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Heavy-quark symmetry as applied to heavy hadron systems implies that their interactions are
independent of their heavy-quark spin (heavy-quark spin symmetry) and heavy flavor contents (heavy
flavor symmetry). In the molecular hypothesis the Xð3872Þ resonance is a 1þþ D�D̄ bound state. If this is
the case, the application of heavy-quark symmetry to a molecular Xð3872Þ suggests the existence of a series
of partner states, the most obvious of which is a possible 2þþ D�D̄� bound state for which the two-body
potential is identical to that of the 1þþ D�D̄ system, the reason being that these two heavy hadron-
antihadron states have identical light-spin content. As already discussed in the literature, this leads to the
prediction of a partner state at 4012 MeV, at least in the absence of other dynamical effects which might
affect the location of this molecule. However the prediction of further heavy-quark symmetry partners
cannot be made solely on the basis of symmetry and requires additional information. We propose to use the
one-boson-exchange model to fill this gap, in which case we will be able to predict or discard the existence
of other partner states. Besides the isoscalar 2þþ D�D̄� bound state, we correctly reproduce the location and
quantum numbers of the isovector hidden-bottom Zbð10610Þ and Zbð10650Þ molecular candidates. We
also predict the hidden-bottom 1þþ B�B̄� and 2þþ B�B̄� partners of the Xð3872Þ, in agreement with
previous theoretical speculations, plus a series of other states. The isoscalar, doubly charmed 1þ DD� and
D�D� molecules, and their doubly bottomed counterparts are likely to bind, providing a few instances of
explicitly exotic systems.

DOI: 10.1103/PhysRevD.99.094018

I. INTRODUCTION

Hadronic molecules were conjectured four decades ago
from a direct analogy to the deuteron and the nuclear forces
that bind it [1,2]. The idea is that heavy hadrons can
exchange light mesons—such as the pion, the sigma, the
rho, and the omega—in the same way that nucleons do. In a
few cases the interaction might be strong enough to bind
the hadrons into a molecule [3–5]. This conjecture has
become particularly relevant after the experimental discov-
ery of the Xð3872Þ by the Belle Collaboration [6], which is
usually considered to be a 1þþ D�D̄ bound state [7–9].
Besides the closeness of the Xð3872Þ to the open charm
threshold D0D0�, the most convincing evidence of the

molecular nature of the Xð3872Þ is its isospin-breaking
decays into J=Ψ2π and J=Ψ3π [10], which are easily
explained in the molecular picture [11,12], but not if the
Xð3872Þ is a more compact object [13]. However a direct
confirmation of the molecular nature of the Xð3872Þ
requires precise measurements of its D0D̄0γ and D0D̄0π0

decays [8,14,15]. The discovery of the Xð3872Þ was
preceded by the detection of the (probably molecular)
D�

s0ð2317Þ=Ds1ð2460Þ mesons [16,17], and was followed
by the observation of other molecular candidates, in
particular, the Zb’s [18,19], Zc’s (Zcð3900Þ [20,21],
Zcð4020Þ [22,23]), and Pcð4450Þ [24], which was
recently discovered to consist of two nearby peaks [the
Pcð4440Þ and Pcð4457Þ] and to have a lighter partner [the
Pcð4312Þ] [25].
Most of the known molecular candidates are suspected to

be bound states of heavy hadrons, i.e., hadrons containing a
heavy quark. As a consequence their interactions are
constrained by heavy-quark symmetry. This by itself is
able to explain a few interesting properties of the spectrum
of the molecular candidates [26–32]. Heavy-quark sym-
metry can be divided into heavy-quark spin symmetry
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(HQSS: the interactions among heavy hadrons are inde-
pendent of heavy-quark spin), heavy flavor symmetry
(HFS: the interactions among heavy hadrons are indepen-
dent of the heavy-quark flavor), and heavy antiquark-
diquark symmetry (a heavy antiquark behaves as a heavy
diquark pair). In a few instances heavy-quark symmetry can
be used to predict the existence of unobserved partners of
known molecular states. From a molecular Xð3872Þ it is
possible to deduce the existence of the Xð4012Þ or X2

[29,30]—a 2þþ D�D̄� partner of the Xð3872Þ—and a series
of triply heavy pentaquark-like molecules [32]. From
heavy-quark symmetry and the assumption that the
Pcð4450Þ [24] is a JP ¼ 3

2
− D̄�Σc molecule, we expect

the existence of a 5
2
− D̄�Σ�

c partner state—which we can call
the Pcð4515Þ in reference to its expected mass—plus a few
triply heavy hexaquark-like molecules [33]. Now with the
discovery of the new Pcð4312Þ and the two-peak structure
of the Pcð4450Þ [25] we can effectively determine the seven
possible S-wave heavy meson-baryon molecules [34,35],
including the previously mentioned 5

2
− D̄�Σ�

c state. Yet, with
the exception of the doubly charmed pentaquark family,
heavy-quark symmetry alone is in general not able to
determine the full molecular spectrum by itself and has to
be supplemented with additional information about hadron
dynamics.
The one-boson-exchange (OBE) model [36,37], besides

having played a central role in the seminal speculations
about the existence of hadron molecules, is able to provide
this missing information about the hadron-hadron inter-
actions. In this model the potential between two hadrons is
the consequence of the exchange of a series of light mesons
(π, σ, ρ, and ω) that provide the necessary dynamics for
binding. The OBE model is not completely free of
ambiguities, though: for making concrete predictions, a
form factor and a cutoff are required to regularize the
unphysical short-range behavior of the light mesons. If we
limit ourselves to qualitative predictions, then it is not
necessary to determine Λ: it will be enough to have
Λ ∼ 1 GeV, i.e., the natural scale for light hadrons. But
if wewant quantitative predictions the specific choice of the
cutoff Λ is important. One of the observations we make in
this work is that the cutoff Λ can be effectively determined
from the condition of reproducing the binding energy of a
known molecular candidate, e.g., the Xð3872Þ. After
determining the cutoff Λ with this condition, we can
explore how the OBE model applies to the particular cases
of the heavy meson-meson and heavy meson-antimeson
systems and what predictions are to be expected. This
framework is an adaptation of the renormalized OBE ideas
of Ref. [38], which also represents the most important
conceptual innovation of the present work with respect to
previous applications of the OBE model to heavy hadron
molecules; see Refs. [39–41] as representative examples.
We find that the twin hidden-bottom isovector Zbð10610Þ
and Zbð10650Þ resonance—Zb and Z0

b for short—is

correctly reproduced by the OBE model. The hidden-
bottom partner of the Xð3872Þ is also predicted in agree-
ment with the previous literature, from Törnqvist [4]
onwards. A series of additional molecular states are
predicted, particularly in the hidden-bottom sector, which
we will discuss later.
The manuscript is structured as follows. In Sec. II we

review the application of heavy-quark spin symmetry to the
heavy meson-antimeson system. In Sec. III we present the
details of the one-boson-exchange model as applied to
the heavy meson-antimeson system. In Sec. IV we deter-
mine the cutoff in the OBE model from the condition of
reproducing the Xð3872Þ as a hadronic molecule, from
which we predict in turn the full spectrum of heavy meson-
antimeson molecules. Finally, we present our conclusions
in Sec. V.

II. HEAVY-QUARK SPIN SYMMETRY

We first review the consequences of HQSS for heavy
meson molecules. The quark content of the heavy mesons
is Qq̄. If the heavy-light quark-antiquark pair is in the
S-wave, the total angular momentum of the heavy meson is
J ¼ 0, 1. The J ¼ 0 and J ¼ 1 mesons are denoted as P
and P�, respectively. The fields of the P and P� heavy
mesons can be combined into a single (heavy-quark spin
symmetric) superfield [42], the nonrelativistic version of
which is

H ¼ 1ffiffiffi
2

p ½Pþ P⃗� · σ⃗�; ð1Þ

whereH is a 2 × 2matrix and σ⃗ refers to the Pauli matrices.
From the nonrelativistic superfield H we can easily con-
struct the contact-range Lagrangian for the heavy meson-
meson interaction. If we consider interactions that do not
contain derivatives of the heavy meson fields, the most
general Lagrangian will be [26]

L4H ¼ CaTr½H†H�Tr½H0†H0�
þ CbTr½H†σiH�Tr½H0†σiH0�; ð2Þ

where we useH andH0 to denote heavy mesons of different
flavor. Notice that we are ignoring isospin or flavor
quantum numbers in the Lagrangian above. This is actually
very powerful, because without HQSS there will be a total
of six independent S-wave interactions, which are reduced
to two. If we particularize for a heavy meson-antimeson
pair H ¼ Qq̄ and H0 ¼ H̄ ¼ Q̄q, we are required to have
well-defined C parity. In this case, the contact-range
nonrelativistic potential for the S-wave reads

Vð0þþ; PP̄Þ ¼ Ca; ð3Þ

Vð1þþ; P�P̄Þ ¼ Ca þ Cb; ð4Þ
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Vð1þ−; P�P̄Þ ¼ Ca − Cb; ð5Þ

