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Invoked by the recent CMS observation regarding candidates of the χbð3PÞ multiplet, we analyze
the hyperfine and mass splittings among the 3P multiplet in our unquenched quark model studies. The
mass difference of χb2 and χb1 in the 3P multiplet measured by the CMS Collaboration
(10.6� 0.64� 0.17 MeV) is very close to our theoretical prediction (12 MeV). Our corresponding mass
splitting of χb1 and χb0 enables us to predict more precisely the mass of χb0ð3PÞ to be (10490� 3) MeV.
Moreover, we predict ratios of the radiative decays of χbJðnPÞ candidates, both in the unquenched quark
model and quark potential model. Our predicted relative branching fraction of χb0ð3PÞ → ϒð3SÞγ is one
order of magnitude smaller than χb2ð3PÞ; this naturally explains the nonobservation of χb0ð3PÞ in the
recent CMS search. We hope these results provide useful references for forthcoming experimental searches.
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I. INTRODUCTION

The excited P-wave bottomonia, χbJð3PÞ, are of special
interest since they provide a laboratory to test (and model)
the nonperturbative spin-spin interactions of heavy quarks.
Very recently, the CMS Collaboration observed two can-
didates of the bottomonium 3P multiplet, χb1ð3PÞ and
χb2ð3PÞ, through their decays into ϒð3SÞγ [1]. Their
measured masses and mass splitting are

M½χb1ð3PÞ�¼ð10513.42�0.41�0.18ÞMeV;

M½χb2ð3PÞ�¼ð10524.02�0.57�0.18ÞMeV;

Δm21≡mðχb2Þ−mðχb1Þ¼ð10.6�0.64�0.17ÞMeV:

ð1Þ

There are some earlier measurements related to χbJð3PÞ
mass by the ATLAS [2], LHCb [3,4], and D0 collaborations
[5]. However, these measurements cannot distinguish
between the candidates of the χbJð3PÞ multiplet. The

recent CMS analysis [1] is a higher-resolution search
and hence is able to distinguish between χb1ð3PÞ and
χb2ð3PÞ for the first time.
In this paper, we intend to compare our unquenched

quark model studies with this recent measurement and
make a more precise prediction for the mass of the other 3P
bottomonium ( χb0) by incorporating the measured mass
splitting. We also make an analysis of the hyperfine
splitting of P-wave bottomonia, which enlighten the
internal quark structure of the considered bottomonium.
In addition, we predict model-independent ratios of radi-
ative decays of χbJðnPÞ candidates.
Heavy quarkonium states can couple to intermediate

heavy mesons through the creation of the light quark-
antiquark pair which enlarges the Fock space of the initial
state; i.e., the initial state contains multiquark compo-
nents. These multiquark components will change the
Hamiltonian of the potential model, causing the mass
shift and mixing between states with the same quantum
numbers or directly contributing to open channel strong
decay if the initial state is above the threshold. These
can be summarized as coupled-channel effects (CCEs).
When CCEs are combined with the naive quark potential
model, one gets the unquenched quark model (UQM).
The UQM was considered at least 35 years ago by
Törnqvist et al. [6–9].
The physical or experimentally observed bottomonium

state jAi is expressed in the UQM as
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jAi ¼ c0jψ0i þ
X
BC

Z
d3pcBCðpÞjBC;pi; ð2Þ

where c0 and cBC stand for the normalization constants
of the bare state and the BC components, respectively.
In this work, B and C refer to bottom and antibottom
mesons, and the summation over BC is carried out by
including all possible pairs of ground-state bottom
mesons. The jψ0i is normalized to 1, and jAi is also
normalized to 1 if it lies below the BB̄ threshold,
and jBC;pi is normalized as hBC;p1jB0C0;p2i ¼
δ3ðp1 − p2ÞδBB0δCC0 , where p is the momentum of the
B meson in jAi’s rest frame. The full Hamiltonian of the
physical state then reads

H ¼ H0 þHBC þHI; ð3Þ

where H0 is the Hamiltonian of the bare state (see
Appendix A for details), HBCjBC;pi ¼ EBCjBC;pi with
EBC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

