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The Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner equation tells how gauge invariant
higher order Wilson line correlators would evolve at high energy. In this article, we have revisited the
equation andpresented aconvenient integrodifferential formof this equation that is carrying identical-looking
generalized kernels for all explicit real and virtual terms. In the equation, the “real” terms correspond to
splitting (say at position z) of this 2n-tuple correlator to various pairs of 2m-tuple and ð2nþ 2 − 2mÞ-tuple
correlators, whereas “virtual” terms correspond to splitting into pairs of 2m-tuple and ð2n − 2mÞ-tuple
correlators. The generalized kernels of virtual terms withm ¼ 0 (no splitting) and of real terms withm ¼ 1

(splitting with at least one dipole) have poles, and when integrated over z, they do generate ultraviolet
logarithmic divergences, separately for real and virtual terms.However,we have shown that, except these two
cases in all other terms, the corresponding kernels, separately for real and virtual terms, have rather softened
ultraviolet singularity and when integrated over z do not generate ultraviolet logarithmic divergences. We
have also studied implication of this in the strong scattering regime where only virtual terms are effective.

DOI: 10.1103/PhysRevD.99.094017

I. INTRODUCTION

High energy scattering in QCD [1] can be most con-
veniently addressed using the color dipole degrees of
freedom by Mueller [2,3]. In the study of high energy
scattering of a projectile parton and a target nucleus, the
small-x evolution can be introduced either in the wave
function of the projectile (the parton) or in the wave
function of the target (the nucleus). The Balitsky-
Kovchegov (BK) evolution equation/Balitsky hierarchy
[4,5] accomplishes the first, while the other equivalent
approach is realized by Jalilian-Marian-Iancu-McLerran-
Weigert-Leonidov-Kovner (JIMWLK) [6–8] evolution
equation. In this context, when estimating the color
averaged expectation value of certain operator, one gen-
erally is in need of an appropriate weight function for the
color field. In the color glass condensate (CGC) [9–12]
effective theory, the spatial distribution of the color sources
that produce classical color field inside the large target
nucleus is taken to be Gaussian. The JIMWLK formalism
generalizes this Gaussian weight of a classical gluon field
to a rapidity-dependent weight functionalWY ½α�, which no
longer remains Gaussian as it evolve across the energy or
rapidity. Unlike the McLerran-Venugopalan (MV) model
where the weight function is Gaussian always, here the

weight function has to be determined from the JIMWLK
equation itself for evaluation at certain rapidity Y. All
physical measurable quantities are expressed as gauge
invariant operators O built with the color field α, and
corresponding expectation values are obtained after aver-
aging over the stochastic color field α:

hOi≡
Z

DαO½α�WY ½α�: ð1Þ

The functional differential evolution equation for WY ½α� is
the JIMWLK equation and reads

∂
∂YWY ½α� ¼ HWY ½α�; ð2Þ

where Y ≡ ln ð1=xÞ and H is the JIMWLK Hamiltonian,

H≡1

2

Z
xy

δ

δαaYðxÞ
χabðx;yÞ δ

δαbYðyÞ
: ð3Þ

The integral sign with subscript xy, in the Hamiltonian,
denotes integration over the transverse coordinates x and y.
The kernel χabðx; yÞ is a functional of α upon which it
depends through the Wilson lines e.g., Ũ ðxÞ and Ũ†ðxÞ (as
Wilson lines are build with α≡ αaTa in the adjoint
representation), as,

χabðx;yÞ¼ 1

π

Z
d2z
ð2πÞ2Kðx;y;zÞð1− Ũ†

xŨzÞfað1− Ũ†
zŨyÞfb;

ð4Þ
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with the transverse kernel,

Kðx; y; zÞ≡ ðx − zÞ:ðy − zÞ
ðx − zÞ2ðz − yÞ2 ; ð5Þ

and, e.g.,

Ũ†
x ≡ Ũ†ðxÞ ¼ P exp

�
ig
Z

dx−αaðx−; xÞTa

�
: ð6Þ

Here, P denotes path ordering in x−, and integration over
x− runs over the longitudinal extent of the hadron which
increases with Y. Action of the functional derivative on
Wilson lines in the adjoint representation reads as

δ

δαaτ ðyÞ
Ũ†ðxÞ ¼ igδð2Þðx − yÞTaŨ†

x

δ

δαaτ ðyÞ
ŨðxÞ ¼ −igδð2Þðx − yÞŨxTa: ð7Þ

Within the leading logarithmic accuracy, the CGC effective
theory prescribes following energy evolution for general
gauge invariant operator O:

∂
∂Y hÔiY ¼ hHÔiY: ð8Þ

The brackets refer to average over color fields in the target
nucleus, properly accompanied by the rapidity-dependent
CGC weight function as mentioned before, and H is the
JIMWLK Hamiltonian,

H≡ −
1

16π3

Z
z
Mxyzð1þ Ũ†

xŨy − Ũ†
xŨz − Ũ†

z ŨyÞab

×
δ

δαax

δ

δαby
; ð9Þ

where Mxyz is the dipole kernel,

Mxyz ≡ ðx − yÞ2
ðx − zÞ2ðz − yÞ2 : ð10Þ

In Muller’s dipole model, the color dipole is a quark-
antiquark pair in an overall color singlet state. The operator
for the color dipole contains two Wilson lines in their
fundamental representation,