Vð0þþ; P�P̄�Þ ¼ Ca − 2Cb; ð6Þ

Vð1þ−; P�P̄�Þ ¼ Ca − Cb; ð7Þ

Vð2þþ; P�P̄�Þ ¼ Ca þ Cb: ð8Þ

This potential contains two interesting patterns. The first
pattern is that the 1þ− P�P̄ and P�P̄� potentials are
identical, which implies that these two molecules should
have the same binding energy. This might explain why the
Zc, Z0

c and Zb, Z0
b resonances come in pairs [28,43] (if they

happen to be molecules). The second pattern is the
1þþ P�P̄ and 2þþ P�P̄� potentials, which are identical.
According to this pattern, if the 1þþ D�D̄ system binds then
the 2þþ D�D̄� should also bind. In particular, if the
Xð3872Þ is a molecule, there should be a 2þþ molecule
with a similar binding energy [29,30]. This molecule, the
Xð4012Þ, has not been observed experimentally yet and
remains theoretical. Besides, other theoretical models
predict the 2þþ partner of the Xð3872Þ to have a different
mass that is not necessarily close to the D�D̄� thresh-
old [44,45].
The interesting thing about the contact-range Lagrangian

of Eq. (2) is that it is all we need to describe heavy meson-
(anti)meson molecules with a reasonable degree of accu-
racy. The reason for this is that the Lagrangian of Eq. (2)
can be interpreted as the leading-order Lagrangian of an
effective field theory (EFT) for heavy meson interactions
[29]. Within the EFT framework the heavy meson inter-
action is divided into a long-range and a short-range part.
The short-range part contains everything with a range of the
order of 1=M (withM ¼ 0.5–1.0 GeV, the typical hadronic
energy scale) or shorter, while the long-range part contains
interactions with a range larger than that value. From this
definition the long-range piece only contains pion
exchanges, while the short-range piece represents the
exchange of all other light mesons (σ, ρ, ω), the contri-
bution of which can be effectively encapsulated in a
contact-range Lagrangian. It happens that for heavy
meson-(anti)meson systems pion exchanges are usually
subleading, i.e., their impact in the description of these
systems is not as important as the Lagrangian of Eq. (2).
This leaves the contact-range Lagrangian of Eq. (2) as

the leading-order EFT for heavy meson molecules.
However the EFT description has a problem: there are
two free parameters, or four once we consider that
the different isospin channels have different couplings.
The EFT framework does not provide information about
the couplingsCa andCb, which have to be determined from
existing physical information. For instance, if the Xð3872Þ
is indeed an isoscalar 1þþ D�D̄ molecule, from the

condition of reproducing the binding energy of the
Xð3872Þ we can determine the linear combination

VX ¼ C0a þ C0b; ð9Þ

where we have added a subscript to the couplings to
indicate the isospin channel: CIa and CIb with I ¼ 0 for
the Xð3872Þ. Analogously, if the Zb and Z0

b are isovector
1þ− B�B̄ and B�B̄� molecules, we can determine another
combination of couplings

VZ ¼ C1a − C1b ð10Þ

in exactly the same way (notice that we did not mention the
Zc’s because their potential is identical to that of the Zb’s
owing to HFS [32]).
Here lies the problem we want to address in this

manuscript: besides the Xð3872Þ and the Zb’s there are
no other clear molecular candidates. We simply cannot fix
the four leading-order couplings and determine the full
spectrum of heavy meson-antimeson molecules. For that
reason we have to resort to a phenomenological model if we
want to effectively predict the heavy meson molecular
spectrum. The phenomenological model we will use here is
the OBE model.

III. THE ONE-BOSON-EXCHANGE MODEL

In this section we explain the OBE model as applied to
the heavy meson molecules. In the OBE model, the
interaction between two hadrons is a direct consequence
of the exchange of light mesons. In its most basic version
these light mesons are the pion, the σ, the ρ, and the ω. The
OBE potential provided the first accurate description of the
nuclear force [36,37], and the seminal idea for the first
conjectures about the existence of heavy hadron molecules
[1]. The OBE potential has its limitations too and there
have been frequent discussions about the coupling con-
stants of the mesons, in particular regarding the short-range
piece of the OBE potential which is usually dominated by ρ
and ω exchange. From SU(3)-flavor symmetry and the OZI
rule we expect gωNN ≃ 3gρNN , but a good description of the
nuclear scattering data usually requires gωNN > 3gρNN .
Nowadays, owing to the conceptual frameworks provided
by renormalization and effective field theory, we under-
stand that these problems are derived from the fine-tuning
of the nuclear forces; see Ref. [38] for a lucid exposition.
Yet, the application of the OBE potential to hadronic
molecules is in part less problematic because of its
exploratory character.

A. The Lagrangian

If we use the nonrelativistic superfield H defined in
Eq. (1), we can write the interaction Lagrangian between
the heavy and light mesons as follows:
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LHHπ ¼ −
gffiffiffi
2

p
fπ

Tr½H†σ⃗ ·∇ðτ⃗ · π⃗ÞH�; ð11Þ

LHHσ ¼ gσTr½H†σH�; ð12Þ

LHHρ ¼ gρTr½H†τ⃗ · ρ⃗0H�

−
fρ
4M

ϵijkTr½H†σkτ⃗ · ð∂iρ⃗j − ∂jρ⃗iÞH�; ð13Þ

LHHω ¼ −gωTr½H†ω0H�

þ fω
4M

ϵijkTr½H†σkð∂iωj − ∂jωiÞH�: ð14Þ

In the equations above π, σ, ρμ ¼ ðρ0; ρiÞ and ωμ ¼
ðω0;ωiÞ represent the light meson fields, where there is
a Lorentz index in the ρ and ω fields as they are vector
mesons. The axial coupling of the pion is denoted by g, gσ is
the coupling to the σ meson, while for the vector mesons we
have two different couplings: gV and fV , withV ¼ ρ,ω. The
couplings gV and fV are the strength of the “electric-type”
and “magnetic-type” interactions of the vector mesons,
respectively. For the magnetic-type term we include a mass
M, which is there tomakefV dimensionless.Wewill setM to
be the D-meson mass: M ¼ mD ¼ 1.87 GeV.

B. The OBE potential

The OBE potential is written as the sum of the con-
tributions of the exchanged mesons (π, σ, ρ, or ω),

V ¼ ζVπ þ Vσ þ Vρ þ ζVω; ð15Þ

where ζ ¼ �1 is a sign which we use to distinguish
between the heavy meson-meson and meson-antimeson
cases. We use the convention

ζ ¼ þ1 for HH̄; ð16Þ

ζ ¼ −1 for HH; ð17Þ

i.e., the sign is positive for the heavy meson-antimeson
case, which is the most commonly studied case in the
context of heavy hadron molecules. The contribution of
each light meson in momentum space is

Vπðq⃗Þ ¼ ητ⃗1 · τ⃗2
g2

2f2π

a⃗1 · q⃗a⃗2 · q⃗
q⃗2 þ μ2π

; ð18Þ

Vσðq⃗Þ ¼ −
g2σ

q⃗2 þm2
σ
; ð19Þ

Vρðq⃗Þ ¼ τ⃗1 · τ⃗2

�
g2ρ

q⃗2 þm2
ρ
− η

f2ρ
4M2

ða⃗1 × q⃗Þ · ða⃗2 × q⃗Þ
q⃗2 þ μ2ρ

�
;

ð20Þ

Vωðq⃗Þ ¼ −
g2ω

q⃗2 þm2
ω
þ η

f2ω
4M2

ða⃗1 × q⃗Þ · ða⃗2 × q⃗Þ
q⃗2 þ μ2ω

; ð21Þ

where η ¼ �1 is a sign, which we will define later, and a⃗1
and a⃗2 are vectors that depend on whether we are consid-
ering the PP̄, P�P̄=PP̄�, or P�P̄� systems. The convention
for ai (where i ¼ 1, 2 is the vertex) is the following:

a⃗i ¼ 0 for aP → P vertex; ð22Þ

a⃗i ¼ ϵ⃗i for aP → P� vertex; ð23Þ

a⃗i ¼ ϵ⃗�i for aP� → P vertex; ð24Þ

a⃗i ¼ S⃗i for aP� → P�vertex; ð25Þ

where ϵ⃗i is the polarization vector of the P� meson and S⃗i
are the spin-1 matrices. The convention for the sign η is
different depending on whether we are in the heavy meson-
meson or heavy meson-antimeson system. For the heavy
meson-meson case we have

η ¼ þ1 for theP�Pþ P�P potential; ð26Þ

η ¼ −1 for theP�P − P�P potential; ð27Þ

η ¼ þ1 for theP�P�potential; ð28Þ

depending on whether we have a symmetric or antisym-
metric PP� configuration. For the heavy meson-antimeson
case we have

η ¼ þ1 for theC ¼ ð−1ÞLP�P̄ potential; ð29Þ

η ¼ −1 for theC ¼ ð−1ÞLþ1P�P̄ potential; ð30Þ

η ¼ þ1 for theP�P̄� potential; ð31Þ

where C refers to the C parity of the heavy meson-
antimeson system and L refers to the orbital angular
momentum. Notice that for the piece of the potential that
is multiplied by η we do not use the mass m of the light
meson, but rather the effective mass μ which is defined as

μ2 ¼ m2 − Δ2
Q for thePP�=P�P case; ð32Þ

μ2 ¼ m2 for theP�P� case; ð33Þ
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where for Q ¼ c we have that Δc ¼ m�
D −mD is the mass

splitting between the D and D� charmed mesons. The
reason is that these potentials imply a vertex in which the P
heavy meson transitions into a P� heavy meson and vice
versa for the other vertex. For the vector mesons the
difference between μ and m in the PP�=P�P potential is
really small, and we will simply take the approximations
μρ ≃mρ and μω ≃mω. For the pion and the charmed
mesons D and D� we have instead that mπ ≃ Δc. In this
case we will make the simplification μπ ¼ 0 for the
DD�=D�D potential.
The coordinate-space potential is obtained from Fourier

transforming the potentials of Eqs. (18)–(21), in which case
we arrive at

Vπðr⃗Þ ¼ −ητ⃗1 · τ⃗2
g2

6f2π
½−a⃗1 · a⃗2δðr⃗Þ þ a⃗1 · a⃗2μ3πWYðμπrÞ

þ S12ðr⃗Þμ3πWTðμπrÞ�; ð34Þ

Vσðr⃗Þ ¼ −g2σmσWYðmσrÞ; ð35Þ

Vρðr⃗Þ ¼ τ⃗1 · τ⃗2½g2ρmρWYðmρrÞ þ η
f2ρ
4M2

�
−
2

3
a⃗1 · a⃗2δðr⃗Þ

þ 2

3
a⃗1 · a⃗2μ3ρWYðμρrÞ −

1

3
S12ðr̂Þμ3ρWTðμρrÞ

��
;

ð36Þ

Vωðr⃗Þ ¼ −g2ωmωWYðmωrÞ − η
f2ω
4M2

�
−
2

3
a⃗1 · a⃗2δðr⃗Þ

þ 2

3
a⃗1 · a⃗2μ3ωWYðμωrÞ −

1

3
S12ðr̂Þμ3ωWTðμωrÞ

�
;