B þ p2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

C þ p2
p

is the energy of the
continuum state (interaction between B and C is neglected,
and the transition between one continuum to another is
restricted), and HI is the interaction Hamiltonian which
mixes the bare state with the continuum. Since each quark
pair creation model generates its own vertex functions that
in turn lead to specific real parts of hadronic loops, see
Ref. [10] for related remarks.
Here, for the bare-continuum mixing, we adopt the

widely used 3P0 model [11]. In this model, the generated
quark pairs have vacuum quantum numbers JPC ¼ 0þþ,
which in spectroscopical notation 2Sþ1LJ equals 3P0. A
sketch of the 3P0 model induced mixing is shown in Fig. 1.
The interaction Hamiltonian can be expressed as

HI ¼ 2mqγ

Z
d3xψ̄qψq; ð4Þ

where mq is the produced quark mass and γ is the
dimensionless coupling constant. The ψq (ψ̄q) is the spinor
field to generate the antiquark (quark). Since the probability
to generate heavier quarks is suppressed, we use the
effective strength γs ¼ mq

ms
γ in the following calculation,

where mq ¼ mu ¼ md is the constituent quark mass of the
up (or down) quark and ms is the strange quark mass.
The mass shift caused by the BC components and the

probabilities of the bb̄ core are obtained after solving the
Schrödinger equation with the full Hamiltonian H. They
are expressed as

ΔM ≔ M −M0 ¼
X
BC

Z
d3p

jhBC;pjHIjψ0ij2
M − EBC − iϵ

; ð5Þ

Pbb̄ ≔ jc0j2¼
�
1þ

X
BCLS

Z
dp

p2hBC;pjHIjψ0ij2
ðM−EBCÞ2

�−1
;

ð6Þ

where M and M0 are the eigenvalues of the full (H)
and quenched/bare Hamiltonian (H0), respectively. See
Appendix B or Refs. [12,13] for the derivation of above
relations and UQM calculation details. Numerical values of
ΔM and Pbb̄ of every coupled channel for the bottomonia
below the BB̄ threshold are given in Table I, which will be
used in the following discussions.

II. MASS SPLITTING AND χ b0(3P)

After the recent CMS observation [1] of χb1ð3PÞ and
χb2ð3PÞ, χb0ð3PÞ is now the only missing candidate in
spin-triplet 3P bottomonium. With the reference of
observed mass splitting of 1P, 2P, and 3P multiplets,
one can predict the mass of χb0ð3PÞ. It requires a constraint
that the mass splittings for the 1P, 2P and 3P multiplets
should be the same [14].
Triggered by the above-mentioned experimental search,

we analyze our UQM studies regarding the bottomonium
spectrum [12,15]. We notice that the measured mass
splitting between χb2ð3PÞ and χb1ð3PÞ is ð10.6�
0.64� 0.17Þ MeV, which differs only by 1 MeV from
our UQM prediction1 [12]. Our prediction for the mass
splitting of χb1ð3PÞ and χb0ð3PÞ is 23 MeV; see Table II.
With the reference of the observed masses of the other
two candidates of spin-triplet 3P bottomonium, this mass
splitting helps us to predict precisely the mass of unknown
χb0ð3PÞ to be

M½χb0ð3PÞ� ¼ ð10490� 3Þ MeV: ð7Þ

The uncertainty in the above prediction is calculated by
taking the same percentage error [of Oð10%Þ] in our mass
splittings which we observed from the CMS measurement
[1]. Our mass predictions respect the conventional pattern
of splitting and support the standard mass hierarchy, where
we haveMðχb2Þ > Mðχb1Þ > Mðχb0Þ, which is in line with
the CMS measurement [1]. A comparison of our UQM

FIG. 1. Sketch of coupled-channel effects in the 3P0 model.
i and f, respectively, denote the initial and final states with the
same JPC and BB̄ stands for all possible B meson pairs.

1In the quenched limit, where the sea quark fluctuations are
neglected, this difference becomes six times larger.
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mass splittings with other quenched quark model predic-
tions is given in Table II.

III. HYPERFINE SPLITTING IN UQM

It is more informative if we study the mass splitting
in a multiplet instead of the total mass shift caused by the
intermediate meson loop. For the states quite below
the threshold, there is an interesting phenomenon [19]:
the magnitude of the mass splitting is suppressed by the
probability of the bottomonium core, Pbb̄, if we turn on the
meson loop.
There is also a pictorial explanation for this. In poten-

tial model, the mass splitting δM0 originates from the fine
splitting Hamiltonian HI . Up to the first-order perturbation,
we have δM0 ¼ hψ jHIjψi, where ψ is the two-body wave
function in the quenched potential model. Since one of the
coupled-channel effects is the wave function renormaliza-
tion, hψ jψi ¼ Pbb̄ < 1, one would simply expect the δM0 to
be suppressed by this probability.

