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We present an analysis of two isovector scalar resonant contributions to the B decays into charmonia plus
KK̄ or πη pair in the perturbative QCD approach. The Flatté model for the a0ð980Þ resonance and the Breit
Wigner formula for the a0ð1450Þ resonance are adopted to parametrize the timelike form factors in the
dimeson distribution amplitudes, which capture the important final state interactions in these processes.
The predicted distribution in the KþK− invariant mass as well as its integrated branching ratio for the
a0ð980Þ resonance in the B0 → J=ψKþK− mode agree well with the current available experimental data.
The obtained branching ratio of the quasi-two-body decay B0 → J=ψa0ð980Þð→π0ηÞ can reach the order
of 10−6, letting the corresponding measurement appear feasible. For the a0ð1450Þ component, our results
could be tested by further experiments in the LHCb and Belle II. We also discuss some theoretical
uncertainties in detail in our calculation.
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I. INTRODUCTION

Many scalar mesons with quantum numbers JP ¼ 0þ
have been well established in the experiment [1]. Amongst
them, two important low-lying scalar resonances, namely,
isoscalar f0ð980Þ and isovector a0ð980Þ, are of special
interest. Their almost degenerate masses would lead to a
mixing with each other through isospin violating effects
[2–5]. As their masses proximity to the KK̄ threshold, both
can strong coupling to KK̄. Besides, their main individual
decay chain are f0ð980Þ → ππ and a0ð980Þ → πη, respec-
tively. Up to now, several B decays involving scalar mesons
have been observed, either with an f0ð980Þ [6,7] or
a0ð980Þ [8] in the final state. Most recently, the BESIII
Collaboration reports the first observation of a0ð980Þ
meson in the semileptonic decay D0 → a0ð980Þ−eþνe
[9], which provides one more arena in the investigation
of the nature of the puzzling a0ð980Þ states. Above the
a0ð980Þ mass, another important isovector scalar state,
a0ð1450Þ, had been observed in pp̄ annihilation experi-
ments [10,11] and the three-body D decays [12,13].
Measurements of B decays into a scalar meson can provide
valuable information on constraining any phenomenologi-
cal models trying to understand the nature of scalar mesons.

In the quark model scenario, the composition of f0ð980Þ
and a0ð980Þ have turned out to be mysterious. Their
intriguing internal structure allows tests of various hypoth-
eses, such as quark-antiquark [14], tetraquarks [15], KK̄
molecule [16], and hybrid states [17]. In contrast to the
unclear assignment of a0ð980Þ, it is widely accepted that
a0ð1450Þ is the isovector scalar qq̄ ground state [1]. In
particular, the lattice QCD calculations support that the
lowest isovector scalar qq̄ state corresponds to a0ð1450Þ
rather than a0ð980Þ [18–20]. For recent lattice QCD studies
of light scalar mesons, refer to [21–23].
From the theoretical perspective, studies of the three-

body decays of the B meson with final states including a
J=ψ will help us to clarify the nature of the resonances
involved. In Ref. [24], the BðsÞ decay into J=ψ plus KK̄ or
πη pair are studied by the chiral unitary approach, where the
KK̄ and πηmass distributions are calculated for the relevant
processes. More general review about the use of the chiral
unitary approach to study the final-state strong interactions
in weak decays, one refer to [25] for details. It is found both
f0ð980Þ and a0ð980Þ resonances contribute to the
B0 → J=ψKþK−, while only the f0ð980Þ [a0ð980Þ] reso-
nance influences the distribution in Bs → J=ψKþK−

(B0 → J=ψπ0η). The obtained results compared reasonably
well with present experimental information. In Ref. [26],
the authors extract information on πη scattering through the
B0 → J=ψðπη; KK̄Þ decays by the dispersion theory. The
dimeson scalar form factors are introduced to describe
the S-wave decay amplitude for the considered processes.
The predicted decay rates are of the same order of
magnitude as those of ππ analogues. Experimentally,
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evidence of the a0ð980Þ resonance is reported with stat-
istical significance of 3.9 standard deviations in the B0 →
J=ψKþK− decay by the LHCb Collaboration [27]. The
product branching fraction of the a0ð980Þ resonance mode
is measured for the first time, yielding

BðB0 → J=ψa0ð980Þð→KþK−ÞÞ
¼ ð4.70� 3.31� 0.72Þ × 10−7; ð1Þ

where the first uncertainty is statistical and the second is
systematic.
The perturbative QCD (pQCD) approach [28,29] is one

of the recently developed theoretical tools based on QCD to
deal with various exclusive processes [30]. In our previous
papers [31,32], the S-wave ππðKπÞ resonant contributions
are studied in the B → J=ψππðKπÞ decays as well as the
ψð2SÞ counterparts. The related scalar resonance candi-
dates include f0ð500Þ, f0ð980Þ, f0ð1500Þ, f0ð1790Þ,
K�

0ð1430Þ, and so on. More recently, we studied the
P-wave resonances, such as ρð770Þ, ρð1450Þ, and ρð1700Þ,
in the πþπ− channel [33]. In the present paper, we mainly
focus on the isovector scalar resonances a0ð980Þ and
a0ð1450Þ in the B → ψðKK̄; πηÞ decays with charmonia
ψ ¼ J=ψ ;ψð2SÞ, while the corresponding Bs decay modes
are forbidden because the ss̄ pair that has I ¼ 0 and does
not allow the isovector resonance production upon hadro-
nization. The subjects related to the crossed-channel such
as ψP with P ¼ K, π, η and other higher partial wave are
beyond the scope of the present analysis.
As iswell known, theQCDdynamics for the three-bodyB

decays are much more complicated than those of two-body
ones, and the energy release scale for the b quark mass may
be too low to allow for a complete factorization in the central
region of the Dalitz plot (DP) [34–36]. However, based on
the experimental fact that the three-body decays of B andD
mesons clearly receive important contributions from inter-
mediate resonances [1], one can assume that two of the three
final-state mesons form a collimated meson pair, which is
interpreted as an intermediate quasi-two-body final state,
and in this case the factorization can be applied. Within the
quasi-two-body approximation, the dominant kinematic
region is restricted to the edges of a Dalitz plot, where the
three daughter mesons are quasialigned in the rest frame of
the parent particle.
Taking the decay B → J=ψKK̄ for example, the dom-

inant contributions come from the kinematic region, where
the two light kaon mesons move almost parallelly for
producing a resonance. The final state interactions between
the bachelor particle J=ψ and the kaon pair are expected to
be suppressed in such conditions. The inherently non-
perturbative dynamics associated with the kaon pair can be
parametrized into the complex timelike form factors
involved in the two-kaon distribution amplitudes (DAs).
For the KK̄ form factors, we adopt the form as a linear
combination of the a0ð980Þ and a0ð1450Þ resonances,

where the former is described by the popular Flatté mass
shapes based on the coupled channels πη and KK̄ [37],
while the latter refer to the relativistic Breit-Wigner (BW)
form.1 The complex coefficient for each resonance are
extracted from the isobar model fit results for the
D0 → K0

SK
−πþ mode performed by the LHCb experiment

[13]. Following the steps of Refs. [31,32,39], the decay
amplitude for the decays under investigation can be
conceptually written as

A ¼ ΦB ⊗ H ⊗ ΦKK̄ ⊗ Φψ ; ð2Þ
where ΦB and Φψ are the B meson and charmonium DAs,
respectively. The two-kaon DA ΦKK̄ absorbs the non-
perturbative dynamics of the hadronization processes in the
KK̄ system. The hard kernel H, similar to the case of two-
body decays, includes the leading-order contributions plus
the vertex corrections. The symbol ⊗ denotes the con-
volution in parton momenta of all the perturbative and
nonperturbative objects.
The paper is structured as follows. In Sec. II, the

elementary kinematics, the distribution amplitudes of initial
and final states, and the required isovector scalar form factors
are described. In Sec. III, we present a discussion following
the presentation of the significant results on the branching
ratios. Finally, Sec. IV will be the conclusion of this work.

II. FRAMEWORK

We consider the decay B → J=ψKK̄ as an illustration,
where KK̄ can be either a neutral or a charged kaon pair. In
what follows, we will use the abbreviation a0 to denote the
a0ð980Þ and a0ð1450Þ for simplicity. It is convenient to
work in the rest frame of the B meson. Its momentum pB,
along with the charmonium meson momentum p3, the kaon
pair momentum p and other quark momenta ki in each
meson, which are shown diagrammatically in Fig. 1(a), are
chosen as [33]

pB¼
Mffiffiffi
2

p ð1;1;0TÞ; p3¼
Mffiffiffi
2

p ðr2;1−η;0TÞ;

p¼ Mffiffiffi
2

p ð1−r2;η;0TÞ;

kB¼
�
0;

Mffiffiffi
2

p xB;kBT

�
; k3¼

�
Mffiffiffi
2

p r2x3;
Mffiffiffi
2

p ð1−ηÞx3;k3T

�
;

k ¼
�
Mffiffiffi
2

p zð1−r2Þ;0;kT

�
; ð3Þ

1Although the width of a0ð1450Þ is somewhat large, the
parametrizations of its resonant effect is still controversial. We
further note that most resonances including a0ð1450Þ are widely
described using a relativistic BW parametrization by several
collaborations in the Dalitz-plot analysis for the three-body B=D
decays [12,13,38]. Hence, here we also model the a0ð1450Þ by a
simple BW line shape with an energy dependent width.
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with the mass ratio r ¼ m=M, and mðMÞ is the mass of the
charmonium (B) meson, the variable η ¼ ω2=ðM2 −m2Þ,
and the invariant mass squared ω2 ¼ p2 for the kaon pair.
The individual kaon momentum p1 and p2 in the KK̄ pair
are defined as

