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We confront the theoretical result of single spin asymmetry AN in forward pA collisions p↑A → hX
including the gluon saturation effect with the recent preliminary experimental data from the PHENIX and
STARCollaborations at the Relativistic Heavy IonCollider.Whilewe find overall reasonable agreement with
the STARdata, our results indicate that the strong nuclear suppression of the asymmetryAN ∼ A−1=3 observed
by the PHENIX Collaboration cannot be explained within the present understanding of this problem.
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I. INTRODUCTION

Transverse single spin asymmetries (SSAs), as measured
in collisions of an unpolarized probe with a transversely
polarized proton, are traditionally a venue to understand the
spin structure of the proton [1–3]. For inclusive hadron
productions at highPh⊥, SSA is computed from perturbative
QCD where it becomes a probe of collinear twist-3 distri-
butions. Recent measurements at the Relativistic Heavy Ion
Collider (RHIC) considered collisions of polarized protons
on nuclear targets and so a completely new interplay between
spin physics and the physics of gluon saturation becomes a
reality [4–11]. This is especially so, as gluon saturation is
important in the forward region of the produced hadron
where SSA is the largest. Both the STAR [12] and the
PHENIXCollaborations [13] reported on preliminary results
on SSA in p↑A → hX in addition to p↑p → hX. The
PHENIXCollaboration found a striking nuclear suppression
AN ∝ A−1=3 with the mass number A in their preliminary
datasets. On the other hand, the STAR Collaboration did not
find any significant nuclear effect in their data. The two
datasets are not necessarily in contradiction to each other, as
they are collected for different kinematics. However, the
difference in kinematics is actually not very large, and both
data are sensitive to the small-x region of the nucleus target.
Therefore, it remains a challenge for theorists to explain both
data consistently in a single framework.
At first sight, the suppression AN ∝ A−1=3 seems consis-

tent with the prediction of k⊥-factorization approaches [4,5]

which include the gluon saturation effects [14,15] in the
target nucleus. However, the k⊥ factorization does not apply
to this process, and a more proper treatment based on the
collinear or “hybrid” [9] factorization has identified two
contributions with different scaling behaviors AN ∼
OðA0Þ þOðA−1=3Þ [16–18]. The recent fits of the p↑p data
[19,20] indicate that the OðA0Þ terms are dominant, so
the PHENIX result is actually surprising. Furthermore, the
suppression is observed at relatively high values of the
hadron Ph⊥ where one does not expect to see strong nuclear
effects at RHIC energies. In view of this, it is premature to
link the PHENIX finding with the gluon saturation effect.
In this paper we quantitatively address this problem by

numerically computing the SSA in p↑p → hX and p↑A →
hX using the formulas derived in [16,17]. We then compare
our results with the preliminary STAR and PHENIX data.
Following [19,20], we assume that the twist-3 fragmenta-
tion contribution is the main cause of SSA in this channel.
As for the nucleus, we use the solution of the running
coupling Balitsky-Kovchegov (RCBK) equation [21,22].
The main result, presented in Sec. III, shows an overall
satisfactory agreement with the preliminary STAR data. On
the other hand, we were not able to confirm the nuclear
suppression as seen in the PHENIX preliminary results. To
the contrary, our results show no nuclear dependence for
the PHENIX kinematics, even though we include the
saturation effect of the target. We investigate the reason
of this failure and discuss what extra contributions are
needed to fix this problem.

II. CROSS SECTION FORMULAS

Our starting point are the formulas for the spin-
independent pA → hX cross section and the fragmentation
contribution to the spin-dependent p↑A → hX cross section
within the Color Glass Condensate (CGC) framework. The
spin-independent cross section [23] is given as
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where Ph⊥ and yh are the hadron transverse momenta and
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z
ffiffi
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Ph⊥ffiffi

s
p eyh and we sum over quark flavors as

P
a. The function

Fðx; k⊥Þ is the gluon dipole distribution defined as
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where Y ¼ logð1=xÞ, RA is the nuclear radius and Uðx⊥Þ is
the fundamental Wilson line with h� � �i in the third line
denoting the color average. In Eq. (1), faðx;Q2Þ is the
unpolarized parton distribution function and Dh=aðz;Q2Þ is
the unpolarized hadron fragmentation function evaluated at
the scale Q2 ¼ P2

h⊥.
The spin-dependent cross section comes from the

quark-gluon-quark contribution, the twist-3 fragmentation
contribution and the triple gluon contribution. In this
work we consider only the fragmentation contribution
as it is the dominant source of SSA in this channel
[19,20]. We start from the main formula [see Eq. (46)
in [17]]
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where M is the proton mass and Si⊥ is the proton spin. Here ha1ðx;Q2Þ is the quark transversity distribution, while

Imẽh=aðz;Q2Þ and ImÊh=a
F ðz0; z; Q2Þ are the hadron twist-3 fragmentation functions.