ð37Þ

where the functions WYðxÞ and WTðxÞ are defined as

WYðxÞ ¼
e−x

4πx
; ð38Þ

WTðxÞ ¼
�
1þ 3

x
þ 3

x2

�
e−x

4πx
: ð39Þ

C. Form factors

The momentum-space potentials of Eqs. (18)–(21) are
computed under the assumption of point-like particles. The
finite size of the mesons can be modeled by means of a
form factor,

VMðq⃗;ΛÞ ¼ VMðq⃗ÞF2ðq;m;ΛÞ; ð40Þ

where the subscriptM ¼ π, σ, ρ, ω refers to the light meson
that is being exchanged, m refers to the mass of the

exchanged meson, and F refers to the form factor. Here
we will use a multipolar parametrization of the type1

Fðq;m;ΛÞ ¼
�
Λ2 −m2

Λ2 − q2

�
n

; ð41Þ

where q2 ¼ q20 − q⃗2 is the 4-momentum of the exchanged
meson and n is the power of the multipolar form factor: for
n ¼ 1we have a monopolar form factor, for n ¼ 2 a dipolar
one, etc. In principle, each of the light mesons can have a
different form factor and cutoff, as happens in the OBE
model as applied in the two-nucleon system. But this is
only possible if there is plenty of experimental data to fit.
This is not the case for hadronic molecules and thus we will
simply choose to use the same form factor—a monopolar
form factor (n ¼ 1)—and the same cutoff for each of the
light mesons.
The inclusion of a form factor can be taken into

account with the following changes in the coordinate-space
potential:

δðrÞ → m3dðx; λÞ; ð42Þ

WYðxÞ → WYðx; λÞ; ð43Þ

WTðxÞ → WTðx; λÞ; ð44Þ

with λ ¼ Λ=m. For a monopolar form factor the functions
d, WY , and WT read

dðx; λÞ ¼ ðλ2 − 1Þ2
2λ

e−λx

4π
; ð45Þ

WYðx; λÞ ¼ WYðxÞ − λWYðλxÞ −
ðλ2 − 1Þ

2λ

e−λx

4π
; ð46Þ

WTðx;λÞ¼WTðxÞ−λ3WTðλxÞ−
ðλ2−1Þ

2λ
λ2
�
1þ 1

λx

�
e−λx

4π
:

ð47Þ

For form factors of higher polarity we refer to the
Appendix.

1This parametrization, which is the most commonly used for
the OBE model, was put into question in Ref. [46] for the vector
mesons. The reason is that in the hidden gauge formalism the
Weinberg-Tomozawa terms are perfectly saturated from vector-
meson exchange, but this only happens with a form factor that
does not suppress the off-shell coupling of the vector mesons to
hadrons. However, from the point of view of standard chiral
perturbation theory, vector-meson exchange does not saturate the
Weinberg-Tomozawa terms but rather their subleading correc-
tions [47], in which case the off-shell suppression of a multipolar
form factor becomes a very welcome feature.
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D. Couplings

The OBE potential depends on the pion axial coupling g,
the sigma coupling gσ , the vector meson electric- and
magnetic-type couplings gV and fV with V ¼ ρ, ω, and the
mass scale M. For the pion axial coupling we choose

g ¼ 0.6; ð48Þ

which is compatible within errors with the experimental
determination g1 ¼ 0.59� 0.01� 0.07 from theD� → Dπ
decay [48,49]. For the sigma coupling, we determine it
from the nucleon-nucleon-sigma coupling in the nonlinear
sigma model [50] (gσNN ¼ ffiffiffi

2
p

MN=fπ ≃ 10.1) and the
quark model [51] relation:

gσ ¼
1

3
gσNN ≃ 3.4: ð49Þ

From Sakurai’s universality [52] we expect the electric-type
ρ coupling to be

gρ ¼
mρ

2fπ
≃ 2.9; ð50Þ

though this is merely a first approximation. For instance,
Casalbuoni et al. [53] suggested instead

gρ ¼ β
mρ

2fπ
≃ 2.6; ð51Þ

where β ¼ 0.9. We adopt this second estimation for the ρ
coupling, which is closer to the lattice QCD calculation
of Ref. [54]: gρ ¼ 2.6� 0.1� 0.4 in the heavy-quark
limit. For the magnetic-type ρ coupling, we also follow
Casalbuoni et al. [53] (who applied vector-meson domi-
nance to the weak decays of the charmed mesons), in which
case we obtain

fρ ¼ 4λM
mρ

2fπ
≃ 11.7 for M ¼ 1.87 GeV; ð52Þ

where λ ¼ 0.6� 0.1 GeV−1. The apparently large value of
fρ is a consequence of taking M equal to the D-meson
mass, instead of a more natural scale. Finally, the couplings
to the ω meson can be deduced from the ones of the ρ
meson, plus SU(3) flavor symmetry and the OZI rule,
which lead us to

gω ¼ gρ and fω ¼ fρ: ð53Þ

Alternatively, these two relations can also be derived from
writing the Lagrangian for the interaction between heavy
and vector mesons with SU(3) flavor indices and the
vector-meson nonet. A summary of the meson masses
and the couplings we are using in this work can be found in
Tables I and II.

E. Wave functions and partial-wave projection

The general wave function for a two-heavy-meson
system takes the form

jΨi ¼ ΨJMðr⃗ÞjIMIi; ð54Þ

where jIMIi refers to the isospin wave function and ΨJM
refers to the spin and spatial wave function. For the isospin
wave function we simply couple the isospin of the two
particles; the only subtlety is the isospin convention for
antiparticles (if we are dealing with a hadron-antihadron
system), which can be found in Ref. [55] for the heavy
antimeson case. TheΨJM piece of the wave function can be
written as a partial-wave sum,

ΨJMðr⃗Þ ¼
X
LS

ψLS JðrÞj2Sþ1LJi: ð55Þ

We use the spectroscopic notation 2Sþ1LJ to denote a
partial wave with total spin S, orbital angular momentum L,
and total angular momentum J. The precise definition is

j2Sþ1LJi ¼
X

MS;ML

hLMLSMSjJMijSMSiYLML
ðr̂Þ; ð56Þ

where hLMLSMSjJMi are the Clebsch-Gordan coeffi-
cients, jSMSi is the spin wave function, and YLML

ðr̂Þ are
the spherical harmonics. For the PP and PP̄ system, the
spin wave function is trivial,

jSMSðPPÞi ¼ j00i; ð57Þ

as we are dealing with spin-0 mesons. For the PP�=P�P
and PP̄�=P�P̄ system, only one of the heavy mesons has
spin,

jSMSðPP�Þi ¼ j1MSi: ð58Þ

For the P�P� and P�P� systems, we have

jSMSðP�P�Þi ¼
X

MS1;MS2

h1MS11MS2jSMSi

× j1MS1ij1MS2i; ð59Þ

where j1MS1i, j1MS2i are the spin wave functions of
particles 1 and 2.
The partial-wave projection of the OBE potential

depends on the matrix elements of the a⃗1 · a⃗2 and S12
operators, which are in turn independent of J and M,

hS0L0J0M0jO12jSLJMi ¼ δJJ0δMM0OJ
SL;S0L0 ; ð60Þ

whereO12 ¼ a⃗1 · a⃗2 or S12. The specific matrix elements of
the spin-spin and tensor operators can be found in Table III
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for all of the molecular configurations that contain an
S-wave (i.e., the ones that are more likely to bind).

IV. PREDICTIONS OF MOLECULAR STATES

A. The Xð3872Þ as a renormalization condition

The predictions of the OBE potential depend on the form
factor cutoff Λ. For a soft cutoff the OBE potential is too
weak to form bound states, while for a hard cutoff the OBE
potential is too strong, leading to overbinding or spurious
bound states. The physical interpretation of the cutoff Λ is
that it represents the finite size of the hadrons. For the
particular case of a multipolar form factor, the cutoff Λ is
expected to be larger than the masses of the exchanged light
mesons but not considerably larger than the natural
hadronic scale (about 1–2 GeV).2

For the heavy meson-antimeson system it is possible to
uniquely determine Λ from the mass of the Xð3872Þ. For
concreteness we will consider the Xð3872Þ in the isospin-
symmetric limit, where it is an isoscalar D�D̄ bound state
with positive C parity C ¼ þ1 and a binding energy of
about 4 MeV. Notice that the 4 MeV figure comes from the
difference between the location of the Xð3872Þ pole and
the DD� threshold for the isospin-averaged masses of the
charmed mesons. With this condition and the parameters of
Tables I and II, the OBE potential generates the Xð3872Þ
pole for the cutoff,

Λ ¼ ΛX ¼ 1.01 GeV; ð61Þ

which agrees with our expectations of a natural size cutoff.3

For comparison purposes, we notice that for the deuteron
taken as a neutron-proton bound state with a binding energy
B2 ¼ 2.2 MeV we obtain Λd ¼ 0.86 GeV, which is of the
same order of magnitude.

B. Error estimations

With the OBE potential and the cutoff determined from
the renormalization condition, we are ready to compute the
spectrum of heavy meson-(anti)meson molecules. The
calculation of the spectrum will be affected by uncertainties
that have to be estimated. The most important source of
uncertainty is the OBE potential itself: with the exceptions
of the pion and rho couplings, g and gρ, the other couplings

of the OBE potential are not particularly well known. For
instance, gσ is derived from the quark model, for which
there are no reliable error estimations, though 30% looks
like a sensible figure; gω has been derived from SU(3)-
flavor symmetry and the OZI rule, where at least a 20%
error is to be expected. These uncertainties will propagate
into the calculation of the binding energies. Considering the
error of each of the coupling constants separately is
possible (by means of Monte Carlo techniques, for in-
stance), but cumbersome. Instead, we will assign an overall
relative error δOBE for the OBE potential, that is,

V ¼ VOBEð1� δOBEÞ; ð62Þ
where we take δOBE ¼ 30%. If we consider the X channel,
this will be the only error source we will consider, i.e.,

VX ¼ VX;OBEð1� δOBEÞ; ð63Þ

which obviously propagates into the determination of the
cutoff ΛX. In particular, we arrive at

ΛX ¼ 1.01þ0.18
−0.10 GeV: ð64Þ

Now if we consider molecular states different than the X,
we notice that the OBE potential for these molecules has

TABLE I. Masses and quantum numbers of the light mesons of
the OBE model (π, σ, ρ, ω) and the heavy mesons (D,D�, B, B�).