p1 ¼
�
ζpþ; ηð1 − ζÞpþ;ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζð1 − ζÞ

p
; 0
�
;

p2 ¼
�
ð1 − ζÞpþ; ηζpþ;−ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζð1 − ζÞ

p
; 0
�

ð4Þ

with ζ being the kaon momentum fraction. The momenta
satisfy the momentum conservation p ¼ p1 þ p2. The
three-momenta of the kaon and charmonium in the KK̄
center of mass are given by

jp⃗1j ¼
λ1=2ðω2;m2

K;m
2
KÞ

2ω
; jp⃗3j ¼

λ1=2ðM2;m2;ω2Þ
2ω

; ð5Þ

respectively, with mK the kaon mass and the Källén
function λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ acþ bcÞ.
We do not spell out the kinematic relations for the πη
final state explicitly, inasmuch as they can be obtained from
the above in a straightforward manner.
In the course of the PQCD calculations, the necessary

inputs contain DAs of the initial and final states. The B
meson can be treated as a heavy-light pseudoscalar system,
the structure γμγ5 and γ5 components remain as leading
contributions. Then, the B meson wave function with an
intrinsic b (the conjugate space coordinate to kT) depend-
ence can be expressed by [40]

ΦBðx; bÞ ¼
iffiffiffiffiffiffiffiffi
2Nc

p ½ðpB þMÞγ5ϕBðx; bÞ�; ð6Þ

with Nc the color factor. The DA ϕBðx; bÞ is adopted in the
conventional form [40,41]

ϕBðx; bÞ ¼ Nx2ð1 − xÞ2 exp
�
−
x2M2

2ω2
b

−
ω2
bb

2

2

�
; ð7Þ

with the shape parameter ωb ¼ 0.40� 0.04 GeV related to
the factor N by the normalization

Z
1

0

ϕBðx; b ¼ 0Þdx ¼ fB
2

ffiffiffiffiffiffiffiffi
2Nc

p : ð8Þ

Since the concerned meson pair forms a spin-0 intermediate
state, the final system only has a longitudinal component.
For the charmonium states, the longitudinal polarized DAs
are defined as [42,43]

ΦL
ψ ¼ 1ffiffiffiffiffiffiffiffi

2Nc
p ½m=ϵLϕLðx; bÞ þ =ϵLp3ϕ

tðx; bÞ�; ð9Þ

with the longitudinal polarization vector ϵL ¼
1ffiffi
2

p
r
ð−r2; 1 − η; 0TÞ. The expressions of the ϕL;t are not

shown here for the sake of brevity and can be found in
Refs. [42,43].
The isovector scalar DAs are introduced in analogy with

the case of two-pion ones [39,44], which are organized into

ΦI¼1
KK̄ðπηÞ ¼

1ffiffiffiffiffiffiffiffi
2Nc

p ½pϕI¼1
vμ¼−ðz; ζ;ω2Þ þ ωϕI¼1

s ðz; ζ;ω2Þ

þ ωð=n=v − 1ÞϕI¼1
tμ¼þðz; ζ;ω2Þ�; ð10Þ

where n ¼ ð1; 0; 0TÞ and v ¼ ð0; 1; 0TÞ are two dimension-
less vectors. For I ¼ 1, ϕI¼1

vμ¼− contributes at twist-2, while
ϕI¼1
s and ϕI¼1

tμ¼þ contribute at twist-3. It is worthwhile to
mention that the concerned isovector scalar dimeson
systems have similar asymptotic DAs as the ones for a
light scalar meson [32,45], but we replace the scalar decay
constants with the timelike form factor:

ϕI¼1
vμ¼−ðz; ζ;ω2Þ ¼ ϕ0 ¼ 9ffiffiffiffiffiffiffiffi

2Nc
p Fsðω2ÞB1zð1 − zÞð1 − 2zÞ;

ϕI¼1
s ðz; ζ;ω2Þ ¼ ϕs ¼ 1

2
ffiffiffiffiffiffiffiffi
2Nc

p Fsðω2Þ;

ϕI¼1
tμ¼þðz; ζ;ω2Þ ¼ ϕt ¼ 1

2
ffiffiffiffiffiffiffiffi
2Nc

p Fsðω2Þð1 − 2zÞ; ð11Þ

which are the same as the two-pion one in [39], except for
the different Gegenbauer moment B1 due to the SU(3)
breaking effects. Here we use B1 ¼ 0.3 for both KK̄ and πη
pairs in the numerical analysis, which is determined from

(a) (b) (c) (d)