Moreover, due to the closeness of the spectrum of a
multiplet, we expect that the Pbb̄ of the states in the same
multiplet are nearly the same, i.e., δM0 are all suppressed
by a same quantity, leaving the relation

δMP≡1

9
½Mðχb0Þþ3 ·Mðχb1Þþ5 ·Mðχb2Þ�−MðhbÞ¼ 0

ð8Þ

intact, even if the coupled-channel effects are turned on. In
our calculation, however, due to the finite size of the
constituent quark, which is reflected by the smeared delta
term, δ̃ðrÞ, instead of the true Dirac term2 in the spin
dependent potential

TABLE II. Mass splitting (in MeV) of 3P-wave bottomonia in our UQM [12], Godfrey-Isgur (GI) model [16],
modified GI model [17], and constituent quark model (CQM) [18]. The later three models are regarded as quenched
quark models.

Mass splitting Our UQM [12] GI [16] Modified GI [17] CQM [18] Experiment [1]

χb1ð3PÞ − χb0ð3PÞ 23 16 14 13 …
χb2ð3PÞ − χb1ð3PÞ 12 12 12 9 ð10.6� 0.64� 0.17Þ

TABLE I. The mass shift (in MeV) and probability (in percent) of every coupled channel for the bottomonia below the BB̄ threshold.
Note that, since hbð3PÞ has no coupling to BB̄, even though hbð3PÞ is above the BB̄ threshold, the probability is still well defined.
However, χb2ð3PÞ couples to the BB̄ channel and lies above this threshold, causing difficulty to the renormalization of the wave
function. We make the assumption that the renormalization caused by the BB̄ channel can be discarded; see Sec. IV for related
discussions.

Initial states

BB̄ BB̄� þ H:c: B�B̄� BsB̄s BsB̄�
s þ H:c: B�

sB̄�
s Total

−ΔM Pbb̄ −ΔM Pbb̄ −ΔM Pbb̄ −ΔM Pbb̄ −ΔM Pbb̄ −ΔM Pbb̄ −ΔM Pbb̄ð%Þ
ηbð1SÞ 0 0 7.8 0.45 7.6 0.43 0 0 3.3 0.17 3.3 0.16 22.0 98.79
ηbð2SÞ 0 0 16.5 1.81 15.7 1.62 0 0 5.2 0.43 5.0 0.4 42.4 95.74
ηbð3SÞ 0 0 24.5 5.01 22.3 3.98 0 0 5.4 0.63 5.1 0.55 57.4 89.83
ϒð1SÞ 1.4 0.09 5.4 0.33 9.2 0.54 0.6 0.03 2.3 0.12 3.9 0.2 22.8 98.69
ϒð2SÞ 3.0 0.37 11.4 1.29 18.9 2.02 0.9 0.08 3.5 0.31 5.9 0.49 43.8 95.44
ϒð3SÞ 4.8 1.25 17.2 3.71 27.1 5.07 1.0 0.13 3.7 0.45 6.1 0.67 60.0 88.71
hbð1PÞ 0 0 13.5 1.22 13.0 1.12 0 0 4.8 0.35 4.6 0.33 35.8 96.99
hbð2PÞ 0 0 21.9 3.51 20.3 2.96 0 0 5.6 0.59 5.3 0.52 53.1 92.43
hbð3PÞ 0 0 38.0 19.75 29.5 9.04 0 0 5.4 0.67 5.0 0.54 77.9 70.0
χb0ð1PÞ 4.1 0.45 0 0 21.4 1.74 1.3 0.11 0 0 7.8 0.52 34.6 97.18
χb0ð2PÞ 9.3 1.85 0 0 31.1 4.13 2.1 0.26 0 0 8.4 0.77 50.9 92.98
χb0ð3PÞ 25.5 34.08 0 0 40.7 8.07 2.3 0.31 0 0 7.6 0.62 76.1 56.92
χb1ð1PÞ 0 0 10.8 1.03 15.5 1.27 0 0 3.7 0.28 5.6 0.38 35.5 97.03
χb1ð2PÞ 0 0 19.7 3.38 22.1 3.0 0 0 4.8 0.53 6.0 0.56 52.6 92.53
χb1ð3PÞ 0 0 37.4 21.9 29.7 7.54 0 0 4.8 0.64 5.4 0.54 77.4 69.38
χb2ð1PÞ 3.4 0.31 9.8 0.85 13.6 1.24 1.2 0.09 3.5 0.25 4.7 0.35 36.4 96.91
χb2ð2PÞ 5.3 0.89 14.6 2.23 23.2 3.62 1.3 0.15 3.8 0.39 5.8 0.6 54.1 92.13
χb2ð3PÞ 12.3 � � � 23.3 12.50 36.2 16.34 1.3 0.23 3.6 0.53 5.6 0.82 82.2 69.57

