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We develop an approach based on the light-cone sum rules at the leading order of αS to calculate the
gravitational form factors AðtÞ and BðtÞ for the valence quark combinations in a nucleon. Within the
proposed model, the predictions for the gravitational form factor DðtÞ (D-term contributions) have been
presented. Comparison with the experimental data and with the results of different models is discussed.
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I. INTRODUCTION

It is well known that the hadron matrix element of
energy-momentum tensor (EMT) can provide information
on fundamental characteristics of particles such as mass
and spin [1–5]. Especially, efforts have been made to
establish the relations between the gravitational form
factors AðtÞ and BðtÞ which parametrize the hadron matrix
element of EMT and the Mellin x-moment of generalized
parton distributions Hðx; ξ; tÞ and Eðx; ξ; tÞ also known as
Ji’s sum rules. There is an opinion that such relations can
help us to make a progress in understanding the hadron spin
problem (see, e.g., comprehensive reviews [4,5]). Besides,
one of the EMT form factors has been related to the so-
called D-term [6] which is considered as the last unknown
fundamental hadron characteristic determining the spatial
deformations as well as defining the mechanical properties
of hadrons [1–3]. The analogy of D-term with the vacuum
cosmological constant has been observed in [7]. Also, the
D-term has been calculated using dispersion relations
giving the good agreement with the chiral quark-soliton
model [8]. Recently, the results of [2] have been extended
to the different frames where the nucleon has the non-
vanishing average momentum [9].
The energy-momentum tensor plays the role in the

interplay between the gravitation as an external field and
the matter fields in the similar manner as the gauge field
(photons, gluons) interacts with fermions or other particles
by means of the corresponding electromagnetic current.
In this connection, we shall adopt the technique of light-
cone sum rules (LCSRs) developed for the different
nucleon electromagnetic form factors in [10–12].

In the present paper, we develop the light-cone sum rules
for the purpose of computing the nucleon gravitational
form factors. In [13,14], the pion gravitational form factors
have been studied using the hadron tomography and
effective chiral quark model. The obvious preponderance
of LCSRs is that it provides a possibility to calculate the
soft contributions to the different form factors as an
expansion in terms of hadron distribution amplitudes
(DAs) of increasing twist with the help of dispersion
relations and quark-hadron duality [15–18]. Indeed, within
the LCSRs formalism, the soft contributions to the form
factors can be calculated in terms of the same DAs that
enter the factorization theorem and/or pQCD calculations.
More importantly, it has been proven that there is no double
counting (see, e.g., [15]). Thus, the LCSRs provide one
with the most direct relation of the hadron form factors and
DAs that is available at present, without requiring other
nonperturbative parameters.
In the frame of the approach that we develop based on

the light-cone sum rules at the leading order of αS, we
compute the gravitational form factors AðtÞ and BðtÞ and
estimate the gravitational form factor DðtÞ. We emphasize
that the gravitational form factors AðtÞ and BðtÞ can be
calculated directly with the help of the sum rules extracted
from the plus-plus light-cone projection of EMT for
sufficiently large Euclidian t≳ 1 GeV2. The plus-plus
light-cone projection of EMT can be associated with the
plus light-cone projection of electromagnetic current.
Unfortunately, as explained in this paper, the full informa-
tion on the gravitation form factor DðtÞ (D-term form
factor) cannot be obtained within the LCSRs due to the lack
of the sum rules that use the minus and perpendicular light-
cone projections of electromagnetic current. Instead, for the
estimation of DðtÞ, we study the valence quark contribu-
tions in nucleon that stem from the leading collinear twist-2
combination of the electromagnetic current.
In order to approach the small t region, where the LCSRs

approach is actually useless, we first approximate the form
factors derived for the large t region by the appropriate
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multipole functions and, then we do the analytical contin-
uations of fitted form factors to the small t region. With the
calculated form factors, we present the result for the Mellin
x-moment of GPDs combination Hðx; ξ; tÞ þ Eðx; ξ; tÞ.
Our final predictions demonstrate reasonably good agree-
ments with the first experimental data [19,20], the chiral
quark-soliton and Skyrme model results for D-term con-
tributions [2].
The presentation is organized as follows. Section II

contains the necessary definitions and explanations of our
notations. Section III includes the description of the general
structure of LCSRs approach, the leading-order sum rules
and the results concerning the gravitational form factors
and their applications for the description of the so-called
mechanical properties of nucleon. Section IV is reserved for
conclusions. In the Appendix we give the introductory
material about the geometrical and collinear twists.

II. ENERGY-MOMENTUM TENSOR

Let us introduce the Sudakov expansion of an arbitrary
vector as

aμ ¼ aþpμ þ a−nμ þ aμ⊥ ≡ aμ;þ þ aμ;− þ aμ⊥ ð1Þ

with

p2 ¼ n2 ¼ 0; p · n ¼ 1: ð2Þ

Throughout the paper, for the sake of simplicity, we assume
all Lorentz indices to be contravariant ones irrespective
of its positions in our formulas unless it is specified
otherwise, i.e.,

AαBα ≡ AαBα ¼ AþB− þ A−Bþ − A⃗⊥B⃗⊥: ð3Þ

For the quark contribution, the Belinfanté improved
energy-momentum tensor is nothing but the local geomet-
rical twist-2 operator which reads

Θμν
q ð0Þ ¼ i

2
Rμν

τ¼2 ð4Þ

and it can be expressed through the nonlocal operator as
(cf. [21])