FIG. 1. The leading-order Feynman diagrams for the quasi-two-body decays B → ψa0ð→ KK̄Þ. (a,b) The factorizable diagrams, and
(c,d) the nonfactorizable diagrams. a0 is one of the isovector scalar intermediate states.
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the data for the B0 → J=ψa0ð980Þð→KþK−Þ branching
ratio [27].
As mentioned in the Introduction, the isovector scalar

form factors for the concerned dimeson systems are given
by the coherence summation of the two resonances a0ð980Þ
and a0ð1450Þ,

FI¼1
KK̄ðπηÞðω2Þ ¼

X
a0

Ca0Ma0ðω2Þ; ð12Þ

where Ca0 ¼ jCa0 jeiϕa0 is the corresponding complex
amplitude for each intermediate state a0. For the KK̄ pair,
the magnitude jCa0 j and phase ϕa0 can be obtained through
a fit to the data, as done successfully in Ref. [13]. As
mentioned in Ref. [13], the relevant parameters can be fixed
in the isobar model fits in both the D0 → K0

SK
−πþ and

D0 → K0
SK

þπ− modes, and two amplitude models have
been constructed for each decay mode. Because the former
has a higher signal yields and smaller mistag rate with
respect to the latter, we prefer to the experimental solution

jCa0ð980Þj ¼ 1.07; ϕa0ð980Þ ¼ 82°;

jCa0ð1450Þj ¼ 0.43; ϕa0ð1450Þ ¼ −49°; ð13Þ

which are taken from Table V of Ref. [13]. Since the
experimental information on the πη pair is not yet available,
in this study, we roughly estimate their magnitudes jCa0 j by
comparing the two form factors of the KK̄ and πη pairs. To
achieve this, taking account of the charged dimeson pairs
K̄0Kþ and ηπþ, the relevant form factors FKK̄ðπηÞðsÞ, which
enter the matrix elements for the transition from vacuum to
the corresponding meson pairs via a ūd source, are defined
as [46,47]

hK̄0Kþjūdj0i ¼ B0FKK̄ðω2Þ;
hηπþjūdj0i ¼ B0Fπηðω2Þ; ð14Þ

with the scale dependence factor B0. Following the pre-
scription in Refs. [48,49], by inserting a complete set of a0
intermediate state into above matrix elements, we have

hK̄0KþðηπþÞjūdj0ia0 ≈ hK̄0KþðηπþÞja0i
1

BWa0

ha0jūdj0i

¼ ga0KKðga0πηÞf̄a0m0

BWa0

; ð15Þ

with BWa0 the resonance propagator [50]. Hereafter, m0

refers to the pole mass of the resonance. The scalar decay
constant and the strong coupling constant are defined by
[34,51]

ha0jūdj0i ¼ f̄a0m0;

hK̄0KþðηπþÞja0i ¼ ga0KKðga0πηÞ: ð16Þ

By equating Eqs. (14) and (15), we link FKK̄ðπηÞðω2Þ with
the usual Breit-Wigner expression through

FKK̄ðπηÞðω2Þ ¼ CKK̄ðπηÞ
a0

m2
0

BWa0

; ð17Þ

with

CKK̄ðπηÞ
a0 ¼ ga0KKðga0πηÞf̄a0

B0m0

: ð18Þ

The combinations of CKK̄
a0 and Cπη

a0 lead to the ratio

Cπη
a0

CKK̄
a0

¼ ga0πη
ga0KK

; ð19Þ

where the values of the relative coupling
ga0πη
ga0KK

for a0ð980Þ
and a0ð1450Þ are taken from the Crystal Barrel experiment
[52]. It can be seen the coefficients Ca0 have reflected the
strength of the resonances a0 decaying to the corresponding
dimeson pair. We then can estimate the modules of the Ca0
for the πη system by using Eq. (19), but keep their phases
the same as in Eq. (13).
The partial amplitude MR

2 appearing in Eq. (12) are
chosen depends on the resonances in question. The a0ð980Þ
is a well established resonance but its shape is not well
described by a simple Breit-Wigner formula because of the
vicinity of the KK̄ threshold. We follow the widely
accepted prescription proposed by Flatté [37], based on
the coupled channels πη and KK̄. The Flatté mass shapes
are parametrized as

Ma0ð980Þðω2Þ ¼ m2
0

m2
0 − ω2 − iðg2πηρπη þ g2KKρKKÞ

; ð20Þ

with the nominal a0ð980Þ mass m0 ¼ 0.925 GeV [13].
Note that the coupling constants gKKðgπηÞ in Eq. (20) are
related to those in Eq. (16) through the relation gKKðgπηÞ ¼
ga0KKðga0πηÞ=ð4

ffiffiffi
π

p Þ according to the different definitions
between Ref. [34] and Ref. [52]. In this study, we employ
parameters gπη ¼ 0.324 GeV and g2KK̄=g

