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We study gluonic excitations inside a Bc meson in the constituent gluon model, treating a bottom-charm
hybrid meson cb̄g as a three-body system. We obtain the mass spectra for the hybrid mesons with magnetic
gluon and electric gluon and see that their lowest states appear above theDB threshold. Also, we consider the
decays of the low-lying states of the hybrid meson into DB, D�B, DB�, D�B�, DsBs, and DsB�

s mesons,
developing an existing model for the strong decays. We estimate their partial decay widths and find that the
widths have a heavy dependence on the final meson states. We argue that the accuracy of our model will be
tested experimentally when the branching ratios of the decays are measured. Our results suggest that there
could be a prospect that the hybridmesonwill be discovered as its first excited state rather than its lowest state.
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I. INTRODUCTION

It has been argued for a long time that the experimental
verification of exotic hadrons will have far-reaching impli-
cations for quantum chromodynamics (QCD), not just
because it will give the quantum field theory of the strong
interaction another credit for the theory’s accuracy, but
because it will make QCD researchers search for non-
perturbative properties of the theory with renewed enthu-
siasm. While it is still difficult to experimentally confirm
the existence of exotic hadrons, indirect evidence of it has
been accumulating gradually. After the dark ages of exotic
hadron research, it finally blossomed into a growth area of
research by virtue of the discovery of X(3872) at Belle in
2003 [1]. The event has been described as a milestone in
exotic hadron research; in fact, dozens of exotic hadron
candidates have been discovered.
In particular, it is widely known that ψð4260Þ [2] aka Y

(4260) has been a high-profile exotic meson candidate
since it was discovered in 2005 [3]. The question on the
constituents of ψð4260Þ has been considered from many
different angles: a hadrocharmonium [4], a D̄D1ð2420Þ
molecule [5], a tetraquark, a diquark-antidiquark bound

state (diquarkonium) ½cq�½c̄q̄0� [6], and a hybrid meson cc̄g
[7]. Although the discussions about ψð4260Þ have not been
concluded yet, it has been suggested that the particle might
be a multiquark meson or a hybrid quarkonium [8].
ψð4260Þ is not the only one which has been considered

to be a hybrid meson candidate. For instance, ϕð2170Þ has
been regarded as a candidate for a strangeonium [9], and
there could be a possibility that ψð4360Þ is a hybrid
charmonium [10]. It is noteworthy that the decays of
ψð4260Þ into DD̄ have not been observed yet, despite
the fact that the particle sits above the DD̄ threshold; this
observational fact suggests that it might be a magnetic
gluon hybrid [7]. Likewise, it could be reasonable to expect
that ψð2170Þ and ψð4360Þ might be magnetic gluon
quarkonia.
Still, confirming the existence of a hybrid quarkonium is

experimentally challenging; the degrees of freedom of a
gluon in an ordinary quarkonium are integrated out (and
accordingly appear as a potential between two quarks),
which makes it difficult to measure gluonic excitations
inside the particle. Having said that, the discoveries of
hybrid quarkonium candidates have provided useful
insights into gluonic excitations inside a quarkonium. In
parallel with this, several models have been proposed so far
to interpret gluonic excitations inside a meson: the flux tube
model [11], the MIT bag model [12], the quark confining
string model [13], and the constituent gluon model [14,15].
In the constituent gluon model, a massless JP ¼ 1− gluon is
assumed to interact with quarks via potentials.
From a wider perspective, a quarkonium is not the only

hadron inside which gluonic excitations could appear,
given that it is theoretically possible that the phenomena
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could emerge in other heavy hadrons such as B�
c and Ωþþ

ccc .
The purpose of the present study is to expand our horizons
by casting light on gluonic excitations inside a B�

c ; and
thus, we hereafter stick to gluonic excitations inside B�

c . On
the experimental side, there has been no direct evidence
that a bottom-charm hybrid meson cb̄g could exist, in part
because detecting the particle is technically more difficult
than detecting a hybrid quarkonium. On the theoretical
side, we note that this novel particle has not yet been
studied extensively. As earlier theoretical studies, we refer
to the QCD sum rule analysis and the constituent gluon
model. The former showed that several different states of a
cb̄g could exist in the mass range of 6.6 to 8.7 GeV [16]. In
the latter, the mass spectra and the radiative transition
widths of the hybrid meson were calculated under the Born-
Oppenheimer approximation, which indicated that the
lowest states of a cb̄g appeared in the mass range of 7.4
to 7.6 GeV [17].
In the present paper, we adopt the constituent gluon

model to discuss whether gluonic excitations could appear
inside a Bc meson, considering the mass spectra of a cb̄g.
We treat a cb̄g as a three-body system, allowing quarks to
move, in contrast to the treatment in Ref. [17] where the
distance between charm and antibottom quarks in a cb̄g
was fixed. We also discuss the strong decays of a cb̄g into