−2iΘμν
q ð0Þ ¼ lim

y→0

∂
∂yν

Z
1

0

du
∂
∂yμ ½ψ̄ð0Þŷ½0; uy�AψðuyÞ�

− ðtraceÞ; ð5Þ

where y ¼ ðyþ; y−; y⃗⊥Þ. From now on, we do not show the
trace subtractions. In Appendix, we briefly provide the
necessary descriptions regarding the collinear and geomet-
rical twists.
In addition, for our further purposes, we also introduce

the local geometrical twist-2 operator defined as

R̃μν
τ¼2 ¼ lim

y→0

∂
∂yν

Z
1

0

du
∂
∂yμ ½ψ̄ð0Þyαγ

α;þ½0; uy�AψðuyÞ�

¼ 1

2
ðψ̄ð0Þγμ;þD⃗νψð0Þ þ ψ̄ð0Þγν;þD⃗μψð0ÞÞ

¼ 1

2
ðgμ−ψ̄ð0ÞγþD⃗νψð0Þ þ gν−ψ̄ð0ÞγþD⃗μψð0ÞÞ ð6Þ

which differs from the operator Rμν
τ¼2. However, it is

important to note that

R̃þþ
τ¼2 ¼ Rþþ

τ¼2: ð7Þ
The reason for the introduction of R̃μν

τ¼2 is the following: it
is well known [17] that for the electromagnetic form factors
the LCSRs can be established self-consistently only for the
plus light-cone projection of electromagnetic current,
Jþemð0Þ, which corresponds to the twist-2 operator combi-
nation of the current. Having kept only the plus light-cone
projection of the nonlocal operator, we are able to develop
LCSRs for the gravitational form factors by means of
appropriate adoption of our preceding calculations imple-
mented for the electromagnetic form factors [10] [see
Eqs. (5) and (6)]. As a result, we are limited by the bilinear
quark combinations with the spin projection sa ¼ þ1, i.e.,
we deal with the collinear twist-2 quark combination
½ψ̄þψþ� of Rμν

τ¼2. For example, excluding the trivial case
of the plus-plus projection presented in Eq. (7), we consider
Rþ−

τ¼2 which is

Rþ−
τ¼2 ¼

1

2
ðψ̄ð0ÞγþD⃗−ψð0Þ þ ψ̄ð0Þγ−D⃗þψð0ÞÞ

¼ R̃þ−
τ¼2 þ

1

2
ψ̄ð0Þγ−D⃗þψð0Þ: ð8Þ

Here, the first term with ½ψ̄þψþ�-combination is traded for
R̃þ−

τ¼2 while the second term with ½ψ̄−ψ−�−combination is
kept intact and it is beyond the direct computations within
our approach.
Notice that the ½ψ̄−ψ−�− and ½ψ̄þψ−�−contributions to

Θþ− and Θþ⊥ remain unavailable for the explicit LCSRs
calculations, because they are given by “bad” projections
J−emð0Þ and J⊥emð0Þ. Indeed, in this case we are forced to deal
with the amplitudes generated by the vacuum-nucleon
matrix element of T-product involving the Ioffe interpola-
tion current η [see Eq. (13)] and operator ψ̄γ−ð⊥ÞD⃗þψ, i.e.,
h0jTηð0Þ½ψ̄ðxÞγ−ð⊥ÞD⃗þψðxÞ�jPi, which, in turn, are related

to the useless amplitude with h0jTηð0ÞJ−ð⊥Þ
em ðxÞjPi.

However, we can still make several estimations for this
kind of contributions.

III. GRAVITATIONAL FORM FACTORS
WITHIN THE LO LCSR

Before we move on to the detailed analysis, let us draw
the main stages of our approach based on the leading order
LCSRs. First, we begin with the quark contribution to the
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hadron matrix element of the Belinfanté improved energy-
momentum tensor operator which is (see, for instance, [3])

hP0jΘðqÞ
μν ð0ÞjPi¼ N̄ðP0Þ

�
AðtÞ P̄μP̄ν

mN
þ iJðtÞ P̄fμσνgΔ

mN

þDðtÞΔμΔν−gμνΔ2

4mN
þgμνmNC̄ðtÞ

�
NðPÞ;

ð9Þ
where

JðtÞ ¼ 1

2
ðAðtÞ þ BðtÞÞ; afμbνg ¼

1

2
ðaμbν þ aνbμÞ;

P̄ ¼ 1

2
ðP0 þ PÞ; Δ ¼ P0 − P; Δ2 ¼ −t: ð10Þ

Notice that the Belinfanté improved energy-momentum or
angular momentum tensor includes the contribution from
the spin momentum tensor.
As usual, the hadron momenta can be expanded over the

light-cone basis as [10]

P ¼ pþm2
N

2
n; Δ ¼ P · Δnþ Δ⊥: ð11Þ

As shown below, the projection Rþþ
τ¼2 is enough to

calculate only the form factors AðtÞ and BðtÞ.
Regarding the form factor C̄ðtÞ, based on the QCD

equations of motion it can be expressed through the
nucleon matrix elements of the quark-gluon operator (for
the quark contribution) or the gluon-gluon operator (for the
gluon contribution) [22]. Therefore, the calculation of C̄ðtÞ
is not available at the leading order. Moreover, this form
factor meets the condition

P
a C

aðtÞ ¼ 0 which shows that
the total (quark and gluon) EMT is conserved. So, at the
moment, the consideration of C̄ðtÞ is not presented in the
present paper and is postponed to the forthcoming work.
To calculate the form factor DðtÞ one needs a projection

such as Rþ−
τ¼2. In the present paper, our exact computations

are restricted by the consideration of ½ψ̄þψþ�−
combinations. Hence, we are dealing with the correspond-
ing projections of R̃μν

