, for recovery
of the superfluid density, of Oð100ΔÞ, where Δ is the

superconducting gap [9–11]. In metals described by Fermi
liquid theory, integrating the optical conductivity to OðΔÞ
is sufficient to recover the superfluid density. All such
deviations can be understood [2–4] within the context of the
Hubbardmodel as a direct consequence of t=U corrections to
the spectral weight or the optical conductivity.
As a result of DSWT, exact statements about the d > 1

Hubbard model are scarce. To alleviate this problem, we
consider a simplification. Such a simplification would be
ideal in the context of modern probes of strongly interact-
ing matter such as the entanglement entropy. In this paper,
we evaluate a measure of the entanglement in an exactly
solvable model [12,13] exhibiting a second-order Mott
transition. In so doing, we show that in addition to the
entanglement entropy in free systems, which has been
studied extensively [14–24], local entanglement in strongly
correlated matter also exhibits key signatures [25,26] at
phase transitions. Whereas the canonical model for such a
transition—the Hubbard model—remains intractable in
general, the Hatsugai-Kohmoto [12,13] (HK) model is
exactly solvable. The model considers electrons interacting
on a lattice with a limited class of all-to-all interactions. In
one space dimension, a scaling analysis shows that both
interaction- and density-driven transitions in the HK model
lie in the same universality class as the density-driven
transition in the Hubbard model [27,28]. Although mark-
edly different from the Hubbard model, the HK model
retains one crucial signature of the Mott transition: a
retarded single-particle electron propagator whose real part
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vanishes at zero energy. The existence of zeros is the
hallmark of Mott insulation [3,29,30]. Propagators with
zeros fail to satisfy the Luttinger sum rule for the ground
state [31] and hence are not adiabatically connected to
Fermi liquids.
In this paper, we analyze the Mott transition in the HK

model from the perspective of local entropies. These are the
two-point entanglement entropy between a pair of lattice
sites, the entropy density s, and the single-site (two-site)
entropy s1 (s2) of the ground state reduced to one (two)
lattice site(s). Our work is motivated in part by a recent
analysis of the latter quantities in the Hubbard model [25].
Two salient features of the HK model are its 1) mixed (i.e.,
degenerate) ground state and 2) infinite range interactions, to
be contrasted with the Hubbard model’s 1) pure ground state
and 2) local interactions. For a pure state, entanglement
entropy (across a bipartition in position space) measures
delocalization of the wave function, which appears as
itineracy in linear response [16,17]. Mixed states, on the
other hand, carry both classical and quantum correlations,
which are generally difficult to distinguish [32]. In low-
dimensional Hilbert spaces, however, the entanglement of
formation is analytically accessible; we utilize the low-
dimensional nature of fermionic modes to compute the
entanglement entropy between d.o.f. localized on a pair
of lattice sites. In the larger Hilbert space setting, we study
the local entropies s1 and s2 in relation to the entropy density
s. Since the former quantities, s1 and s2, result from position-
space bipartitions, they necessarily carry some of the entropy
obtained by tracing over delocalized states in the ground-
state ensemble. The latter quantity, s, cannot encode such
quantum correlations in position space, so the discrepancy
between them serves as a probe of entanglement near the
Mott transition in the HK model.

II. MOTTNESS

The model [12,33] we analyze has long-range all-to-all
nonlocal interactions with standard tight-binding hoppings,

H ¼ −t
X
hj;li;σ

ðc†jσclσ þ H:c:Þ − μ
X
jσ

c†jσcjσ

þ U
N

X
j1::j4

δj1þj3;j2þj4c
†
j1↑

cj2↑c
†
j3↓

cj4↓; ð1Þ

where the first and second terms denote the local hopping, t
and chemical potential, μ. The last term is the infinite-range
Hubbard-like interaction U; this term is nonzero for
electrons that scatter in such a way that their position
vectors satisfy the constraint of center-of-mass conserva-
tion given by j1 þ j3 ¼ j2 þ j4. This model predates the
SYK [34,35] model by 2 years, though it is considerably
less studied. Although both models contain all-to-all non-
local interactions, the current model is exactly solvable as a
result of the conservation of the center of mass in the
interaction term. The integrability of this model, without

resorting to a 1=N expansion as in the SYK model [34,35],
is best seen in momentum space

H ¼
X
k⃗

Hk⃗ ¼
X
k⃗

ðξðk⃗Þðn̂k⃗↑ þ n̂k⃗↓Þ þ Un̂k⃗↑n̂k⃗↓Þ; ð2Þ

from which it is clear that the kinetic and potential energy
terms commute. In momentum space, the momenta are
summed over a square Brillouin zone ½−π; πÞd, within
which the quasiparticle spectrum ξk ¼ ϵk − μ is set by the
dispersion ϵk ¼ −ðW=2dÞPd