Sð2Þ ≡ 1

Nc
Tr½Uðx1ÞU†ðx2Þ�: ð11Þ

The evolution equation for the dipole, in the large-Nc
limit, known as Balitsky-Kovchegov equation. This is
rather simple equation that contains only two terms.
Both the terms have identical kernels. This is however
not true for higher order color correlators. Next, higher

point correlators are a color quadrupole [13] and color
sextupole [14] that contain four and six Wilson lines,
respectively, as

Sð4Þ ≡ 1

Nc
Tr½Uðx1ÞU†ðx2ÞUðx3ÞU†ðx4Þ�; ð12Þ

and

Sð6Þ ≡ 1

Nc
Tr½Uðx1ÞU†ðx2ÞUðx3ÞU†ðx4ÞUðx5ÞU†ðx6Þ�:

ð13Þ

The evolution equation for the quadrupole was first
derived by Dominguez et al. [13] and for the sextupole
was first derived by Iancu and Triantafyllopoulos in Ref.
[14]. The evolution equation of the general 2n-point
constructed from the Wilson lines in the fundamental
representation

Sð2nÞ ≡ 1

Nc
Tr½Uðx1ÞU†ðx2ÞUðx3ÞU†ðx4Þ…Uðx2n−1Þ

×U†ðx2nÞ�: ð14Þ

has been derived by Ayala et al. [15].1 Recently, Shi et al.
derived a general expression of the 2n-point correlator
within the approximation of the MV model [18].
In this article, we have revisited the JIMWLK equation

for the 2n-tuple Wilson line correlator. We presented a
convenient integrodifferential form of this equation that
is carrying identical-looking generalized kernels for all
explicit real and virtual terms. In the equation, the “real”
terms correspond to splitting (say at position z) of this
2n-tuple correlator to various pairs of 2m-tuple and
ð2nþ 2 − 2mÞ-tuple correlators, whereas “virtual” terms
correspond to splitting into pairs of 2m-tuple and
ð2n − 2mÞ-tuple correlators. The generalized kernels of
virtual terms with m ¼ 0 (no splitting) and of real terms
with m ¼ 1 (splitting with at least one dipole) have poles,
and when integrated over z, they do generate ultraviolet
logarithmic divergences, separately for real and virtual
terms. However, we have shown that, except these two
cases in all other terms, the corresponding kernels, sepa-
rately for real and virtual terms, have rather softened
ultraviolet singularity and when integrated over z do not
generate ultraviolet logarithmic divergences. This is key
result of this work. We have also studied implication of this

1The KLWMIJ evolution equation corresponds to the evolu-
tion of the projectile weight functional in the scattering of a dilute
projectile on a dense target. The KLWMIJ equation is dual to
JIMWLK evolution of the same object in the scattering of a dense
projectile on a dilute target [16]. Computation of the KLWMIJ
evolution for correlators of an arbitrary number of Wilson lines
have been done in Ref. [17].
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in the strong scattering regime where only virtual terms are
effective.
This paper is organized as follows. In Sec. II, we present

the integrodifferential form of the evolution equation for the
2n-tuple correlator. A few special cases, e.g., quadrupole,
sextupole, and octupole, have been jotted down in the
Appendix. In Sec. III, we analyze the generic kernel of
the equation and demonstrate that it is ultraviolet safe
when the splitting does not involve any dipole. In
Sec. IV, we study the unitarity asymptotic. Finally, we
conclude in Sec. V.

II. HIGH ENERGY EVOLUTION OF
COLOR 2n-TUPLE CORRELATOR

Here, we present the explicit integrodifferential form of
the JIMWLK evolution equation for the 2n-tuple Wilson

line correlator. This is derived by operating the JIMWLK
Hamiltonian in Eq. (9) on a general gauge invariant
operator with 2n-Wilson lines in their fundamental repre-
sentation. All virtual terms are generated by the first two
terms of the Hamiltonian in Eq. (9), whereas the last two
terms produce the real terms. All the terms in the above
equation are leading in Nc, while all the subleading terms
of the order of 1=N2

c, generated at the intermediate steps,
cancel after summing up all the contributions in the final
equation. The procedure to derive the equation has been
suggested by Iancu and Triantafyllopoulos in Ref. [14]. The
same equation in a somewhat different form was derived
earlier by Ayala et al. in Ref. [15]. Here, we note that in the
equation, whenever the transverse position index notation
is greater than 2n, it should be realized with its modulo,
e.g., x2nþk ≡ xk,

∂
∂Y Tr½Uðx1ÞU†ðx2ÞUðx3ÞU†ðx4Þ…Uðx2n−1ÞU†ðx2nÞ� ¼

ᾱs
4π

�
1

1þ δn;1

�

×
Z
z

Xbn=2c−1
k¼0

Xn−1
l¼0

Kð2l;2lþ2kþ2Þ
ð2lþ1;2lþ2kþ1ÞTr½Uðx2lþ1ÞU†ðx2lþ2Þ…Uðx2lþ1þ2kÞU†ðzÞ�Tr½UðzÞU†ðx2lþ2kþ2Þ…Uðx2l−1ÞU†ðx2lÞ�

þ
Xbn=2c−1
k¼0

Xn−1
l¼0

Kð2lþ1;2lþ2kþ3Þ
ð2lþ2;2lþ2kþ2ÞTr½U†ðx2lþ2ÞUðx2lþ3Þ…U†ðx2lþ2þ2kÞUðzÞ�Tr½U†ðzÞUðx2lþ2kþ3Þ…U†ðx2lÞUðx2lþ1Þ�

þ
X⌈n=2⌉−2
k¼0

Xn−1
l¼0

Kð2l;2lþ2kþ3Þ
ð2lþ1;2lþ2kþ2ÞTr½Uðx2lþ1ÞU†ðx2lþ2Þ…U†ðx2lþ1þ2kþ1Þ�Tr½Uðx2lþ2kþ3ÞU†ðx2lþ2kþ4Þ…::U†ðx2lÞ�

þ
X⌈n=2⌉−2
k¼0

Xn−1
l¼0

Kð2lþ1;2lþ2kþ4Þ
ð2lþ2;2lþ2kþ3ÞTr½U†ðx2lþ2ÞUðx2lþ3Þ…Uðx2lþ2kþ3Þ�Tr½U†ðx2lþ2kþ4ÞUðx2lþ2kþ5Þ…Uðx2lþ1Þ�

þ δ1;nmod2

X⌈n=2⌉−1
l¼0

Kð2l;2lþnþ1Þ
ð2lþ1;2lþnÞTr½Uðx2lþ1ÞU†ðx2lþ2Þ…Uðx2lþnÞU†ðzÞ�Tr½UðzÞU†ðx2lþnþ1Þ…Uðx2l−1ÞU†ðx2lÞ�

þ δ1;nmod2

X⌈n=2⌉−2
l¼0

Kð2lþ1;2lþnþ2Þ
ð2lþ2;2lþnþ1ÞTr½U†ðx2lþ2ÞUðx2lþ3Þ…U†ðx2lþnþ1ÞUðzÞ�Tr½U†ðzÞUðx2lþnþ2Þ…U†ðx2lÞUðx2lþ1Þ�

þ δ0;nmod2

Xn=2−1
l¼0

Kð2l;2lþnþ1Þ
ð2lþ1;2lþnÞTr½Uðx2lþ1ÞU†ðx2lþ2Þ…U†ðx2lþnÞ�Tr½Uðx2lþnþ1ÞU†ðx2lþnþ2Þ…::U†ðx2lÞ�

þ δ0;nmod2

Xn=2−1
l¼0

Kð2lþ1;2lþnþ2Þ
ð2lþ2;2lþnþ1ÞTr½U†ðx2lþ2ÞUðx2lþ3Þ…Uðx2lþnþ1Þ�Tr½U†ðx2lþnþ2ÞUðx2lþnþ3Þ…Uðx2lþ1Þ�

− P2nTr½Uðx1ÞU†ðx2ÞUðx3ÞU†ðx4Þ…Uðx2n−1ÞU†ðx2nÞ�; ð15Þ
where the kernels are of two types: first one is

Kðc;dÞ
ða;bÞ ≡

ðxa − xdÞ2
ðxa − zÞ2ðz − xdÞ2

þ ðxb − xcÞ2
ðxb − zÞ2ðz − xcÞ2

−
ðxa − xbÞ2

ðxa − zÞ2ðz − xbÞ2
−

ðxc − xdÞ2
ðxc − zÞ2ðz − xdÞ2

; ð16Þ

the stand alone second kernel is the last term,

P2n ≡
X2n
j¼1

ðxj − xjþ1Þ2
ðxj − zÞ2ðz − xjþ1Þ2

: ð17Þ
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The terms involvingUðzÞ orU†ðzÞ are the real termswhich
describe splitting, at position z, of this 2n-tuple correlator to a
pair of 2m-tuple and ð2nþ 2 − 2mÞ-tuple correlators. These
terms have been generated by the last two terms of the
Hamiltonian. The virtual terms correspond to splitting into
pairs of 2m-tuple and ð2n − 2mÞ-tuple correlators and are
generated by the first two terms of the Hamiltonian and are
necessary for the probability conservation and unitarity
restoration. All the possible ultraviolet (i.e., short distance)
divergences in the dipole kernel get canceled out between the
virtual and real terms because of the probability conservation
together with the property of color transparency.
The above equation suffers from the problem in the sense

that it is not a closed equation because the right-hand side
includes higher-point correlations. The way to deal with
this difficulty is the same as for the Balitsky-Kovchegov
equation assuming that, for a large nucleus, these correla-
tors can be factored as products of correlators involving
only one trace at a time when the large-Nc limit is taken.

A careful look at the equation reveals that the terms in the
equations are broadly of two types: terms that corresponds
to splitting (either real or virtual) and the 2n-tuple term

itself. While the class of kernels Kðc;dÞ
ða;bÞ is of the former, the

P2n is associated with the last term, i.e., the 2n-tuple term.
This is schematically represented in Fig. 1: Circles corre-
sponds to a general multiorder Wilson line correlator, and
the circle with a cut line refers to terms corresponding to
both real and virtual splitting. As is evident from figure, the

kernel Kðc;dÞ
ða;bÞ is defined by set of four points ðxa; xb; xc; xdÞ

where the actual splitting happened for that particular term.
When a dipole is produced in a real splitting two of the four
position coordinate would be identical (See Fig. 2).