2
πη ¼ 1.03 from the

Crystal Barrel experiment [52]. The ρ factors are given by
the Lorentz-invariant phase space

2Here, we omit the relevant Blatt-Weisskopf centrifugal barrier
factors and the angular distribution factors since in the scalar
resonance case their values are equal to 1 [13,53,54].
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ρπη ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

�
mη −mπ

ω

�
2
��

1 −
�
mη þmπ

ω

�
2
�s
;

ρKK̄ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
K�

ω2

s
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
K0

ω2

s
: ð21Þ

The partial amplitude Ma01450ðω2Þ picks up the conven-
tional Breit-Wigner model,

Ma0ð1450Þðω2Þ ¼ m2
0

m2
0 − ω2 − im0ΓðωÞ

; ð22Þ

where ΓðωÞ is its energy dependent width that is para-
metrized as in the case of a scalar resonance

ΓðωÞ ¼ Γ0

jp⃗1j
jp⃗10j

m0

ω
; ð23Þ

with m0 ¼ 1.458 GeV and Γ0 ¼ 0.282 GeV for the
a0ð1450Þ resonance [13]. The symbol jp⃗10j is used to
indicate value of jp⃗1j at the resonance peak mass.

III. NUMERICAL RESULTS

The differential branching ratio for the considered
decays is explicitly written as

dB
dω

¼ τωjp⃗1jjp⃗3j
32π3M3

jAj2; ð24Þ

with τ the B meson lifetime. The resulting decay ampli-
tudes A are equivalent to previous calculations in Ref. [39]
by replacing the S-wave ππ form factor with the corre-
sponding KK̄ðπηÞ one in Eq. (12). To proceed with the
numerical analysis, it is useful to summarize all of the input
quantities entering the PQCD approach below:

(i) For the masses (in GeV) [1]: MB ¼ 5.28,
mJ=ψ ¼ 3.097, mψð2SÞ ¼3.686, mK� ¼0.494, mK0 ¼
0.498, mη ¼ 0.548, mπþ ¼ 0.14, mπ0 ¼ 0.135,
mbðpoleÞ ¼ 4.8, mcðmcÞ ¼ 1.275.

(ii) For the Wolfenstein parameters [1]: λ ¼ 0.22453,
A ¼ 0.836, ρ̄ ¼ 0.122, η̄ ¼ 0.355.

(iii) For the decay constants (in GeV): fB ¼ 0.19 [1],
fJ=ψ ¼ 0.405 [42], fψð2SÞ ¼ 0.296 [43].

(iv) For the lifetimes (in ps) [1]: τB0
¼ 1.52; τBþ ¼ 1.638.

The relevant parameters in the timelike form factors have
been given in the previous section.
By using Eq. (24), integrating over the full invariant

mass spectrum [ωmin < ω < MB −mψ with ωmin ¼
2mK�ðmπ0 þmηÞ for KK̄ðπηÞ modes] separately for the
individual resonant components, we derived the CP-
averaged branching ratios for the neutral decay modes,
which are summarized in Table I. The corresponding
numbers for the charged decay modes can be obtained
by multiplying the neutral branching ratios with a factor of

2τBþ=τB0 in the limit of isospin symmetry. For our results,
we take into account the following theoretical uncertainties.
The first uncertainty is from the shape parameter in the B
meson wave function, ωb ¼ 0.40� 0.04. The second error
originates from the Gegenbauer moment B1 ¼ 0.3� 0.1
from the twist-2 DAs in Eq. (11). While the twist-3 DAs are
taken as the asymptotic form for lack of better results from
nonperturbative methods, this may also give large uncer-
tainties. The third error is induced by the complex param-
eters Ca0 in Eq. (12). In the evaluation, we vary their
magnitudes within a 10% range. The last one is caused by
the variation of the hard scale from 0.75t to 1.25t, which
characterizes the energy release in decay process. It is
found that the main uncertainties of the concerned proc-
esses come from those nonperturbative parameters asso-
ciated with the DAs of the Bmeson and dimeson pair. Their
combined uncertainties can reach 50%. The uncertainties
stemming from the Flatté parameters in Eq. (20) for the
a0ð980Þ channels are not included in Table I, whose effect
on the branching ratio will be discussed in detail later. The
errors from the uncertainty of the Cabibbo-Kobayashi-
Maskawa matrix elements and the decay constants of
charmonia are very small and have been neglected.
We notice that the branching ratios associated with

a0ð1450Þ modes are more sensitive to the shape parameter
ωb than the Gegenbauer moment B1, whereas the situation
is different for the corresponding processes of a0ð980Þ. It
can be simply understood from the different twist contri-
butions in the dimeson DAs. For a0ð980Þ channels, the
twist-2 and twist-3 contributions are of the same order,
while for the a0ð1450Þ case, the latter are more larger than
the former. It is easy to observe that in Eq. (10), the twist-3
DAs always multiply by the invariant mass ω, and the
larger pole mass induces larger contributions from twist-3
DAs. As the hard amplitude in Eq. (2) is convoluted with
initial-state and final-state hadron DAs, the twist-3 con-
tributions are concentrated in the endpoint region [41],
which correspond to a small hard scale for the hard

