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The conventional view is that a solution of the strong CP problem lies beyond QCD. A strong argument
supporting this view is that the chiral expansion shows that observables depend on theta (unless a quark
mass is zero); this eliminates the possibility that theta is physically irrelevant and appears to necessitate an
explanation beyond the standard model. However, scenarios that solve the strong CP problem that are
consistent with known chiral behavior exist; in these, QCD becomes nonviable as a theory for nonzero
theta. Such scenarios appear to be compatible with lattice studies of the topological susceptibility.
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I. INTRODUCTION

The resolution [1,2] of the axial Uð1Þ puzzle [3]—the
absence of a ninth pseudo-Goldstone boson—gave rise to
the strong CP problem. The solution of the Uð1Þ problem
requires both the nonconservation of the axial Uð1Þ (due to
the anomaly) and a nontrivial topological susceptibility
(initially envisioned in terms of instantons [1,2]), which
prevents the nonconservation from being rotated away.
However, nontrivial topological effects also imply that a
possible CP-violating term in the QCD Lagrangian (pre-
viously ignored as a total derivative) has physical conse-
quences [4,5]. The coefficient of it is θ̄ (after a chiral
rotation to ensure a real mass matrix), which can take any
value from −π to π. However, empirically, it is exception-
ally close to zero. The exceedingly small value of the
neutron electric dipole [the current bounds are −3.2 ×
10−26e-cm < dn < 2.8 × 10−26e-cm (90% C.L.)] [6] led to
an estimate [7] that jθ̄j≲ 10−11. This is an apparent
violation of Gell-Mann’s famous dictum that particle
physics is totalitarian in the sense that what is not forbidden
is mandatory [8]. Why should a parameter not forbidden by
symmetry be essentially zero? This is the strong CP
problem. It does not appear to be resolvable by anthropic
arguments; standard analysis suggests that the Universe
would not be substantially different than even if θ̄ were
many orders ofmagnitude bigger than the current bounds [9].
The strong CP problem has motivated scenarios for

beyond-the-standard-model (BSM) physics (for a review,

see Ref. [7]). Indeed, new BSM solutions have been
proposed in the past few years [10,11]. The most influential
class of BSM proposals has been variations on the
(approximate) symmetry of Peccei and Quinn [12,13],
which implies the existence of a psuedo-Goldstone boson,
the axion [14,15]. Such an explanation is attractive in an
additional way: the axion could be the dark matter, which
has long been known to exist from astrophysical evidence
[16]. However, major experimental efforts to detect the
axion in a variety of ways (for a review, see Ref. [17]) have
been unsuccessful to date. It remains unclear if any of the
proposed BSM solutions to the strong CP problem are
correct. Perhaps, it is time to reexamine the possibility that
the solution of the problem could lie within QCD itself.
Scenarios with mu ¼ 0 are not QCD based in this context;
they require a BSM explanation of why mu ¼ 0. In any
case, mu ¼ 0 scenarios are ruled out by comparisons of
current lattice studies to data [18–20], which yield an up
quark mass that differs from zero by more than 20 standard
deviations.
Of course, there are very good reasons to reject a solution

arising from QCD. One of the strongest of these is the
calculable and nonzero θ̄ dependence of physical observ-
ables in an apparently reliable expansion scheme: chiral
perturbation theory (χPT) [21–25]. Superficially, the results
of χPT by itself appear to exclude the possibility of a
QCD-based solution. However, it is worth recalling that
systematic expansions can mislead. Consider topological
properties through the lens of a strict N−1

c expansion where
Nc is the number of colors [26–28]. This systematic
expansion suggests that the topological susceptibility χT
should be largely insensitive to the quark masses since the
quark sector is formally down by N−1

c . However, this is
clearly wrong for very small quark masses. The interplay
between the chiral and N−1

c expansions is required to
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understand the correct behavior [26–28]. The question
addressed in this paper is whether the χPT-based analysis
that apparently rules out QCD-based solutions to the strong
CP problem could similarly yield misleading results.
Before addressing this question in detail, a word about

notation is necessary. CP violation can be introduced into
QCD via two nominally distinct ways—either through the
quark mass terms or via an explicit θ term. However,
physically, these are not distinct: due to the anomaly, chiral
rotations allows one to convert one type into the other
without changing the physics. The combination of param-
eters θ̄ determines the physical level of CP violation. θ̄ is
equal to the parameter specifying the θ term, after chiral
rotations have been made that render all quark masses real
and non-negative. Throughout this paper, the formalism
will be based on a representation of the theory that has all
quark mass real and non-negative. Within this representa-
tion, there is no distinction between θ and θ̄. Throughout
this paper, it will be denoted as θ̄ in order to make clear that
it contains all of the CP violation in the theory.

II. CONDITIONS FOR QCD-BASED SOLUTIONS
TO THE STRONG CP PROBLEM

The perspective advocated here is that, while χPT
presents severe challenges to QCD-based solutions, it
appears possible to reconcile what is known reliably about
the chiral expansion with a solution to the strong CP
problem within QCD. However, such scenarios require that
QCD behaves in a very unexpected way in order to evade
the strong constraints imposed by χPT. Moreover, unlike
the breakdown of the 1=Nc approximation when quark
masses are small, there is no theoretical motivation for why
QCD should behave this way—other than the need to solve
the strong CP problem. By illustrating how peculiar QCD
needs to be to solve the problem by itself, this paper could
simply be read as additional evidence for a BSM explan-
ation. However, given the importance of solving the strong
CP problem, it is important not to exclude possible
solutions even if they require unexpected behavior.
The most natural solution within QCD would be if θ̄

does not affect physical observables, despite the existence
of nontrivial topological sectors. Shifman et al. (SVZ) [21]
considered and rejected this possibility long ago on the
basis of χPT; they showed that the anomaly plus the lack of
a massless η0 in the chiral limit implies nonzero calculable
CP-violating observables at leading nontrivial order in θ
and the quark masses. Examples considered by SVZ
included the amplitude for η → 2π and the expectation value
of the topological charge density, qðxÞ≡ g2FF̃ðxÞ=32π2 at
first order in θ̄.
For the present purpose, it is more efficient to apply