III. KERNEL FOR 2n-TUPLE CORRELATOR

A. Dipole evolution

For dipole n ¼ 1, the evolution equation becomes

∂
∂Y hTr½Uðx1ÞU†ðx2Þ�iY

¼ ᾱs
4π

1

2

Z
z
Kð2;2Þ

ð1;1ÞhTr½Uðx1ÞU†ðzÞ�Tr½UðzÞU†ðx2Þ�iY − ðPð1;2Þ þ Pð2;1ÞÞhTr½Uðx1ÞU†ðx2Þ�iY: ð18Þ

FIG. 1. Schematic representation of the JIMWLK evolution for the 2n-tuple Wilson line correlator as given in Eq. (15). Circles
corresponds to the general multiorder Wilson line correlator; the circle with a cut line refers to terms corresponding to both real and
virtual splitting, while K and P are associated kernels defined in Eqs. (16) and (17).

FIG. 2. Real splitting of 2n-tuple into dipole and another 2n-tuple correlator.
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Now, the kernels are

Kð2;2Þ
ð1;1Þ ¼

ðx1 − x2Þ2
ðx1 − zÞ2ðz − x2Þ2

þ ðx1 − x2Þ2
ðx1 − zÞ2ðz − x2Þ2

−
ðx1 − x1Þ2

ðx1 − zÞ2ðz − x1Þ2
−

ðx2 − x2Þ2
ðx2 − zÞ2ðz − x2Þ2

¼ 2
ðx1 − x2Þ2

ðx1 − zÞ2ðz − x2Þ2
ð19Þ

and

Pð1;2Þ ¼ Pð2;1Þ ¼
ðx1 − x2Þ2

ðx1 − zÞ2ðz − x2Þ2
: ð20Þ

Important simplifications and factorizations occur in the
large-Nc limit that leads to the BK equation for color dipole
Sðx1; x2Þ≡ ð1=NcÞhTr½Uðx1ÞU†ðx2Þ�iY ,

∂
∂Y Sðx1; x2Þ ¼

ᾱs
4π

Z
z

ðx1 − x2Þ2
ðx1 − zÞ2ðz − x2Þ2

× ½Sðx1; zÞSðz; x2Þ − Sðx1; x2Þ�; ð21Þ
within a mean field approximation. Now, the kernel of the
dipole evolution equation is of the following form,

K≡ ðx1 − x2Þ2
ðx1 − zÞ2ðz − x2Þ2

; ð22Þ

and this kernel together with the measure d2z is SLð2; CÞ
invariant. The kernel is singular at z ¼ x1 and z ¼ x2 as
well. These two poles when integrated over z, in the strong
scattering regime where all transverse distances are much

larger than inverse saturation momentum, generate loga-
rithmic divergences as

Z
ρ
d2z

ðx1 − x2Þ2
ðx1 − zÞ2ðz − x2Þ2

¼ 2π ln
jx1 − x2j2

ρ2
; ð23Þ

where 1=ρ2 is some ultraviolet cutoff which is usually taken
to be the saturation scale Q2

sðYÞ. In the limit ρ → 0 [or
Q2

sðYÞ → ∞], the integral is logarithmic divergent. For this
particular case of dipole equation, the kernels for both real
and virtual terms are identical, and this short distance, i.e.,
ultraviolet singularities coming from real and virtual terms
would cancel each other in the overall solution.

B. Splitting with at least one dipole: Real terms

When a general 2n-tuple splits into two lower ordered
color multipoles of which one is a dipole then also the kernel
as well as the integral over the kernel both are ultraviolet
divergent. However, it is evident from Eqs. (16) and (17) that
the kernels for a general real splitting term where atleast one
daughter is a dipole (e.g., hTr½UðxiÞU†ðzÞ�i), can be written
as (note for this particular case xa ¼ xb ¼ xi),

Kðiþ1;i−1Þ
ði;iÞ ≡ ðxi − xi−1Þ2

ðxi − zÞ2ðz − xi−1Þ2
þ ðxi − xiþ1Þ2
ðxi − zÞ2ðz − xiþ1Þ2

−
ðxi − xiÞ2

ðxi − zÞ2ðz − xiÞ2
−

ðxiþ1 − xi−1Þ2
ðxiþ1 − zÞ2ðz − xi−1Þ2

;

¼ ðxi − xi−1Þ2
ðxi − zÞ2ðz − xi−1Þ2

þ ðxi − xiþ1Þ2
ðxi − zÞ2ðz − xiþ1Þ2

−
ðxiþ1 − xi−1Þ2

ðxiþ1 − zÞ2ðz − xi−1Þ2
: ð24Þ

When integrated over z, in the strong scattering regimewhere all transverse distances are much larger than inverse saturation
momentum, this kernel again generates logarithmic divergences as,

Z
ρ
d2zKðiþ1;i−1Þ

ði;iÞ ¼
Z

d2z
ðxi − xi−1Þ2

ðxi − zÞ2ðz − xi−1Þ2
þ ðxi − xiþ1Þ2
ðxi − zÞ2ðz − xiþ1Þ2

−
ðxiþ1 − xi−1Þ2

ðxiþ1 − zÞ2ðz − xi−1Þ2
;

¼ 2π ln
jxi − xi−1j2

ρ2
þ 2π ln

jxi − xiþ1j2
ρ2

− 2π ln
jxiþ1 − xi−1j2

ρ2
;

¼ 2π ln
jxi − xi−1j2jxi − xiþ1j2

jxiþ1 − xi−1j2ρ2
: ð25Þ

Clearly, in the limit ρ → 0, Eq. (25) is divergent. This is also true for the virtual term for which the 2n-tuple correlator is not
splitting into daughters, i.e., [the last term in Eq. (15)]

Z
ρ
d2zPðj;jþ1Þ ¼ 2π ln

Y2n
1

jxj − xjþ1j2
ρ2

: ð26Þ
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This particular term is generated from the first term (identity) and second term of the Hamiltonian in Eq. (9) and is also
clearly divergent in the ultraviolet limit, i.e., in the limit ρ → 0.