2Such a smearing of the Dirac delta term incorporating the
contact spin-spin interaction with a finite range 1=σ is essential to
regularize the delta function [20].
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VsðrÞ ¼
1

m2
b

��
2αs
r3

−
λ

2r

�
L · Sþ 32παs

9
δ̃ðrÞSb · Sb̄

þ 4αs
r3

�
Sb · Sb̄

3
þ ðSb · rÞðSb̄ · rÞ

r2

��
;

δ̃ðrÞ≡
�

σffiffiffi
π

p
�

3

e−σ
2r2 ; ð9Þ

where αs and λ are strengths of the color Coulomb and
linear confinement potentials, respectively, and σ is related
to the width of Gaussian smeared function, the δMP
relation of Eq. (8) is already violated a little bit under
the potential model, which can be seen from Table III
(second column), in which we also include the correspond-
ing experimental values. We can also extract the threshold
effects by taking the mass shift ΔM instead of M in δMP
calculations. The δMP values obtained in this way are also
given in Table III (third column).

We can see from Table I that, although the mass
shift for the P-wave multiplets is around 50 MeV, the
modification of Eq. (8) is not very large, except δMPð3PÞ,
which is far larger than δMPð2PÞ and δMPð1PÞ. A feature
worth mentioning here is the hierarchy of these hyperfine
splittings originating from the CCEs (third column of
Table III), viz.,

δMPð3PÞ > δMPð2PÞ > δMPð1PÞ; ð10Þ

which highlights that the coupled-channel effects bring
meson masses closer together with respect to their bare
values [19].
For the P-wave states, no matter whether the threshold

effects are considered or not, hb is not affected by the fine
interaction, i.e. the δM ¼ 0. Hence, the χbJ’s mass splitting
are purely due to the Pbb̄ of each χbJ. Therefore, the
weighted probability of the bottomonium core, P̃bb̄, for
χbJðnPÞ multiplets is simply defined as P̃bb̄ ¼ Pbb̄ðχbJÞ.
The weighted average probability for the S-wave botto-
monia is discussed in Appendix C. From Table IV, we can
see that, although the (P̃bb̄ × δM0) and δM originate
differently (one from the potential model and the other
purely from the coupled-channel effects), they are approx-
imately equal to each other. The only large deviation comes
from χbJð3PÞ.
As explained above, this overall suppression is based on

the assumption that the P̃bb̄ is the same (or approximately
the same) for a multiplet. Indeed, from Table I, we can see
that this is a quite reasonable assumption for the states
which are far below the threshold. But for the χb0ð3PÞ,
the P̃bb̄ is quite different from that of χb1ð3PÞ, so this
overall suppression does not make sense anymore. As a

TABLE III. Hyperfine splitting (δMP in MeV) for the P-wave
bottomonia. The second to fourth columns are our unquenched
quark model prediction, contribution from the coupled-channel
effects, and experimental results, respectively. The contribution
from coupled-channel effects can be obtained by replacing the
mass of χbJðnPÞ by their mass shift ΔM. Note that our results of
M0 violate Eq. (8) a bit due to the finite size of the constituent
quark, as discussed in the text.

Multiplet
UQM

prediction
CCEs

contribution
Experiment

[21]

1P 1.17 0.06 0.57(88)
2P 1.38 0.19 0.44(1.31)
3P −0.39 2.08 …

TABLE IV. The mass splitting (in MeV) in a same ðn; LÞ multiplet, where δM0, δM, and δMExp represent the mass splitting in
potential model, coupled-channel model, and experiment, respectively. The P̃bb̄ (in percent) is the weighted average of the probability,
which for the P and Swaves is P̃bb̄ ¼ Pbb̄ðχbJÞ and P̃bb̄ ¼ 1

4
Pbb̄ðϒÞ þ 3

4
Pbb̄ðηbÞ, respectively. The details of the mass splitting are given

in Appendix C, and the absolute probabilities Pbb̄ are given in Table I. GEM and SHO stand for the Gaussian expansion method [22] and
simple harmonic oscillator approximation, respectively, to fit the numerical wave functions.