the logic of Ref. [21] to the topological susceptibility χT,
and higher-order cumulants of the topological charge
defined by

cð2kÞ ≡ lim
V→∞

ð−1Þkþ1hQ2kic
V

¼ lim
V→∞

ð−1Þkþ1hQ2ki − kð2k − 1ÞhQ2k−2ihQ2i þ � � �
V

ð1Þ
[where the brackets indicate the vacuum expectation value
evaluated at θ̄ ¼ 0, Q≡ R d4xqðxÞ, V is the volume of
(Euclidean) space-time, k are positive integers, and the
subscript c indicates the connected part.] are nonzero and
calculable, and χT ≡ cð2Þ. Odd susceptibilities vanish due
to CP. To leading order in χPT, they are given by

cð2kÞ ¼
−d2kðm2

πf2π cosðθ̄2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2tan2ðθ̄

2
Þ

q
Þ

dθ̄2k

������
θ̄¼0

þOðm4
πÞ with δ≡ md −mu

md þmu
; ð2Þ

where fπ is the pion decay constant. As stressed by SVZ,
Eq. (2) relies only on the anomaly, a standard chiral
expansion which, for simplicity, only takes mu and md
as being small—to keep expressions concise, QCD with
two light flavors will be discussed here—and the absence
of a massless η0 in the chiral limit. All expressions are in
Euclidean space.
This paper assumes that χPT accurately reproduces all of

the topological cumulants. More precisely, for each cð2kÞ, at
any given nontrivial order in χPT and with any fixed
relative error tolerance, ϵR, there exists a mass,M, such that
wheneverm2

π < M2 the χPT value is within ϵR of the actual
value. This assumption is based on more than a natural
prejudice that the chiral expansion, which accurately
describes much of low energy QCD [29], should also
work for the cð2kÞ. It is also based on the fact that lattice
studies have provided numerical evidence that χPT at low
order accurately describes χT (for state-of-the-art results,
see Refs. [30,31]). A key challenge of this paper is to
reconcile this assumption with possible loopholes in
reasoning based on χPT that exclude QCD-based solutions
to the strong CP problem.
The challenge becomes clear from standard functional

arguments which imply [25] that the cð2kÞ can be written as

cð2kÞ ¼ d2kϵðθ̄Þ
dθ̄2k

����
θ̄¼0

with

ϵðθ̄Þ≡ − lim
V→∞

log ðPQZQðVÞeiQθ̄Þ
V

; ð3Þ

where ϵðθ̄Þ is the energy density of the vacuum as a
function of θ̄, V is the Euclidean space-time volume, and
ZQðVÞ is the partition function for a fixed topological
sector. Together with Eq. (2), this implies that the energy
density is given by
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ϵðθ̄Þ − ϵð0Þ ¼ m2
πf2π

 
1 − cos

�
θ̄

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2tan2

�
θ̄

2

�s !

þOðm4
πÞ: ð4Þ

Clearly, the topological charge density, q ¼ ϵ0ðθ̄Þ, a physi-
cally relevant observable, is nonzero and θ̄ dependent.
Moreover, it seems inconceivable that higher-order terms
in the chiral expansion could act to exactly cancel out the
dependence from the lowest-order term. This provides a
compelling reason to exclude QCD-based solutions to the
strong CP problem that rely on all physical observables
being independent of θ̄.
However, there is a loophole in this reasoning: QCD

itself might solve that strong CP problem without requiring
physical observables to be independent of θ̄. This would
happen if some aspect of QCD rendered the theory non-
viable unless θ̄ðmod 2πÞ ¼ 0, even though θ̄ apparently
affects physical observables. Scenarios of this kind are
analogous to triviality arguments for ϕ4 theory in 3þ 1
dimensions where the value of the interaction term, which
clearly would have a physical effect on the dynamics and is
allowable by perturbative power counting, is required to be
zero since otherwise the theory would not be ultraviolet
complete. (The renormalization group using a perturbative
kernel is suggestive of triviality; lattice studies are con-
sistent with this expectation [32,33]. For a state-of-the-art
calculation, see Ref. [34].) In a solution based on non-
viability of QCD away from θ̄ðmod 2πÞ ¼ 0, some cur-
rently unrecognized feature of the theory (analogous to the
need for ultraviolet completeness) requires θ̄ to be zero.
There were proposals along this general line in the past,
e.g., Refs. [35,36]. Scenarios such as these are highly
speculative and hard to either verify or exclude. In any case,
reconciling them with the SVZ-type analysis—which
yields physical results at θ̄ ≠ 0 based on apparently reliable
assumptions—appears to be problematic.
Scenarios with QCD nonviable for θ̄ðmod 2πÞ ≠ 0 have

the function ϵðθ̄Þ ill defined when θ̄ðmod 2πÞ ≠ 0. χPT at
any finite order yields an explicit and well-defined function
for ϵðθ̄Þ, presenting a challenge to such scenarios.
Moreover, an assumption underlying this paper, that the
cð2kÞ—even derivatives of ϵðθ̄Þ with respect to θ̄ (evaluated
at θ̄ ¼ 0)—are nonzero and accurately given in χPT makes
this challenge acute. Superficially, this seems to be an
insurmountable challenge to such scenarios; how can a
function that only exists at isolated points have well-
defined derivatives? Lattice calculations yield a nonzero
susceptibility and appear to confirm χPT. However, despite
this challenge, scenarios of this type need not be ruled out
due to χPT.
This can happen, in principle, if ϵðθ̄Þ, while undefined

for real θ̄ away from θ̄ðmod 2πÞ ¼ 0, is nevertheless well
defined for imaginary θ̄. Of course, physically, θ̄ must be