In the next step we approximate
R Ph⊥=z1
0 dl⊥ ≃

R Ph⊥=z
0 dl⊥ which is reasonable considering that z1 > z while Fðx; k⊥Þ is a

monotonically dropping function of k⊥. With this approximation it is possible to make use of the following relations for the
twist-3 fragmentation functions:

êh=a
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to eliminate the terms containing the z0 integral over ImÊh=a
F ðz0; z; Q2Þ in (3). Here êh=a

1̄
ðz;Q2Þ is yet another twist-3

fragmentation function. The notation used in this work relates to the notation in Refs. [20,24] as

Hh=aðz;Q2Þ¼−
MN

Mh
êh=a
1̄

ðz;Q2Þ; H⊥ð1Þ;h=aðz;Q2Þ¼ MN

2Mh
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with Hh=aðz;Q2Þ, H⊥ð1Þ;h=aðz;Q2Þ, and Ĥh=a
FU ðz; z0; Q2Þ named as intrinsic, kinematical, and the dynamical twist-3

fragmentation functions, respectively. Equations (4) are known as the QCD equation of motion relation [25,26] and the
Lorentz invariance relation [24], respectively. Using (4), Eq. (3) becomes
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In the following we will numerically compute the SSA
defined as

AN ¼ 1

2

dΔσð↑Þ − dΔσð↓Þ
dσ

; ð7Þ

where in the numerator (denominator) we have the
spin-dependent (independent) cross section defined
by Eq. (6) [Eq. (1)]. We adopt the convention by which
SiPhjϵ

ij=Ph⊥ ¼ sinðϕh − ϕSÞ ¼ −1, where ϕh (ϕS) are
azimuthal angles of the outgoing hadron (spin). When
the incoming proton is pointing in the þz direction, and
with its spin pointing in the y direction, Δσð↑Þ
[Δσð↓Þ ¼ −Δσð↑Þ] is the cross section for the hadron
emission in the þx (−x) direction or left (right) direction.
This explains the “left-right” convention which is also used
by STAR and PHENIX.
The nuclear effects are contained in the dipole function

Fðx; k⊥Þ and especially the first term in the spin-dependent
cross section (6) depends on the derivative of the dipole. In the
saturation regime (k⊥ ≲QS),whereQS is the saturation scale,
we would typically get dF=dk⊥ ∼ k⊥F=Q2

S. Since the spin-
independent cross section (1) goes as∼Fðx; Ph⊥=zÞ, we find,
for this particular term, AN ∼Q−2

S , leading to AN ∼ A−1=3 for
the nuclei. Although not immediately obvious, the second
term of (6) also scales as A−1=3 [17]. From a quantitative
perspective it is important that the saturation scale in the
nuclei scales as ðQA

SÞ2 ¼ cA1=3ðQp
SÞ2 (Qp

S is the saturation
scale in the proton) where an additional proportionality factor
c < 1 [27] (in the numerical calculationswewill use c ¼ 0.5)
will inhibit the overall magnitude of the nuclear suppression.
On the other hand, when k⊥ ≫ QS we are in the perturbative
regime where the dipole distribution has a characteristic
dependence F ∼Q2

S=k
4⊥ and so dF=dPh⊥ ∼Q2

S=P
5
h⊥. The

sameQS dependence is found also for the second term in (6):
F=Ph⊥ ∼Q2

S=P
5
h⊥ and so in the perturbative limit the nuclear

dependence drops out in the ratio.

III. CALCULATION SETUP AND
NUMERICAL RESULTS

In this section we first explain all the details of our
calculation and then we numerically compute SSA and
compare with the available preliminary data from STAR
and PHENIX. We will often be using the Feynman-x
variable: xF ¼ 2Ph⊥ sinh yh=

ffiffiffi
s

p
.