μ¼1 cos k
μ with bandwidth W

and offset by a chemical potential μ. Here nkσ ¼ c†kσckσ is
the fermion number operator for the mode with momentum
k and spin σ ¼ ↑;↓. We consider the system at half filling,
fixed by μ ¼ U=2. As depicted in Fig. 1, the ground state is
metallic for 0 < U < W, insulating for U > W, and under-
goes an interaction-driven metal-insulator transition at
U ¼ W. The phase transition is sharp only at zero temper-
ature, so we work at T ¼ 0 throughout.
The retarded single-particle fermion propagator is related

by analytic continuation to the zero-temperature Euclidean
propagator. For a fermion in quantum state ðk; σÞ in the HK
model,

GkσðiωÞ≡ −
Z

dτhckσðτÞc†kσð0Þieiωτ ð3Þ

¼ 1 − hnkσ̄i
iω − ξk

þ hnkσ̄i
iω − ðξk þ UÞ ð4Þ

whose pole in the upper (lower) Hubbard band carries a
spectral weight equal to the probability p ¼ hnkσ̄i (1 − p)
that a fermion occupies (does not occupy) the mode with
identical momentum k and opposite spin σ̄. It is customary
to reformulate the Hubbard model [3] in terms of holons
ζkσ ¼ ckσð1 − nkσ̄Þ and doublons η ¼ ckσnkσ̄ which com-
prise the fermion ckσ ¼ ζkσ þ ηkσ . What distinguishes the
HK from the Hubbard model is that the single-particle
propagator

−
Z

dτhζkσðτÞζ†kσð0Þieiωτ ¼
1 − hnkσ̄i
iω − ξk

; ð5Þ

−
Z

dτhηkσðτÞη†kσð0Þieiωτ ¼
hnkσ̄i

iω − ðξk þUÞ ; ð6Þ

is strictly diagonal in terms of these operators because the
cross term,

FIG. 1. Phase diagram of the HK model at zero temperature and
half filling, as the interaction strength U is tuned from the
noninteracting point U ¼ 0 across the metal-insulator transition
at U ¼ W.
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hζkσðτÞη†kσi ¼ 0 ¼ hηkσðτÞζ†kσi; ð7Þ

identically vanishes. Consequently, the HK model,
although it possesses an interaction-driven Mott transition,
does not contain DSWT. As noted previously, it is this
feature that makes the model tractable regardless of the
spatial dimension. Whether there are other models that
retain this feature but still remain tractable regardless of
the spatial dimension is not known at present.

III. ENTANGLEMENT

Consider the ground state produced by the zero-
temperature limit β≡ 1=T → ∞ of the equilibrium
Gibbs state

e−βH=Z ¼ ⊗ e−βHk=Zk; ð8Þ
where e−βHk=Zk is the reduced density matrix for the
mode k. Here Zk ¼ tre−βHk and

e−βHk ¼

0
BBBBB@

1

e−βξk

e−βξk

e−βð2ξkþUÞ

1
CCCCCA ð9Þ

is diagonal in the tensor product basis fj0; 0i;
j0; 1i; j1; 0i; j1; 1ig of the Hilbert space Hk↑ ⊗ Hk↓.

Then e−βHk=Zk is separable across Hk↑ and Hk↓, and
likewise e−βH=Z is separable across H↑ ¼⊗k Hk↑ and
H↓ ¼⊗k Hk↓, showing that no entanglement is present
between the spin-up and -down sectors of e−βH=Z. Notice
however that e−βHk=Zk cannot be written as ρk↑ ⊗ ρk↓, and
thereby implements classical correlations between the spin
sectors. We will see that reduced states on one or two sites,
instead, have completely uncorrelated spin sectors. Since
hnkσi is a good quantum number, the ground state at zero
temperature can be deduced from

ρk ≡ lim
β→∞

e−βHk=Zk ¼

8>>><
>>>:

j0ih0j↑ ⊗ j0ih0j↓ if ξk > 0;
1
2
j1ih1j↑ ⊗ j0ih0j↓ þ 1

2
j0ih0j↑ ⊗ j1ih1j↓ if ξk < 0 and ξk þ U > 0;

j1ih1j↑ ⊗ j1ih1j↓ if ξk < 0 and ξk þ U < 0;

ð10Þ

such that modes k with ξk > 0 are unoccupied, those with
ξk < 0 and ξk þ U > 0 are singly occupied, and those with
ξk < 0 and ξk þ U < 0 are doubly occupied. In the metallic
phase with U < W, the ground state forms an inner doubly
occupied Fermi volumeΩ2 in which hnkσi ¼ 1 and an outer
singly occupied shell Ω1 in which hnkσi ¼ 1=2, as depicted
in Fig. 2. The ground state is indeed half filled since 2jΩ2jþ
jΩ1j ¼ ð2πÞd is preserved. In terms of the number of modes
Ni in Ωi, this half-filling condition reads 2N2 þ N1 ¼ Ld,
and in terms of the fraction of modes singly or doubly
occupied ni ¼ Ni=Ld it reads 2n2 þ n1 ¼ 1. As the phase
boundary U ¼ W is approached from the metallic side, Ω2