real due to unitarity. However, mathematically additional
information about ϵðθ̄Þ can be obtained by extending
Eq. (3) to complex θ̄ [37]. Extending the reasoning that
gave in Eq. (3) into the complex plane yields

c2k ¼ ð−1Þkd2kϵðiθÞ
dðθ̄Þ2k j

θ̄¼0
. Moreover, there is a caveat to

Eq. (3): it holds only if the sum on Q and infinite-volume
limit in the definition of ϵðθ̄Þ converge to a finite value for
real θ̄ in some finite neighborhood around θ̄ ¼ 0. Suppose
that it does not so that ϵðθ̄Þ is ill defined for real θ̄ with
θ̄ðmod 2πÞ ≠ 0 but remains well defined for imaginary
ϵðθ̄Þ. In such cases, it becomes possible that χPT could

accurately describe cð2kÞ ¼ ð−1Þkd2kϵðiθÞ
dðθ̄Þ2k j

θ̄¼0
. The signifi-

cant point is that the existence of nonzero topological
susceptibilities need not require that ϵðθ̄Þ is well defined on
the real axis away from θ̄ðmod 2πÞ ¼ 0; it is sufficient for it
to be well defined on the imaginary axis. In the remainder
of this paper, it will be assumed that this occurs. Such
scenarios depend on an obstruction to analytically contin-
uing the functional form of the energy density from the
imaginary θ̄ to the real axis, and this implies that the point θ̄
is nonanalytic.
The challenges posed by χPT to a solution to the strong

CP problem within QCD can be met, provided ϵðθ̄Þ and the
cð2kÞ satisfy the following conditions:

(i) ϵðθ̄Þ is finite and real for θ̄ real with θ̄ðmod 2πÞ ¼ 0

and for θ̄ purely imaginary.
(ii) ϵðθ̄Þ is ill defined, corresponding to a nonviable

physical theory when θ̄ðmod 2πÞ ≠ 0 with θ̄ real.
(iii) ϵðθ̄Þ is an analytic function for θ̄ ≠ 0 with θ̄ purely

imaginary.
(iv) ϵðiθ̄Þ is not analytic at θ̄ ¼ 0.
(v) All derivatives of ϵðiθ̄Þ with respect θ̄ are finite and

well defined at θ̄ ¼ 0, despite the nonanalyticity at
zero of condition (iv).

(vi) The topological cumulants are well defined, finite,

and given by cð2kÞ ¼ ð−1Þkd2kϵðiθÞ
dðθ̄Þ2k j

θ̄¼0
.

(vii) For any cð2kÞ and any given nontrivial order in χPT
with any fixed relative error tolerance, ϵR, there
exists a mass,M, such that wheneverm2

π < M2, χPT
accurately reproduces cð2kÞ to within ϵR.

(viii) The chiral expansion for ϵðθ̄Þ when θ̄ is purely
imaginary is asymptotic; for any fixed order, any
imaginary θ̄ and any fixed relative error tolerance,
ϵR, there exists an M such that whenever m2

π < M2,
χPT accurately reproduces ϵðθ̄Þ to within ϵR.

(ix) The nonanalyticity of ϵðiθ̄Þ at θ̄ ¼ 0 of condition (iv)
is due to contributions that are subleading to all
orders in χPT.

Conditions (i) and (iii) encode the expected behaviorwhen
θ̄ is imaginary that leads to well-defined topological sus-
ceptibilities, while condition (ii) is the heart of scenarios that
make QCD nonviable for real θ̄ away from θ̄ðmod 2πÞ ¼ 0.
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Conditions (vi) and (vii) place severe constraints on such
scenarios due to χPT. Conditions (iv) and (viii) play essential
roles in evading such constraints: condition (iv) reconciles
conditions (ii) and (iii), while condition (ix) reconciles
conditions (ii), (iv), (iii), and (viii).

III. ILLUSTRATIVE EXAMPLE

Consider the following illustrative functional form,
which illustrates the type of function that satisfies all nine
conditions,

ϵillusðθ̄Þ − ϵð0Þ ð5aÞ

¼ m2
πf2πgðθ̄; δÞ

Z
∞

0

dxe−xþx2ðm
2
πf

2
π

Λ4
Þgðθ̄;δÞ

¼
X∞
j¼0

ð2jÞ!
j!

Λ4

�
m2

πf2π
Λ4

�
jþ1

gðθ̄; δÞjþ1

¼ Λ4

��
m2

πf2πgðθ̄; δÞ
Λ4

�
þ 2

�
m2

πf2πgðθ̄; δÞ
Λ4

�
2

þ

12

�
m2

πf2πgðθ̄; δÞ
Λ4

�
3

þ 120

�
m2

πf2πgðθ̄; δÞ
Λ4

�
4

þ � � �
�

ð5bÞ

with gðθ̄; δÞ ¼ 1 − cos

�
θ̄

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2tan2

�
θ̄

2

�s

¼ ð1 − δ2Þθ̄2
8

−
ð1þ 2δ2 − 3δ4Þθ̄4

384
þ � � �

ð5cÞ

where Λ is a parameter with dimensions of mass.
Equation (5b), the formal chiral expansion of ϵillus, is

asymptotic and valid when θ̄ is imaginary; at lowest order,
it yields Eq. (4). The form of gðθ̄; δÞ in Eq. (5c) accounts for
isospin violation and ensures that all θ̄ dependence vanishes
when mu or md is zero. Note that gðθ̄; δÞ has an important
property: it is greater than zero when θ̄ is real and away
from θ̄ðmod 2πÞ ¼ 0, equal zero when θ̄ðmod 2πÞ ¼ 0, and
less than zero when θ̄ is imaginary. From the integral form
of Eq. (5), this implies that energy density is divergent for
real θ̄ðmod 2πÞ ≠ 0 but convergent for imaginary θ̄; thus,
conditions (i) and (ii) hold. One might hope that, despite the
nonanalytic behavior at θ̄ ¼ 0, one could analytically
continue the ϵillus from the imaginary axis to real θ̄. One
can; but the function so obtained is multibranched, and all
branches have an imaginary part—indicating that they are
not physically viable.
It is straightforward to verify that conditions (i)–(ix) hold

for ϵillus. The numerical coefficients in the chiral expansion
of Eq. (5b) explain why: the coefficient of the jth term is
ð2jÞ!
j! , which grows faster than any power law in j. Thus, the

radius of convergence for the chiral expansion is strictly
zero. Moreover, the series is actually in m2