Light meson IGðJPCÞ M (MeV)

π 1− ð0−þÞ 138
σ 0þ ð0þþÞ 600
ρ 1þ ð1−−Þ 770
ω 0− ð1−−Þ 780

Heavy meson IðJPÞ M (MeV)
D 1

2
ð0−Þ 1867

D� 1
2
ð1−Þ 2009

B 1
2
ð0−Þ 5279

B� 1
2
ð1−Þ 5325

TABLE II. Couplings of the light mesons of the OBE model
(π, σ, ρ, ω) to the heavy meson fields. For the magnetic-type
coupling of the ρ and ω vector mesons we have used the
decomposition fV ¼ κVgV , with V ¼ ρ, ω. M refers to the mass
scale involved in the magnetic-type couplings.

Coupling Value for P=P�

g 0.60
gσ 3.4
gρ 2.6
gω 2.6
κρ 4.5
κω 4.5
M 1867

2We notice that form factors of a higher polarity prefer larger
values of Λ: for a monopolar form factor the ideal cutoff is in
the vicinity of Λ ≃ 1 GeV, while for a dipolar form factor
Λ ≃ 1.5 GeV.

3In a previous work [55] we obtained Λ ¼ 1.04þ0.18
−0.10 GeV,

which is a bit higher. The reason for the difference is that in
Ref. [55] the effective pion mass for the one-pion-exchange piece
of the OBE potential was taken to be μπ ¼ 138 MeV instead of
μπ ¼ 0. It is interesting to notice that the difference is indeed
small, which is consistent with the idea that one-pion exchange is
perturbative, as expected in the charm meson-antimeson system
from the analysis of Ref. [29].
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been derived from the assumption that heavy-quark sym-
metry applies. It happens that heavy-quark symmetry is not
exact, but rather has an uncertainty. For that we include an
additional, independent error source

V ¼ VOBEð1� δOBEÞð1� δQÞ; ð65Þ

where δQ is the relative size of the expected violation of
heavy-quark symmetry. In addition, the factor ð1� δOBEÞ is
identical to the one that we have previously taken for VX.
With this, the calculation of the binding energy is trivial:
with V and Λ ¼ ΛX we determine the binding energy B2 of
the two-heavy-meson system. Finally, we sum in quad-
rature the two errors in B2, the one propagated from
ð1� δOBEÞ, and the second one propagated from ð1� δQÞ.
Besides the two-body binding energy B2, we will also

compute the scattering length a2 of the two-meson systems.
In the absence of bound states, the scattering length is
useful to determine the strength of the interaction, particu-
larly if it is close to binding. If we define the binding
momentum as γ2 ¼

ffiffiffiffiffiffiffiffiffiffi
2μB2

p
, where μ is the reduced mass of

the two-body system and B2 is its binding energy, we have
the relation

a2 ¼
1

γ2

�
1þO

�
γ2
mπ

��
; ð66Þ

which is valid for γ2 ≪ mπ, where we compare with the
pion massmπ because it is the longest range contribution to
the OBE potential. For B2 → 0 the scattering length
diverges: a2 → ∞. When the bound state disappears but
the attraction in the two-body system is still sizable, the
scattering length will be large (with respect to the range of
the pion) and negative: a2 > −1=mπ ∼ −1.4 fm. We notice
that for the D�D̄ and D�D systems the effective pion mass
is close to zero, μπ ≃ 0. This in turn means that the tensor

force from one-pion exchange effectively behaves as a 1=r3

potential at large distance, which is known for not having a
well-defined scattering length. For this reason we will not
calculate the D�D̄ and D�D scattering lengths. For the
calculation of the scattering length in settings with several
coupled partial waves we refer to Ref. [56] which deals
with the two-nucleon system, but the formalism therein can
be easily translated to the two-heavy-meson system. The
error estimations for the scattering length will be done
exactly as those for the two-body binding energy.
Finally, we comment that there is another important

source of (unknown) uncertainty in the calculation of ΛX:
the impact of nearby charmonia. The Xð3872Þ is thought to
be predominantly molecular as deduced from the isospin-
breaking decays of the X into J=Ψπþπ− and J=Ψπþπ−π0
[10]. This branching ratio is naturally explained if the
Xð3872Þ is molecular [11,12], but not if it is a charmonium
state [13]. But the Xð3872Þ also decays into a charmonium
and a photon, ΓðX → J=ΨγÞ and ΓðX → Ψð2SÞγÞ [57],
which suggests the existence of cc̄ components at shorter
distances [58]. It is important to notice that only a small
short-range cc̄ component is required to explain the
radiative charmonium decays [59], i.e., the Xð3872Þ is
still mostly molecular [60]. It has also been argued that the
coupled-channel dynamics between the D�D̄ degrees of
freedom and the χ1ð2PÞ charmonia might provide addi-
tional attraction to the system [61]. This additional attrac-
tion means that the actual form factor cutoff ΛX that is
necessary to bind the Xð3872Þmight be a bit lower than the
value we use here. However, it is difficult to estimate how
much lower it is, as this depends on the cc̄ probability for
the Xð3872Þ [see also Ref. [62] for a more recent analysis
of the degree of compositeness in the Xð3872Þ]. For that
reason wewill not include this effect in our calculations and
simply consider the Xð3872Þ to be a pure molecular state
for simplicity.

TABLE III. Matrix elements of the spin-spin and tensor operators for the partial waves we are considering in this
work.

Molecule Partial waves JP a⃗1 · a⃗2 S12 ¼ 3a⃗1 · r̂a⃗2 · r̂ − a⃗1 · a⃗2

DD̄ 1S0 0þ 0 0
D�D̄ 3S1 − 3D1 1þ

�
1 0

0 1

� �
0 −

ffiffiffi
2

p
−

ffiffiffi
2

p
1

�

D�D̄� 1S0 − 5D0 0þ
�−2 0

0 1

� �
0 −

ffiffiffi
2

p
−

ffiffiffi
2

p −2
�

D�D̄� 3S1 − 3D1 1þ
�−1 0

0 −1
� �

0
ffiffiffi
2

pffiffiffi
2

p −1
�

D�D̄� 1D2 − 5S2 − 5D2 − 5G2 2þ 0
B@

−2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CA

0
BBBBBBBB@

0 −
ffiffi
2
5

q
2ffiffi
7

p −6
ffiffiffiffi
3
35

q

−
ffiffi
2
5

q
0

ffiffiffiffi
14
5

q
0

2ffiffi
7

p
ffiffiffiffi
14
5

q
3
7

12

7
ffiffi
5

p

−6
ffiffiffiffi
3
35

q
0 12

7
ffiffi
5

p − 10
7

1
CCCCCCCCA
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C. The isoscalar heavy meson-antimeson system

We begin by computing the spectrum for the isoscalar
hidden charm and hidden bottom molecules. The use of the
OBE potential [where the cutoff has been determined from
the location of the Xð3872Þ] relies on two types of heavy-
quark symmetry: HQSS and HFS. The expected relative
error of heavy-quark symmetry is δQ ∼ ΛQCD=mQ, where
ΛQCD ∼ 200–300 MeV. If we particularize for the charm
quark mass, mc ∼ 1.5 GeV, the error will be δQ ∼ 15%. If
we consider the hidden charm molecules, we will only
make use of HQSS and the relative error δQ for the OBE
potential will simply be δQ ¼ δHQSS ∼ 15%. If we consider
the hidden bottom molecules, we are actually using both
HQSS and HFS: first, HQSS from applying the OBE
potential for hidden charmed molecules different than the
X, and then HFS from applying the same OBE potential in
the hidden charm and hidden bottom sector. We account for
this by adding the two errors in quadrature. The error comes
from using the hidden charm sector as the starting point in
the calculations, i.e., we take δHQSS ¼ δHFS ¼ δQ ∼ 15%.
Now, by adding both of these errors in quadrature we get
δ0Q ¼ ffiffiffi

2
p

δQ ∼ 20% for the hidden bottom sector.
With the OBE potential and the previous error estima-

tions we arrive at the set of binding energies listed in
Table IV. In the hidden charm sector we obtain that besides
the Xð3872Þ the only other state that might survive is its
2þþ partner, the Xð4012Þ in reference to its expected mass,
which was predicted in Refs. [29,30]. The uncertainty is
large,

B2ð2þþ; D�D̄�Þ ¼ 4þ17
−6 ; ð67Þ

where the lower error (which is larger than the central value as
a consequence of summing the OBE and heavy-quark
symmetry uncertainties in quadrature) indicates that the state
might very well disappear. Thus, the conclusion that the
Xð4012Þ binds is not strong. In this sense the present work
simply reaffirms the previous conclusions of Ref. [30], but
with larger uncertainties owing to the uncertainty of using a
phenomenological model instead of an EFT.
The existence of the Xð4012Þ has indeed been exten-

sively discussed in the literature from different perspec-
tives. Despite being a clear prediction of HQSS, the
Xð4012Þ has not been experimentally observed yet. In
principle it could be detected from eþe− → ψðnSÞ → γX2

(with ψ a 1−− charmonium) in the 4.4–4.5 GeV region [63].
If it is experimentally discarded in the future, a series of
possible reasons for its disappearance have already been
studied, such as the impact of nearby charmonia [61] or
coupled-channel dynamics [45]. However, here we are
inclined to favor the most simple explanation available: the
natural uncertainty of HQSS in the charm sector is too large
to guarantee the existence of the Xð4012Þ.
If we consider the hidden bottom sector, we arrive at the

conclusion that the six possible isoscalar molecules will
bind. The prediction for the Xb1, the hidden bottom partner
of the Xð3872Þ, is that its binding energy is

B2ðXb1Þ ¼ 51þ45
−38 MeV: ð68Þ

This is similar to the original calculation by Törnqvist [4],
which used the one-pion-exchange potential with a monop-
olar form factor and a cutoff of Λ ¼ 1.2 GeV, leading to
B2ðXb1Þ ∼ 45 MeV. The seminal manuscript by Törnqvist
is more exploratory than our calculations, as it considers
only the longest range piece of the heavy meson-(anti)
meson interaction (i.e., the one-pion-exchange potential).
Despite these limitations, Törnqvist also predicted the other
hidden bottom molecules that appear in Table IV, though in
general the predicted binding energies are considerably
larger than our results (with the exception of the 1þþ and
2þþ hidden bottom molecules, for which the predictions
are similar). Of course, this is due to considering one-pion
exchange only, in contrast to the exchange of other light
mesons.
The comparison with the more recent calculation of Guo

et al. [32] is more interesting: the authors of Ref. [32] used
a contact-range effective field theory at leading order to
predict the location of the Xb1 and X2b states, where the Xb2

refers to the 2þþ B�B̄� molecule. The advantage of this
approach is that EFT calculations are amenable to system-
atic error calculations, i.e., they are in principle more
reliable than the phenomenological calculations we are
using here. In this regard, it is interesting to check that the
calculations of Ref. [32] predict that the Xb1 and Xb2 will

TABLE IV. Scattering lengths and binding energies of pro-
spective isoscalar heavy meson-antimeson molecules. The error
is a combination of the expected uncertainty of the OBE model
and heavy-quark symmetry (HQSS and HFS). M refers to the
predicted mass (the central value) of a heavy meson molecule (if
it binds).