τ¼2 rather than the projections of
Rμν

τ¼2. Regarding the ½ψ̄−ψ−�−combinations, we propose a
reliable recipe for estimations of these contributions, see
the Sec. III B.
In analogy with the nucleon electromagnetic form factors,

we define the amplitude which corresponds to the hadron
matrix element of the energy-momentum tensor as

TμνðP;ΔÞ ¼ lim
y→0

∂
∂yν

Z
1

0

du
∂

∂wμ

Z
ðd4zÞe−iΔ·zh0jTηð0Þ

× ½ψ̄ðwþ zÞwαγα;þ½wþ z;−wþ z�A
× ψð−wþ zÞ�jPi ð12Þ

wherew ¼ uy. ηð0Þ stands for the Ioffe interpolation current
defined as

ηð0Þ ¼ εijk½uið0ÞCγαujð0Þ�γ5γαdkð0Þ: ð13Þ

Below, the color indices i; j; k;… are omitted.
As mentioned above, we adhere to the computation

procedure applied first to the case of electromagnetic form
factors [10]. After the replacement z → zþ w, the ampli-
tude (12) takes the general form of

TμνðP;ΔÞ ¼ PðηÞ
Z

ðd4zÞe−iΔ·ðzþwÞ
Z

½dxi�e−ixiP·z

× fV1ðxÞðP̂CÞγ5NðPÞ þ � � �g

⊗
�Z

ðd4kÞeþik·ðzþ2wÞSðkÞμ̄ n̂
�

ð14Þ

where wαγα;þ ¼ μ̄ n̂, PðηÞ implies the Ioffe interpolation
current projection operator and different V iðxÞ denote the
corresponding DAs. For the sake of shortness, we here use
the shorthand notation:

PðηÞfV1ðxÞðP̂CÞγ5NðPÞ þ � � �g ⊗ ½SðkÞn̂�; ð15Þ

which, in the case of d-quark contribution, is equal to

V1ðxÞtr½CγαP̂C�γ5γαSðkÞn̂γ5NðPÞ þ � � � : ð16Þ

The extension to the other flavors is straightforward.
Notice that our DAs are, generally speaking, scheme-

and scale-dependent. In calculations of any physical
observables this dependence is canceled by the correspond-
ing dependence of the coefficient functions. Although the
μ2-dependence of DAs is not shown, we always keep in
mind this dependence. Moreover, our DAs can be expanded
in the set of orthogonal polynomials PnkðxiÞ defined as
eigenfunctions of the corresponding one-loop evolution
equation. In our previous study [10], the different parameter
dependences of DAs have been thoroughly investigated.
We extend this analysis to our present work.
A little algebra, using integration by parts, leads to the

following result

TμνðP;ΔÞ

¼ i
2

ð−iÞ
4

PðηÞ
Z

Dxi

� ∂
∂x1 ½2x1Pþ Δ�μ½2x1Pþ Δ�ν

�

× fV1ðxÞðP̂CÞγ5NðPÞ þ � � �g ⊗ ½Sðx1Pþ ΔÞμ̄ n̂�:
ð17Þ

To extend the preceding calculations performed for electro-
magnetic form factors to the case of gravitational form
factors we have to weight the electromagnetic form factors
with the certain tensor structure, see (17). Indeed, in the
schematic form, the correspondence reads
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fGrav FFsgμν
¼ ð2pμ½2xiPþ Δ�ν þ ðμ ↔ νÞÞ ⊗ fElec Mag FFsg

ð18Þ

The exact expression for the amplitude for d-quark con-
tribution is given by

TðdÞ
μν ðP;ΔÞ

¼ 1

8

Z
Dxið2pμ½2x1Pþ Δ�ν þ ðμ ↔ νÞÞTðdÞþ

em ðxi;P;ΔÞ;

ð19Þ

where

TðqÞþ
em ðxi;P;ΔÞ ¼ fmNA

þðqÞ
em ðxi;Δ2; P02Þ

þ Δ̂⊥B
þðqÞ
em ðxi;Δ2; P02ÞgNþðPÞ;

N�ðPÞ ¼ Λ�NðPÞ; Λþ ¼ p̂ n̂
2pn

;

Λ− ¼ n̂ p̂
2pn

; ð20Þ

and AþðqÞ
em , BþðqÞ

em have been taken from [10,23].
From Eq. (19), we conclude that the tensor structure of

the amplitude (12) is entirely determined by the tensor

2pμ½2xiPþ Δ�ν þ ðμ ↔ νÞ: ð21Þ

Since the Ioffe current ηð0Þ has been used as the
interpolation current, we focus on the valence quark
contributions to nucleon. Notice that all amplitudes and
form factors should be understood as the objects where the
summation over u- and d-flavors have been implemented:

Tμν ¼ TðuÞ
μν þ TðdÞ

μν etc.

A. Plus-plus light-cone projections of the amplitude:
Form factors AðtÞ and BðtÞ

We are now in a position to discuss the LCSRs which
stem from the different light-cone projections. To begin
with, we dwell on the plus-plus light-cone projection of the
amplitude which is given by

nμnνTμνðP;ΔÞ ¼ TþþðP;ΔÞ
¼ ½mNAþþðP;ΔÞ þ Δ̂⊥BþþðP;ΔÞ�NþðPÞ:

ð22Þ

Making use of the Borel transforms one obtains the sum
rules

AðtÞ ¼ 1

2

Z
d̂μðsÞfAþþ

QCDðΔ2; sÞg ð23Þ

BðtÞ ¼ −
Z

d̂μðsÞfBþþ
QCDðΔ2; sÞg; ð24Þ

where, for the sake of shortness, we introduce the con-
venient notation

Z
d̂μðsÞfFg ¼ 1

λ1π

Z
s0

0

ds eðm2
N−sÞ=M2

ImfF ðs; tÞg: ð25Þ

In Eq. (25), s0 ≃ ð1.5 GeVÞ2 implies the interval of duality
(also called continuum threshold) and λ1 parametrizes the
vacuum-nucleon matrix element of the interpolation current
η, h0jηð0ÞjPi ¼ λ1mNNðPÞ.
In contrast to the other gravitational form factors, these

form factors can totally be calculated in QCD with a help of
the factorization theorem for sufficiently large Euclidian
t≳ 1 GeV2. The leading order expressions for Aþþ and
Bþþ are available from [10] provided the fraction integra-
tions are weighted with the corresponding xi-variables.
That is, we should add x3 or x2 in the integration measures
for d- or u-quark contributions of A- and B-amplitudes.
In [10], for consistency with our next-to-leading calcu-

lation we rewrite the leading order results in the form where
all kinematic factors have been expanded in powers of
m2

N=t. Here, we also follow this method and keep all
corrections Oðm2

N=tÞ while the terms Oðm4
N=t

2Þ have been
neglected. This is consistent with taking into account the
contributions of twist-three, -four, -five (and, partially,
twist-six) in the operator product expansion. Notice that
the most higher twist contributions are presented by the
Wandzura-Wilczek approximation, except the twist-four
DAs where the “genuine” twist-four has been involved. The
genuine twist-five and twist-six distribution amplitudes are
not known and, in our analysis, these contributions are
neglected. This is consistent with neglecting four-particle
nucleon DA terms with the additional gluon.
Therefore, according to this strategy, the gravitational

form factors AðtÞ and BðtÞ are not reachable for the region
of small t within LCSRs approach. However, we can do
approximate fits for these form factors in the region of
large t and, then, perform an analytical continuation of the
obtained fitting functions to the region of small t.
The computation results for AðtÞ and BðtÞ are presented

in Figs. 1 and 2, respectively. It turns out that the
gravitational form factor AðtÞ can be sufficiently described
by the multipole function defined as

AfitðtÞ ¼ κ

ð1þ atÞb ; κ ¼ 1.01� 0.13;

a ¼ 0.7� 0.05 GeV−2; b ¼ 2.95� 0.05;

Afit0ð0Þ ¼ −2.1; ð26Þ

while the gravitational form factor BðtÞ can be approxi-
mated with the function given by
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BfitðtÞ ¼ kt
ð1þ ctÞd ; k ¼ 0.073� 0.003;

c ¼ 0.45� 0.02 GeV−2; d ¼ 4.1� 0.2 ð27Þ
both for ABO2-parametrization of [10].
As in Ref. [10], main nonperturbative input in the LCSR

calculation of form factors is provided by normalization
constants and shape parameters of nucleon DAs: fφ10;φ11;
φ20;φ21;φ22g—for twist-3 and fη10; η11g—for twist-4. The
nucleon coupling to the (Ioffe) interpolation current λ1
simultaneously determines the normalization of twist-four
DAs so that the LCSRs effectively only involve the ratio of
twist-three and twist-four couplings, fN=λ1. All parameters
are rescaled to μ2 ¼ 2 GeV2 using one-loop anomalous
dimensions. The other parameters that enter LCSRs are
the interval of duality (continuum threshold) s0 and Borel
parameter M2. We do separate the results for M2 ¼
1.5 GeV2 and M2 ¼ 2 GeV2 that are referred in what
follows as ABO1 and ABO2, respectively. In the similar
manner, the parameter set denoted as BLW [17] has been
determined.

The Borel parameter M2 corresponds to the inverse
imaginary time (squared) at which matching of the QCD
calculation is done to the expansion in hadronic states.
Usually, we can try to takeM2 as small as possible in order
to reduce sensitivity to the contributions of higher-mass
states, which is the main irreducible uncertainty of the
LCSRs method. Thus, despite our analysis being limited
by the leading order, in this work as in Ref. [10], we take
M2 ¼ 1.5 GeV2 and M2 ¼ 2 GeV2 as two acceptable
choices.
As is well known, the gravitational form factorsAðtÞ and

BðtÞ define the Mellin moment of generalized parton
distributions asZ

1

−1
dxx ðHðx; ξ; tÞ þ Eðx; ξ; tÞÞ ¼ AðtÞ þ BðtÞ ¼ 2JðtÞ

ð28Þ
which directly relates to the total nucleon spin. Our results
for the sum of AðtÞ and BðtÞ with the valence quark
combinations are depicted in Fig. 3.
The normalization condition given byX

a¼q;g;…

Aað0Þ ¼ 1 ð29Þ

takes place provided one sums over all parton contributions
inside the nucleon including the valence, sea and other
contributions to form the nucleon spin [24]. Our LCSR
calculations show that the fitting parameter κ of (26) is close
to 1. It means that for more comprehensive analysis it is
necessary to take into account the next-to-leading-order
corrections to the LCSRs together with the gluon and sea
quark contributions.Weplan to study this in the futureworks.

B. Plus-minus light-cone projections of the amplitude:
Estimated form factor DðtÞ

We are now going over to the plus-minus light-cone
projection of the amplitude which is Tþ−ðP;ΔÞ.
Introducing the combination and the notations given by

2 3 4 5 6 7 8 9
0.00

0.02

0.04

0.06

0.08

t

FIG. 1. The gravitational form factor AðtÞ ¼ AðuÞðtÞ þ AðdÞðtÞ
for the region of large t. Notations: the solid blue line corresponds
to ABO2; the dashed red line corresponds to ABO1; the dot-
dashed green line corresponds to BLW [10].