πgðθ̄; δÞ where
gðθ̄; δÞ in a series in θ̄ begins at order θ̄2. Thus, the radius of
convergence of an expansion in θ̄ is also zero, and the point
θ̄ ¼ 0 is nonanalytic. The rapid growth in these coefficients
implies that, while χPT at low order can accurately describe
the cð2kÞ (as required by condition), the value of mπ for
which χPT at fixed order is accurate rapidly drops with k.
If ϵðθ̄Þ in QCD were given by ϵillusðθ̄Þ, the strong CP

problem would be solved. Of course, in QCD, ϵðθ̄Þ ≠
ϵillusðθ̄Þ, which was given simply to illustrate that functions
satisfying all the conditions exist. ϵillusðθ̄Þ is consistent with
a chiral Langrangian given to all orders in m2

π but treated at
tree level. In practice, higher-order terms in χPT will
develop chiral logarithms due to infrared behavior in loops
along with the powers of m2

π associated with tree-level
terms [22–25]. However, these chiral logs are entirely fixed
by lower-order terms in the theory and should not affect
whether or not the conditions are satisfied. The critical issue
for this is whether the coefficients of higher-order terms in
the chiral expansion of ϵðθ̄Þ grow sufficiently rapidly; at this
stage, we do not know whether or not they do in QCD.
This paper has focused on ϵðθ̄Þ. However, it should be

clear that, if scenarios of this sort were valid, other
observables such as the η → 2π amplitude considered by
SVZ [21] would be expected to have analogous behavior.
The matrix elements for these observables would be finite
and describable in χPT for imaginary θ̄ but would become
ill defined for real θ̄ðmod 2πÞ ≠ 0, and the function would
be nonanalytic at θ̄ ¼ 0 with the nonanalyticity subleading
to all orders in χPT.

IV. DISCUSSION

The central argument of this paper is that there is a
loophole in the logic that χPT excludes QCD-based
solutions to the strong CP problem. Of course, there
remain very strong reasons to doubt that QCD itself can
be the solution of the strong CP problem. One of these is
simply that the loophole requires QCD to behave in a very
surprising manner that differs from the familiar ways we
expect quantum field theories to behave. Such behavior is
radically differently from any quantum field theory that the
community has seen over the decades. A second reason is
that the motivation for considering the conditions proposed
here is entirely phenomenological; they were proposed
solely to ensure that θ̄ðmod 2πÞ ≠ 0 without violating
established properties of QCD. Accordingly, there is no
underlying theoretical basis for expecting QCD to satisfy
them. The illustrative model of Sec. III illuminates this.
While the illustrative model satisfies conditions (i)–(ix) and
thereby demonstrates that forms that do so are not excluded
mathematically, it is also contrived. The model did not
emerge as a natural outgrowth of any theoretically motivated
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mechanism; rather, it was essentially reverse engineered for
the sole purpose of satisfying the conditions. The upshot of
this is that it is hard to seewhy a functional form satisfying the
conditions should emerge from QCD.
On the other hand, there are no easy solutions to the

strong CP problem. Solutions require one to conjecture
entire new sectors of BSM physics—a major intellectual
leap—or to conjecture that the standard model behaves in a
very unfamiliar way—which is also a major intellectual
leap. Thus, it seems sensible to explore the possibility of all
possible solutions.
It is important to stress the way in which this class of

scenarios solves the strong CP problem. In these scenarios,
the theory is only viable as a physical theory for values of θ̄
satisfying cosðθ̄Þ ¼ 1. At first glance, this might appear to
be inconsistent with ϵðθ̄Þ being well defined and analytic
when θ̄ is purely imaginary. Indeed, one might worry that
the existence of a well-defined function on the imaginary
axis means that the theory allows CP-violating physics,
provided that one takes θ̄ to be imaginary. However, such
concerns are misplaced. It is important to distinguish
between the theory as a mathematical object and one
describing physics. Physically, the theory is only sensible
when θ̄ is real. If it is not, the theory is not unitarity and is
not an acceptable description of nature. On the other hand,
one can define the path integral for the theory mathemati-
cally, regardless of the phase of θ̄ (assuming that it converges
appropriately) even when this renders the theory unphysical.
Thus, if this class of scenario is correct, then the strong CP
problem is solved: the only physically viable value of θ̄
in the theory has cosðθ̄Þ ¼ 1 and no CP violation. This
remains true despite the fact that theory is mathematically
sensible for unphysical imaginary values of θ̄.
Clearly solutions to the strong CP problem that exploit

the loophole noted in this work are very different from
axion solutions. In axion models, θ̄ effectively becomes
dynamical; its value is free to respond to the environment.
The strong CP problem is solved since the effective
potential for θ̄ has a minimum at cosðθ̄Þ ¼ 1; if a region
of space had cosðθ̄Þ ≠ 1, it would not be in a stable
equilibrium and would slide toward the minimum. In
contrast, in solutions of the sort considered here, θ̄ does
not adjust itself to a value where CP violation vanishes.
Rather, θ̄ is not dynamical but a fixed value. The solution
requires that for reasons currently not understood—but also
not completely ruled out, given our current state of knowl-
edge—QCD does not exist as a viable physical theory
unless cosðθ̄Þ ¼ 1; thus, if the standard model contains
QCD, it must have θ̄ðmod 2πÞ ¼ 0.
Ideally, one should be able to verify or exclude this class