For the dipole gluon distributions Fðx; k⊥Þ (2), we use
the numerical solution of the RCBK equation [21,22] from
[27]. We take the McLerran-Venugopalan (MV) initial
condition at Y0 ¼ logð1=x0Þ, where x0 ¼ 0.01 as

FYp;A¼Y0
ðx⊥Þ ¼ exp

�
−
ðx2⊥ðQp;A

S;0 Þ2Þγ
4

log

�
1

x⊥Λ
þ e

��
:

ð8Þ

Here Qp;A
S;0 is the initial saturation scale parameter for the

proton and the nuclei, γ is the anomalous dimension and
Λ is the IR cutoff. We use two different parameter sets for
the initial condition. Labeling them as set MV and
set MVγ , the model parameters are MV: γ ¼ 1, ðQp

S;0Þ2 ¼
0.2 GeV2 and Λ ¼ 0.241 GeV and MVγ: γ ¼ 1.119,
ðQp

S;0Þ2¼0.168GeV2 and Λ ¼ 0.241 GeV. For the nuclei,
we use the relation ðQA

S;0Þ2 ¼ cA1=3ðQp
S;0Þ2 with c ¼ 0.5, as

mentioned previously.
For the twist-2 distribution functions faðx;Q2Þ, we use

the central CTEQ10 set [28]. For the twist-2 pion and kaon
fragmentation functions Dπ=aðz;Q2Þ and DK=aðz;Q2Þ we
use the central DSSV set [29]. The transversity distribution
ha1ðx;Q2Þ and the twist-3 pion fragmentation functions
Imẽπ

þ=aðz;Q2Þ are obtained by solving their respective
evolution equations numerically with the initial condition
determined in [30]. The twist-3 kaon fragmentation
function is obtained from [31]. In both cases we employ
the Wilczek-Wandzura approximation êh=a

1̄
ðz;Q2Þ ¼

zImẽh=aðz;Q2Þ as in [30].
In Fig. 1 we show the numerical results of our compu-

tation for AN in p↑p → π0X and p↑Au → π0X as a function
Pπ⊥ for several values of xF as compared to the preliminary
STAR data [12]. We have used ðQAu

S;0Þ2 ¼ 3ðQp
S;0Þ2. The full

(dashed) lines correspond to the calculation with the MV
(MVγ) model. The shaded band comes from the uncertainty
in the transversity and the twist-3 fragmentation function
from the analysis in [30]. In this case, we have calculated
AN with the MV model. As a consistency check, we have
also computed AN in p↑p using the collinear gluon parton
distribution function for the unpolarized proton (as was done
in [20]). The result is in good agreement with the one from
the RCBK solution shown in Fig. 1.1

While the central results, given by the full and dashed
lines in Fig. 1, seem to compare well with the overall
magnitude of the preliminary STAR data and within its
experimental uncertainties, the shaded bands reflect a large
theoretical uncertainty in the extraction of the transversity
and the twist-3 fragmentation function. Nonetheless, there
is a valuable point to be made here regarding the nuclear
dependence of AN . The nuclear suppression of AN for p↑Au
relative to AN in p↑p that is visible in the low-Pπ⊥ region is
not only the most prominent feature of our calculation, but
also quite robust, being of a similar magnitude for the
central results as well as for the shaded regions. On the
other hand, there are no clear indications of nuclear effects
in the STAR data, and in particular there is no nuclear
suppression in the low-Pπ⊥ region as predicted here by the
hybrid factorization framework. The slight hints of nuclear

1Incidentally, we also confirmed that the forward approxima-
tion ŝ ≈ −û ≫ jt̂j in the partonic subprocess used to derive
formula (3) is actually very good in the kinematics we consider.
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suppression in the higher-Pπ⊥ bins, visible in Fig. 1 for
xF ¼ 0.3 and xF ¼ 0.4 (within errors), and even enhance-
ment for xF ¼ 0.6 (central values) cannot be reproduced
with the present framework either.
In the preliminary PHENIX dataset [13], covering a

kinematics range xF ≤ 0.12, AN is measured in
p↑p → hþX, p↑Al → hþX and p↑Au → hþX, where hþ
is a mixture of outgoing πþ and Kþ. The nuclear depend-
ence of AN in the PHENIX data is most noticeable for the
largest measured xF ¼ 0.12 where also an average Ph⊥ ¼
2.9 GeV is measured. At these kinematics, yh ¼ 2.13
leading to xq > 0.12, xg > 0.0017 and so it is reasonable
to apply the forward CGC formulas to compute AN . In
Fig. 2 we show a comparison of our results for the nuclear
dependence of AN in p↑A → hþX2 to the preliminary
PHENIX data, for the kinematics point xF ¼ 0.12,
Ph⊥ ¼ 2.9 GeV. In the PHENIX result AN clearly drops
with the increase in the atomic number A, and this is
consistent with the behavior AN ∼ A−1=3. However, our

FIG. 1. AN for p↑p → π0X and p↑Au → π0X as a function of Pπ⊥ at
ffiffiffi
s

p ¼ 200 GeV versus preliminary STAR data [12]. The full
(dashed) lines are a calculation using the MV (MVγ) model where we used ðQAu

S;0Þ2 ¼ 3ðQp
S;0Þ2 as well as the central values for the

transversity and the twist-3 fragmentation functions, while the shaded band reflects the uncertainty in extraction of both of these
quantities according to [30].