Channels δM0

P̃bb̄ ðP̃bb̄ × δM0Þ δM P̃bb̄ ðP̃bb̄ × δM0Þ δM

δMExpGEM SHO

ϒð1SÞ − ηbð1SÞ 65.5 98.7 64.7 64.7 98.7 64.7 64.7 62.3
ϒð2SÞ − ηbð2SÞ 30.7 95.5 29.3 29.4 95.9 29.4 29.5 24.3
ϒð3SÞ − ηbð3SÞ 23.4 89.0 20.8 20.7 91.1 21.3 21.3 …
χb0ð1PÞ − hbð1PÞ −35.6 97.2 −34.6 −34.5 97.1 −34.6 −34.4 −39.9
χb1ð1PÞ − hbð1PÞ −6.3 97.0 −6.1 −6.0 97.0 −6.1 −6.0 −6.5
χb2ð1PÞ − hbð1PÞ 13.2 96.9 12.8 12.6 96.8 12.8 12.7 12.9
χb0ð2PÞ − hbð2PÞ −31.2 93.0 −29.0 −28.9 93.4 −29.2 −29.1 −27.3
χb1ð2PÞ − hbð2PÞ −5.4 92.5 −5.0 −4.9 93.0 −5.0 −5.0 −4.3
χb2ð2PÞ − hbð2PÞ 12.2 92.1 11.2 11.2 92.7 11.3 11.2 8.8
χb0ð3PÞ − hbð3PÞ −29.2 56.9 −16.6 −27.5 54.3 −15.8 −28.3 …
χb1ð3PÞ − hbð3PÞ −5.0 69.4 −3.5 −4.5 72.5 −3.6 −4.6 …
χb2ð3PÞ − hbð3PÞ 11.9 … … 7.5 … … 7.7 …
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consequence, one should expect a relatively large deviation
from the δMP relation, as can be seen from δMPð3PÞ in
Table III.
The reason for this peculiar P̃bb̄ is that, even though the

mass of hbð3PÞ and χb1ð3PÞ is larger than the χb0ð3PÞ, they
do not couple to the channel BB̄, and the next open channel
BB̄� is somewhat farther from them. A net effect is that the
P̃bb̄ of χb1ð3PÞ is larger than that of χb0ð3PÞ, breaking the
P̃bb̄ closeness assumption. This strong coupling of χb0ð3PÞ
to BB̄ is also reflected by the large mass shift caused by BB̄,
which can be seen in Table I. The observed mismatch
between (P̃bb̄ × δM0) and δM for the χbJð3PÞmultiplet is a
smoking gun of the threshold effects which are beyond the
quark potential model.
Recently, Lebed and Swanson also pointed out the

remarkable importance of the P-wave heavy quarkonia
[23]. For 1P and 2P charmonia, the hyperfine splitting is
found to be astonishingly small. They referred it as ultrafine
splitting [which is Eq. (8) of this paper] and argued
that it can be used to delve the exoticness of the
observed structure in the given multiplet [24]. According
to their analysis [23], the quantity δMn;L¼1;2;3;… is found
to be very small for any radial excitation n, both for
the bb̄ and cc̄ sectors. The obtained constraint on the
δMn;L value is

δMn;L¼0;1;2;… ≪ ΛQCD: ð11Þ

This conclusion follows from several theoretical formalisms
which do not consider coupled-channel effects or long-
distance light-quark contributions in terms of intermediate
meson-meson coupling to bare quarkonium states. As dis-
cussed above, the operators corresponding to hyperfine
splitting involve spin-spin interactions which are suppressed
by 1=m2

Q, the standard expansion parameter for the heavy
quarkonium, where mQ is the mass of the heavy quark.
According to our point of view, the above upper limit is very
large for the hyperfine splitting of P-wave bottomonia; see
Table III for experimental corroboration. The tighter con-
straint could be