of solution—or at least develop evidence in favor of or
opposed to it. A key problemwith trying to rule out scenarios
of the sort considered here is their phenomenological
(as opposed to theoretical) motivation. This lack of an
underlying theoretical picture means that one cannot rule

out this class of scenario by undermining the underlying
theoretical assumptions.
Nevertheless, one obvious future research direction is to

see whether there are reliable theoretical arguments that can
close the loophole consider in this paper. In essence, that
would mean a “no-go” theorem that would rule out this
class of solutions to the strong CP problem. In this context,
the interplay between perturbative and nonperturbative
aspects of a chiral expansion suggest analysis along using
ideas of resurgence (for a review of the state of the art, see
Refs. [38,39]) might shed light on the issue.
If the loophole cannot be closed using reliable theoretical

arguments, other ways of obtaining evidence in support of
or against solutions of this type should be considered.
Clearly, the most straightforward way to exclude these
scenarios would be via a direct and reliable calculation of
ϵðθ̄Þ. If one could show that the ϵðθ̄Þ is well defined and
calculable in QCD away from cosðθ̄Þ ¼ 1, the scenario is
ruled out. Unfortunately, the only known systematic
reliable numerical method for computing nonperturbative
observables directly from QCD is via Euclidean-space
lattice calculations, and direct lattice calculations of ϵðθ̄Þ
are well beyond the state of the art due to a sign problem
[37]. Accordingly, it is necessary to consider what kind of
indirect evidence one can obtain.
As it happens, if such scenarios were correct, Monte Carlo

calculations in Euclidean space without exponentially bad
sign problems could, in principle, provide compelling, if
indirect, evidence for them. However, there are severe
practical limitations to such calculations for QCD. These
practical limitations will almost certainly make any such
evidence obtainable in the foreseeable future quite indirect.
Still, even indirect evidence for such scenarios would be very
significant.
The basic reason why lattice calculations could, in

principle, provide indirect support for such scenarios comes
from conditions (i)–(vi), which do not depend in detail on
chiral properties. These provide a distinctive signature.
Consider the function ϵðθ̄Þ along the imaginary θ̄ axis where
it is well defined in the scenarios considered here. The
conditions imply that at θ̄ ¼ 0 all derivatives of ϵðiθ̄Þ are
finite and well defined but the function is nonanalytic. Thus,
if one were to write ϵðiθ̄Þ as a Taylor expansion around some
point in the complex plane, its radius of convergence would
approach zero as that point approaches θ̄ ¼ 0.
Given that ϵðθ̄Þ is an even function and that up to a

k-dependent sign the topological cumulants, cð2kÞ, are given
by the ð2kÞth derivative of ϵðiθ̄Þ with respect to θ̄ ¼ 0, it
follows from the ratio test that R, the radius of convergence
of a Taylor expansion for ϵðθ̄Þ, in general is given by

R ¼ lim
n→∞

ffiffiffiffiffiffiffiffiffiffiffiffi
jcð2nÞj
ð2nÞ!

jcð2nþ2Þj
ð2nþ2Þ!

vuuut ; ð6Þ

provided the limit exists. This means that if
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lim
n→∞

fn → ∞ where fn ≡ jcð2nþ2Þj
ðnþ 1Þðnþ 2Þjcð2nÞj ð7Þ

the radius of convergence is zero, a necessary condition for
this class of scenario to be valid. Provided that such
behavior could be documented for QCD, one would have
strong evidence in favor of such scenarios.
Since topological cumulants are calculable without a

sign problem (either by directly computing fluctuations in
the topological charge or by computing numerical deriv-
atives of ϵðiθ̄Þ), one could look for indications that in QCD
fn grows without bound as n → ∞ (as is required by
scenarios of the sort considered here). Such studies are
necessarily indirect: lattice calculations can only provide
information about a finite number of topological cumu-
lants. Thus, one cannot determine whether fn is actually
diverging or not; the best one can do is see whether it
appears to be growing in a manner consistent with
divergence. Still, a convincing indication of this sort might
be regarded as compelling evidence for such scenarios.
To see how in principle this could work, suppose, for the

sake of illustration, that ϵðiθ̄Þ in QCD is given exactly by
ϵillusðiθ̄Þ, the illustrative model of Sec. III, and that lattice
calculations determining numerous topological cumulants
with negligible error were tractable. In Fig. 1, the ratio fn
defined in Eq. (7) is plotted as a function of n for this model
with two different values of the parameter Λ, 300 and
400 MeV; for comparison, this ratio is also given for
lowest-order chiral perturbation theory. The ratio in lowest-
order chiral perturbation theory saturates at a finite value, as
one expects when ϵðiθ̄Þ has a nonzero radius of conver-
gence. In contrast, for the toy model with either Λ ¼
300 MeV or Λ ¼ 400 MeV, the ratio quite clearly appears

to be growing linearly with n asymptotically. To the extent
that the behavior is indicative of the true asymptotic
behavior (as is the case for the toy model), one can
conclude that the Taylor series for ϵðiθ̄Þ around zero has
a zero radius of convergence as required by the scenarios
considered here. The behavior seen in Fig. 1 is quite
dramatic. If one could obtain lattice data of this sort for
QCD and find that it had this behavior, one would have
compelling, if somewhat indirect, evidence for a scenario of
the sort considered here.
Unfortunately, Fig. 1 also indicates practical problems in

implementing such an approach that render it intractable for
QCD. Note that for low n the data for fn do not even hint
that it will ultimately grow linearly with n for asymptoti-
cally large n. Rather, up to a fairly large value of n, the ratio
appears to be saturating to a finite value, as one would
expect with an analytic function around θ̄ ¼ 0—falsely
suggesting that this functional forms does not satisfy the
conditions. For the model with Λ ¼ 300 MeV, the first
noticeable hint that the ratio is not saturating is around
n ¼ 30 (requiring a calculation of topological cumulants up
to cð62Þ); for the model with Λ ¼ 400 MeV, the first
noticeable hint that it is not saturating is around n ¼
110 (requiring a calculation of topological cumulants up
to cð222Þ).
The sharp onset at some large value of n of behavior

inconsistent with saturation makes verifying such a sce-
nario for QCD highly problematic, even assuming QCD
behaved according to this class of scenario. Suppose,
hypothetically, this class of scenario were correct for
QCD and moreover algorithms for the determination of
topological cumulants of QCD advanced to the point where
they could be calculated with high accuracy up to cð40Þ