2 3 4 5 6 7 8 9
0.010

0.005

0.000

0.005

0.010

t

FIG. 2. The gravitational form factor −BðtÞ ¼ −BðuÞðtÞ −
BðdÞðtÞ for the region of large t. Notations: the solid blue line
corresponds to ABO2; the dashed red line corresponds to ABO1;
the dot-dashed green line corresponds to BLW [10].

2 3 4 5 6 7 8 9
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t

FIG. 3. The sum of gravitational form factors AðtÞ and BðtÞ
which gives the first moment of Hðx; ξ; tÞ þ Eðx; ξ; tÞ for the
region of large t. Notations: the solid blue line corresponds to
ABO2; the dashed red line corresponds to ABO1; the dot-dashed
green line corresponds to BLW [10].
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FðtÞ ¼ 2mN

�
mNC̄ðtÞ −

Δ2⊥
4mN

DðtÞ
�
;

Tþ−
1ð4Þ½ψ̄�ψ�� ¼ T̄þ−

1ð4Þ½ψ̄�ψ��N
þðPÞ; ð30Þ

the first type of amplitudes yields

λ1mN

m2
N − P02

�
m2

NAðtÞ þ
�
Δ2⊥
4

þ P · Δ
�
AðtÞ

þ Δ2⊥
4

BðtÞ þ FðtÞ
�
NþðPÞ

¼ mNðT̄þ−
1½ψ̄þψþ� þ T̄þ−

1½ψ̄−ψ−�ÞNþðPÞ ð31Þ

where

mNðT̄þ−
1½ψ̄þψþ� þ T̄þ−

1½ψ̄−ψ−�Þ

¼ mNT̄
þ−
1½ψ̄−ψ−� þ

mN

π

Z
s0

0

ds
s − P02

× Im

�
m2

N

4
Aþþðs; tÞ þ P · Δ

4
Aþ

emðs; tÞ
�
: ð32Þ

For the second type of amplitudes, we can write the
following

λ1
m2

N − P02

�
m2

N

2
AðtÞ − P · Δ

2
BðtÞ þ 1

2
FðtÞ

�
Δ̂⊥NþðPÞ

¼ Δ̂⊥ðT̄þ−
4½ψ̄þψþ� þ T̄þ−

4½ψ̄−ψ−�ÞNþðPÞ ð33Þ

where

Δ̂⊥ðT̄þ−
4½ψ̄þψþ� þ T̄þ−

4½ψ̄−ψ−�Þ

¼ Δ̂⊥T̄þ−
4½ψ̄−ψ−� þ

Δ̂⊥
π

Z
s0

0

ds
s−P02

× Im

�
m2

N

4
Bþþðs; tÞ þP ·Δ

4
Bþ
emðs; tÞ

�
: ð34Þ

Unlike the plus-plus light-cone projection, the Eqs. (31) and
(33) do not form the closed systemof equations.Hence, there
is no way to compute the form factors DðtÞ directly. Instead,
we shall try to estimate the form factor DðtÞ.
The next step is to perform the Borel transforms of

Eqs. (31) and (33). Afterwards using Eq. (23), we derive the
first sum rules which read

FðtÞ ¼ T̄þ−
1½ψ̄−ψ−� −

Z
d̂μðsÞ

�
m2

N

4
Aþþ

−
Δ2⊥
4

�
1

2
Aþþ þ Bþþ −

1

2
Aþ

em

��
ð35Þ

and the second sum rules which are

FðtÞ ¼ 2T̄þ−
4½ψ̄−ψ−� −

Z
d̂μðsÞ

�
m2

N

2
ðAþþ − BþþÞ

−
Δ2⊥
4

ð2Bþþ − Bþ
emÞ

�
: ð36Þ

Equations (35) and (36) yield the following integral
relation:�

1þ 2m2
N

Δ2⊥

�Z
d̂μðsÞ

�
Aþþ

2
− Bþþ

�

¼
Z

d̂μðsÞ
�
Aþ

em

2
− Bþ

em

�
þ 4

Δ2⊥
T̄þ−
41½ψ̄−ψ−� ð37Þ

where, by definition,

T̄þ−
41½ψ̄−ψ−� ¼ 2T̄þ−

4½ψ̄−ψ−� − T̄þ−
1½ψ̄−ψ−�: ð38Þ

Based on the relation (37), it is instructive to analyze the
functions R1ðtÞ and R2ðtÞ given by

R1ðtÞ ¼
R
d̂μðsÞf1

2
Aþþ − BþþgR

d̂μðsÞf1
2
Aþ

em − Bþ
emg

�
1þ 2m2

N

Δ2⊥

�
− 1 ð39Þ

and

R2ðtÞ ¼
Z

d̂μðsÞ
�
Aþþ

2
− Bþþ

��
1þ 2m2

N

Δ2⊥

�

−
Z

d̂μðsÞ
�
Aþ

em

2
− Bþ

em

�
: ð40Þ

The behavior of R1 and R2 as functions of t has been
presented in Fig. 4. The numerical analysis shows that R1

and R2 scale approximately −0.8 and −0.02, respectively.
If we reckon that R2 ≈ 0 and R1 ≈ −1, we are able to
estimate the unknown LCSRs contributions as

2 lim
t→∞

T̄þ−
4½ψ̄−ψ−� ≈ lim

t→∞
T̄þ−
1½ψ̄−ψ−� ð41Þ

and

lim
t→∞

4

Δ2⊥
ð2T̄þ−

4½ψ̄−ψ−� − T̄þ−
1½ψ̄−ψ−�Þ

≈ lim
t→∞

Z
d̂μðsÞ

�
Bþ
em −

1

2
Aþ

em

�
: ð42Þ

Our numerical analysis shows that these estimations work
with a good precision for t ≥ 2 GeV2.
Since the amplitudes of A- and B-types are nothing but

the invariant amplitudes of T1- and T4-types [see Eqs. (32)
and (34)], from Eqs. (37), (41), and (42) we group together
the A (B)-type of form factors for T1 (T4)-type of
amplitude and, therefore, we impose that
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lim
t→∞