δMn;L¼1;2;3;… ≲ Λ3
QCD

m2
Q

: ð12Þ

Quantitatively, the P-wave excitation for the bottomonium
is equal to ΛQCD, which describes the emergence of the
dynamical QCD scale in the above relation. The δMn;L for
the bottomonia with L ¼ 1 is expected to be ofOð1 MeVÞ,
which can be verified from our analysis of Table III.
The reason why δMn;L¼1;2;3;… is exactly zero in the quark

model is a consequence of the pure delta function nature of
the Sb · Sb̄ term of Eq. (9), which is a perturbative one
gluon exchange effect. The nonperturbative effects can
make an additional contribution to this term, so that it is no
longer a pure delta function. This gives rise to introducing

the smearing of the delta function in the quark models
[20,23]. However, one could use different nonperturbative
forms for the spin-spin operator that contributes to the
hyperfine splitting. For instance, the hyperfine splitting
computed at next-to-next-to-next-to-leading order [25] in
nonrelativistic QCD (NRQCD) [26,27] is

δMn;L¼1 ¼
mbC4

Fα
5
s

432πðnþ 1Þ3 ð4nl − NcÞ; ð13Þ

where CF is the color factor of bottomonium, nl being
the number of light fermion species appearing in loop
corrections, and Nc being the number of colors in QCD.
The computed δMn;L¼1 values using NRQCD for the
bottomonium [with mb ¼ 4.5 GeV and αsðmbÞ ¼ 0.2]
are δM1P ¼ 3.77 keV, δM2P ¼ 1.12 keV, and δM3P ¼
0.47 keV [23]. The remarkable smallness of these values
strengthens the constraint on the δMn;L¼1;2;3;… values
presented in Eq. (12). However, these NRQCD predic-
tions are much smaller as compared to our UQM pre-
dictions and corresponding experimental values; see
Table III. In conclusion, whatever the nonperturbative
form for the spin-spin operator is used, the δMn;L¼1 should
be very small, hence satisfying the relation of Eq. (12)
quantitatively.

IV. RADIATIVE TRANSITIONS

Radiative transitions of higher bottomonia are of con-
siderable interest since they can shed light on their internal
structure and provide one of the few pathways between
different bb̄ multiplets. Particularly, for those states which
cannot directly produce at eþe− colliders (such as P-wave
bottomonia), the radiative transitions serve as an elegant
probe to explore such systems. In the quark model, the
electric dipole (E1) transitions can be expressed as [28,29]

Γðn2Sþ1LJ → n02S0þ1L0
J0 þ γÞ¼ 4

3
CfiδSS0e2bαjhψfjrjψ iij2E3

γ ;

ð14Þ
where eb ¼ − 1

3
is the b-quark charge, α is the fine structure

constant, and Eγ denotes the energy of the emitted photon.
The spatial matrix elements hψfjrjψ ii involve the initial
and final radial wave functions, and Cfi are the angular
matrix elements. They are represented as

hψfjrjψ ii ¼
Z

∞

0

RfðrÞRiðrÞr3dr; ð15Þ

Cfi ¼ maxðL;L0Þð2J0 þ 1Þ
�
L0 J0 S

J L 1

�
2

: ð16Þ

The matrix elements hψfjrjψ ii are obtained numerically;
for further details, we refer the reader to Refs. [12,30].
From Eq. (15), we know that the value of the decay width
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depends on the details of the wave functions, which are
highly model dependent. However, we intend to make
predictions in a more model-independent way. A model-
independent prediction can be achieved by focusing on the
following decay ratios:

ΓðχbJðmPÞ → ϒðnSÞ þ γÞ=Γðχb0ðmPÞ → ϒðnSÞ þ γÞ:
ð17Þ

Since, in the quark model, the spatial wave function is the
same for the states in the same multiplet. Therefore, the
above ratio can eliminate the wave function dependence—
and hence model dependence, too. From the above dis-
cussion, we know that the meson loop renormalizes the
bottomnium wave function. When the channel is above the
corresponding open-bottom threshold (such as BB̄ here),
the wave function cannot be normalized to 1; this is still an
open problem (see, e.g., Ref. [31]). On the other hand, the
BB̄ loop is still there and has some CCEs (such as mass
renormalization). We make the assumption that for the
states above threshold [such as χb2ð3PÞ here], these open
channels contribute equally to the wave functions of all
χbJð3PÞ states. In practice, this is a reasonable assumption,
since we can see this from Table I, the probability of BB̄ is
vanishingly small (0.31% and 0.89%, less than 1%) for
both χb0ð3PÞ and χb1ð3PÞ.
With the latest CMS data [1] and the Pbb̄ in Table I, our

predictions of radiative decay ratios are listed in Table V.
From Table I, one can see that the small Pbb̄½χb0ð3PÞ�make
the ratios in the last three rows notably larger than that of
the potential model predictions, a peculiar feature of
coupled-channel effects which can be tested in the upcom-
ing experiments.
Another result worth noting from Table V is the relative

size of the ratios for χb0ð3PÞ, which from the coupled-
channel calculations is roughly 1∶6∶12. This reflects that
the χb0ð3PÞ has a negligible radiative decay branching
fraction with comparison to χb1ð3PÞ and χb2ð3PÞ.
Compared with the potential model, the suppression of
the χb0ð3PÞ’s radiative width in the UQM is more con-
sistent with the nonobservation of the χb0ð3PÞ in the recent