Dð�ÞBð�Þ mesons or Dð�Þ
s Bð�Þ

s mesons. As far as we know,
the decay widths for these processes are estimated for the
first time. We use the notation Dð�Þ to express D or D�, and
similarly Bð�Þ for B or B� as well as for Dð�Þ

s and Bð�Þ
s . It

seems to be reasonable that we focus on JP ¼ 1−; and it is
straightforward to apply the present framework to other
quantum numbers.
This paper is organized as follows. Section II explains

our model setting for hybrid mesons, introduces the
auxiliary field method for solving the system, and provides
the framework of calculating the decay widths for the
processes cb̄g → Dð�ÞBð�Þ or Dð�Þ

s Bð�Þ
s . Section III presents

the results of our numerical calculations and discusses the
implications of them. The final section is devoted to our
concluding remarks.

II. FRAMEWORKS FOR HYBRID MESONS

A. Constituent gluon model for a cb̄g

The basic framework of the constituent gluon model for
a hybrid meson qq̄g (where q is a quark) was developed in
earlier research [18–20]. Following their lead, and assum-
ing that we can apply the formalism to qq̄0g (where q and q0
are quarks with different flavors), we use a Salpeter-type
free Hamiltonian H0 and a potential V for the constituent
particles q, q0, and g in a cb̄g. In relation to this formalism,
we use the following physical quantities: the mass mc and
momentum pc of a charm quark (c), the mass mb̄ and
momentum pb̄ of an antibottom quark ðb̄Þ, the momentum

pg of a constituent gluon (g), the c − g distance rcg, the
b̄ − g distance rb̄g, and the c − b̄ distance rcb̄. Using these
quantities, we write H0 and V as follows:

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
c þm2

c

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
b̄
þm2

b̄

q
þ

ffiffiffiffiffi
p2
g

q
; ð1Þ

V ¼ σrcg þ σrb̄g þ VC; ð2Þ

where σ is the string tension for the color confinement and
VC is a color-Coulomb potential which is given by

VC ¼ −
3αs
2rcg

−
3αs
2rb̄g

þ αs
6rcb̄

; ð3Þ

with the strong coupling constant αs. Here the Casimir
factors are taken into account:

1

4
hλc · λgi ¼

1

4
hλb̄ · λgi ¼ −

3

2
;

1

4
hλc · λb̄i ¼

1

6
; ð4Þ

where λi (i ¼ c, b̄, g) is the Gell-Mann matrix in color
acting for c, b̄, and g, and the angle brackets mean the
expectation value. Then, we have the total Hamiltonian:
H ¼ H0 þ V.
Once the color-Coulomb potential is introduced, an

analytical approach no longer has its advantage over
numerical ones. We therefore need to solve the system
numerically, but dealing with the (massless) constituent
gluon and the Salpeter-type Hamiltonian numerically is
difficult. Even if we resolve this problem, there still remains
a quantization issue. To address these issues, we use the
auxiliary field method. In the present case, employing the
method developed in Ref. [21], we introduce the auxiliary
fields, μc, μb̄, and μg for c, b̄, and g, respectively, in order to
rewrite the free Hamiltonian (1) as follows:

H0 ¼
μc þ μb̄ þ μg

2
þ p2

c þm2
c

2μc
þ p2

b̄
þm2

b̄

2μb̄
þ p2

g

2μg

¼ μc þ μb̄ þ μg
2

þ m2
c

2μc
þ m2

b̄

2μb̄
þ k2

x

2μx
þ k2

y

2μy
; ð5Þ

where kx, ky, μx, and μy are defined by

kx ¼
μcpb̄ − μb̄pc

μc þ μb̄
; ky ¼ pg; ð6Þ

μx ¼
μcμb̄

μc þ μb̄
; μy ¼

ðμc þ μb̄Þμg
ðμc þ μb̄Þ þ μg

: ð7Þ

We then solve the Schrödinger-type equations for a hybrid
meson:

HΨ ¼ EΨ; ð8Þ
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where Ψ is the wave function for the whole system. In
theory, the auxiliary fields are dynamical variables, while
in practical calculations we regard them as real numbers in
terms of a variational calculation [21]. It is known that,
under this framework, a calculated value contains roughly a
7 percent numerical error at the maximum [21]. As a
numerical method for solving Eq. (8), we mention that we
use the hyperspherical formalism [22]; the framework is
explained in more detail in [23,24]. In order to test the
validity of our model, we consider the mass spectrum of a
Bc (cb̄) meson in the Appendix, where our results are
shown together with experimental data.

B. Strong decays to Dð�ÞBð�Þ mesons

or Dð�Þ
s Bð�Þ

s mesons

Now we consider the decays of a cb̄g into Dð�ÞBð�Þ
mesons, where the gluon splitting process (g → qq̄ with a
light quark q) inside a cb̄g takes place, estimating the decay

widths for the processes. We also consider Dð�Þ
s Bð�Þ

s as long
as the energy thresholds for these decay channels are
open. In the following explanation about the relevant
formulation, we show the case of Dð�ÞBð�Þ mesons for
illustration purposes. It is straightforward to apply the

similar procedure to Dð�Þ
s Bð�Þ

s mesons. In the formalism in
Refs. [25,26], the wave functions for both initial and final
hadron states were represented by Gaussian-type functions.
In our case, on the other hand, the initial wave function for
a hybrid meson is given as the solution to the three-body
equations (8), and the final wave functions are expressed by
the Gaussian-type ones. Under this model, the decay
processes are formulated in a nonrelativistic manner; this
can be suitable for heavy mesons. Also, for later conven-
ience we emphasize that a subscript q stands for a light
quark (u, d, or s) in this subsection.
We enter into the explanation by defining the relevant

relative momenta: Pcq̄ is the relative momentum between c
and q̄; similarly Pb̄q is the relative momentum between b̄
and q, and Pqq̄ is the relative momentum between q and q̄.
Alongside the relative momenta, pq and pq̄ are the
momenta of q and q̄, respectively. Using these momenta,
we express the relative momenta as follows:

Pcq̄ ¼
mq̄pc −mcpq̄

mc þmq̄
¼ mq̄Pf

mc þmq̄
þ Pqq̄ −

1

2
kg; ð9Þ

Pb̄q ¼
mqpb̄ −mb̄pq

mb̄ þmq
¼ −

mqPf

mb̄ þmq
− Pqq̄ −

1

2
kg; ð10Þ

Pqq̄ ¼
pq − pq̄

2
; ð11Þ

where Pf ¼ pc þ pq̄ð¼ − pb̄ − pqÞ is the final momentum
of a cq̄ meson.

Next, in terms of the decay of a hybrid (signified by a
subscript H) into Dð�Þ and Bð�Þ mesons, the formula of the
decay width is given by

ΓH→Dð�ÞBð�Þ ¼ 4αsjfH→Dð�ÞBð�Þ j2 jPfjEDð�ÞEBð�Þ

mH
; ð12Þ

where EDð�Þ and EBð�Þ are the energies of Dð�Þ and Bð�Þ

mesons, respectively. mH is the mass of a hybrid meson.
We also mention that fH→Dð�ÞBð�Þ is the decay amplitude.
The amplitude is written as

fH→Dð�ÞBð�Þ ¼
X

ΩϕXIW; ð13Þ

where Ω, ϕ, X, I, andW are the color part, the isospin part,
the spin part, the overlap function, and the Clebsch-Gordan
part, respectively [25]. The overlap function is defined by

I ¼
Z

dPqq̄dkgdΩfffiffiffiffiffiffi
2ω

p ð2πÞ6 Ψ̃ðPf þ Pqq̄;kgÞψ�
Dð�Þ ðPcq̄Þ

× ψ�
Bð�Þ ðPb̄qÞY�

LMðΩfÞ; ð14Þ

where Ωf is the angular part of Pf. ω is the energy of the
constituent gluon; and in Sec. III B, we explain how to
determine the value of ω. Here Ψ̃ is the momentum space
representation of the initial wave function Ψ derived from
solving the Eq. (8). ψDð�Þ and ψBð�Þ are the wave functions of
Dð�Þ and Bð�Þ mesons, respectively. As mentioned earlier,
they are Gaussian-type functions:

ψDð�Þ ðPcq̄Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3R

2L
Dð�Þþ3

cq̄

Γð3
2
þ LDð�Þ Þ

vuut P
L
Dð�Þ

cq̄ YL
Dð�ÞML

Dð�Þ
e−

1
2
ðRcq̄Pcq̄Þ2 ;

ψBð�Þ ðPb̄qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3R

2L
Bð�Þþ3

b̄q

Γð3
2
þ LBð�Þ Þ

vuut
P
L
Bð�Þ

b̄q
YL

Bð�ÞML
Bð�Þ

e−
1
2
ðRb̄qPb̄qÞ2 ;

ð15Þ

where LDð�Þ and LBð�Þ are the orbital angular momenta of
Dð�Þ and Bð�Þ mesons, respectively. Similarly, ML

Dð�Þ and

ML
Bð�Þ

are their projections onto the z-axis. Here, Rcq̄ and

Rb̄q are the Gaussian-type function’s length parameters for

the distance between c and q̄ in Dð�Þ and the distance
between b̄ and q in Bð�Þ, respectively. Their values will be
set in the next section.
After considering the above setup, we focus on the

calculation of the decay amplitude in Eq. (12); and to do so,
we need to calculate the overlap function (14) which
contains multiple-integral for the momenta. Fortunately,
we can decrease the dimension of the integral by going into
detail about the exponential part of the function and
integrating analytically with regard to the azimuthal angle

MASSES AND DECAYS OF THE BOTTOM-CHARM … PHYS. REV. D 99, 094015 (2019)

094015-3



ϕg of kg. Hence, in the following, we describe the analytic
expression of the integration with regard to ϕg. First, the
squares of Pcq̄ and Pb̄q are expressed by

P2
cq̄ ¼

�
mq̄Pf

mc þmq̄
þ Pqq̄

�
2

þ 1

4
k2
g −

mq̄Pf · kg

mc þmq̄
− Pqq̄ · kg

¼
�

mq̄Pf

mc þmq̄
þ Pqq̄

�
2

þ 1

4
k2
g −

mq̄Pfkg cos θg
mc þmq̄

− Pqq̄kg cos θqq̄g; ð16Þ

P2
b̄q

¼
�

mqPf

mb̄ þmq
þ Pqq̄

�
2

þ 1

4
k2
g þ

mqPfkg cos θg
mb̄ þmq

þ Pqq̄kg cos θqq̄g; ð17Þ
where θqq̄g is the angle between Pqq̄ and kg. Specifically, it
is expressed as

cos θqq̄g ¼ sin θqq̄ cosϕqq̄ sin θg cosϕg

þ sin θqq̄ sinϕqq̄ sin θg sinϕg

þ cos θqq̄ cos θg; ð18Þ
where ðθqq̄;ϕqq̄Þ and ðθg;ϕgÞ are the angles in the spherical
coordinates of Pqq̄ and kg, respectively. We note that here
we choose the unit vector of Pf as the zero degrees
of the angular integration of kg. Second, we perform the

integration with regard to ϕg. To do so, we write down the
relevant part of the integrand:

exp

�
Pqq̄kg

�
R2
cq̄

2
−
R2
b̄q

2

�
cos θqq̄g

�
: ð19Þ

Taking advantage of the formula relating to a modified
Bessel function of the first kind I0

Z2π

0

eu cosϕgþv sinϕgdϕg ¼ 2πI0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p �

; ð20Þ

where u and v are the functions parametrized as the
coefficients of cosϕg and sinϕg, respectively, in Eq. (19),
we integrate with regard to ϕg. This yields

Z2π

0

dϕg exp

�
Pqq̄kg

�
R2
cq̄

2
−
R2
b̄q

2

�
cos θqq̄g

�

¼ 2πI0

�����Pqq̄kg

�
R2
cq̄

2
−
R2
b̄q

2

�
sin θqq̄ sin θg

����
�

× exp

�
Pqq̄kg

�
R2
cq̄

2
−
R2
b̄q

2

�
cos θqq̄ cos θg

�
: ð21Þ

As a result, the overlap function (14) reduces to

I ¼
Z

dPqq̄k2gdkgd cos θgdΩfffiffiffiffiffiffi
2ω

p ð2πÞ6 Ψ̃ðPf þ Pqq̄;kgÞY�
LMðΩfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3R