300 MeV

400 MeV

Lowest Order PT

0 50 100 150
0.0

0.5

1.0

1.5

2.0

2.5

n

f n

FIG. 1. fn ≡ jcð2nþ2Þj
ðnþ1Þðnþ2Þjcð2nÞj for ϵ

illusðθ̄Þ, the illustrative model of Sec. III. The cð2nÞ are topological cumulants. Two different values of

the parameter Λ are shown. For comparison, the same ratio is also given for lowest-order chiral perturbation theory. If this ratio diverges
as n → ∞, then ϵðiθ̄Þ is nonanalytic at θ̄ ¼ 0.
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(which corresponds to n ¼ 19). Even with this large
number of topological cumulants, it could easily still be
the case that one would have no numerical evidence for the
scenario. Given the toy model, it is not implausible that one
might need accurate cumulants up through cð100Þ (i.e.,
n ¼ 49) or some larger value before there was compelling
evidence for the scenario.
In any case, a reliable and accurate calculation of

topological cumulants through cð40Þ will almost certainly
be well beyond our reach for QCD for the foreseeable
future—unless some radically improved algorithm is
found. Although topological cumulants for fixed n are
calculable on a Euclidean lattice studies without exponen-
tial sign problems, with all current approaches, the diffi-
culty in computing them grows with the order of the
cumulant. If one computes the cð2nÞ via fluctuations in the
topological charge, the signal to noise worsens as n
increases. If one attempts to extract them as numerical
derivatives of ϵðiθ̄Þ, one is faced with the need to compute
ϵðiθ̄Þ with increasing accuracy to accurately get higher
derivatives; this is particularly difficult, given that the
function is being evaluated numerically via Monte Carlo
methods. Even in, even for the computationally much
simpler case of Yang-Mills theory, only a few topological
cumulants have been computed or even bounded (see,
e.g., Ref. [40]).
In Fig. 1, fn appears to be saturating with n until at some

comparatively large there is a sharp onset of behavior
inconsistent with saturation. This qualitative behavior is
easy to understand. Condition (ix) implies that the non-
analyticity of ϵðiθ̄Þ at θ̄ ¼ 0 is due to contributions that are
subleading to all orders in χPT. This comes about because
there are contributions to c2n

ð2nÞ! that simultaneously diminish

with n due to a chiral suppression that scales like ðmπ
Λ0 Þ2n

(where Λ0 is a typical hadronic scale) and, due to a
numerical factor, grows with n faster than exponentially.
This behavior can easily be seen to occur in ϵillus, the toy
model of Sec. III. For small values of n, the chiral
suppression overwhelms the numerical coefficient, and
these contributions are swamped by contributions that
are leading order in a chiral expansion. However, the
numerical coefficients grow faster with n than the dimin-
ution due to chiral suppression. Thus, at some value of n,
this contribution ceases to be negligible. Moreover, the
rapid growth of the numerical contribution implies that,
once the term ceases to be negligible, it rapidly becomes
dominant. Thus, one expects the sort of rapid onset of
behavior incompatible with saturation seen in Fig. 1.
The value of n where this change of behavior sets in

depends on the scale of the chiral suppression. In the toy

model, this is fixed by the dimensionless combination m2
πf2π
Λ4 .

Thus, larger values of Λ in the model will lead to more
chiral suppression and accordingly the onset of growth
incompatible with saturation occurring at larger n. This is

seen in Fig. 1, where forΛ ¼ 400 MeV this onset is pushed
out to the neighborhood of n ¼ 110, whereas it occurs
around n ¼ 30 for Λ ¼ 300 MeV.
One might worry that the prospects for directly detecting

this sort of behavior in QCD may be even more dire than
suggested by Fig. 1. The two models used to illustrate the
issue had Λ ¼ 300 MeV and Λ ¼ 400 MeV, which might
be regarded as quite low scales. The parameter Λ controls
the scale of the chiral suppression, and one might assume
that it should be taken to be naturally at a typical hadronic
scale of order 1 GeV; values Λ at that scale would push the
onset of behavior incompatible with saturation in this
model to extremely large values of n.
On the other hand, it is hard to estimate the natural scale

for Λ. The size of the chiral suppression in the model is

fixed by the combination ðm2
πf2π
Λ4 Þ of which the form was

picked in order to have the m2
πf2π structure match with the

leading-order χPT result. However, f2π is numerically quite
small on the scale of hadronic physics. One could just as

well have written this as m2
π

Λ02 with Λ0 ¼ Λ2

fπ
. The models with

Λ ¼ 300 MeV correspond to Λ0 ¼ 958 MeV, which may
be regarded as naturally sized, while Λ ¼ 400 MeV cor-
responds to Λ0 ¼ 1720 MeV, which may regarded as large.
The numerical value of the parameter one uses to para-
metrize the chiral suppression is a matter of bookkeeping as
well as physics. Regardless of how natural the model
parameters are, the model strongly suggests that, even if the
scenarios considered in this paper were correct, it seems
extraordinarily unlikely that this would be revealed by
lattice studies of the topological cumulants in the foresee-
able future.
Fortunately, one need not completely rule out the