vanishes and Ω1 covers the entire Brillouin zone. This state
persists throughout the insulating phase with U > W. On
the other side of the phase diagram, Ω1 vanishes in the
noninteracting limit U → 0. In each phase, the singly
occupied modes k ∈ Ω1 form a mixed sector of the ground

state. The reduced state ρk on each singly occupied mode
has nonvanishing mutual information Iðk↑∶k↓Þ ¼ ln 2
between spin sectors. As a result, ρk indeed carries classical
correlations while being unentangled. Distributing the
momentum (tensor) product over the mixing sum in
ρk∈Ω1 , we see that the ground state takes the form of a
uniform mixture over paramagnetic spin configurations

ρ ¼ pπ

X
P
q

πðqÞ¼0

jπihπj ð11Þ

jπi ¼
Y
q∈Ω1

c†qπðqÞ
Y
k∈Ω2

ðc†k↑c†k↓Þj0i; ð12Þ

where each of the ð N1

N1=2
Þ ¼ 1=pπ permutations π∶Ω1 →

f↑;↓g maps the N1 modes in Ω1 to a paramagnetic spin

FIG. 2. Upper and lower Hubbard bands of the one-
dimensional HK model in the metallic phase U < W. Shaded
segments indicate occupied momenta. Ω2 labels the doubly
occupied region and Ω1 the singly occupied region.
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configuration, resulting in the Bloch state jπi. The ground
state in the insulating phase has Ω1 covering the entire
Brillouin zone, such that N1 ¼ Ld and the number of
modes N2 in the doubly occupied region Ω2 is zero.
Within the singly occupied region Ω1, the real part of the

retarded propagator at zero temperature takes the form

ReGR
kσðωÞ ¼

1

2
P
�

1

ω − ϵk þ U=2
þ 1

ω − ϵk −U=2

�
; ð13Þ

given by continuing iω ↦ ωþ i0þ. At zero energy,
the real part ReGR

kσðω ¼ 0Þ vanishes on the surface
fk ∈ ½−π; πÞd∶ ϵk ¼ 0g which always lies inside the region
Ω1. It is this zero surface [3,29,30] that is the hallmark of
Mottness. Because the region Ω1 is finite for all couplings
U > 0, the quasiparticle description is valid only at the
noninteracting point U ¼ 0 and breaks down everywhere
else in the phase diagram.
From the point of view of position space, each delocal-

ized Bloch wave function in the ground-state ensemble
appears entangled. Formally the Fourier transform ⊗k
Hkσ →⊗j Hjσ acts as a global entangling map within each
spin sector [16,17]. Since the ground state ρ is spin
separable, it remains similarly separable after a Fourier
transform to position space, and entanglement in ρ can
be present only within each spin sector. Entanglement
between the spin-σ modes localized on sites j and j0 can be
determined conclusively from the reduced state ρjj

0σ on
Hjσ ⊗ Hj0σ. We refer to entanglement between these
modes as two-point entanglement. Following Zanardi’s
notation in Ref. [16], conservation of particle number
mandates that the reduced state be

ρjj
0σ ¼

0
BBB@

u

w1 z

z� w2

v

1
CCCA ð14Þ

in the tensor product basis fj0; 0i; j0; 1i; j1; 0i; j1; 1ig of
Hjσ ⊗ Hj0σ, where the matrix elements are given by

z ¼ hc†jσcj0σi; ð15Þ

w1 ¼ hð1 − njσÞnj0σi; ð16Þ

w2 ¼ hnjσð1 − nj0σÞi; ð17Þ

v ¼ hnjσnj0σi; ð18Þ

u ¼ 1 − w1 − w2 − v: ð19Þ

At half filling where hnjσi ¼ 1=2, translation invariance
obtains

w1 ¼ w2 ¼ 1=2 − v ð20Þ

with u ¼ v, and Wick contraction within the ground-state
ensemble (of pure Bloch wave functions) obtains

v ¼ ð1=2Þ2 − jzj2: ð21Þ

That jzj must be sufficiently large, in order that ρjj
0σ be

entangled, can be seen from the Peres-Horodecki criterion
[14]: the two-qubit state ρAB is separable if and only if its
partial transpose ðρABÞPT has no negative eigenvalues.
Since ρjj

0σ is written in the tensor product basis, trans-
position in the second (inner) Hilbert spaceHj0σ can be read
off as