C. Real splitting without a daughter dipole

As shown in Fig. 1, ðxa; xbÞ and ðxc; xdÞ are the pair of transverse positions through which the splitting occurs either for
real terms or for virtual terms. Interestingly, when the real splitting does not involve any dipole or is not a virtual splitting of
two daughters of identical order (2n-tuple splits into two n-tuples), generally the kernel would not show any logarithmic
divergence after the integration due to cancellation between terms,

Z
ρ
d2zKðc;dÞ

ða;bÞ ¼
Z

d2z
ðxa − xdÞ2

ðxa − zÞ2ðz − xdÞ2
þ ðxb − xcÞ2
ðxb − zÞ2ðz − xcÞ2

−
ðxa − xbÞ2

ðxa − zÞ2ðz − xbÞ2
−

ðxc − xdÞ2
ðxc − zÞ2ðz − xdÞ2

;

¼ 2π ln
jxa − xdj2

ρ2
þ 2π ln

jxb − xcj2
ρ2

− 2π ln
jxa − xbj2

ρ2
− 2π ln

jxc − xdj2
ρ2

;

¼ 2π ln
jxa − xdj2jxb − xcj2
jxa − xbj2jxc − xdj2

: ð27Þ

Equation (27) is independent of the UV cutoff ρ and hence is ultraviolet finite.

IV. 2n-TUPLE CORRELATOR IN THE UNITARY LIMIT

In the strong regime, one may drop all the real terms in Eq. (15) because they are one order higher (contains two Wilson
lines more) than their counter virtual terms. The equation can be written as

∂
∂Y Sðx1; x2; x3; x4…x2n−1; x2nÞ

¼ ᾱs
4π

�
1

1þ δn;1

�
þ

X⌈n=2⌉−2
k¼0

Xn−1
l¼0

Qð2l;2lþ2kþ3Þ
ð2lþ1;2lþ2kþ2ÞS

ð2kþ2Þðx2lþ1; x2lþ2…x2lþ1þ2kþ1ÞSð2n−2k−2Þðx2lþ2kþ3; x2lþ2kþ4…x2lÞ

þ
X⌈n=2⌉−2
k¼0

Xn−1
l¼0

Qð2lþ1;2lþ2kþ4Þ
ð2lþ2;2lþ2kþ3ÞS

ð2kþ2Þðx2lþ2; x2lþ3…x2lþ2kþ3ÞSð2n−2k−2Þðx2lþ2kþ4; x2lþ2kþ5…x2lþ1Þ

þ δ0;nmod2

Xn=2−1
l¼0

Qð2l;2lþnþ1Þ
ð2lþ1;2lþnÞS

ðnÞðx2lþ1; x2lþ2…x2lþnÞSðnÞðx2lþnþ1; x2lþnþ2…x2lÞ

þ δ0;nmod2

Xn=2−1
l¼0

Qð2lþ1;2lþnþ2Þ
ð2lþ2;2lþnþ1ÞS

ðnÞðx2lþ2; x2lþ3…x2lþnþ1ÞSðnÞðx2lþnþ2; x2lþnþ3…x2lþ1Þ

−RSð2nÞðx1; x2; x3; x4…x2n−1; x2nÞ; ð28Þ

where Q’s are defined as

Qc;d
a;b ≡

Z
ρ
d2zKðc;dÞ

ða;bÞ ¼ 2π ln
jxa − xdj2jxb − xcj2
jxa − xbj2jxc − xdj2

ð29Þ

and do not explicitly depends on any infrared cut, whereas the factor R is defined as

R≡
Z
ρ
d2zPðj;jþ1Þ ¼ 2π ln

Y2n
1

jxj − xjþ1j2
ρ2

: ð30Þ

Equation (28) can further be simplified to
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∂
∂Y Sðx1; x2; x3; x4…x2n−1; x2nÞ

¼ ᾱs
4π

�
1

1þ δn;1

�
þ

X⌈n=2⌉−1
k¼0

X2n
l¼1

2π ln
jxl − xlþ2kj2jxlþ2k−1 − xl−1j2
jxl − xlþ2k−1j2jxl−1 − xlþ2kj2

Sð2kÞðxl; x2lþ2…xlþ2k−1ÞSð2n−2kÞðxlþ2k; xlþ2kþ1…xxl−1Þ

þ δ0;nmod2

Xn
l¼1

2π ln
jxl − xlþnj2jxlþn−1 − xl−1j2
jxl − xlþn−1j2jxl−1 − xlþnj2

SðnÞðxl; xlþ1…xlþn−1ÞSðnÞðxlþn; xlþnþ2…xl−1Þ

− 2πSð2nÞðx1; x2; x3; x4…x2n−1; x2nÞ ln
Y2n
j¼1

jxj − xjþ1j2Q2
sðYÞ; ð31Þ

where in the last term we take the cutoff ρ to be the inverse saturation momentum QsðYÞ that explicitly depends on the
rapidity. In the limit Y → ∞, only the last term would survive,