State I JPC a2 (fm) B2 (MeV) M (MeV)

DD̄ 0þ 0þþ −2.1þ1.7
−2.8 � � � � � �

D�D̄ 0þ 1þþ N/A 4 3872

D�D̄ 0þ 1þ− N/A � � � � � �
D�D̄� 0þ 0þþ −1.5þ0.5

−1.0 � � � � � �
D�D̄� 0þ 1þ− −2.0þ0.9

−2.7 � � � � � �
D�D̄� 0þ 2þþ þ2.8þ4.5

−0.8 4þ17
−6 4013

State I JPC a2 (fm) B2 (MeV) M (MeV)

BB̄ 0þ 0þþ þ1.3þ0.9
−0.5 9þ13

−9 10 550

B�B̄ 0þ 1þþ þ0.6� 0.3 51þ45
−38 10 553

B�B̄ 0þ 1þ− þ1.5þ1.2
−0.9 7þ12

−7 10 595

B�B̄� 0þ 0þþ þ1.2þ1.7
−1.2 7þ21

−9 10 643

B�B̄� 0þ 1þ− þ1.5þ1.1
−0.9 8þ12

−7 10 642

B�B̄� 0þ 2þþ þ0þ1
−25 59þ51

−43 10 591
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bind in the B2 ∼ 25–65 MeV range, which is compatible
with the results in Table IV. For a more complete com-
parison between the OBE model and heavy-meson EFT, we
refer to Sec. IV G.

D. The isovector heavy meson-antimeson system

Next we consider the isovector hidden charm and hidden
bottom molecules. The OBE potential leads to the spectrum
of Table V, where we can appreciate that there are no hidden
charm isovector molecules, while there are a few hidden
bottom ones. In particular, the OBE potential predicts two
twin IGðJPCÞ ¼ 1þð1þ−ÞB�B̄ and B�B̄� molecules with a
binding energy of

B2ð1þ−; Bð�ÞB̄Þ ¼ 5þ11
−6 MeV: ð69Þ

Obviously, we are tempted to identify this prediction with
the Zbð10610Þ and Zbð10650Þ resonances discovered by
Belle [18,19]. Owing to their closeness to the B�B̄ and
B�B̄� thresholds, the Zb’s have been proposed to be
molecular [43,64]. The analysis of Ref. [64] suggests a
binding energy of B2 ¼ 4.7þ2.3

−2.2 and 0.11þ0.14
−0.06 MeV for the

Zb and Z0
b respectively. The more recent analysis of

Ref. [65] suggests B2 ¼ 0.9–1.7 MeV for the Zb (i.e., a
bit closer to threshold than in Ref. [64]), while the Z0

b could
either be slightly bound (B2 ∼ 0.7 MeV) or be a resonance
just above the B�B̄� threshold. These numbers are indeed
compatible with our results, which give a bit more con-
fidence to the hypothesis that the Zb’s are molecular.
Besides the Zb’s, there is another possible B�B̄� bound
state for the quantum numbers IGðJPCÞ ¼ 1−ð0þþÞ with a
binding energy of about B2 ¼ 15 MeV and there are two
other configurations where the molecules might be close to
the unitary limit, i.e., to having a bound state at threshold.
These two configurations are the isovector 1−ð0þþÞ BB̄ and
1−ð2þþÞB�B̄� states. But the errors of these two predictions
are sizable and it is impossible to determine their fate within
the OBE model. For comparison purposes a recent work
[66], which used the EFT formalism as applied to heavy
meson-antimeson molecules, predicted that the six iso-
vector hidden-bottom states will appear either as resonan-
ces above their respective two-meson thresholds for a
pionful EFT or as virtual states for a pionless EFT (i.e.,
the overall picture is the same but the details are different).
The isovector hidden charm sector is interesting because

the Zcð3900Þ and Zcð4020Þ resonances are usually
regarded as probable molecular candidates. This is despite
the fact that they are located a few MeVabove theDD� and
D�D� thresholds, respectively, which is not the expected
location for a standard S-wave bound state. Yet it is
possible to interpret the Zcð3900Þ and Zcð4020Þ as reso-
nances in DD� and D�D� scattering. This hypothesis
makes it natural to expect the Zc’s to be above threshold,
but requires a potential that is repulsive at long distances
and attractive at short distances, which is indeed the case. In
the OBE potential for the isovector JPC ¼ 1þ− DD̄� and
D�D̄� systems, the pion provides a repulsive long-range
contribution and the sigma an attractive medium- and short-
range contribution. However, the ρ and ω contributions
cancel out perfectly in the limit where SU(3)-flavor
symmetry and the OZI rule are exact. The ρ and ω
cancellation is problematic because it leads to a potential
that is not strong enough to bind. In turn, this has prompted
a few authors to consider the role of two-pion exchange in
the Zc’s [67,68] and Zb’s [69], a contribution which in the
OBE model can be identified with the exchange of the σ
meson. Caution is advised, however: as argued in Ref. [70],
the experimental information currently available might not
be enough to determine whether the Zc’s are bound states,
virtual states, or resonances. In Ref. [71] it was argued that
both the bound and virtual state interpretations of the
Zcð3900Þ are possible (with a slight preference for the
virtual state). For this reason, what we will check is whether
the interaction in the isovector JPC ¼ 1þ− DD̄� and D�D̄�
systems is strong, for instance, by looking at the scattering-
length predictions. In Table V it can be appreciated that the
scattering length for the Z0

c channels is a2 ¼ −1.1þ0.4
−0.5 fm,

while for the Zc the scattering length is not well defined in

TABLE V. Scattering lengths and binding energies of the
prospective isovector heavy meson-antimeson molecules. Notice
that the Zbð10610Þ and Zbð10650Þ molecular candidates are
reproduced in the OBE model. The table is similar to Table IV,
except for the following two details. (i) The † symbol in the
binding energy B2 indicates here that the state disappears either
from the OBE or the heavy-quark symmetry uncertainty alone.
(ii) The �∞ error in the scattering length a2 indicates that the
scattering length can cross infinity/minus infinity as a conse-
quence of the appearance or disappearance of a bound state; when
this happens, we include the expected bound of the scattering
length in parentheses.

State IG JPC a2 (fm) B2 (MeV) M (MeV)

DD̄ 1− 0þþ −0.7þ0.2
−0.4 � � � � � �

D�D̄ 1− 1þþ N/A � � � � � �
D�D̄ 1þ 1þ− N/A � � � � � �
D�D̄� 1− 0þþ −1.9þ1.1

−2.5 � � � � � �
D�D̄� 1þ 1þ− −1.1þ0.4

−0.5 � � � � � �
D�D̄� 1− 2þþ −0.6� 0.4 � � � � � �
State IG JPC a2 (fm) B2 (MeV) M (MeV)

BB̄ 1− 0þþ þ4.6þ∞ð−24Þ
−3.3

0þ4
† 10 559

B�B̄ 1− 1þþ −35þ40
−∞ð7Þ � � � � � �

B�B̄ 1þ 1þ− þ1.7þ1.2
−0.4 5þ11

−6 10 599

B�B̄� 1− 0þþ þ1.2þ0.4
−0.2 15þ21

−15 10 635

B�B̄� 1þ 1þ− þ1.7þ1.1
−0.4 5þ11

−6 10 645

B�B̄� 1− 2þþ þ28
þ∞ð−5Þ
−24

0þ1
† 10 650
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the μπ → 0 limit we are taking. This scattering length might
be compatible with the existence of a virtual state (which
basically requires a large negative scattering length).
Unfortunately, the magnitude of the scattering length is
natural (of the order of the pion range), which means that
this virtual state is probably not observable. According to
this result, it is difficult to accommodate the Zc’s as pure
molecular states.
This prompts us to consider the role of SU(3)-flavor-

symmetry breaking in the formation of the Zc resonances.
If SU(3)-flavor symmetry is broken in the right direction, in
particular by having gω > gρ, this will generate an addi-
tional short-range attraction that might lead to a larger
scattering length or to binding. We will consider the
following three scenarios.
(1) Scenario A: SU(3)-flavor symmetry and the OZI rule

are exactly respected, i.e., gω ¼ gρ and fω ¼ fρ.
(2) Scenario B: gω ¼ gρ and fω ¼ fρ are moderately

broken in the right way as to ease the binding of
the Zc’s.

(3) Scenario C: Same as scenario B, but now the gω ¼
gρ and fω ¼ fρ relations are strongly broken.