ρjj
0σ ↦ ðρjj0σÞPT ¼

0
BBB@

u z

w1

w2

z� v

1
CCCA: ð22Þ

The probability spectrum is mapped to fw1; w2; ð1=2Þ2−
jzj2 � jzjg, thereby developing a negative eigenvalue if

jzj > z0 ≡ ð
ffiffiffi
2

p
− 1Þ=2 ≈ 0.207: ð23Þ

Turning to momentum space to compute jzj, we find that

z ¼ 1

Ld

X
kk0

hc†kσck0σie−iðk·j−k
0·j0Þ ð24Þ

¼ 1

Ld

X
k

hnkσie−ik·ðj−j0Þ ð25Þ

¼ 1

2

1

Ld

X
k∈Ω1

e−ik·ðj−j0Þ þ 1

Ld

X
k∈Ω2

e−ik·ðj−j0Þ: ð26Þ

Writing the momentum vector with constant components
π⃗μ ¼ π, the sum on Ω1 reduces to the sum J ðj − j0Þ≡
1
Ld

P
k∈Ω2

e−ik·ðj−j0Þ on Ω2 as

1

Ld

X
k∈Ω1

e−ik·ðj−j0Þ ¼ 1

Ld

 X
k∈BZ

−
X
k∈Ω2

−
X

ðk−π⃗Þ∈Ω2

!
e−ik·ðj−j0Þ

ð27Þ

¼0−J ðj−j0Þ−e−iπ⃗·ðj−j0ÞJ ðj−j0Þ ð28Þ

where e−iπ⃗·ðj−j0Þ is −1 if kj − j0k1 is odd, but is þ1 if
kj − j0k1 is even. Then
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z ¼
�
0 if kj − j0k1 is even;

J ðj − j0Þ if kj − j0k1 is odd:
ð29Þ

In order to evaluate the domain-restricted sumanalytically,
wework in the thermodynamic limit near theMott transition,
where the Fermi volumes have spherical symmetry and the
sums approach integrals. As shown in Fig. 2, the boundary of
Ω2 is the locus of ϵk þU ¼ ϵπ⃗þk. In the metallic phase near
theMott transition, whereU ¼ Wð1 − δuÞ for small δu > 0,
Ω2 is a d-dimensional ball BdðkF;2; 0⃗Þ centered on the origin
with radius kF;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dð1 −U=WÞp ≡ ffiffiffiffiffiffiffiffiffiffi

2dδu
p

. In this
regime, the fraction of modes that are doubly occupied n2 ¼
N2=Ld ≪ 1 is a natural small parameter. The domain-
restricted integral reduces to

J ðj − j0Þ →
Z
k∈Ω2

ddk
ð2πÞd e

−ik·ðj−j0Þ ð30Þ

¼
�
kF;2=2π
jj − j0j

�
d=2

Jd=2ðkF;2jj − j0jÞ ð31Þ

∼n2 ð32Þ

at leading order in n2 ≪ 1. Then near the Mott transition,
n2≯z0 so ρjj

0σ is separable there. z ¼ J ðj − j0Þ crosses the
threshold value z0 only in one dimension d ¼ 1, where
Eq. (31) holds also away from the Mott transition, for
neighboring sites j − j0 ¼ 1 and deep in the metallic phase
at U=W ≈ 0.7835. Free lattice fermion ground states sim-
ilarly have z < z0 in any dimension d > 1, so two-point
entanglement cannot distinguish the state ρ in d > 1. In
d ¼ 1, however, the free ground state has J ðj − j0 ¼ 1Þ >
z0 as long as the lattice is extensively filled [16].We conclude
for d ¼ 1 that the ground state ρ, in the vicinity of the Mott
transition, is less entangled than any state with a free Fermi
surface. For d > 1, the ground state ρ remains devoid of two-
point entanglement—indistinguishable from free fermions.
Consider now the local entropies. As seen above, even

the ground state in this model is a mixed state with both
classical and quantum uncertainty. Whereas its quantum
uncertainty—in the form of entanglement across biparti-
tions in position space—indicates itineracy, its classical
uncertainty simply originates from an unbroken SU(2)
symmetry. Now the presence of both classical and quantum
uncertainty in the ground state ρmakes it difficult to isolate
either portion [32], leaving us with hints of itineracy that
are muddled by classical uncertainty. In this context,
we consider two local entropies that signal the Mott
transition—the entropy density s and the two-site entropy
s2—as well as one that does not signal the transition—the
single-site entropy s1. The local entropies,

s1 ≡ SðρjÞ ¼ −trðρj ln ρjÞ; ð33Þ

s2 ≡ Sðρhjj0iÞ ¼ −trðρhjj0i ln ρhjj0iÞ; ð34Þ

are von Neumann entropies of the reduced states ρj ¼
tri≠jρ and ρhjj0i ¼ tri≠j;j0ρ associated with the bipartitions
Hj ⊗ Hj̄ and ðHj ⊗ Hj0 Þ ⊗ Hj;j0 across position space,

where j and j0 are neighbors and the overline denotes the
set complement on the lattice, whereas

s≡ 1

Ld SðρÞ ¼ −
1

Ld trðρ ln ρÞ ð35Þ

is the entropy density of the full many-body ground state ρ
and does not involve any bipartition of d.o.f. s1 and s2 are
not entanglement entropies because the ground state ρ is
not pure.1 s2 and 2smeasure entropy on the same volume of
phase space, each one bounded between zero and
lnðdimHjÞ2 ¼ ln 16, so the two quantities are readily
comparable. However only s2 is sensitive to the details
of correlations in the ground state, for instance whether they
are concentrated in position or momentum space. The
subadditivity of the entropy requires that 2s1 ≥ s2 ≥ 2s.
The former bound is saturated only if ρhjj0i ¼ ρj ⊗ ρj