∂
∂Y lnSðx1; x2; x3; x4…x2n−1; x2nÞ ¼ −

ᾱs
2

�
1

1þ δn;1

�
ln
Y2n
j¼1

jxj − xjþ1j2Q2
sðYÞ; ð32Þ

and this equation can be solved to get the Levin-Tuchin asymptotic solution for the 2n-tuple Wilson line correlator in the
unitarity limit,

Sðx1; x2; x3; x4…x2n−1; x2nÞ ¼ Sð2nÞ0 exp

�
−

1þ 2iν0
2ð1þ δn;1Þχð0; ν0Þ

ln2
�Y2n

j¼1

jxj − xjþ1j2Q2
sðYÞ

��
: ð33Þ

Here, we have used following leading order expression for
the saturation momentum [1],

QsðYÞ ¼ Qs0 exp

�
ᾱs

χð0; ν0Þ
1þ 2iν0

Y

�
≈Qs0e2.44ᾱsY ; ð34Þ

where

χð0; νÞ ¼ 2ψð1Þ − ψ

�
1

2
þ iν

�
− ψ

�
1

2
− iν

�
; ð35Þ

and ψ is the digamma function with χð0; ν0Þ=ð1þ 2iν0Þ ≈
2.44 and ν0 ≈ −0.1275i. This specific value stems from the
saddle point condition along the saturation line.

V. CONCLUSION

In this article, we revisited the evolution equation for
the general 2n-tuple correlators in their fundamental
representation. We start from the JIMWLK Hamiltonian
and act on a single trace of 2n-Wilson lines in order to
derive its evolution equation in the small-x limit and
subsequently study the solution of such an equation in
the unitarity limit. This is accordance with the hierarchy of
evolution of Wilson-line operators suggested by Balitsky
[4] and conform the equivalence of the Balitsky hierarchy
of evolution and the JIMWLK evolution for this general
2n-tuple color correlator. The real terms, that correspond to
splitting of this 2n-tuple correlator to various pairs of

2m-tuple and ð2nþ 2 − 2mÞ-tuple correlators, and the
virtual terms, that correspond to splitting into pairs of
2m-tuple and ð2n − 2mÞ-tuple correlators, are explicit in
this integrodifferential equation. In this paper, we have also
shown that, except the two special cases, the generalized
kernels, separately for real and virtual terms, have no
ultraviolet singularity and therefore do not generate ultra-
violet logarithmic divergences. This is the key result of this
work. Even though there exist approximation methods to
evaluate higher multipole operators, e.g., one either uses
the Langevin form of the JIMWLK [19] equation or relies
on the Gaussian approximation [20], the result presented
here could be convenient to calculate multipole color
correlators numerically.
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APPENDIX: EVOLUTION EQUATIONS FOR
QUADRUPOLE, SEXTUPOLE AND OCTUPOLE

Since there are four different terms inside the square
brackets in the definition of the JIMWLK Hamiltonian,
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we compute the contributions of these four terms sepa-
rately. The coefficient of the non-leading Nc terms vanishes
in intermediate steps of the calculations. In the end, we find
the sum of all four of these contributions leads to the final
results without finite Nc corrections. Here, we present the

results of the quadrupole, sextupole, and octupole
evolution.