Scenario A simply corresponds to Table V, i.e., we follow
the choice of coupling constants that we already made
when discussing the OBE model. In scenario B we
acknowledge that the gω ¼ gρ and fω ¼ fρ relations can
be off by δ3 ¼ 20%, while in scenario C the relations will
be violated at the δ3 ¼ 35% level. The type of breakdown
that makes the existence of the Zc’s as molecular states
more probable is gω > gρ and fω > fρ. In particular, we
take

g0ω ¼ ð1þ δ3ÞgSUð3Þ; g0ρ ¼ ð1 − δ3ÞgSUð3Þ; ð70Þ

f0ω ¼ ð1þ δ3ÞfSUð3Þ; f0ρ ¼ ð1 − δ3ÞfSUð3Þ; ð71Þ

where gSUð3Þ and fSUð3Þ refer to the previous values we were
using for gρ=ω and fρ=ω. With these values we have to
calculate ΛX again, in which case we obtain

Λ0
X ¼ 1.03þ0.20

−0.10 GeV; ð72Þ

which is curiously identical for the δ3 ¼ 20% and 35%
scenarios and very close to the original ΛX in the SU(3)-
symmetric limit; see Eq. (64) [this happens because the
attraction lost from the ρ in the Xð3872Þ channel is
canceled out by the attraction gained from the ω]. From
Λ0
X we can recalculate the full spectrum of isoscalar hidden

charm and hidden bottom molecules, in which case we
arrive at the results of Table VI. We notice that for scenarios
B and C the scattering length in the Z0

c channel increases to

aðBÞ2 ¼ −1.7þ0.7
−1.4 and aðCÞ2 ¼ −2.3þ1.2

−3.2 fm, respectively. The
scattering lengths cannot be excluded to be large once we

consider the uncertainty, yet neither the Zc nor the Z0
c bind

for sensible values of SU(3) breaking.

E. The heavy meson-meson system

For the heavy meson-meson system our results are listed
in Table VII. The most notable predictions in the doubly
charmed sector are the twin isoscalar JP ¼ 1þ DD� and
D�D� bound states, which are predicted to have binding
energies of

B2ð1þ; DD�Þ ≃ 3þ15
−4 MeV; ð73Þ

B2ð1þ; D�D�Þ ≃ 2þ13
−3 MeV; ð74Þ

TABLE VI. Scattering lengths and binding energies of pro-
spective isoscalar heavy meson-antimeson molecules if the ρ and
ω couplings break SU(3)-flavor symmetry. The table is similar to
Tables IV and V.

State Scenario IG JPC a2 (fm) B2 (MeV) M (MeV)

DD̄ B 1− 0þþ −0.9þ0.3
−0.2 � � � � � �

D�D̄ B 1− 1þþ N/A � � � � � �
D�D̄ B 1þ 1þ− N/A � � � � � �
D�D̄� B 1− 0þþ −4.4þ2.7

∞ðþ36Þ � � � � � �
D�D̄� B 1þ 1þ− −1.7þ0.7

−1.4 � � � � � �
D�D̄� B 1− 2þþ −0.8� 0.3 � � � � � �
State Scenario IG JPC a2 (fm) B2 (MeV) M (MeV)

DD̄ C 1− 0þþ −1.0þ0.3
−0.5 � � � � � �

D�D̄ C 1− 1þþ N/A � � � � � �
D�D̄ C 1þ 1þ− N/A � � � � � �
D�D̄� C 1− 0þþ −12þ12

−∞ðþ6Þ � � � � � �
D�D̄� C 1þ 1þ− −2.3þ1.2

−3.2 � � � � � �
D�D̄� C 1− 2þþ −0.9� 0.3 � � � � � �
State Scenario IG JPC a2 (fm) B2 (MeV) M (MeV)

BB̄ B 1− 0þþ þ2.5þ4.2
−0.9 2þ6

−3 10 557

B�B̄ B 1− 1þþ þ8
þ∞ð−11Þ
−5

0þ2
† 10 604

B�B̄ B 1þ 1þ− þ1.3þ0.5
−0.4 10þ17

−10 10 594

B�B̄� B 1− 0þþ þ1.0þ0.4
−0.3 26þ32

−24 10 624

B�B̄� B 1þ 1þ− þ1.3þ0.5
−0.4 11þ16

−10 10 639

B�B̄� B 1− 2þþ þ6
þ∞ð−15Þ
−4

0þ2
† 10 650

State Scenario IG JPC a2 (fm) B2 (MeV) M (MeV)

BB̄ C 1− 0þþ þ2.1þ4.2
−0.9 3þ7

−4 10 556

B�B̄ C 1− 1þþ þ5
þ∞ð−110Þ
−3

1þ2
† 10 603

B�B̄ C 1þ 1þ− þ1.1þ0.4
−0.3 14þ20

−14 10 590

B�B̄� C 1− 0þþ þ0.9þ0.2
−0.4 34þ39

−22 10 616

B�B̄� C 1þ 1þ− þ1.1þ0.4
−0.3 14þ20

−14 10 636

B�B̄� C 1− 2þþ þ5þ86
−3 1þ3.0

† 10 649
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where the binding energies are almost identical as a
consequence of HQSS. There have been speculations about
the existence of a doubly charmed tetraquark-like state with
the quantum numbers of the twin doubly charmed mole-
cules we predict. In the quark model the location of the
ground state of the isoscalar JP ¼ 1þ ccq̄ q̄ tetraquark
configuration can vary considerably, being sometimes
predicted below [72–75] and sometimes above [76–78]
theDD� threshold. A recent work considered the two-pion-
exchange potential in the heavy meson-meson system [79],
predicting the isoscalar JP ¼ 1þ DD� to be bound by
about 20 MeV. On the lattice this tetraquark state has been
recently predicted to be 23� 11 MeV below the DD�
threshold [75]. The OBE model prediction indeed reinfor-
ces the previous speculations, though it gives a prediction
much closer to threshold.
Owing to HFS, we also predict twin isoscalar 1þ BB�

and B�B� molecules with a binding energy of 58 MeV,
which are the heavy flavor partners of the DD� and D�D�
isoscalar molecules we discussed in the previous para-
graph. This is in comparison with Ref. [80], which
predicted the isoscalar JP ¼ 1þ BB� and B�B� bound
states to have binding energies of 13 and 24 MeV,
respectively, which moderately violate HQSS for S-wave
interactions according to which both states should have
similar binding energies. This suggests that in Ref. [80],
which used the two-pion exchange potential, binding was
maybe due to the SD-wave transitions induced by the

tensor force. Recently, two lattice QCD calculations
[75,81] predicted the isoscalar JP ¼ 1þ udb̄b̄ tetraquark
to be located at 143� 34 MeV [75] and 128� 24�
10 MeV [81] below the BB� threshold, respectively.
Besides these exotic doubly bottomed tetraquark-like
molecules, there are two other shallow (isovector) mole-
cules: a JP ¼ 1þ BB� and a 2þ B�B� bound state (see
Table VII for details).

F. Systems with two different flavors

Finally, we consider the DB (charmed-antibottom) and
DB̄ (charmed-bottom) family of heavy meson molecules.
The most interesting is the charm-antibottom sector, which
we summarize in Table VIII. In particular, we predict a
series of molecular candidates close to the unitary limit, i.e.,
with a scattering length considerably larger than the range
of molecular interaction (the range of the pion): mπa2 ≫ 1.
The possibility that the DB, DB�, and D�B molecules
might have unnaturally large scattering lengths/form a
shallow bound state has been already theorized in
Ref. [82] from a simple argument involving the heavy-
quark spin decomposition of the heavy meson-antimeson
interaction. The present calculation confirms the suspicions
of Ref. [82] independently and adds a few more charm-
antibottom molecules which are also close to the unitary
limit: the isoscalar/isovector JP ¼ 0þ=1þ D�B� molecules.
The isoscalar charm-bottom sector is also interesting: it
contains a possible JP ¼ 1þ D�B̄� bound state, which is the
HFS partner of the doubly charmed and doubly bottomed
molecule predicted in Table IX. In addition, though theDB̄,

TABLE VII. Scattering lengths and binding energies of pro-
spective heavy meson-meson molecules. Owing to the require-
ment of symmetric wave functions, the spin and isospin of the
molecules are constrained by the relation ð−1ÞIþSþLþ1 ¼ 1. The
exception is the D�D=DD� system, which can appear in both
isospin configurations, though the potential is different for each
one. The table is similar to Tables IV and V.

State IG JP a2 (fm) B2 (MeV) M (MeV)

DD 1þ 0þ −0.4þ0.1
−0.2 � � � � � �

D�DþDD� 1þ 1þ N/A � � � � � �
D�D −DD� 0þ 1þ N/A 3þ15

−4 3873

D�D� 1þ 0þ −0.4� 0.2 � � � � � �
D�D� 0þ 1þ 4þ100

−2 2þ13
−3 4015

D�D� 1þ 2þ −0.6þ0.4
−0.3 � � � � � �

State IG JP a2 (fm) B2 (MeV) M (MeV)

BB 1þ 0þ −4.5þ4.0
−∞ðþ150Þ � � � � � �

B�Bþ BB� 1þ 1þ þ2.4þ7.6
−0.9 2þ8

−3 10 602

B�B − BB� 0þ 1þ þ0.5þ0.4
−0.8 58þ55

−44 10 546

B�B� 1þ 0þ −1.7þ0.8
−1.3 � � � � � �

B�B� 0þ 1þ þ0.5þ0.4
−0.8 58þ56

−43 10 592

B�B� 1þ 2þ þ2.4þ6.3
−0.9 2þ9

−3 10 648

TABLE VIII. Scattering lengths and binding energies of pro-
spective heavy meson-meson molecules in the flavor-exotic
charm-antibottom sector. The table is similar to Tables IV and V.