2L
Bð�Þþ3

b̄q

Γð3
2
þ LBð�Þ Þ

vuut
P
L
Bð�Þ

b̄q
Y�
L
Bð�ÞML

Bð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16π3R

2L
Dð�Þþ3

cq̄

Γð3
2
þ LDð�Þ Þ

vuut P
L
Dð�Þ

cq̄ Y�
LDML

Dð�Þ

× exp

�
−
R2
cq̄

2

��
mq̄Pf

mc þmq̄
þ Pqq̄

�
2

þ k2
g

4
−
mq̄Pfkg cos θg

mc þmq̄

	
−
R2
b̄q

2

��
mqPf

mb̄ þmq
þ Pqq̄

�
2

þ k2
g

4
þmqPfkg cos θg

mb̄ þmq

	�

× 2πI0

�����Pqq̄kg

�
R2
cq̄

2
−
R2
b̄q

2

�
sin θqq̄ sin θg

����
�
× exp

�
Pqq̄kg

�
R2
cq̄

2
−
R2
b̄q

2

�
cos θqq̄ cos θg

�
: ð22Þ

Thus we see that the dimension of the original integration is
decreased to seven. The above procedure freshly minted in
the present research is helpful in reducing the numerical
cost.

III. NUMERICAL RESULTS

A. Mass spectra of a cb̄g

Now we conduct numerical calculations in terms of a
cb̄g. First of all, we consider the internal structure relating
to the quantum number JP ¼ 1− for the hybrid meson
within the selection rules. The internal states of the hybrid
meson are categorized according to the type of a constituent
gluon [15]; it is either electric or magnetic. Table I shows
the possible low-lying states of a cb̄g, where E and M in the

TABLE I. Low-lying states for a cb̄g. In the first column,
E and M mean the electric gluon and magnetic gluon, respec-
tively. In the second column, Lcb̄ is the relative orbital angular
momentum between c and b̄. In the third column, Lg is the
orbital angular momentum of g relative to the center-of-mass of
cb̄. In the fourth column, Ltot is the sum of Lcb̄ and Lg.
Meanwhile, Scb̄, Sg, and Stot are the total spin of c and b̄, the
spin of g, and the total spin, respectively. Also, JPC

cb̄
is the total

angular momentum of the c − b̄ subsystem, and JPg is the total
angular momentum of g.

Gluon Lcb̄ Lg Ltot Scb̄ Sg Stot JP
cb̄

JPg JP

E 1 0 1 1 1 0, 1, 2 ð0; 1; 2Þþ 1− 1−

M 0 1 1 0 1 1 0− 1þ 1−
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gluon column stand for the electric gluon and the magnetic
gluon, respectively. We consider the lowest angular
momenta only for each state. Strictly speaking, we also
need to take account of higher states which are coupled to
the low-lying states. The present procedure is a good
approximation, because higher states should be suppressed
as far as the states with lower energy are concerned.
Then, we determine the masses and the wave functions

of the hybrid mesons with magnetic and electric gluon in
the Hamiltonian (8) by using the auxiliary field method.
The relevant parameters in the Hamiltonian are summarized
in Table II; these parameter sets are taken from earlier
studies where the relevant parameters were fitted into the
experimental data about the mass spectra of a charmonium
(cc̄) as well as a bottomonium (bb̄) [20,22,27]. We also
carry out the calculations in terms of the mass spectrum of a
Bc meson and confirm that the present framework provides
a relatively fair description of the particle, as is seen in
Appendix.
Within the auxiliary field framework, we perform the

variational calculations to minimize the energy of a cb̄g by
changing μc, μb̄, and μg. We show the results of the
calculations in Fig. 1, where we can see that the local
minimum values appear. We find that the lowest state is the
electric gluon hybrid with a mass of about 7.48 GeV, which
is in line with earlier research [17].
After calculating the masses for the lowest and the

excited states, we show the mass spectra of magnetic and
electric cb̄g hybrids in Fig. 2. We see from the figure that
the states of a magnetic gluon hybrid are generally higher
than those of an electric gluon hybrid, and that both of them
appear above the DB threshold (∼7.15 GeV). This result is

consistent with earlier studies where the masses of a cc̄g
and a bb̄g were obtained [20,22].