possibility of indirect evidence in support of such scenarios.
For example, it is conceivable that volume dependence
could be used to obtain evidence for or against the type of
QCD-based solution to the strong CP problem considered
in this paper. It has long been known [41,42] that interplay
between topology, the chiral limit, and the infinite-volume
limit is subtle. However, by exploiting known behaviors
near the chiral limit, one can make concrete predictions for
topological behavior, taking into account finite-volume
effects, e.g., in the so-called ϵ-regime. Unfortunately,
one cannot just borrow these results here since the essence
of the current scenarios is that the leading-order chiral
effects yield misleading results for the θ dependence.
Nevertheless, one might imagine that if the full interplay
of topological, finite volume, and chiral effects were
understood in the context of this class of scenario, then
finite-volume studies might have distinctive behavior
which might act as a signature. If things were particularly
fortuitous, it is possible that such a volume dependent
behavior signature might turn out to be far more practical
thandirectly computing numerous topological cumulants.
However, since this class of scenario was proposed

for essentially phenomenological reasons and lacks a
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theoretically motivated detailed mechanism, it is not
currently possible to deduce from first principles how
finite-volume effects will alter the delicate interplay of
chiral effects with the analyticity of behavior of ϵðθ̄Þ near
θ ¼ 0. Thus, one cannot easily anticipate whether finite-
volume effects might prove to be a useful tool in discerning
whether QCD obeys such a scenario.
If the solution to the strong CP problem is due to a

scenario of this type, there is another way to find evidence
in its favor. Recall that a principal reason that the scenarios
considered here may seen implausible a priori is that, after
decades of experience with quantum field theory, the
community has never encountered any theories that behave
in such a manner. Thus, a more general strategy would be to
concentrate on quantum field theories that, while distinct
from QCD, are more or less related and more tractable. If
one could see compelling evidence for behavior analogous
to conditions (i)–(ix) in such a theory, that would greatly
increase the plausibility of the scenario. Indeed, evidence
for behavior analogous conditions (i)–(vi) would be enough
to substantially increase the plausibility; one can view
conditions (i)–(ix) as the critical underlying ones, while
conditions (vii)–(ix) could emerge naturally in QCD if the
first six held, in order to reconcile chiral physics with the
behavior of implied by (i)–(vi).
The behavior exhibited in Fig. 1 suggests one obvious

line of attack. Evidence that the ratio fn is not saturating to
a finite value (as expected from models satisfying the
first six conditions) requires far smaller values of n for
the model with Λ ¼ 300 MeV than the model with
Λ ¼ 400 MeV. The difference between the two models
is that the chiral suppression is more pronounced for the
Λ ¼ 400 MeV case. Indeed, conditions (vi)–(ix) imply that
as the chiral suppression grows the value of n needed before
the onset of nonsaturating behavior does as well. Similarly,
as the chiral suppression shrinks, the value of n needed
before the onset of nonsaturating behavior does as well.
In QCD, one can make the size of chiral suppression small,
simply by increasing the value of the quark masses.
Optimistically, one might hope that if QCD behaves

according to a scenario of this type, tractable calculations
using sufficiently large quark masses might be possible in
the foreseeable future that suggest a growth of fn that is
inconsistent with saturation.
There are a number of caveats to this. Clearly, if such

behavior is seen with large quark masses, it will not fully
establish the scenario. If chiral suppression plays no role in
the observation, the best one can test are conditions (i)–(vi)
and not conditions (vi)–(ix), which depend on chiral
symmetry. Moreover, it is at least theoretically conceivable
that scenarios of this sort only apply for a certain domain
of quark masses and that this domain includes large quark
masses but not realistic ones. This is a minor concern. If,
contrary to all previous experience with quantum field
theory, QCD with large quark mass satisfies conditions

(i)–(vi) (providing a natural explanation for the strong CP
problem), it becomes extremely plausible, given the
empirical fact that CP violation in strong interactions is
nonexistent or extremely small, that the same behavior
would extend down to light quark masses and thereby
require conditions (vi)–(ix).
A more significant concern given the limited number of

topological cumulants that are likely to be accessible is the
possibility of a “false positive” in which the ratio fn is seen
to be growing with n for a few calculable small values of n
in a manner suggesting that the ratio may not saturate, when
in fact it does but does so at slightly large values of n. There
is also the possibility of “false negatives.”One situation that
could arise is that the behavior near the chiral limit plays a
central role in realizing such scenarios and that they only
are realized in QCD for a domain in which the quark
masses are sufficiently small. If this were the case, then
calculations at large quark masses would miss the effect.
There is also a practical concern. One is likely to be able

to compute only a small number of topological cumulants.
It is quite possible that for those n which are calculable the
fn appears to be saturating with n but ultimately there will
be the onset of behavior where it increases without bound,
but this onset is in a regime beyond where the cð2nÞ are
calculable—even if the quark masses are large.
If one is attempting to render a study tractable by

increasing the quark masses, it is reasonable to consider
the extreme case where they go to infinity, leaving a pure
gauge theory. Doing this not only eliminates chiral sup-
pression altogether, leading to the prospect of seeing
signatures of the scenario at smaller values of n, but it
also has the obvious practical advantage that calculations
lacking a quark functional determinant are far more
straightforward numerically and hence one can compute
cð2nÞ coefficients to larger values of n. Of course, removing
quarks entirely from the problem makes the theory that
much further from QCD and thus that much harder to draw
definitive conclusions. Still, it would go a long way towards
establishing a QCD-based solution to the strong CP
problem if nontrivial evidence were found suggesting that
Yang-Mills theory satisfied with conditions (i)–(vi); the fact
that such conditions were satisfied for a theory related to
QCD combined with the phenomenological fact that CP
violation in QCD is either nonexistent or very small would
make such a scenario plausible.
While Yang-Mills theory has no chiral suppression,

numerical challenges may emerge due to suppression in
1=Nc (whereNc is the number of colors in the theory)—but
fortunately these are much less severe than those due to
chiral suppression. Witten showed long ago [26] that
standard Nc, counting rules imply that as the large Nc
limit is approached, the topological cumulants scale as

cð2nÞ ∼ N2−2n
c : ð8Þ
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Thus, as n increases, the cð2nÞ decrease parametrically quite
quickly with Nc. For example, for n ¼ 5, this suppression
factor is N−8