0
is

uncorrelated between single-site subsystems, and the latter
bound is saturated only if ρ ¼ ⊗n ρ

2n;2nþ1 is uncorrelated
between all (disjoint) two-site subsystems, with the latter
implying the former due to translation invariance. Then any
discrepancy between 2s, 2s1, and s2 indicates the presence
of local correlations in the ground state, which may be
entirely classical. The entropy density is obtained straight-
forwardly from the decomposition ρ ¼⊗k ρ

k, with ρk from
Eq. (10), as

s ¼ 1

Ld

X
k

SðρkÞ ð36Þ

¼ 1

Ld

X
k∈Ω1

SðρkÞ ð37Þ

¼ n1 ln 2 ð38Þ

¼ ln 2 − ðln 4Þn2 ð39Þ

where we used the additivity of entropy in the first line, the
vanishing entropy of all pure states ρk∉Ω1 in the second, the

1We are unable to perform a conclusive analysis of the
entanglement structure of ρ, as was done for ρjj

0σ, because the
involved Hilbert space dimensions (4 ⊗ 4L

d−1 and 42 ⊗ 4L
d−2)

are larger than 2 ⊗ 2 and 2 ⊗ 3.
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definition n1 ¼ jΩ1=ð2πÞd ¼ N1=Ld in the third, and
the half-filling condition n1 þ 2n2 ¼ 1 in the final line.
The computation of s1 and s2 follows simply from the

factorization of the associated reduced states ρj ¼ ρj↑ ⊗
ρj↓ and ρhjj0i ¼ ρjj

0↑ ⊗ ρjj
0↓, which can be seen from the

factorization of their matrix elements. That is, for operators
Oσ localized on the spin-σ sector ⊗j∈A Hjσ of HA, the
matrix elements2 of the reduced state ρA on subregion A
factorize as

hO↑O↓iρA ¼ hO↑iρAhO↓iρA : ð41Þ

This factorization is shown in the Appendix. The con-
servation of particle number leaves ρjσ ¼ diagðh1 − njσi;
hnjσiÞ ¼ 12=2, with the latter equality set by half filling,
such that ρj ¼ 14=4 is maximally mixed with entropy

s1 ¼ ln 4: ð42Þ

This is consistent with a direct computation of the double-
occupancy density hnj↑nj0↓i ¼ 1=4,3 which holds every-
where in the phase diagram and therefore does not signal
the Mott transition. In the Hubbard model, it is precisely
this quantity which changes discontinuously across the
Mott transition [25]. The matrix elements of ρjj

0σ were
found around Eq. (14), giving its entropy Sðρjj0σÞ ∼ ln 4 −
4ðn2Þ2 near the Mott transition, such that

s2 ∼ ln 16 − 8ðn2Þ2: ð43Þ

Relating n2 ¼ jΩ2j=ð2πÞd to the volume jΩ2j of the d-ball
with radius kF;2 yields the scaling n2 ∼ cdðδuÞd=2 near
the Mott transition, where cd ¼ ðd=2πÞd=2=Γðd=2þ 1Þ.
Then

s2 ∼ ln 16 − 8ðcdÞ2δud; ð44Þ

2s ∼ ln 4 − ðln 16Þcdδud=2 ð45Þ

near the Mott transition, whereas s1 ¼ ln 4 everywhere in
the phase diagram.
As illustrated in Fig. 3, each local entropy deviates

from its insulating value only at U ¼ W, thereby signal-
ing the Mott transition in the approach from the insulating
phase. Both local entropies have a kink at the Mott
transition in d ¼ 1, only s has a kink there in d ¼ 2

dimensions, and both quantities are otherwise smooth
there. The decrease in the entropy density s is entirely
explained by a reduced degeneracy of the ground state in
the metallic phase. As discussed earlier, the entropy
captured by s is generically mixed into s2, with s2 ≥
2s by subadditivity. Then the decrease in the two-site
entropy s2 should, at least in part, be explained likewise.
However, s2 is substantially larger than 2s for U ≈W and
U > W, and their scaling exponents near the Mott
transition are different. The spatial bipartition distinguish-
ing the two local entropies is therefore significant; the
decrease in the two-site entropy s2 can be explained
independently of the ground-state degeneracy. Given that
the single-site entropy s1 ¼ ln 4 is constant, the behavior
of the two-site mutual information

Iðj∶j0Þ≡ SðρjÞ þ Sðρj0 Þ − Sðρhjj0iÞ ¼ 2s1 − s2 ð46Þ

completely determines the behavior of the two-site entropy
s2, and Iðj∶j0Þ is itself bounded from below by all con-
nected two-point correlation functions hOjOj0 i − hOjihOj0 i

FIG. 3. Illustrative ground-state local entropies in the HK
model at half filling, as the interaction strength U is tuned across
the Mott transition at U ¼ W. s is the entropy density of the full
ground state ρ, and s2 is the entropy of ρ reduced to two
neighboring sites. The curves are exact only for U ≥ W, with
those in U < W given by U↗W asymptotics.