B. Decay widths

We then move on to estimate the decay widths for
the processes of a cb̄g into Dð�ÞBð�Þ and Dð�Þ

s Bð�Þ
s . We

consider the electric gluon only, because the hybrid meson
with a magnetic gluon does not decay into Dð�ÞBð�Þ and

Dð�Þ
s Bð�Þ

s [7,25].

TABLE II. The parameters relating to the mass spectra of a hybrid meson cb̄g. E and M in the gluon column of the
table mean the electric gluon case and magnetic gluon case, respectively. Their masses are shown together.

σ (GeV2) αs mc (GeV) mb̄ (GeV) JP Gluon μc (GeV) μb (GeV) μg (GeV) Mass

0.16 0.55 1.48 5.00 1− M 1.77 4.99 1.03 7.97
0.16 0.55 1.48 5.00 1− E 1.86 5.05 0.84 7.48

FIG. 1. The demonstration of the variational calculation of a hybrid meson cb̄g as functions of μc, μb, and μg. The left graph is for the
magnetic gluon case, whereas the right is for the electric case. The unit of the energies in the bars is GeV.

FIG. 2. The mass spectra of the hybrid meson cb̄g with a
magnetic gluon (M) and an electric gluon (E).
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The values of the relevant parameters, ωi, μi, and Ri

(i ¼ Dð�Þ, Bð�Þ or Dð�Þ
s , Bð�Þ

s ) are summarized in Table III,
where the values in parentheses mean the values for the
cases where a strange quark involves. We note that here μi
is the reduced mass of a D or a B meson. They are
expressed as μD ¼ μD� ¼ mcmq̄

mcþmq̄
and μB ¼ μB� ¼ mb̄mq

mb̄þmq
,

where the reduced mass (as a “static” variable) for D is
identical to that of D�, and similarly for B and B�. In
the present study, we have μD ¼ 0.283 GeV (μDs

¼
0.373 GeV) and μB ¼ 0.327 GeV (μBs

¼ 0.454 GeV),
because we choose 350 MeV for the mass of u and d
quarks and 500 MeV for an s quark [25,26]. When it
comes to ωD, it is the roughly averaged energy difference
between a D meson’s ground state and its first excited
state (D0ð2400Þ0 and Ds1ð2460Þ�); and for ωB, the first
excited state is B1ð5721Þ.1 In addition, Ri is connected to
these variables via R2

i ¼ 1
ωiμi

[25]. In parallel with deter-
mining these variables, we need to estimate the gluon
energy ω in the overlap function (14). Recognizing that
basically this is related to the effective mass of a gluon in

the auxiliary field method, we use the effective gluon mass
μgð¼0.84 GeVÞ for ω in the present calculation.2

Now, we calculate the decay widths for relevant chan-
nels. Using shorthand notations, we consider the following
channels:DB ¼ DþB0 þD0Bþ,D�B ¼ D�þB0 þD�0Bþ,
DB�¼DþB�0þD0B�þ, D�B�¼D�þB�0þD�0B�þ, Dþ

s B0
s ,

and Dþ
s B�

s . Those channels are allowed as the open
thresholds. The calculated partial decay widths are shown
in Table IV. As to the decays from the lowest state of a cb̄g,
the calculated widths exceed 0.6 GeV for Jcb̄ ¼ 0, 1, and 2.
This suggests that it seems unlikely that this state can be
experimentally confirmed. When it comes to the decays
from the first excited state of a cb̄g, the calculated widths
are in the range of 150 MeV to 250 MeV. It seems that it
could still be difficult to detect the decay signals for these
channels; but there is a fighting chance that a cb̄g will be
observed as its first excited state.
Also, it turns out that the decay widths have a heavy

dependence on the choice of the final states, DB, D�B,
DB�,D�B�,Dþ

s B0
s , andDþ

s B�
s . The differences, which arise

partly from the combinatorial factor of the internal spins

TABLE III. The relevant parameters for the decay processes of hybrid mesons intoDð�ÞBð�Þ (Dð�Þ
s Bð�Þ

s ) mesons.mc
and mb̄ are the masses of a charm quark and an antibottom quark, respectively. The values in parentheses stand for
the values for the cases where a strange quark is involved. Here, we note that ωD ¼ ωDs

and ωB ¼ ωBs
.