CMS search of χbJð3PÞ → ϒð3SÞγ [1]. This indicates that
our UQM predictions are more reliable than the naive quark
potential models.

V. CONCLUSIONS

The recent CMS study successfully distinguishes
χb1ð3PÞ and χb2ð3PÞ for the first time and measures their
mass splitting, which differs only 1 MeV from our
unquenched quark model predictions. This measurement
gives us confidence to predict the mass of the lowest
candidate of the 3P multiplet to be M½χb0ð3PÞ� ¼
ð10490� 3Þ MeV, based on our unquenched quark model
results of the mass splittings of this multiplet. We also
analyze the hyperfine splittings of P-wave bottomonia up
to n ¼ 3 in the framework of UQM and put a constraint
on them based on recent experimental corroboration. No
matter which nonperturbative form for the spin-spin
operator is used, the hyperfine splitting for the P-wave
bottomonia should be very small. This analysis leads us
to conclude that the coupled-channel effects play a crucial
role in understanding the higher bottomonia close to open-
flavor thresholds.
At last, we predict here to some extent model-indepen-

dent ratios of the radiative decays of χbJðnPÞ candidates.
An observation worth mentioning is that the coupled-
channel effects can enhance the radiative decay ratios of
χbJð3PÞ as compared to the naive potential model pre-
dictions. The relative branching fraction of χb0ð3PÞ →
ϒð3SÞγ is negligible as compared to the other candidates of
this multiplet, which naturally explains its nonobservation
in the recent CMS search.
We hope the above highlighted features of the coupled-

channel model provide useful references for the under-
standing of higher P-wave bottomonia and can be explored
in ongoing and future experiments.
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APPENDIX A: BARE HAMILTONIAN

Bare states are obtained by solving the Schrödinger
equation with the well-known Cornell potential [32,33],
which incorporates a spin-independent color Coulomb plus

TABLE V. Prediction for the ratios ΓðχbJðmPÞ→ϒðnSÞþγÞ=
Γðχb0ðmPÞ→ϒðnSÞþγÞ. The order of previous ratios can be
read as χb0∶χb1∶χb2. For potential model calculations, the
parameters and quenched Hamiltonian are the same as Ref. [12].

Decay channel
Potential
model

Unquenched
quark model

χbJð1PÞ → ϒð1SÞ þ γ 1∶3.80∶7.20 1∶3.79∶7.18
χbJð2PÞ → ϒð1SÞ þ γ 1∶3.27∶5.71 1∶3.25∶5.65
χbJð2PÞ → ϒð2SÞ þ γ 1∶4.09∶8.02 1∶4.07∶7.95
χbJð3PÞ → ϒð1SÞ þ γ 1∶3.20∶5.49 1∶3.90∶6.71
χbJð3PÞ → ϒð2SÞ þ γ 1∶3.46∶6.15 1∶4.22∶7.51
χbJð3PÞ → ϒð3SÞ þ γ 1∶4.83∶9.77 1∶5.89∶11.9
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linear confined (scalar) potential. In the quenched limit, the
potential can be written as

VðrÞ ¼ −
4

3

α

r
þ λrþ c; ðA1Þ

where α, λ, and c stand for the strength of color Coulomb
potential, the strength of linear confinement, and mass
renormalization, respectively. The hyperfine and fine
structures are generated by the spin-dependent interactions

VsðrÞ ¼
1

m2
b

��
2αs
r3

−
λ

2r

�
L · Sþ 32παs

9
δ̃ðrÞSb · Sb̄

þ 4αs
r3

�
Sb · Sb̄

3
þ ðSb · rÞðSb̄ · rÞ

r2

��
; ðA2Þ

where L denotes the relative orbital angular momentum,
S ¼ Sb þ Sb̄ is the total spin of the charm quark pairs, and
mb is the bottom quark mass. The smeared δ̃ðrÞ function
can be read from Eq. (9) or Refs. [20,34]. These spin-
dependent terms are treated as perturbations.
The Hamiltonian of the Schrödinger equation in the

quenched limit is represented as

H0 ¼ 2mb þ
p2

mb
þ VðrÞ þ VsðrÞ: ðA3Þ

The spatial wave functions and bare mass M0 are obtained
by solving the Schrödinger equation numerically using the
Numerov method [35]. The full bare-mass spectrum is
given in Ref. [12].