4

Δ2⊥
T̄þ−
4½ψ̄−ψ−�

≈ lim
t→∞

Z
d̂μðsÞ

�
1

2
Bþ
em −

1

2
Bþþ

�
1 −

2m2
N

t

��

≈ lim
t→∞

Z
d̂μðsÞ

�
1

2
Bþ
em

�
ð43Þ

and

lim
t→∞

4

Δ2⊥
T̄þ−
1½ψ̄−ψ−�

≈ lim
t→∞

Z
d̂μðsÞ

�
1

2
Aþ

em −
1

2
Aþþ

�
1 −

2m2
N

t

��

≈ lim
t→∞

Z
d̂μðsÞ

�
1

2
Aþ

em

�
ð44Þ

provided jBþ
emj ≫ jBþþð1 − 2m2

N=tÞj and jAþ
emj ≫

jAþþð1 − 2m2
N=tÞj which are not at odds with the numeri-

cal analysis. Indeed, even for the region of moderate t, i.e.,
t ∈ ½7; 10� GeV2, we have jBþ

emj=jBþþð1 − 2m2
N=tÞj ∼ 0.3

while jAþ
emj=jAþþð1 − 2m2

N=tÞj ∼ 0.1.
We now analyze the D-term contributions. Neglecting

C̄-term from F -combination at the large t, we first derive

the ½ψ̄þψþ�-contribution to the D-term form factor.
For example, from Eq. (36), we have

−2D4½ψ̄þψþ�

≈
Z

d̂μðsÞ
�
2Bþþ−Bþ

em−
2m2

N

Δ2⊥
ðAþþ−BþþÞ

�
: ð45Þ

On the other hand, inserting Eq. (43) into Eq. (36) or
Eq. (44) into Eq. (35), we estimate the form factor DðtÞ by

DðtÞ ≈ −
Z

d̂μ ðsÞ
�
1

2
Bþþ þm2

N

t
Aþþ

�
: ð46Þ

We emphasize that the form factor DðtÞ is independent one.
Equation (46) merely tells us that the estimated DðtÞ as a
function of t behaves like a combination of the form factors
AðtÞ and BðtÞ. The results of the calculations for the
estimated 5

4
D and 5

4
D4½ψ̄þψþ� have been demonstrated in

Fig. 5. It is important to note that the sign of D-term form
factor is mostly determined by the sign of AðtÞ rather
than by sign of BðtÞ in the region where t is relatively
moderate one.
In the same manner as in the case of the form factors A

and B, the estimatedDðtÞ can be approximated by (cf. [22])

0 2 4 6 8

3

2

1

0

1

t

0 2 4 6 8
2

1

0

1

2

t

FIG. 4. The functions R1ðtÞ (the upper panel) and R2ðtÞ (the
lower panel). Notations: the solid blue line corresponds to ABO2;
the dashed red line corresponds to ABO1; the dot-dashed green
line corresponds to BLW [10].

2 4 6 8

0.10

0.08

0.06

0.04

0.02

0.00

t

2 4 6 8

0.12

0.10

0.08

0.06

0.04

0.02

0.00

t

FIG. 5. The gravitational form factor DðtÞ for the region of
large t∶ 5

4
D4½ψ̄þψþ�ðtÞ (the upper panel) and the estimated total

5
4
DðtÞ (the lower panel). Notations: the solid blue line corre-

sponds to ABO2; the dashed red line corresponds to ABO1; the
dot-dashed green line corresponds to BLW [10].
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DfitðtÞ¼ D
ð1þetÞn ; D¼−2.5�0.2;

e¼ 0.93�0.03GeV−2; n¼ 3.4�0.025: ð47Þ

In the small t-region, for all sets of LCSR-parametrizations,
this approximating function matches, see Fig. 6, with the
first experimental data [19,20] together with the results of
the chiral quark-soliton and Skyrme models presented in
[2]. Our function DfitðtÞ lies below than the quark-soliton
prediction and above than the result of Skyrme model.

C. Mechanical properties of nucleon

Having calculated the form factors DðtÞ and AðtÞ, one
computes the pressure, the energy density in the center of
nucleon and the hadron mechanical radius [2]. We have

p0 ¼ −
1

24π2mN

Z
∞

0

dtt
ffiffi
t

p
DfitðtÞ

¼ 0.84 GeV=fm3½cf:p½2�
0 ¼ 0.23 GeV=fm3� ð48Þ

for the pressure, and

E ¼ mN

4π2

Z
∞

0

dt
ffiffi
t

p �
AfitðtÞ þ t

4m2
N
DfitðtÞ

�

¼ 0.92 GeV=fm3½cf:E½2� ¼ 1.7 GeV=fm3� ð49Þ

for the energy density, and

hr2imech ¼ 6D

�Z
∞

0

dtDfitðtÞ
�
−1

¼ 13.4 GeV−2 ð50Þ

for the mechanical radius.
Moreover, following [2], we present the result, see Fig. 7,

for the pressure pðrÞ as a function of r ¼ jr⃗⊥j given by

pðrÞ ¼ 1

6mN

1

r2
d
dr

r2
d
dr

D̃fitðrÞ;

D̃fitðrÞ ¼ 1

ð2πÞ3
Z

d2Δ⃗⊥e−ir⃗⊥Δ⃗⊥DfitðΔ⃗2⊥Þ: ð51Þ

One can see that the normalized pressure 4πmNr2pðrÞ has
zero at r ¼ 0.7 fm. The computed function pðrÞ meets the
von Laue condition, i.e.,Z