c , which for Nc ¼ 3 is 3−8 ≈ :0001524. The
principal difficulty this poses is that small numbers are
often hard to compute accurately via numerical means
and are particularly difficult to extract accurately via
Monte Carlo methods. Thus, it may be hard to compute
cn’s up to even moderately large n, and those that are
computed are apt to be noisy. This is likely to limit range in
n that one can explore. Moreover, the noise in the cn will
translate to noise in the fn. Note that the scaling in Eq. (8)
implies that all of the fn ∼ N−2

c and thus are parametrically
small. This means that the growth of fn with n will also be
parametrically small. Detecting clear signs of growth of fn
with n might be difficult to see without going to larger n,
given both the parametrically small growth and the sub-
stantial noise in the extraction of the fn.
Fortunately, the numerical difficulties due to this 1=Nc

suppression are likely to be much less severe than the ones
associated with chiral suppression for models satisfying
conditions (i)–(ix). In particular, there is no reason to
believe that N−2

c suppression in the growing value of fn
should be masked at small n by a leading-order contribu-
tion as happens with chiral suppression. Thus, there is no
reason to suspect that 1=Nc suppression would induce the
type of the behavior seen in Fig. 1, where the evidence of
asymptotic growth is undetectable up to some compara-
tively large value of nwhere it sets in suddenly. This greatly
improves the prospects of seeing the effect in pure gauge
theory.
One strategy for reducing numerical difficulties associ-

ated with N−2
c suppression is to reduce Nc. Rather than

studying SU(3) pure gauge theory, one could study
SU(2). There are two virtues to doing this: the calculations
intrinsically require fewer computational resources, pos-
sibly allowing computations of fn with more accuracy or
to larger n, and the N−2

c suppression effect for each fn is
reduced, simplifying the task of identifying the growth of
fn. Of course, there is also a downside—SU(2) Yang-Mills
theory is obviously further from QCD than SU(3) Yang-
Mills theory. Nevertheless, if one found evidence that
SU(2) pure gauge theory appeared to be consistent with
conditions (i)–(vi), it would certainly make a QCD-based
solution to the strong CP problem far more plausible.
There is a hierarchy of theories starting with QCD itself,

going through QCD with artificially large quark masses
and SU(3) pure gauge theory to SU(2) pure gauge theory.
As one descends this hierarchy, the theories become
progressively less like QCD, but if the fn coefficients
grow with n asymptotically, then evidence for it becomes
progressively more accessible. It is noteworthy, however,
that at present, even toward the bottom of the hierarchy, too
few cn coefficients have been computed to even begin
exploring the issue—the state of the art for Yang-Mills
theory [40] only goes up to calculations of cð6Þ, allowing

only two fn’s, and the cð6Þ computations are essentially
bounds rather than well-determined values. Thus, at
present, for Yang-Mills theories one can only compute
f1 and set a bound for f2; this is insufficient to see even the
hint of a trend valid at large n. However, it is at least
conceivable that in the not-too-distant future, it may be
possible to extract a couple more fn’s. Even if these showed
an increase with n, it would be insufficient to establish
compelling evidence for conditions (i)–(vi). However, it
could be suggestive of it. Thus, in the short term, evidence
of this sort will necessarily be quite indirect.
There is another way to proceed, namely the study

quantum field theories that may be quite far removed from
QCD (including theories in space-time dimensions smaller
than 3þ 1). As noted previously, a principal reason to be
skeptical that QCD could satisfy conditions (i)–(ix) is that,
over decades of experience with quantum field theory,
the community has never encountered a theory that satisfies
anything resembling these conditions. The converse, how-
ever, is also true. Were one to find any quantum field theory
where there is a reliable way to show that an analog of
conditions (i)–(ix) [or even conditions (i)–(vi)] can be
shown to hold and to emerge naturally from the structure of
the theory, it would greatly increase the plausibility of this
class of solution to the strong CP problem. Moreover, if
one were to find a theory that did satisfy the analog of these
conditions, there is the prospect that one might well gain
insight into the underlying mechanism causing the con-
ditions to be satisfied and to develop a physical picture of
what is behind it. This, in turn, might hint at what could be
happening in QCD.
This prospect suggests the possible utility of a review of

known quantum field theories (in any number of dimen-
sions) that are tractable in some manner and have some
analog to the θ-term. Such theories could be tractable for a
number of reasons. They could be one of the rare examples
of an exactly solvable model. Alternatively, they could be
tractable numerically on a lattice in a manner that allowed
testing the conditions. Clearly, numerical treatments on a
lattice of theories with nontrivial topology are far more
likely to be viable for theories in lower space-time
dimensions than in 3þ 1 dimensions. Consider, for exam-
ple, Ref. [43], a calculation of a theory in 1þ 1 dimensions
that was viable more than a decade and half ago; an
analogous 3þ 1 dimensional calculation remains imprac-
tical today. A third class of tractable examples would be a
theory that is known to be solvable in some limit and that
admits systematic corrections away from that limit. Of
course, with this third class, one must bear in mind that any
conclusions based on such a study may give misleading
results (after all, the entire premise of this paper is that
the chiral expansion could give misleading results for θ
dependence). It is conceivable that one could identify
one or more such theories that could satisfy some type of
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analog of conditions (i)–(vi) that may not have been
recognized as such in the past.
In searching for such a theory, the analogy to QCD need

not be perfect. Of course, the further the theory is from
QCD, the less evidence for the analog of conditions (i)–(vi)
suggests that QCD will also satisfy these. Similarly, the
weaker the analogy of the quantities in the tractable theory
to those in QCD, the weaker the suggestion that QCD will
satisfy them. Nevertheless, if scenarios that solve the strong
CP without invoking BSM physics in the manner consid-
ered in this paper are correct, then in the short term, the

best prospect for finding evidence for them—albeit rather
indirect evidence—is via the study of tractable analog
theories.
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