State I JP a2 (fm) B2 (MeV) M (MeV)

DB 0 0þ þ14
þ∞ð−4Þ
−15

0þ3
† 7147

DB� 0 1þ þ14
þ∞ð−4Þ
−14

0þ3
† 7192

D�B 0 1þ þ7
þ∞ð−6Þ
−7

0þ3
† 7288

D�B� 0 0þ −7þ5
−∞ðþ13Þ � � � � � �

D�B� 0 1þ þ270
þ∞ð−3Þ
−380

� � � � � �
D�B� 0 2þ þ1.4þ0.5

−0.3 20þ33
−22 7314

State I JP a2 (fm) B2 (MeV) M (MeV)

DB 1 0þ −1.5þ0.6
−1.1 � � � � � �

DB� 1 1þ −1.5þ0.6
−1.2 � � � � � �

D�B 1 1þ −1.7þ0.7
−1.7 � � � � � �

D�B� 1 0þ þ6
þ∞ð−5Þ
−4

0þ8
† 7334

D�B� 1 1þ −6þ4
−∞ðþ10Þ � � � � � �

D�B� 1 2þ −1.3þ0.5
−0.8 � � � � � �
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DB̄�, and D�B̄ and 2þ D�B̄� systems do not bind, their
scattering lengths are also remarkably large.
The reason why the appearance of large scattering

lengths is particularly interesting is because of the pos-
sibility of finding a few hadronic systems where univer-
sality happens [83]. Universality is the idea that all
two-body systems with large scattering lengths (in com-
parison with the characteristic range of their interaction)
can be described in the same way. A really interesting
aspect of universality manifests when we consider the type
of three-body systems that are derived from universal two-
body systems. Three-body systems in which the two-body
subsystems are close to the unitary limit can in principle
display the Efimov effect [84], i.e., the existence of a
geometric tower of three-body bound states where the ratio
of the binding energies of a bound state and the next excited
state approaches a constant value. The Efimov effect has
been extensively studied in molecular physics (for a recent
review, see Ref. [85]), where it was experimentally con-
firmed for the first time with cesium atoms [86]. Efimov
physics is also known to play an important role in nuclear
physics [87], for instance in the description of the triton
[88–90], halo nuclei [91,92], and maybe even in the Hoyle
state [93]. Our results strongly indicate that the bottom-
bottom-anticharm three-meson system probably is one of
the best candidates to find an Efimov trimer in hadronic
physics, as originally suggested in Ref. [82].

G. Comparison with heavy-meson EFT

The OBE potential is a model, by which we mean that it
is not clear how to estimate the reliability of the predictions.
In contrast, EFTs are systematically improvable and allow
for reliable error estimations. Inspired models, like the
OBE model, are phenomenologically successful. This

success is not a matter of method, but rather the outcome
of inspired choices of what to include in the model. Thus, it
is not trivial to determine the theoretical error of the binding
energies and scattering lengths that we have derived from
the OBE model, except with a direct comparison to
experimental data. As a matter of fact the comparison to
experiment is there, with the Zb and Z0

b resonance being
correctly postdicted by the OBE model, but we are none-
theless limited to these two examples.
There are additional ways to indirectly assess the

reliability of the OBE model. One possibility is to compare
the predictions of the OBE model with the ones derived
from an EFT. For this we will compare with the EFT for
heavy-meson molecules developed in Ref. [29], which has
been used in a series of works about heavy-meson
molecules [30,32]. The EFT of Ref. [29], which we will
call “heavy-meson EFT,” is a refinement of previous ideas,
in particular the contact theory with HQSS of Ref. [26] and
X-EFT [14]. The problem with heavy-meson EFT (or with
any other EFT) is that systematicity comes at the price of
predictive power: the EFT formulation of Ref. [29] contains
four independent couplings for the contact-range potential.
These couplings are free parameters within the EFT and
have to be determined from experimental information, e.g.,
from the location of a known hadronic molecule. It happens
that the number of promising heavy meson-antimeson
candidates is limited to the Xð3872Þ, the Zc’s, and the
Zb’s. If this were not enough, the Zc’s and Zb’s are
connected by means of HQSS and HFS: heavy-meson
EFT predicts that their contact-range potentials are iden-
tical. For this reason, of the four parameters of the heavy-
meson EFT at leading order—namely, C0a, C0b, C1a, and
C1b—only two combinations can be determined, which are

VX ¼ C0a þ C0b and VZ ¼ C1a − C1b; ð75Þ
from which a limited number of additional predictions can
be made. By comparing these few predictions with the
corresponding ones in the OBE model we can form a better
idea about the reliability of the OBE model.
Another possibility for testing the reliability of the

predictions is to compare the OBE model with itself, by
which we mean to compare the predictions obtained with
different form factors but the same renormalization con-
dition. If we choose a dipolar form factor (instead of a
monopolar one), the cutoff for which the Xð3872Þ pole is
reproduced changes to

ΛD
X ¼ 1.41þ0.28

−0.15 GeV; ð76Þ

which is roughly
ffiffiffi
2

p
larger than the monopolar cutoff.4

If the changes of the binding energy predictions with the

TABLE IX. Scattering lengths and binding energies of pro-
spective heavy meson-meson molecules in the flavor-exotic
charm-bottom sector. The table is similar to Tables IV and V.

State I JP a2 (fm) B2 (MeV) M (MeV)

DB̄ 0þ 0þ −5þ5
−∞ðþ22Þ � � � � � �

DB̄� 0þ 1þ −5þ5
−∞ðþ21Þ � � � � � �

D�B̄ 0þ 1þ −8þ8
−∞ðþ9Þ � � � � � �

D�B̄� 0þ 0þ þ1.0þ0.1
−0.3 69þ88

−65 7265
D�B̄� 0þ 1þ þ1.4þ0.7

−0.4 16þ33
−19 7318

D�B̄� 0þ 2þ −7þ5
−∞ðþ21Þ � � � � � �

State I JP a2 (fm) B2 (MeV) M (MeV)
DB̄ 1þ 0þ −0.7� 0.4 � � � � � �
DB̄� 1þ 1þ −0.7� 0.4 � � � � � �
D�B̄ 1þ 1þ −0.8þ0.5

−0.4 � � � � � �
D�B̄� 1þ 0þ −0.6þ0.1

−0.2 � � � � � �
D�B̄� 1þ 1þ −0.6þ0.2

−0.4 � � � � � �
D�B̄� 1þ 2þ −1.7þ1.1

−3.4 � � � � � �

4For the deuteron with a dipolar form factor we have
ΛD
d ¼ 1.23 GeV, which is also a factor of

ffiffiffi
2

p
larger than with

a monopolar cutoff.
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dipolar form factor lie within the errors we have estimated
(which they do), this will also point towards the reliability
of the model.
The comparison with the EFTand the dipolar form factor

predictions is shown in Table X. The heavy-meson EFT
predictions can be divided into two groups: the predictions
derived from the existence of the Xð3872Þ and the ones
derived from the Zbð10610Þ. We denote which state has
been used to determine the EFT couplings with the term
“Input” in Table X. The comparison is actually very
interesting: the predictions of the OBE model with a
monopolar and dipolar form factor are compatible between
themselves and with the ones from EFT within errors.
Besides, the uncertainties of the OBE model predictions are
in general larger than the EFTones. This might indicate two
things: (i) we have overestimated the OBE errors, though
only by a small margin, or (ii) the EFT errors have been
underestimated, as recently hypothesized in Ref. [94] based
on the impossibility of formulating a cutoff-independent
EFT compatible with HFS for heavy hadron molecules. Be
that as it may, the similarity of the OBE and EFT
predictions suggests an acceptable degree of reliability.

V. DISCUSSION AND CONCLUSIONS

We have considered the heavy meson-antimeson and
heavy meson-meson systems with the following two
assumptions: (i) the OBE model describes their interaction,
and (ii) heavy-quark symmetry further constrains the
dynamics of these systems. The physics of the OBE
potential are intuitive and well-motivated, but there is

the limitation that it requires a form factor and a cutoff
for predictions to be possible. While the choice of form
factor is not that important, the choice of a cutoff is crucial:
without a way to reliably determine the cutoff it is not
possible to make concrete predictions. To determine this
cutoff we have used the assumption that the Xð3872Þ is
indeed a D�D̄ bound state with quantum numbers I ¼ 0,
JPC ¼ 1þþ and a binding energy of about 4 MeV in the
isospin-symmetric limit (where we used the isospin-
symmetric limit for simplicity). From the cutoff determined
with this renormalization condition, predictions in the OBE
model are possible. We also included error estimations for
these predictions.
By considering the isoscalar hidden charm sector, we

found that besides the existence of the Xð3872Þ it is
plausible to expect that the Xc2—the I ¼ 0, JPC ¼ 2þþ

D�D̄� system—also binds. The expected binding energy of
the Xc2 is B2 ¼ 4þ17

−6 MeV, where the uncertainty is
however too large to guarantee the existence of this
HQSS partner of the Xð3872Þ. The other isoscalar hidden
charm molecules are not expected to bind, even after taking
into account the uncertainty of the OBE model and HQSS.
It is interesting to compare these results with previous
explorations. The possible existence of the Xc2 was already
discussed in the seminal work of Törnqvist [4], which
predicted an isoscalar JPC ¼ 1þþ DD̄� bound state [pre-
sumably the Xð3872Þ] and pointed out that the JPC ¼ 2þþ

D�D̄� system was close to binding, requiring only a bit of
extra attraction to bind. In Ref. [30] the full six possible
HQSS partners of the Xð3872Þ were predicted, though this

TABLE X. Comparison of the predictions of the OBE model with different form factors (monopolar and dipolar)
and with heavy-meson EFT. BM

OBE and BD
OBE are the binding energies (in MeV) computed from the OBE model and

the renormalization conditionwith a monopolar and dipolar form factor, respectively. BEFTðΛÞ is the binding energy
(in MeV) in heavy-meson EFT for a given cutoff Λ (in GeV), as taken from Ref. [32]. For the cases in which the
system does not bind—namely, the Zc and Z0

c channels and their charm-antibottom counterpart—we compute the
scattering length instead.