∞

0

dr r2pðrÞ ¼ 0; ð52Þ

which is a consequence of the EMT conservation and it
shows how the internal forces balance inside a composed
particle [1,2]. In addition, the spherical shell of radius r in
the nucleon are undergoing the normal and tangential
forces: Fn and Ft, respectively. With the obtained D̃fitðrÞ,
we can readily calculate these forces:

Fn ¼ 4πmNr2
�
pðrÞ þ 2

3
sðrÞ

�
;

Ft ¼ 4πmNr2
�
pðrÞ − 1

3
sðrÞ

�
ð53Þ

where the shear forces sðrÞ reads

sðrÞ ¼ −
1

4mN
r
d
dr

1

r
d
dr

D̃fitðrÞ: ð54Þ

Figure 8 shows us that the estimated normal and tangential
forces which correspond to the valence quark combination
are considerably small. This is fairly concordant with the
chiral quark-soliton model as well.

D. Plus-perp light-cone projections of the amplitude

The last stage is the consideration of the plus-perp light-
cone projection of the amplitude, Tþ⊥ðP;ΔÞ, it gives us

λ1mNΔ2⊥
m2

N − P02AðtÞNþðPÞ ¼ mNðT̄þ⊥
1½ψ̄þψþ� þ T̄þ⊥

1½ψ̄þψ−�ÞNþðPÞ

ð55Þ

0.0 0.2 0.4 0.6 0.8
4

3

2

1

0

t

FIG. 6. The gravitational form factor 5
4
DfitðtÞ which is analyti-

cally continued to the region of small t. The experimental data:
the blue squares—the Jefferson Lab [20], the red bullet points—
the lattice QCD [19].
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FIG. 7. The normalized pressure 4πmNr2pðrÞ½GeV=fm�.
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where

mNðT̄þ⊥
1½ψ̄þψþ� þ T̄þ⊥

1½ψ̄þψ−�Þ

¼ mNT̄
þ⊥
1½ψ̄þψ−� þ

mN

π

Z
s0

0

ds
s − P02 Im

�
Δ2⊥
4

Aþ
em

�
ð56Þ

and

λ1
m2

N − P02

�
P · ΔJðtÞ þ Δ2⊥

4
½AðtÞ − BðtÞ�

�
Δ̂⊥NþðPÞ

¼ Δ̂⊥ðT̄þ⊥
4½ψ̄þψþ� þ T̄þ⊥

4½ψ̄þψ−�ÞNþðPÞ ð57Þ

where

Δ̂⊥ðT̄þ⊥
4½ψ̄þψþ� þ T̄þ⊥

4½ψ̄þψ−�Þ

¼ Δ̂⊥T̄þ⊥
4½ψ̄þψ−� þ

Δ̂⊥
π

Z
s0

0

ds
s − P02 Im

�
Δ2⊥
4

Bþ
em

�
: ð58Þ

After the Borel transforms and using Eq. (23), we obtain

Z
d̂μðsÞ

�
1

2
Aþþ

�
¼

Z
d̂μðsÞ

�
1

4
Aþ

em

�
þ 4

Δ2⊥
T̄þ⊥
1½ψ̄þψ−�;

ð59Þ
Z

d̂μðsÞ
�
1

2
Bþþ

�
¼

Z
d̂μðsÞ

�
1

4
Bþ
em

�
þ 4

Δ2⊥
T̄þ⊥
4½ψ̄þψ−�:

ð60Þ

These sum rules allow us to calculate the contributions of
T̄þ⊥
1;4½ψ̄þψ−� explicitly.

IV. CONCLUSIONS AND DISCUSSIONS

The main challenge in the QCD description of any form
factors is the calculation of soft contributions which
correspond to the Feynman mechanism to transfer the
rather large momentum. As demonstrated in many papers

(see, e.g., [15–18]) the LCSRs approach is attractive due to
the fact that the soft contributions are calculated in terms of
the same DAs that the pQCD calculations include. Thus,
the LCSRs can be positioned as one of the most direct
relations of the different kind of form factors and hadron
DAs that is available at present.
In the paper, we have presented the first calculations and

several estimations for the gravitational form factors
implemented due to the LCSRs techniques at the leading
order.
We have shown that the essential contributions to the

gravitational form factors can be computed owing to the
suitable adoption of the LCSRs designed for the electro-
magnetic form factors. Within the developed approach,
focusing on the valence quark content of nucleon, we have
directly computed the gravitational form factors AðtÞ and
BðtÞ for sufficiently large Euclidian t≳ 1 GeV2 where the
LCSRs approach is reliable. For this region, we have
approximated the obtained form factors by the multipole
functions AfitðtÞ and BfitðtÞ and, then, have analytically
continued to the small t region. With the calculated form
factors, we have presented the result for the Mellin
x-moment of GPDs combination Hðx; ξ; tÞ þ Eðx; ξ; tÞ.
Also, the several estimations and predictions for the

valence quark contributions to the gravitational form factor
DðtÞ have been done. To the large t region where the
LCSRs approach can be used, we have found that the
estimated form factor D as a function of t has the similar
behavior as the suitable combination of the form factors
AðtÞ and BðtÞ. Regarding the small t region, where the first
experimental data are available [19,20], the estimated DðtÞ
can be approximated by the fitting multipole function
DfitðtÞ. With the estimated DfitðtÞ, a few quantities char-
acterizing the so-called mechanical properties of the
nucleon have been calculated. We emphasize that all our
results are not at odds with the experimental data as well as
with the results of the chiral quark-soliton and Skyrme
models presented in [2].
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APPENDIX: COLLINEAR AND
GEOMETRICAL TWISTS