2Recall that the matrix elements of a reduced state ρA on HA
can be constructed, given a basis jai ⊗ jbi of HA ⊗ HB, from
the expectation values

hjaiha0j ⊗ 1Biρ ¼ hjaiha0jiρA ¼ ha0jρAjai ð40Þ

of operators jaiha0j ⊗ 1B localized on HA.3Hatsugai and Kohmoto [12] erroneously found a finite-size
correction to hnj↑nj0↓i from inconsistent asymptotics. Their
calculation amounts to counting N1ðN1 − 1Þ terms in the sum
over fk; q ∈ Ω1∶ k ≠ qg in the Fourier transform, but evaluating
hnk↑nq↓i as ð1=2Þ2 in the sum. The latter quantity is instead
ð1=2Þ2=ð1 − 1=N1Þ ¼ ð N1−1ðN1−2Þ=2Þ=ð

N1

N1=2
Þ, found by counting the

number of states jπi in the ensemble with hnk↑iπ ¼ 1 ¼ hnq↓iπ
for fixed k; q ∈ Ω1.
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between sites j and j0.4 In the insulating phase, s2 ¼ 2s1 so
the mutual information vanishes and accordingly all con-
nected j–j0 correlation functions vanish. From Eq. (3) we
know that two-point correlations turn on at the Mott
transition from gapped insulator to gapless metal, so the
mutual information Iðj∶j0Þ ≳ hc†jσcj0σi ∼ n2 must also turn
on there. Consequently the two-site entropy s2 must decrease
from its value in the insulating phase, in a manner governed
by two-point correlations. In the context of correlations and
the single-site substructure of s2, the local entropies s2 and s
are therefore independent.

IV. DISCUSSION

Dynamical spectral weight transfer, originating from
dynamical double occupancy, is a fingerprint of the non-
trivial propagating d.o.f. in the Hubbard model. We have
studied the HKmodel of a Mott transition with static double
occupancy, focusing our analysis on two-point entangle-
ment and local entropies in its ground state near the phase
transition. Static double occupancy directly results in a
double-occupancy density hnj↑nj↓i that is constant across
the phase diagram, thereby fixing the single-site entropy s1
at the constant value ln 4 even at the Mott transition. On the
other hand, the two-site entropy s2 and entropy density s
serve as sharp signals of theMott transition in anydimension
d. They are constant in the insulating phase and decrease
only when the interactionU is lowered past the transition at
U ¼ W. In one dimension, s2 and s feature kinks at theMott
transition, reminiscent of the single-site entropy s1 at pure-
state quantum phase transitions in the Hubbard [26,36,37]
and transverse field Ising [18] chains. In two dimensions, s
alone exhibits a kink.
We have shown that the HK model, in the vicinity of the

Mott transition in one dimension, is less entangled than free
fermions. Although neither ground state develops two-
point entanglement in higher dimensions d > 1, a free
Fermi surface is known to possess a large degree of
entanglement between global bipartitions [23]. We expect
that larger subsystems of the HK ground state will continue

to exhibit less entanglement. This can be verified by
constructing these states explicitly, building off of the
present work, and numerically testing them for separability
up to arbitrary precision [38].
Our local entropies should be understood in the context

of the Hubbard model at finite temperature. Specifically in
two dimensions, Walsh et al. have computed these entro-
pies for the Hubbard model, using a combination of cluster
dynamical mean-field theory and quantum Monte Carlo
[25]. They found, at low temperatures, an interaction-
driven Mott transition that is markedly distinct from the
HK transition, being first-order instead of continuous. At
their lowest temperatures, the Hubbard model’s entropy
density s vanishes in the insulator and jumps discontinu-
ously to ≈ 1

5
ln 2 at the transition before smoothly decaying

in the metal, whereas its single-site entropy s1 increases
monotonically from ≈ 8

5
ln 2 in the insulator to the metal,

with a jump discontinuity of ≈ 1
10
ln 2 at the transition.