mc or mb̄ (GeV) ωD or ωB (GeV) μD (μDs
) or μB (μBs

) (GeV)
RD (RDs

) or RB (RBs
)

(GeV−1)
D meson 1.48 0.468 0.283 (0.373) 2.74 (2.39)
B meson 5.00 0.446 0.327 (0.454) 2.61 (2.22)

TABLE IV. The partial decay widths for Dð�ÞBð�Þ channels from the hybrid meson cb̄g with an electric gluon.
Here D�0 ¼ D�ð2007Þ0 and D�� ¼ D�ð2010Þ�. The mass of u and d quarks is 350 MeV, while the mass of an s
quark is 500 MeV. Here, DB ¼ DþB0 þD0Bþ, D�B ¼ D�þB0 þD�0Bþ, DB� ¼ DþB�0 þD0B�þ, and
D�B�¼D�þB�0þD�0B�þ. The unit of the decay widths in the table is MeV.

Channel DB D�B DB� D�B� Dþ
s B0

s Dþ
s B�

s Total

Γ
GS→Dð�ÞBð�Þ or Dð�Þ

s Bð�Þ
s

Jcb̄
0 74.56 114.01 140.07 313.37 4.19 5.29 651.5
1 223.72 85.50 105.04 268.59 12.58 3.97 699.4
2 372.87 142.51 175.08 89.52 20.98 6.62 807.6

Γ
1st→Dð�ÞBð�Þ or Dð�Þ

s Bð�Þ
s

Jcb̄
0 18.68 28.76 34.31 84.52 1.01 1.51 168.8
1 56.05 21.57 25.73 72.44 3.05 1.14 180.0
2 93.44 35.97 42.89 24.14 5.09 1.89 203.5

1For instance, wD¼ðMðD0ð2400ÞÞ−MðD�ÞþMðDs1ð2460ÞÞ−
MðDsÞÞ=2, where M means the mass of a particle. Also, we
choose B1 not B0 as the first excited state, because the latter has
not been discovered yet [2].

2This approach has not been adopted in earlier research. In the
previous studies [25,26], including ours [22], the value of ω was
determined to be practically identical to the frequency of the
harmonic confinement potential by which the quarks and gluons
are confined as the hybrid mesons.
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and the limitation of the available phase space, should be
reflected in the branching ratios when they are experimen-
tally measured in the future. Hence, we expect that the
validity of our hybrid model will be assessed by further
experiments, on the basis of not only the absolute values of
the decay widths but also the branching ratios.
It is worth mentioning the uncertainty of the obtained

decay widths. In the present study, we set αs ¼ 0.55 to
obtain the mass spectra of a cb̄g; we use the same αs in
calculating the decay widths. However, actual αs for the

decays into Dð�ÞBð�Þ or Dð�Þ
s Bð�Þ

s can be smaller than 0.55.
This fact allows us to argue that actual decay widths can be
smaller than the values which are presented in Table IV. We
comment that the branching ratios are unaffected by the
uncertainty of αs in the present framework.

IV. CONCLUSION

We study a bottom-charm hybrid meson cb̄g in the
constituent gluon model, considering its mass spectra and

decays into Dð�ÞBð�Þ mesons and Dð�Þ
s Bð�Þ

s mesons. We
obtain the mass spectra for magnetic gluon and electric
gluon hybrids. For a magnetic gluon hybrid, the lowest
state appears at around 8 GeV, while for an electric gluon
hybrid, the lowest state appears at around 7.5 GeV. We find
that the states for a magnetic gluon hybrid are higher than
those for an electric gluon hybrid and that both of them sit
above the DB threshold. These results are in line with
earlier research. Also, we estimate the decay widths of the

relevant Dð�ÞBð�Þ and Dð�Þ
s Bð�Þ

s channels. For the decays of
the lowest state of a cb̄g, the obtained widths seem large to
the extent that it could be experimentally difficult to
confirm the state. For those of the first excited state,
although the calculated widths are still large, there could
be a prospect that a cb̄g will be detected as its first excited
state in the future.
As part of future work, we mention that higher multi-

channel effects for the spectra of a hybrid and loop effects
for the decays will be studied. We also mention that the
other quantum numbers such as JP ¼ 0� will be consid-
ered. Exploring the possibility that there could exist other
types of hybrid mesons such as sc̄g and sb̄gmight generate
discussions about flavor dependence in the hybrid mesons.
Moreover, it will be worthwhile to consider gluonic
excitations not just in heavy mesons but in heavy baryons
such as Ωþþ

ccc . We hope that experimental research projects
will be set up in order to search for these hybrid mesons and
baryons and that related experiments will be carried out at
high energy beam facilities such as the LHC in the future.
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APPENDIX: MASS SPECTRUM OF A Bc MESON