TABLE I. PQCD predictions for the concerned quasi-two-body
decays involving the isovector scalar resonant a0. The theoretical
errors correspond to the uncertainties due to the shape parameters
ωb in the wave function of the B meson, the Gegenbauer moment
B1, the magnitude of the Ca0 , and the hard scale t, respectively.

Modes B

B0 → J=ψa0ð980Þð→ KþK−Þ ð4.7þ1.4þ1.5þ1.0þ1.0
−0.8−1.0−0.9−0.4 Þ × 10−7

B0 → J=ψa0ð980Þð→ π0ηÞ ð6.0þ1.6þ1.9þ1.3þ1.1
−1.3−1.6−1.1−0.8 Þ × 10−6

B0 → J=ψa0ð1450Þð→ KþK−Þ ð6.8þ3.8þ0.7þ1.4þ0.4
−2.2−0.2−1.2−0.1 Þ × 10−7

B0 → J=ψa0ð1450Þð→ π0ηÞ ð1.1þ0.5þ0.1þ0.2þ0.0
−0.4−0.1−0.2−0.0 Þ × 10−6

B0 → ψð2SÞa0ð980Þð→ KþK−Þ ð7.9þ1.4þ2.5þ1.6þ1.4
−1.3−1.7−1.5−0.8 Þ × 10−8

B0 → ψð2SÞa0ð980Þð→ π0ηÞ ð1.5þ0.3þ0.4þ0.3þ0.2
−0.3−0.4−0.3−0.2 Þ × 10−6

B0 → ψð2SÞa0ð1450Þð→ KþK−Þ ð6.1þ4.5þ0.9þ1.3þ0.4
−2.6−0.1−1.2−0.1 Þ × 10−8

B0 → ψð2SÞa0ð1450Þð→ π0ηÞ ð1.2þ0.6þ0.1þ0.3þ0.0
−0.5−0.1−0.2−0.1 Þ × 10−7
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amplitude, such that the running coupling constant evalu-
ated at that scale rise up rapidly. Therefore, the twist-3
contributions are more sensitive to the ωb, which character-
izes the shape of B meson DA. As stated above, the twist-3
DAs give the dominant contribution to the a0ð1450Þ
channels, thus their branching ratios depend heavily on
ωb and are less sensitive to the variation of the Gegenbauer
moment B1, which appears in the twist-2 DA.
It is well known that the a0ð980Þ resonance mass always

near the KK̄ thresholds. As a result the predicted branching
ratio of the B0 → ψa0ð980Þð→KK̄Þ decay is very sensitive
to the choice of the resonance mass. It was pointed out in
Refs. [55,56] that when we use the Flatté parametrization
for the a0ð980Þ resonance, there is a strong correlation
between its mass and coupling constants. Therefore, here
we do not take into account their individual uncertainty,
but check the sensitivity of our results to the choice of
these Flatté parameters. Actually, several phenomenologi-
cal models [14,15,17] and experimental measurements
[56–60] determined the relevant Flatté parameters (mass
and couplings) as listed in Table II. Some coupling
constants are converted into the numbers according to
the definition in Ref. [52]. The first four parameter sets are
taken from phenomenological models, while the remainder
come from the experimental fitting. With each parameter
set, we obtain the corresponding branching ratio shown in
the last column of Table II. One can see that the parameters
are quite model-dependent and suffers sizable uncertainty,
which leads to the yielding branching ratios lie in a wide
range ð2.8 ∼ 18Þ × 10−7. We expect that the new and
improved data would help in constraining the relevant
parameters and our theoretical understanding of the proper-
ties of the a0ð980Þ resonances.
Now we turn to estimate the isospin breaking effect

between the two physics final statesKþK− andK0K̄0 in the
isovector a0 channels. Since both the charged and neutral

kaons decay channel open near the a0ð980Þ resonance
mass, the 8 MeV gap between the KþK− and K0K̄0

thresholds make the latter mode suffer a further suppression
from the phase space. Hence, the isospin breaking effect
may be non-negligible in the a0ð980Þ channels. In princi-
ple, as mentioned before, the nearly degenerate masses
between the a0ð980Þ and f0ð980Þ resonances would lead to
an admixture of them, which also cause to an important
isospin-violating effects. However, it is not the theme of the
present work. Here, we roughly estimate the isospin-
violating effect from the kaon mass differences, but assume
isospin symmetry for their coupling constants. To be more
specific, we calculated the corresponding K0K̄0 modes by
using the same input parameters as the KþK− ones except
for distinguishing the charged and neutral kaon masses, and
found numerically that