1. Quadrupole

The quadrupole evolution equation (n ¼ 2) is

∂
∂Y hTr½Uðx1ÞU†ðx2ÞUðx3ÞU†ðx4Þ�iY

¼ ᾱs
4π

Z
z
Kð4;2Þ

ð1;1ÞhTr½Uðx1ÞU†ðzÞ�Tr½UðzÞU†ðx2ÞUðx3ÞU†ðx4Þ�iY

þKð1;3Þ
ð2;2ÞhTr½U†ðx2ÞUðzÞ�Tr½U†ðzÞUðx3ÞU†ðx4ÞUðx1Þ�iY

þKð2;4Þ
ð3;3ÞhTr½Uðx3ÞU†ðzÞ�Tr½UðzÞU†ðx4ÞUðx1ÞU†ðx2Þ�iY

þKð3;1Þ
ð4;4ÞhTr½U†ðx4ÞUðzÞ�Tr½U†ðzÞUðx1ÞU†ðx2ÞUðx3Þ�iY

þKð4;3Þ
ð1;2ÞhTr½Uðx1ÞU†ðx2Þ�Tr½Uðx3ÞU†ðx4Þ�

þKð4;1Þ
ð3;2ÞhTr½Uðx3ÞU†ðx2Þ�Tr½Uðx1ÞU†ðx4Þ�

− P4hTr½Uðx1ÞU†ðx2ÞUðx3ÞU†ðx4Þ�: ðA1Þ

2. Sextupole

The sextupole evolution (n ¼ 3) equation is

∂
∂Y Tr½Uðx1ÞU†ðx2ÞUðx3ÞU†ðx4ÞUðx5ÞU†ðx6Þ�

¼ ᾱs
4π

Z
z
Kð6;2Þ

ð1;1ÞhTr½Uðx1ÞU†ðzÞ�Tr½UðzÞU†ðx2ÞUðx3ÞU†ðx4ÞUðx5ÞU†ðx6Þ�iY

þKð1;3Þ
ð2;2ÞhTr½U†ðx2ÞUðzÞ�Tr½U†ðzÞUðx3ÞU†ðx4ÞUðx5ÞU†ðx6ÞUðx1Þ�iY

þKð2;4Þ
ð3;3ÞhTr½Uðx3ÞU†ðzÞ�Tr½UðzÞU†ðx4ÞUðx5ÞU†ðx6ÞUðx1ÞU†ðx2Þ�iY

þKð3;5Þ
ð4;4ÞhTr½U†ðx4ÞUðzÞ�Tr½U†ðzÞUðx5ÞU†ðx6ÞUðx1ÞU†ðx2ÞUðx3Þ�iY

þKð4;6Þ
ð5;5ÞhTr½Uðx5ÞU†ðzÞ�Tr½UðzÞU†ðx6ÞUðx1ÞU†ðx2ÞUðx3ÞU†ðx4Þ�iY

þKð5;1Þ
ð6;6ÞhTr½U†ðx6ÞUðzÞ�Tr½U†ðzÞUðx1ÞU†ðx2ÞUðx3ÞU†ðx4ÞUðx5Þ�iY

þKð6;4Þ
ð1;3ÞhTr½Uðx1ÞU†ðx2ÞUðx3ÞU†ðzÞ�Tr½UðzÞU†ðx4ÞUðx5ÞU†ðx6Þ�iY

þKð2;6Þ
ð3;5ÞhTr½Uðx3ÞU†ðx4ÞUðx5ÞU†ðzÞ�Tr½UðzÞU†ðx6ÞUðx1ÞU†ðx2Þ�iY

þKð4;2Þ
ð5;1ÞhTr½Uðx5ÞU†ðx6ÞUðx1ÞU†ðzÞ�Tr½UðzÞU†ðx2ÞUðx3ÞU†ðx4Þ�iY

þKð6;3Þ
ð1;2ÞhTr½Uðx1ÞU†ðx2Þ�Tr½Uðx3ÞU†ðx4ÞUðx5ÞU†ðx6Þ�iY

þKð1;4Þ
ð2;3ÞhTr½U†ðx2ÞUðx3Þ�Tr½U†ðx4ÞUðx5ÞU†ðx6ÞUðx1Þ�iY

þKð2;5Þ
ð3;4ÞhTr½Uðx3ÞU†ðx4Þ�Tr½Uðx5ÞU†ðx6ÞUðx1ÞU†ðx2Þ�iY

þKð3;6Þ
ð4;5ÞhTr½U†ðx4ÞUðx5Þ�Tr½U†ðx6ÞUðx1ÞU†ðx2ÞUðx3Þ�iY
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þKð4;1Þ
ð5;6ÞhTr½Uðx5ÞU†ðx6Þ�Tr½Uðx1ÞU†ðx2ÞUðx3ÞU†ðx4Þ�iY