Following our earlier discussion of the subadditivity bound
2s1 ≥ s2 ≥ 2s, this is strong evidence for increasing spatial
correlations in the Hubbard metal, as one expects. The only
obstruction is the fine-tuned possibility that Iðj∶j̄Þ ¼
ðs1 − sÞ − ððLd − 1Þs − sLd−1Þ remains constant while
s1 − s increases. Now the HK metal exhibits a classical
entropy s that similarly decreases and a single-site entropy
s1 that is instead constant throughout, resulting in a
qualitatively similar increase in the discrepancy s1 − s.
Quantitatively, in the vicinity of their respective Mott
transitions, the Hubbard metal has s1 − s ≈ 3

2
ln 2, larger

than the HK metal’s s1 − s ≈ ln 2. We have extended this
analysis to the next smallest subsystem, with s2 − 2s ∼
2 ln 2þ ðln 16Þcdδud=2 also increasing in the HK metal.
The two models are primarily distinguished on the basis of
coupling between high- and low-energy d.o.f. in their
Hamiltonians: coupling with doubly occupied modes in
the Hubbard model is known to result in dynamical spectral
weight transfer, whereas the absence of any such coupling
in the HK model results in its static double occupancy. We
expect that this distinction can explain (at least qualitative)
differences in local correlations between the two models.
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APPENDIX: MATRIX ELEMENTS
OF THE TWO-SITE DENSITY MATRIX

We compute the matrix elements of the two-site density
matrix

ρhjj0i ¼ diagðp0;0; ρ1;0; ρ0;1; ρ1;1; p2;0; p0;2; ρ2;1; ρ1;2; p2;2Þ
ðA1Þ

4Recall that this bound is sufficiently general to apply also to
this mixed state generated by nonlocal interactions. The mutual
information IðA∶BÞ—between two subsystems A and B in the
state ρAB—is a relative entropy SðρABkρA ⊗ ρBÞ ¼ IðA∶BÞ from
the state ρA ⊗ ρB with ρA;B ¼ trB;AρAB, constructed to remove
exactly those correlations between A and B. We use the quantum
Pinsker inequality SðρkσÞ ≥ 1

2
ðkρ − σk1Þ2 and a Hölder inequal-

ity jjρABjj1 ≥ trðρABOAOBÞ for operators OI supported only on
I ¼ A, B and normalized such that its largest singular value
jjOI jj∞ ≤ 1 is bounded by unity. Then

IðA∶BÞjρAB ≥
1

2

�hOAOBi − hOAihOBi
kOAk∞kOBk∞

�
ð47Þ

with expectation values taken in the state ρAB.
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which is block diagonal in the particle number decom-
position

Hj ⊗ Hj0 ¼ Spanfj0; 0ig ðA2Þ

⊕ Spanfj↑;0i; j0;↑ig⊕ Spanfj↓;0i; j0;↓ig
ðA3Þ

⊕ Spanfj↑;↓i; j↓;↑i; j↑↓; 0i; j0;↑↓ig ðA4Þ

⊕ Spanfj↑;↑ig ⊕ Spanfj↓;↓ig ðA5Þ

⊕ Spanfj↑↓;↑i; j↑;↑↓ig
⊕ Spanfj↑↓;↓i; j↓;↑↓ig ðA6Þ

⊕ Spanfj↑↓;↑↓ig: ðA7Þ

In the one-dimensional subspaces, the diagonal
elements are

p2;2 ¼ hnj↑nj↓nj0↑nj0↓i; ðA8Þ

p0;0 ¼ hð1 − nj↓Þð1 − nj0↓Þð1 − nj↑Þð1 − nj0↑Þi ðA9Þ

¼ 2hnj↑nj0↑i − 4hnj↑nj↓nj0↑i þ p2;2; ðA10Þ

p2;0 ¼ hð1 − nj↓Þð1 − nj0↓Þnj↑nj0↑i ðA11Þ

¼ hnj↑nj0↑i − 2hnj↑nj↓nj0↑i þ p2;2; ðA12Þ

p0;2 ¼ p2;0: ðA13Þ

In the two-dimensional subspaces,

ρ2;1 ¼
�
p↑↓;↑ ζ

ζ� p↑;↑↓

�
ðA14Þ

where p↑;↑↓ ¼ p↑↓;↑ ¼ hnj↑nj↓nj0↑ð1 − nj0↓Þi ðA15Þ

¼ hnj↑nj↓nj0↑i − p2;2; ðA16Þ

ζ ¼ hnj↑nj0↑c†j↓cj0↓i; ðA17Þ

and

ρ1;0 ¼
�
p↑;0 ζ0

ζ0� p0;↑

�
ðA18Þ

where p0;↑ ¼ p↑;0 ¼ hð1 − nj↓Þð1 − nj0↓Þnj↑ð1 − nj0↑Þi
ðA19Þ

¼ −hnj↑nj0↑i þ 3hnj↑nj↓nj0↑i − p2;2; ðA20Þ

ζ0 ¼ hð1 − nj↓Þð1 − nj0↓Þc†j↑cj0↑Þi ðA21Þ

¼ hc†j↑cj0↑i − 2hnj↓c†j↑cj0↑i þ ζ; ðA22Þ

in addition to ρ1;2 ¼ ρ2;1 and ρ0;1 ¼ ρ1;0.
In the only four-dimensional subspace,