BðB0 → J=ψa0ð980Þð→K0K̄0ÞÞ ¼ 4.3 × 10−7;

BðB0 → ψð2SÞa0ð980Þð→K0K̄0ÞÞ ¼ 7.1 × 10−8;

BðB0 → J=ψa0ð1450Þð→K0K̄0ÞÞ ¼ 6.7 × 10−7;

BðB0 → ψð2SÞa0ð1450Þð→K0K̄0ÞÞ ¼ 5.8 × 10−8; ð25Þ

which are typical smaller than the corresponding numbers
for the charged kaon channels in Table I. For the a0ð980Þ
channels, the isospin breaking effect can reach roughly
10 percents even though the a0ð980Þ − f0ð980Þ mixing is
not included. For the case of a0ð1450Þ, the isospin breaking
effect are rather small as expected since its resonance mass
is far away from the two-kaon thresholds.
Let us also compare our results to those obtained in other

methods. As stated before, the decay under investigation
have been discussed in the chiral unitary approach [24] and
the dispersion theory [26]. The authors of Ref. [24] subtract
a smooth but large background from the differential decay
to get the a0ð980Þ contribution, and estimate the value
BðB0→ J=ψa0ð980Þð→π0ηÞÞ¼ ð2.2�0.2Þ×10−6, which
is smaller than our numbers in Table I by a factor of 3.
Nevertheless, a phenomenological estimate for the branch-
ing ratio of B0 → J=ψπ0η in the mass range above thresh-
old up to 1.1 GeV in [26] gave a range ð6.0 ∼ 6.4Þ × 10−6

with the input phase δ12 ¼ 90°. For the sake of comparison,
we derive a central value of 5.7 × 10−6 within the same
energy region [mπ þmη; 1.1 GeV]. This is consistent with
their theoretical estimates within errors.
On the experimental side, the decay B0 → J=ψKþK− is

first observed by the LHCb Collaboration. The relevant
amplitude analysis is performed to separate resonant and
nonresonant contributions in the KþK− spectrum. There is
3.9σ evidence for the a0ð980Þ resonance with a product
branching fraction of

BðB0 → J=ψa0ð980Þð→KþK−ÞÞ
¼ ð4.70� 3.31� 0.72Þ × 10−7; ð26Þ

TABLE II. Masses and coupling constants of the a0ð980Þ
resonance in the Flatté parametrization determined from various
theoretical models and experimental data. The last column
correspond to the calculated branching ratios in the PQCD
approach by using the corresponding parameters.

Model or
experiment

ma0ð980Þ
(MeV)

gπη
(MeV)

gKK
(MeV)

BðB0 → J=ψa0ð980Þ
ð→KþK−ÞÞ

qq̄ model [14] 983 287 179 1.7 × 10−6

qqq̄q model [14] 983 645 757 2.8 × 10−7

KK̄ model [15] 980 245 386 1.5 × 10−6

qq̄g model [17] 980 355 278 1.2 × 10−6

CB [56] 987.4 405 415 9.2 × 10−7

SND [57] 995 439 592 6.6 × 10−7

CLEO [58] 998 600 396 5.4 × 10−7

KLOE [59]a 982.5 303 397 1.3 × 10−6

E852 [60] 1001 348 235 1.8 × 10−6

aWe quote the fit result for the KL model.
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and an upper limit on its branching fraction is set to be
9.0 × 10−7 at 90% confidence level. The measured central
value is close to our result in Table I, whereas the statistical
uncertainty is too large to make a definite conclusion. As
indicated in Table II, there is a notable uncertainty due to
the different solutions of the Flatté parameters, and some of
the results exceed the experimental upper limit. We suggest
the experimentalists carry out a more precise measurement
on this channel to constrain the relevant parameters, which
allow us to discriminate between different models and
improve the approach. On the other hand, the experiment
information on the πη channels are still scarcer. As a cross-
check to the dynamical calculations, using the PQCD
predictions as given in Table I we can estimate the relative

ratios Rψ
a0 ¼ BðB0→ψa0ð→KþK−ÞÞ

BðB0→ψa0ð→π0ηÞÞ as below,

RJ=ψ
a0ð980Þ ¼ 0.08þ0.04

−0.00 ; Rψð2SÞ
a0ð980Þ ¼ 0.05þ0.01

−0.00 ;

RJ=ψ
a0ð1450Þ ¼ 0.62þ0.02

−0.04 ; Rψð2SÞ
a0ð1450Þ ¼ 0.51þ0.10

−0.05 ; ð27Þ

where all uncertainties are added in quadrature. Under the
narrow width approximation, above ratios obeys a simple
factorization relation