þKð5;2Þ
ð6;1ÞhTr½U†ðx6ÞUðx1Þ�Tr½U†ðx2ÞUðx3ÞU†ðx4ÞUðx5Þ�iY

− P6Tr½Uðx1ÞU†ðx2ÞUðx3ÞU†ðx4ÞUðx5ÞU†ðx6Þ�iY: ðA2Þ

3. Octupole

The octupole (n ¼ 4) evolution equation is

∂
∂Y Tr½Uðx1ÞU†ðx2ÞUðx3ÞU†ðx4ÞUðx5ÞU†ðx6ÞUðx7ÞUðx8Þ†�

¼ ᾱs
4π

Z
z
Kð8;2Þ

ð1;1ÞhTr½Uðx1ÞU†ðzÞ�Tr½UðzÞU†ðx2ÞUðx3ÞU†ðx4ÞUðx5ÞU†ðx6ÞUðx7ÞU†ðx8Þ�iY

þKð1;3Þ
ð2;2ÞhTr½U†ðx2ÞUðzÞ�Tr½U†ðzÞUðx3ÞU†ðx4ÞUðx5ÞU†ð6ÞUðx7ÞU†ðx8ÞUðx1Þ�iY

þKð2;4Þ
ð3;3ÞhTr½Uðx3ÞU†ðzÞ�Tr½UðzÞU†ðx4ÞUðx5ÞU†ðx6ÞUðx7ÞU†ðx8ÞUðx1ÞU†ðx2Þ�iY

þKð3;5Þ
ð4;4ÞhTr½U†ðx4ÞUðzÞ�Tr½U†ðzÞUðx5ÞU†ðx6ÞUðx7ÞU†ð8ÞUðx1ÞU†ðx2ÞUðx3Þ�iY

þKð4;6Þ
ð5;5ÞhTr½Uðx5ÞU†ðzÞ�Tr½UðzÞU†ðx6ÞUðx7ÞU†ðx8ÞUðx1ÞU†ðx2ÞUðx3ÞU†ðx4Þ�iY

þKð5;7Þ
ð6;6ÞhTr½U†ðx6ÞUðzÞ�Tr½U†ðzÞUðx7ÞU†ðx8ÞUðx1ÞU†ð2ÞUðx3ÞU†ðx4ÞUðx5Þ�iY

þKð6;8Þ
ð7;7ÞhTr½Uðx7ÞU†ðzÞ�Tr½UðzÞU†ðx8ÞUðx1ÞU†ðx2ÞUðx3ÞU†ðx4ÞUðx5ÞU†ðx6Þ�iY

þKð7;1Þ
ð8;8ÞhTr½U†ðx8ÞUðzÞ�Tr½U†ðzÞUðx1ÞU†ðx2ÞUðx3ÞU†ðx4ÞUðx5ÞU†ðx6ÞUðx7Þ�iY

þKð8;6Þ
ð1;5ÞhTr½Uðx1ÞU†ðx2ÞUðx3ÞU†ðx4ÞUðx5ÞU†ðzÞ�Tr½UðzÞU†ðx6ÞUðx7ÞU†ðx8Þ�iY

þKð7;1Þ
ð2;6ÞhTr½U†ðx2ÞUðx3ÞU†ðx4ÞUðx5ÞU†ðx6ÞUðzÞ�Tr½U†ðzÞUðx7ÞU†ðx8ÞUðx1Þ�iY

þKð2;8Þ
ð3;7ÞhTr½Uðx3ÞU†ðx4ÞUðx5ÞU†ðx6ÞUðx7ÞU†ðzÞ�Tr½UðzÞU†ðx8ÞUðx1ÞU†ðx2Þ�iY

þKð3;1Þ
ð4;8ÞhTr½U†ðx4ÞUðx5ÞU†ðx6ÞUðx7ÞU†ðx8ÞUðzÞ�Tr½U†ðzÞUðx1ÞU†ðx2ÞUðx3Þ�iY

þKð4;2Þ
ð5;1ÞhTr½Uðx5ÞU†ðx6ÞUðx7ÞU†ðx8ÞUðx1ÞU†ðzÞ�Tr½UðzÞU†ðx2ÞUðx3ÞU†ðx4Þ�iY

þKð5;3Þ
ð6;2ÞhTr½U†ðx6ÞUðx7ÞU†ðx8ÞUðx1ÞU†ðx2ÞUðzÞ�Tr½U†ðzÞUðx3ÞU†ðx4ÞUðx5Þ�iY

þKð6;4Þ
ð7;3ÞhTr½Uðx7ÞU†ðx8ÞUðx1ÞU†ðx2ÞUðx3ÞU†ðzÞ�Tr½UðzÞU†ðx4ÞUðx5ÞU†ðx6Þ�iY

þKð7;5Þ
ð8;4ÞhTr½U†ðx8ÞUðx1ÞU†ðx2ÞUðx3ÞU†ðx4ÞUðzÞ�Tr½U†ðzÞUðx5ÞU†ðx6ÞUðx7Þ�iY

þKð8;5Þ
ð1;4ÞhTr½Uðx1ÞU†ðx2ÞUðx3ÞU†ðx4Þ�Tr½Uðx5ÞU†ðx6ÞUðx7ÞU†ðx8Þ�iY

þKð1;6Þ
ð2;5ÞhTr½U†ðx2ÞUðx3ÞU†ðx4ÞUðx5Þ�Tr½U†ðx6ÞUðx7ÞU†ðx8ÞUðx1Þ�iY

þKð2;7Þ
ð3;6ÞhTr½Uðx3ÞU†ðx4ÞUðx5ÞU†ðx6Þ�Tr½Uðx7ÞU†ðx8ÞUðx1ÞU†ðx2Þ�iY

þKð3;8Þ
ð4;7ÞhTr½U†ðx4ÞUðx5ÞU†ðx6ÞUðx7Þ�Tr½U†ðx8ÞUðx1ÞU†ðx2ÞUðx3Þ�iY

þKð8;3Þ
ð1;2ÞhTr½Uðx1ÞU†ðx2Þ�Tr½Uðx3ÞU†ðx4ÞUðx5ÞU†ðx6ÞUðx7ÞU†ðx8Þ�iY

þKð1;4Þ
ð2;3ÞhTr½U†ðx2ÞUðx3Þ�Tr½U†ðx4ÞUðx5ÞU†ðx6ÞUðx7ÞU†ðx8ÞUðx1Þ�iY
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þKð2;5Þ
ð3;4ÞhTr½Uðx3ÞU†ðx4Þ�Tr½Uðx5ÞU†ðx6ÞUðx7ÞU†ðx8ÞUðx1ÞU†ðx2Þ�iY

þKð3;6Þ
ð4;5ÞhTr½U†ðx4ÞUðx5Þ�Tr½U†ðx6ÞUðx7ÞU†ðx8ÞUðx1ÞU†ðx2ÞUðx3Þ�iY

þKð4;7Þ
ð5;6ÞhTr½Uðx5ÞU†ðx6Þ�Tr½Uðx7ÞU†ðx8ÞUðx1ÞU†ðx2ÞUðx3ÞU†ðx4Þ�iY

þKð5;8Þ
ð6;7ÞhTr½Uðx6ÞU†ðx7Þ�Tr½U†ðx8ÞUðx1ÞU†ðx2ÞUðx3ÞU†ðx4ÞUðx5Þ�iY

þKð6;1Þ
ð7;8ÞhTr½U†ðx7ÞUðx8Þ�Tr½Uðx1ÞU†ðx2ÞUðx3ÞU†ðx4ÞUðx5ÞU†ðx6Þ�iY

þKð7;2Þ
ð8;1ÞhTr½Uðx8ÞU†ðx1Þ�Tr½U†ðx2ÞUðx3ÞU†ðx4ÞUðx5ÞU†ðx6ÞUðx7Þ�iY

− P8hTr½Uðx1ÞU†ðx2ÞUðx3ÞU†ðx4ÞUðx5ÞU†ðx6ÞUðx7ÞU†ðx8Þ�iY: ðA3Þ
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