ρ1;1 ¼

0
BBB@

p↑;↓ x w w�

x� p↓;↑ −w −w�

w� −w� p↑↓;0 x0

w −w x0� p0;↑↓

1
CCCA ðA23Þ

where

p↓;↑ ¼ p↑;↓ ¼ hð1 − nj↓Þð1 − nj0↑Þnj↑nj0↓i ðA24Þ
¼ 1=4 − 2hnj↑nj↓nj0↑i þ p2;2; ðA25Þ

p0;↑↓ ¼ p↑↓;0 ¼ hð1 − nj0↑Þð1 − nj0↓Þnj↑nj↓i ðA26Þ

¼ 1=4 − 2hnj↑nj↓nj0↑i þ p2;2; ðA27Þ

x ¼ hc†j0↓c†j↑cj↓cj0↑i; ðA28Þ

x0 ¼ hc†j↓c†j↑cj0↑cj0↓i; ðA29Þ

w ¼ hð1 − nj0↑Þnj↑c†j0↓cj↓i ðA30Þ

¼ hnj0↓c†j↑cj0↑i� − ζ�: ðA31Þ

We see that all matrix elements can be written in terms of
p2;2, ζ, x, x0, hc†j↑cj0↑i, hnj↓c†j↑cj0↑i, hnj↑nj0↑i, hnj↑nj0↓i,
and hnj↑nj↓nj0↑i. The simplest of these are

hnj↑nj0↓i ¼
1

L2d

X
kp

pπ

X
π

hnk↑iπhnp↓iπ ðA32Þ

¼ p↑↓ ðA33Þ

¼ 1=4 ðA34Þ

¼ hnj↑ihnj0↓i ðA35Þ

and z ¼ hc†j↑cj0↑i, already computed in the text.
Some algebra leads to

hnj↑nj0↑i ¼
1

L2d

X
k;k0

ð1 − e−iðk−k0Þðj−j0ÞÞE2ðk; k0Þ; ðA36Þ

hc†j0↓c†j↑cj↓cj0↑i ¼ x ¼ −
1

L2d

X
k;p

e−iðk−pÞðj−j0ÞE2ðk; pÞ;

ðA37Þ
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hc†j↓c†j↑cj0↑cj0↓i ¼ x0 ¼ 1

L2d

X
k;p

e−iðkþpÞðj−j0ÞE2ðk; pÞ;

ðA38Þ

hnj0↓c†j↑cj0↑i ¼ hnj↓c†j↑cj0↑i ¼
1

L2d

X
kp

e−ikðj−j0ÞE2ðk; pÞ;

ðA39Þ

hnj↑nj↓nj0↑i ¼
1

L3d

X
k;k0;p

ð1 − e−iðk−k0Þðj−j0ÞÞE3ðk; k0; pÞ;

ðA40Þ

hnj↑nj0↑c†j↓cj0↓i ¼ ζ ¼ 1

L3d

X
k;k0;p

e−ipðj−j0Þð1 − e−iðk−k0Þðj−j0ÞÞ

× E3ðk; k0; pÞ;
ðA41Þ

p2;2 ¼
1

L4d

X
k;k0;p;p0

ð1 − e−iðk−k0Þ·ðj−j0ÞÞ

× ð1 − e−iðp−p0Þ·ðj−j0ÞÞE4ðk; k0; p; p0Þ;
ðA42Þ

where

E2ðk; k0Þ ¼ pπ

X
π

hnkσiπhnk0σ0 iπ; ðA43Þ

E3ðk; k0; pÞ ¼ pπ

X
π

hnk↑iπhnk0↑iπhnp↓iπ; ðA44Þ

E4ðk;k0;p;p0Þ¼pπ

X
π

hnk↑iπhnk0↑iπhnp↓iπhnp0↓iπ ðA45Þ

factorize, for distinct momenta in the thermodynamic
limit, as

E2ðk ∈ Ωa; k0 ∈ ΩbÞ ¼
a
2

b
2
; ðA46Þ

E3ðk ∈ Ωa; k0 ∈ Ωb; p ∈ ΩcÞ ¼
a
2

b
2

c
2
; ðA47Þ

E4ðk ∈ Ωa; k0 ∈ Ωb; p ∈ Ωc; p0 ∈ ΩdÞ ¼
a
2

b
2

c
2

d
2
: ðA48Þ

Since the phase space of distinct momenta dominates the
Fourier sums in the thermodynamic limit, one can read
from the above expressions that all matrix elements of
the two-site reduced state ρhjj0i factorize as described in the
text, so ρhjj0i ¼ ρjj

0↑ ⊗ ρjj
0↓ also factorizes. Then the

single-site reduced state also factorizes as ρj ¼ ρj↑ ⊗ ρj↓.
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