For pedagogical reasons, we recall briefly the main
items from the theory of collinear and geometrical twists.
We begin with the nonlocal gauge-invariant quark operator
which can be expanded as

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.3

0.2

0.1

0.0

0.1

0.2

0.3

r

FIG. 8. The normal forces Fn (the solid line) and tangential
forces Ft (the dashed line) in ½GeV=fm�.
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ψ̄ð0Þγμ½0; z�AψðzÞ ¼
X∞
n¼0

1

n!
zα1…zαnO

μα1…αnð0Þ; ðA1Þ

where (D⃗α ¼ ∂⃗α − igAα)

½0; z�A ¼ P exp

�
ig
Z

0

z
dωνAνðωÞ

�
ðA2Þ

and

Oμα1…αnð0Þ ¼ ψ̄ð0ÞγμD⃗α1…D⃗αnψð0Þ: ðA3Þ

Here, all of the Lorentz indices are free and Oμα1…αn does
not belong to the irreducible representation SOð3; 1Þ.
The Lorentz rank-(nþ 1) tensor can be decomposed over
the irreducible representations with a help of the Young
tableaux (see, e.g., [4]).
To describe the hard inclusive and exclusive processes, it

is instructive to distinguish the geometrical and collinear
twists:

geom twist τ ¼ dimensiond − spin s;

coll twist t ¼ dimensiond − spin projection sa: ðA4Þ

Notice that the definite Lorentz spin s can be associated
with the local operators only, while the certain Lorentz spin
projection sa can be related to for both the local and
nonlocal operators. Indeed, the certain spin projection,
say, sa ¼ þ1 can be corresponded to many values of spin:
s ¼ þ1;þ2;þ3 etc.
Despite the fact that the irreducible representations of

the Lorentz group and its collinear subgroup can only be
realized with the local quark-gluon operators, in many
cases (e.g., in the exclusive process case) it is convenient
to introduce the collinear twist for the subjects which are
not forming the irreducible representations. For instance,
the individual light-cone spinors ψ�ð0Þ have the collinear
twists t ¼ 1 for the plus projection and t ¼ 2 for the minus
projection, and ψ̄ð0Þγ�ψðzÞ and ψ̄ð0Þγ⊥ψðzÞ correspond to
the collinear twists t ¼ 2ð4Þ and t ¼ 3, respectively, and so
on. We recall that, on the basis of the Weyl representation,
the (anti)quarks belong to the spinorial representations,
(1
2
, 0) or (0, 1

2
), while the Lorentz vectors form the vector

representations, (1
2
, 1
2
).

Thus, the geometrical twist-2 operators is defined as

Rμα1…αn
τ¼2 ¼ SðallÞψ̄ð0ÞγμD⃗α1…D⃗αnψð0Þ

≡Ofμα1…αngð0Þ − trace; ðA5Þ

where we introduce the symmetrization symbol which acts,
for instance, on the rank-2 local operator as

SðμνÞOμν ¼ 1

2!

�
Oμν þOνμ −

1

2
gμνgαβOαβ

�
: ðA6Þ

It is easy to show that the symmetrization procedure can be
presented in the following form:

Ofμαgð0Þ ¼ 1

2
lim
z→0

∂2

∂zμ∂zα ½ψ̄ð0ÞẑψðzÞ� ðA7Þ

where z ¼ ðzþ; z−; z⃗⊥Þ.
Let us now consider the nonlocal operator Oþð0; zÞ ¼

ψ̄ð0ÞγþψðzÞ where z ¼ z⊥ or z ¼ z−. As above-mentioned,
this operator has the definite collinear twist-2 (with a spin
projection sa ¼ þ1) and has no any definite geometrical
twist. On the other hand, after decomposition [see
Eq. (A1)], the local operators which form the given
expansion can have the certain geometrical twists (and,
therefore, the certain collinear twists):

ψ̄ð0Þγαψð0Þ with τ ¼ 2; ðA8Þ

corresponding to the Lorentz spin s ¼ 1, and

ψ̄ð0ÞγαD⃗βψð0Þ leads to τ ¼ 2; 3; 4 ðA9Þ

corresponding to the Lorentz spin s ¼ 2, 1, 0 and so on.
Indeed, one can write down that

Oαβ ¼ SðαβÞOαβ þO½αβ� þ 1

4
gαβgμνOμν

≡Ofτ¼2g þOfτ¼3g þOfτ¼4g: ðA10Þ

In a similar way we can treat any Lorentz high-rank tensors.
Moreover, to explain how the geometrical and collinear
twists work, we consider the first two terms in the
decompositions of Oþð0; z⊥Þ and Oþð0; z−Þ. We have

ψ̄ð0Þγþψðz⊥Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
t¼2;no τ-tw:

¼ ψ̄ð0Þγþψð0Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
t¼2 from τ¼2

þ z⊥ψ̄ð0ÞγþD⃗⊥ψð0Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
t¼3 from τ¼2;3

þ � � �

ψ̄ð0Þγþψðz−Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
t¼2;no τ-tw:

¼ ψ̄ð0Þγþψð0Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
t¼2 from τ¼2

þ z−ψ̄ð0ÞγþD⃗þψð0Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
t¼2 from τ¼2

þ � � �

ðA11Þ

Here, in the second terms the local operators of t ¼ 3 and
t ¼ 2 receive the contributions from the local operators of
τ ¼ 2, 3 and τ ¼ 2, respectively [see Eq. (A10)]. From
Eq. (A11), it has been seen that the collinear twist of the
left-hand side and right-hand side conserves if we take into
account the collinear twist of z⊥ with t ¼ −1 and z−

with t ¼ 0.
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