APPENDIX B: DETAILS OF THE
COUPLED-CHANNEL EFFECTS

As sketched by Fig. 1, the experimentally observed state
should be a mixture of the pure quarkonium state (bare
state) and B meson continuum. The coupled-channel
effects can be deduced by using

H0jψ0i ¼ M0jψ0i ðB1Þ

H0jBC;pi ¼ 0 ðB2Þ

HBCjψ0i ¼ 0 ðB3Þ

HBCjBC;pi ¼ EBCjBC;pi ðB4Þ

HjAi ¼ MjAi; ðB5Þ

where M0 is the bare mass of the bottomonium and can be
solved directly from the Schrödinger equation and M is
the physical mass. The interaction between B mesons is
neglected. When Eq. (B5) is projected onto each compo-
nent, we immediately get

hψ0jHjψi¼ c0M¼ c0M0þ
Z

d3pcBCðpÞhψ0jHIjBC;pi;

ðB6Þ

hBC;pjHjψi¼cBCðpÞM¼cBCðpÞEBCþc0hBC;pjHIjψ0i:
ðB7Þ

Solving cBC from Eq. (B7), substituting back to Eq. (B6),
and eliminating the c0 on both sides, we get an integral
equation,

M ¼ M0 þ ΔM; ðB8Þ

where ΔM is given in Eq. (5). Once M is solved, the
coefficient of different components can be worked out too.
For states below the threshold, the normalization condition
jAi can be rewritten as

jc0j2 þ
Z

d3pjcBCj2 ¼ 1. ðB9Þ

After the substitution of cBC, we get the probability of the
bb̄ component. The sum of BC is restricted to the ground-
stateBðsÞ mesons, i.e.,BB̄; BB̄� þ H:c:; B�B̄�; BsB̄s; BsB̄�

sþ
H:c:; B�

sB̄�
s .

The coupled-channel effects calculation cannot proceed
if the wave functions of the jψ0i and BC components are
not settled in Eq. (7). Since the major part of the coupled-
channel effects calculation is encoded in the wave function
overlap integration,

hBC;pjHIjψ0i ¼
Z

d3kϕ0ðk⃗þ p⃗Þϕ�
Bðk⃗þ xp⃗Þϕ�

Cðk⃗þ xp⃗Þ

× jk⃗jYm
1 ðθk⃗;ϕk⃗Þ; ðB10Þ

where x ¼ mq=ðmQ þmqÞ and mQ and mq denote the
bottom quark and the light-quark mass, respectively. The
ϕ0, ϕB, and ϕC are the wave functions of jψ0i and BC
components, respectively, and the notation � stands for the
complex conjugate. These wave functions are in momen-
tum space, and they are obtained by the Fourier trans-
formation of the eigenfunctions of the bare Hamiltonian
H0. More details can be found in our earlier works [12,30].

APPENDIX C: HYPERFINE MASS SPLITTING
FOR S-WAVE BOTTOMONIA

For the S-wave (ηb and ϒ) bottomonia, we define

δMS ≡ 32πα

9m2
b

jRð0Þj2: ðC1Þ
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Because of theS · S interaction term inEq. (9), we have δM0:

δM0ðηbÞ ¼ −
3

4
δMS;

δM0ðϒÞ ¼ þ 1

4
δMS: ðC2Þ

After the suppression of Pbb̄ðηbÞ and Pbb̄ðϒÞ, the mass
splitting becomes

MðϒÞ −MðηbÞ≡ δMðϒÞ − δMðηbÞ

¼
�
1

4
Pbb̄ðϒÞ þ 3

4
Pbb̄ðηbÞ

�
δMS: ðC3Þ

So for the S-wave bottomonium, we defined the weighted
average of the Pbb̄:

P̃bb̄ ¼
1

4
Pbb̄ðϒÞ þ 3

4
Pbb̄ðηbÞ: ðC4Þ
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