State IG JP BM
OBE BD

OBE BEFTðΛ ¼ 0.5Þ BEFTðΛ ¼ 1.0Þ
D�D̄ 0þ 1þþ Input Input Input Input

D�D̄� 0þ 2þþ 4þ17
−6 4þ14

−5 5þ5
−4 5þ12

−5

D�B� 0þ 2þþ 20þ33
−22 17þ25

−17 12þ7
−6 26þ20

−16

B�B̄ 0þ 1þþ
51þ45

−38 41þ36
−29 24þ8

−9 65þ27
−25

B�B̄� 0þ 2þþ 59þ51
−43 46þ38

−32 24þ8
−9 66þ27

−25

State IG JP BM
OBE BD

OBE BEFTðΛ ¼ 0.5Þ BEFTðΛ ¼ 1.0Þ
B�B̄ 1þ 1þ− 5þ11

−6 4þ9
−5 Input Input

B�B̄� 1þ 1þ− 5þ11
−6 5þ9

−5 2.1� 2.1 2.1þ2.5
−2.1

State IG JP aMOBE aDOBE aEFTðΛ ¼ 0.5Þ aEFTðΛ ¼ 1.0Þ
D�B� 1þ 1þ− −6þ4

−∞ðþ10Þ −6þ5
−∞ðþ10Þ −8þ7

−∞ðþ16Þ −1.2� 0.6

D�D̄ 1þ 1þ− N/A N/A −1.4þ0.8
−1.0 −0.4� 0.1

D�D̄� 1þ 1þ− −1.1þ0.4
−0.5 −1.2þ0.4

−0.5 −1.6þ1.1
−1.1 −0.5þ0.2

−0.1
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work indicated that the predictions depend on a series of
assumptions, with some predictions being more reliable
than others. In particular, Ref. [30] indicated that the most
robust prediction is that of the X2, which solely relies on the
hypothesis that the Xð3872Þ is molecular. This is also what
we found in our exploration. It is also worth mentioning the
I ¼ 0, JPC ¼ 0þþ DD̄ system, which according to theo-
retical explorations [30,95] could also form a shallow
molecule, the Xð3700Þ. Here we found a considerable
amount of attraction in the isoscalar DD̄ system, which has
a negative scattering length a ¼ −2.1þ1.7

−2.8 fm, but no bind-
ing within the uncertainties of the OBE model. But we did
not consider coupled-channel effects, which mix the
0þþ DD̄ and D�D̄� systems and lead to additional attrac-
tion. From EFT arguments, coupled-channel effects are
expected to be a small correction for two-heavy-meson
molecules [29], but the DD̄ system is close to binding and
small effects could make a difference. We did not consider
coupled channels in this work, but we mention that a
breaking of HQSS by 40% (which is not particularly
probable statistically but not particularly improbable either)
will lead to binding.
In the isoscalar hidden bottom sector the conclusion

is that all six possible molecules can bind, with the
JPC ¼ 1þþ and 2þþ molecules—the Xb1 and Xb2—being
the most bound ones with B2 ∼ 50–60 MeV. We noticed
that the first prediction of the Xb1 and Xb2—the hidden
bottom partner of the Xð3872Þ—already appeared in
Törnqvist [4]. After this a series of theoretical works
[26,31,96,97]—including ours—have only reinforced this
conclusion further. The only problem is that the Xb1 has not
been detected in experiments. In this regard, Karliner and
Rosner [98] have suggested that the χb1ð3PÞ (with a mass
M ¼ 10512 MeV) might not be a JPC ¼ 1þþ bottomo-
nium after all, but rather the bottom partner of the Xð3872Þ.
The quantum numbers of the χb1ð3PÞ indeed coincide with
the Xb1 and the required binding energy lies within the error
estimations of the OBEmodel (M ¼ 10 508–10 591 MeV).
The isovector hidden charm sector is also interesting

owing to its connection with the Zcð3900Þ and Zcð4012Þ
molecular candidates. The application of the OBE model
with SU(3)-symmetric couplings leads to the conclusion
that these two molecules do not bind but are probably
virtual states instead, as deduced from the moderately large
negative scattering length. This is the same conclusion as in
Ref. [31]. We point out that even if the Zcð3900Þ and
Zcð4012Þ are assumed to be molecular, it cannot be
determined if they are genuine bound states, resonances,
or virtual states from the experimental data; see Ref. [70]
for details. In this regard the SU(3)-symmetric OBE model
will be compatible with the virtual state hypothesis. If we
allow for natural violations of SU(3)-flavor symmetry in
the couplings, the situation is qualitatively the same as
before: there is no binding within the expected theoretical

uncertainties. However, we predicted larger scattering
lengths than in the SU(3)-symmetric limit, again pointing
towards the virtual state hypothesis.
In the isovector hidden bottom sector the Zb’s are

correctly postdicted as bound states, both of which have
a binding energy of B2 ¼ 5þ11

−6 MeV. This figure is not far
from other estimations of their binding energies, for
instance the estimations based on the analysis of the
experimental data done in Refs. [64,65]. Besides, finding
the Zb’s in the OBE model further substantiates the idea
that they have a sizable molecular component, as proposed
in Refs. [43,64].
Regarding the doubly charmed sector, we found that the

I ¼ 0, JP ¼ 1þ D�D and D�D� systems form molecules
with binding energies of B2 ¼ 3þ15

−4 and 2þ13
−3 MeV, respec-

tively. This type of hadron with ccq̄q̄ quark content has
indeed been predicted in the quark model [72–78] (as a
compact tetraquark, however with large uncertainties
regarding its location), in a molecular model that includes
two-pion exchange [79] (with a binding energy of
B2 ¼ 20 MeV) and recently on the lattice [75], with
B2 ¼ 22� 11 MeV. The HFS partners in the charm-
bottom (cbq̄ q̄) and doubly bottom (bbq̄q̄) sectors were
also predicted, with binding energies of B2 ¼ 15þ30

−20 and
60þ60

−50 MeV, respectively. The first qualitative prediction of
the QQq̄q̄ family of tetraquark-like molecules (where
Q ¼ b, c, i.e., a heavy quark) was made long ago by
Manohar and Wise [99]. The recent lattice calculations of
Refs. [75,81] suggest a binding energy for the isoscalar
JP ¼ 1þ bottom-bottom tetraquark of 143� 34 and 128�
24� 10 MeV respectively (relative to the BB� thresholds),
while the recent quark-model calculation of Ref. [100]
located the isoscalar JP ¼ 1þ charm-bottom tetraquark at
B2 ¼ 164 MeV with respect to the D�B̄� threshold. Notice
that here we have predicted a molecular state instead of a
compact tetraquark.
Of particular interest is the charm-antibottom sector

(cb̄qq̄-type molecules), where a series of two-body states
with large scattering lengths are predicted. This in turn
points to the possibility of Efimov physics in the BBD,
BBD�, BB�D, B�B�D, and B�B�D� three-body systems, as
previously conjectured in Ref. [82]. Besides having a two-
body subsystem close to the unitary limit, the family of
bottom-bottom-charm three-body systems displays a mod-
erate mass imbalance between the charm and bottom
mesons, which is a factor that is known to enhance
Efimov physics [101]. This family of three-hadron systems
probably provides one of the most promising systems in
which to observe Efimov trimers, which so far have only
been observed in atomic systems. For this reason the
exploration of the charm-antibottom sector, either exper-
imentally or on the lattice, is a really interesting subject.
Finally, we have tried to determine the reliability of

the OBE model as applied to heavy meson molecules.
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Models, in contrast to theories, are not amenable to error
estimations that are fully systematic. For this reason it is of
particular importance to carefully confront the OBE model
predictions with other approaches. From the experimental
point of view, the correct postdiction of the Zb’s indicates
that the OBE model correctly describes the bulk of the
physics of heavy meson molecules. From the theoretical
point of view, we have compared a set of predictions derived
from heavy-meson EFT with those of the OBE model. The
agreement seems to indicate that the OBE model is reliable.
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APPENDIX: MULTIPOLAR FORM FACTORS

The OBEmodel generates a singular potential, where the
tensor components of the potential diverge as 1=r3 at short
distances. This type of divergence is unphysical and can be
regularized by means of a form factor. The most common
type of form factor for the OBE model is the multipolar
form factor we have written in Eq. (41), where depending
on the exponent we talk about a monopolar (n ¼ 1), dipolar
(n ¼ 2), etc. form factor. In principle the exponent n can
depend on the meson M, though here we will assume that
all off the mesons have the same type of form factor. In
general the contribution of a mesonM to the OBE potential
will be obtained by Fourier transforming from momentum
to coordinate space as

VMðr⃗Þ ¼
Z

d3q⃗
ð2πÞ3 VMðq⃗Þ

�
Λ2 −m2

Λ2 − q2

�
2n

; ðA1Þ

but as we have seen, this transformation is relatively direct
once we take into account that the contribution of the form
factor can be encapsulated by the substitutions

δðrÞ → m3dðx; λ; 2nÞ; ðA2Þ

WYðxÞ → WYðx; λ; 2nÞ; ðA3Þ

WTðxÞ → WTðx; λ; 2nÞ; ðA4Þ

with λ ¼ Λ=m and where we have labeled them with 2n,
i.e., with twice the polarity of the form factor for the
exchanged meson. The function d can be evaluated
analytically for k ¼ 2n ¼ 1; 2; 3;… (i.e., integer k), with

dðx; λ; 1Þ ¼ ðλ2 − 1Þ e
−λx

4πx
; ðA5Þ

dðx; λ; k ≥ 2Þ ¼ iðλ2 − 1Þk
ðk − 1Þ!2k−1λ2k−3 ðiλxÞ

k−1 h
ðþÞ
k−2ðiλxÞ
4π

;

ðA6Þ

where hð�Þ
n ðzÞ ¼ jnðzÞ � iynðzÞ are the Hankel spherical

functions, which we have defined in terms of the Bessel
spherical functions jnðzÞ and ynðzÞ. For the functionWY we
can evaluate it recursively as

WYðx; λ; 1Þ ¼ WYðxÞ − λWYðλxÞ; ðA7Þ

WYðx; λ; k ≥ 2Þ ¼ WYðx; λ; k − 1Þ − dðx; λ; kÞ
λ2 − 1

; ðA8Þ

while for WT we have

WTðx; λ; 1Þ ¼ WTðxÞ − λ3WTðλxÞ; ðA9Þ

WTðx; λ; 2Þ ¼ WTðx; λ; 1Þ −
ðλ2 − 1Þ

2λ
λ2
�
1þ 1

λx

�
e−λx

4π
;

ðA10Þ

WTðx; λ; 3Þ ¼ WTðx; λ; 2Þ −
ðλ2 − 1Þ2

8λ
ðλxÞ e

−λx

4π
; ðA11Þ

WTðx; λ;k ≥ 4Þ ¼WTðx;λ;k− 1Þ

−
iðλ2 − 1Þk−1

ðk− 1Þ!2k−1λ2k−7 x
2ðiλxÞk−3 h

ðþÞ
k−4ðiλxÞ
4π

:

ðA12Þ

A monopolar form factor (on both vertices) corresponds to
the k ¼ 2 solution, while a dipolar one corresponds to the
k ¼ 4 solution.
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