We assess the validity of our model by examining
whether our model can reproduce the experimental data
on the mass spectrum of a Bc ðcb̄Þ. Accordingly we
calculate the mass spectrum of a Bc as a two-body system
of c and b̄, treating the particle on the same footing as a
cb̄g: we use the Salpeter-type free Hamiltonian and the
auxiliary field method. As stated in Sec. II A, we therefore
use the auxiliary fields νc and νb for c and b̄, respectively, in
order to reexpress the whole Hamiltonian as

Hcb̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
c þm2

c

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
b̄
þm2

b

q
þ Vcb̄ ðA1Þ

¼ νc þ νb
2

þ m2
c

2νc
þ m2

b

2νb
þ p2

c

2νc
þ p2

b̄

2νb
þ Vcb̄; ðA2Þ

where Vcb̄ is an interquark potential whose explicit form is
given later. As we now consider the center-of-mass frame,
we have pc ¼ −pb̄ ¼ p. Substituting p into the above
Hamiltonian, we obtain the following simple expression:

Hcb̄ ¼
νc þ νb

2
þ m2

c

2νc
þ m2

b

2νb
þ p2

2ν
þ Vcb̄; ðA3Þ

where

ν ¼ νcνb
νc þ νb

: ðA4Þ

When it comes to the interaction between charm and
antibottom quarks, we use

Vcb̄ ¼ Vcb̄
LþC þ Vcb̄

SS þ Vcb̄
T ; ðA5Þ

where Vcb̄
LþC, Vcb̄

SS, and Vcb̄
T are the linear and color-

Coulomb potentials, the spin-spin term, and the tensor
interaction, respectively. In this case, we focus on 1S0 and
3S1; there is no need for spin-orbit interactions. We now
express the potentials explicitly as follows:

Vcb̄
LþC ¼ σrcb̄ þ

�
−
4

3

�
αs
rcb̄

; ðA6Þ

Vcb̄
SS ¼

�
−
4

3

� ð−8Þπαs
3μcμb̄

ðsc · sb̄Þδðrcb̄Þ; ðA7Þ

Vcb̄
T ¼ 4αs

3μcμb̄r
5
cb̄

½3ðsc · rcb̄Þðsb̄ · rcb̄Þ− r2ðsc · sb̄Þ�; ðA8Þ

where we set σ ¼ 0.16 GeV2 and αs ¼ 0.55 as we used
them for a cb̄g. We note that we do not consider the S-D
mixing, and thus the tensor term does not affect the results.
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When it comes to the VSS, we substitute the following
exponential function for the delta function of the spin-spin
term [28]:

δðrÞ → Λ2

4πr
e−Λr; ðA9Þ

whereΛ is set to 3.5 fm−1 [28]. We setmc ¼ 1.48 GeV and
mb̄ ¼ 5.00 GeV as the same values in the calculation for a
cb̄g. These values are fitted to the mass spectra of a
charmonium and a bottomonium; for further fittings, fine-
tuning can be necessary.
At these parameter settings, we calculate the ground state

of a Bc. The result of the variational calculations is shown
in Fig. 3, where we see that the ground state (∼6.34 GeV)
exists (at νc ¼ 1.93 GeV and νb ¼ 5.14 GeV). The
calculated ground state energy fairly agrees with the
experimental data (MBc

∼ 6.27 GeV) [2]. Meanwhile,
the calculated energy of the 2S state is about 7.01 GeV;
this appears about 0.17 GeV above the experimental
data (MBc

ð2SÞ ∼ 6.84 GeV). Thus, we confirm that the
Salpeter-type Hamiltonian and the auxiliary field method
provide a relatively fair description of a Bc meson.
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