Rψ
a0 ≈

BðB0 → ψa0ÞBða0 → KþK−Þ
BðB0 → ψa0ÞBða0 → π0ηÞ ¼ Γða0 → KþK−Þ

Γða0 → π0ηÞ ;

ð28Þ

which allows us to test the ratios in Eq. (27). The
average values of the relative partial decay widths Γða0 →
KK̄Þ=Γða0 → π0ηÞ given by Particle Data Group (PDG) [1]
for the resonances a0ð980Þ and a0ð1450Þ are 0.183� 0.024
and 0.88� 0.23, respectively. Recalling that the isospin
relation Γða0 → KþK−Þ ¼ Γða0 → KK̄Þ=2, our calcula-
tions are in accordance with the data within errors.
The differential decay branching ratios versus the invari-

ant mass ω are plotted in Fig. 2. Note that the J=ψ − ψð2SÞ
mass difference causes significant differences in the range
spanned in the respective decay modes. The blue solid and
red dashed curves represent the contributions from the
resonances a0ð980Þ and a0ð1450Þ, respectively. The differ-
ent shapes between the two resonances are mainly gov-
erned by the corresponding partial amplitude Ma0 and
complex parameters Ca0 in Eq. (12). One can see in
Fig. 2(a) and (c) that a clear narrow peak near the
KþK− threshold for the a0ð980Þ resonance, which makes

FIG. 2. Isovector scalar resonance contributions to the differential branching fractions of the modes (a) B0 → J=ψKþK−,
(b) B0 → J=ψπ0η, (c) B0 → ψð2SÞKþK−, and (d) B0 → ψð2SÞπ0η. The blue solid lines corresponds to the resonant a0ð980Þ
contributions, while the red dashed to the a0ð1450Þ.
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its distribution, is suppressed by the phase-space as
mentioned before. The a0ð1450Þ resonance peak has
smaller strength than the a0ð980Þ one, but its broader
width compensate the integrated strength over the full
KþK− invariant mass. Therefore, the contributions from
the two resonances are of comparable size for the KK̄
modes [see Table I]. In fact, the Crystal Barrel experiment
[52] found the a0ð1450Þ component is larger than that of
a0ð980Þ resonance in the process of pp̄ annihilation into
the KK̄π final state. In contrast to the KK̄ channels, the π0η
threshold far below the two resonance poles, and the
strength of the π0η distribution is typical larger than the
one for KK̄, which enhanced its branching ratio accord-
ingly. Just as expected, without the additional suppression
from the phase space we observe an appreciable strength
for a0ð980Þ excitation and a less strong, but clearly visible
excitation for the a0ð1450Þ in Fig. 2(b) and 2(d). The
obtained distribution for the a0ð980Þ resonance contribu-
tion to the B0 → J=ψKþK− decay agrees fairly well with
the LHCb data shown in Fig. 15 of Ref. [27], while other
predictions could be tested by future experimental
measurements.

IV. CONCLUSION

In this work we discuss the isovector scalar resonance
contributions to the three-body B0 → ψðKK̄; πηÞ decays
under the quasi-two-body approximation based on the
PQCD framework by introducing the corresponding dime-
son DAs. The involved timelike form factors are para-
metrized as a linear combination of two components
a0ð980Þ and a0ð1450Þ, which can be described by the
Flatté line shape and Breit-Wigner form, respectively. The
predicted KþK− invariant mass distribution as well as its
integrated branching ratio for the a0ð980Þ resonance in the
B0 → J=ψKþK− decay are in agreement with the findings
by the LHCb Collaboration. It is found that the a0ð1450Þ

contribution is comparable with the a0ð980Þ one for theKK̄
modes, while fall short by a large factor for the πη sector.
In both resonances, the strength of the πη invariant
mass distribution are typical larger than the KK̄ one
in the channels with the same bachelor charmonia in the
final state. The obtained branching ratios of the B0 →
ψa0ð980Þð→πηÞ decays can reach the order of 10−6, which
would be straightforward for experimental observations.
We estimate the isospin breaking effect, which originates

from the different thresholds of charged and neutral kaons,
between the two physics final statesKþK− andK0K̄0 in the
a0ð980Þ and a0ð1450Þ channels. For the former, the isospin
breaking effect can reach roughly 10% even without the
a0 − f0 mixing, while for the latter, the isospin breaking
effect are negligible since its resonance mass is far away
from the two-kaon thresholds.
We have discussed theoretical uncertainties arising from

the nonperturbative parameters in the initial and final states
DAs, and hard scale. The nonperturbative parameters
contribute the main uncertainties in our approach, while
the hard scale dependent uncertainty is less than 20% due to
the inclusion of the vertex corrections. In addition, the
a0ð980Þ resonance contributions are largely dependence on
the Flatté parameters, which should be constrained in the
future.
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