FIG. 2. AN as a function of A1=3 at
ffiffiffi
s

p ¼200GeV versus
preliminary data fromPHENIX.The thick full (thick dashed) curves
represent the MV (MVγ) model calculation. In the case of the thin
curves, we have taken into account only the derivative term in the
polarized cross section [first term in Eq. (6)] as a contribution toAN .
The shaded blue band takes into account the uncertainty of the
transversityandthe twist-3fragmentationfunctionaccording to [30].

2Even though our numerical calculation includes the contri-
butions of πþ and Kþ, however, quantitatively the Kþ contri-
bution is not more than about 10% of the full result for AN.
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current numerical results show virtually no A dependence.
The reason is clear: Ph⊥ ¼ 2.9 GeV is too hard to be
sensitive to the saturation scale which isQAu

S ∼ 0.9 GeV for
the PHENIX kinematics in the model used here.
To elaborate on this point, let us make an extreme

assumption that only the first term of (6) is important. For
PhT < QA

S , this term is expected to give the scaling AN ∼
A−1=3 and this is demonstrated in Fig. 3 where we plot the
double ratio

RN ≡ ðdF=dk⊥=FÞA
ðdF=dk⊥=FÞp

ð9Þ

as a function of k⊥ for several values of x using ðQAu
S;0Þ2 ¼

3ðQp
S;0Þ2. Close to the initial condition the distribution is

nearly Gaussian, and hence the ratio has a plateau in the
low-k⊥ region at RN ≃ ðQp

SÞ2=ðQA
SÞ2 ≃ 1=3. For high k⊥,

RN → 1 as a consequence of the perturbative tail. Going
lower in x via the RCBK equation, the peak position moves
toward the high-k⊥ region and the plateau shrinks—already
for x ∼ 0.001 the value of 1=3 is reached only for very small
k⊥. For k⊥ as large as 2.9 GeV, RN never deviates
significantly from unity. Therefore, even in this extreme
scenario AN does not have nuclear dependence. This is also
illustrated by the thin curves in Fig. 2 where we computed
AN including only the derivative term in the numerator.
Note that we have only included the fragmentation con-
tribution, but it is clear that adding the contribution from the
twist-3 quark-gluon distributions [16] will not help resolve
this issue.

IV. CONCLUSIONS

We have made a numerical computation of SSA in p↑p
and p↑A in the forward region including the gluon
saturation effect of the nucleus. Using the current state-
of-the-art twist-3 fragmentation functions and the dipole
gluon distribution, we compared our results to the prelimi-
nary STAR and PHENIX data. While the saturation-based
description seems to describe well the overall magnitude of
the STAR data, it fails to explain the scaling AN ∼ A−1=3

observed by the PHENIX Collaboration.
According to the result of [16,17], a strong nuclear

suppression of AN is possible only if the ∼A−1=3 terms
dominate over the ∼A0 terms, and if one looks at Ph⊥ less
than QS. The recent fit of the pp data [20] suggests that the
first condition does not hold, and the second condition is
also violated by the high value of Ph⊥ measured by the
PHENIX Collaboration. This makes the PHENIX result all
the more striking. It is also puzzling that there seems to be a
sudden change in the behaviors of AN between xF ¼ 0.2
(the lowest value measured by the STAR Collaboration)
and xF ¼ 0.12 (highest value measured by the PHENIX
Collaboration).
This may call for alternative mechanisms of SSA

around xF ∼ 0.1 whose nuclear dependence comes from
a different source. Indeed the region 0.1≲ xF ≲ 0.2 might
be special—it is roughly the “threshold” region where AN
starts to grow. Thus the value of AN itself is very small in
this region and a small effect can cause a large numerical
impact. Perhaps one should include not only the qþ g
channel (as we did in this paper), but also the gþ g channel.
Since there is no “gluon transversity” distribution, the
fragmentation contribution is absent in this channel, but the
collinear three-gluon or “odderon” contribution comes into
play [7,10,32–34]. A precise evaluation of SSA including
these effects appears to be a challenging task.
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