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We calculate the radiative corrections of order O(aE,/my) as next-to-leading order corrections in the
large nucleon mass expansion to Sirlin’s radiative corrections of order O(a/7) to the neutron lifetime. The
calculation is carried out within a quantum field theoretic model of strong low-energy pion-nucleon
interactions described by the linear 6 model (LoM) with chiral SU(2) x SU(2) symmetry and electroweak
hadron-hadron, hadron-lepton and lepton-lepton interactions for the electron-lepton family with
SU(2), x U(1)y symmetry of the standard electroweak model (SEM). Such a quantum field theoretic
model is some kind a hadronized version of the Standard Model. From a gauge invariant set of the Feynman
diagrams with one-photon exchanges we reproduce Sirlin’s radiative corrections of order O(a/x),
calculated to leading order in the large nucleon mass expansion, and calculate next-to-leading corrections
of order O(aE,/my). This confirms Sirlin’s confidence level of the radiative corrections O(aE,/my). The
contributions of the LM are taken in the limit of the infinite mass of the scalar isoscalar ¢ meson. In such a
limit the LoM reproduces the results of the current algebra [S. Weinberg, Phys. Rev. Lett. 18, 188 (1967)] in
the form of effective chiral Lagrangians of pion-nucleon interactions with nonlinear realization of chiral
SU(2) x SU(2) symmetry. In such a limit the LoM is also equivalent to Gasser-Leutwyler’s chiral quantum
field theory or chiral perturbation theory with chiral SU(2) x SU(2) symmetry and the exponential

parametrization of a pion-field [(G. Ecker, Prog. Part. Nucl. Phys. 35, 1 (1995)].
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I. INTRODUCTION

Nowadays the structure of the neutron in the =~ decay
[1,2] is investigated at the level of 107> related to the
radiative corrections of order O(a/x), where a is the fine-
structure constant [3], and corrections of order O(E,/my),
caused by the weak magnetism and proton recoil, where E,
and my are the electron energy and the nucleon mass [4-9].
The contributions of radiative corrections of order O(a/7)
has a long history [10-38]. The contemporary shape of
radiative corrections to the neutron lifetime has been
calculated by Sirlin [14] in the approximation of the
one-photon exchange and to leading order in the large
nucleon mass expansion. The contributions to the radiative
corrections of the neutron lifetime, which caused electro-
weak boson exchanges and QCD corrections, have been
calculated by Marciano and Sirlin [24,33] and Czarnecki
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et al. [32]. Recently the result obtained in [33] has been
improved by Seng et al. [36]. In turn, the contemporary
shape of the radiative corrections to the correlation coef-
ficients of the electron-antineutrino 3-momentum correla-
tions and correlations between neutron spin and the
electron 3-momentum has been calculated by Shann
[17]. Recently radiative corrections of order O(a/x) to
leading order in the large nucleon mass expansion have
been calculated to the correlation coefficients of the neutron
S~ decays with polarized neutron and electron and unpo-
larized proton, and polarized electron and unpolarized
neutron and proton [7-9]. For the first time the contribu-
tions of the weak magnetism and proton recoil of order
O(E,/my) to the neutron lifetime and correlation coef-
ficients of the neutron = decay with polarized neutron and
unpolarized electron and proton have been calculated by
Bilen’kii et al. [39] and then by Wilkinson [40]. To the
correlation coefficients of the neutron f~ decays with
polarized neutron and electron and unpolarized proton,
and with polarized electron and unpolarized neutron and
proton have been calculated in [7-9]. At the level of 1073
the neutron as well as the proton has been treated as a
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structureless particle. The contributions of strong low-
energy interactions to the f~ decay of the structureless
neutron with a structureless decay proton are described by
the axial coupling constant g,, and the isovector anomalous
magnetic moment of the nucleon k = k,, — k,,, where k, and
k, are anomalous magnetic moments of the proton and
neutron, respectively, measured in the nuclear magneton [3].
We would like to remind the reader that the axial coupling
constant g, appears in the standard V — A theory of weak
interactions [41-43] as a trace of strong low-energy inter-
actions in the matrix element of the hadronic n — p
transition after renormalization of the matrix element of
the axial-vector hadronic current [44]. As has been shown by
Sirlin [14,21] the radiative corrections of order O(a/x),
calculated to leading order in the large nucleon mass
expansion, are independent of the axial coupling constant
ga- In turn, the corrections of order O(E,/my), caused by
the weak magnetism and proton recoil, depend strongly on
the axial coupling constant g, and the isovector anomalous
magnetic moment of the nucleon x [39,40] (see also
[4,5,7,8]). The neutron lifetime 7, = 879.6(1.1) s, calcu-
lated in [5] at the axial coupling constant g, = 1.2750(9) [1]
(see also [45-48]), agrees well with the neutron lifetime
7, = 879.6(6) s, averaged over the experimental values
of the six bottle experiments [49-54] included in the
Particle Date Group (PDG) [3]. The values of the neutron

lifetime 7, = 879.6(1.1) s and axial coupling constant g, =
(favoured)

1.2750(9) agree also well with (i) the values 7,

879.6(4) s and ™% = 1.2755(11), which have been
recommended by Czarnecki et al. [55] as favoured by a
global analysis of the experimental data on the neutron
lifetime and the electron asymmetry of the neutron - decay
with a polarized neutron and unpolarized proton and
electron, and (ii)) recent experimental value g4 =
1.27641(45) 1 (33) 55 [561.

For the first time deviations of the nucleon from a
structureless pointlike particle in the neutron - decay have
been taken into account by Wilkinson [40]. As has been
shown in [8] these corrections are of order 107>. The
problem of nontrivial influence of hadronic structure of the
nucleon, caused by strong low-energy interactions, on
gauge properties of radiative corrections of order
O(a?/n?) has been pointed out in [57] within the standard
V — A effective theory of weak interactions. As has been
found in [57] the interactions of real and virtual photons
with hadronic structure of the neutron and proton should
provide not only gauge invariance of radiative corrections
of order O(a?/x?%) but also nontrivial dependence of these
corrections on the electron E, and photon w energies. This
agrees well with Weinberg’s assertion that strong low-
energy interactions play an important role in weak decays
[58]. Hence, according to Weinberg [58], contributions of
strong low-energy interactions beyond the axial coupling
constant g, seem to be in principle important for the

gauge invariant description of radiative corrections
to neutron S~ decays to all orders in the fine-structure
constant expansion. However, as has been shown by Sirlin
[14,16,21] the contribution of strong low-energy inter-
actions to the radiative corrections of order O(a/x) to the
neutron lifetime, calculated to leading order in the large
nucleon mass expansion, is a constant independent of the
electron energy. Because of such a property of strong low-
energy interactions their contributions to neutron - decays
have been left at the level of the axial coupling constant g,
and screened in the radiative corrections [14-35] (see also
[4-8]). As has been shown in [5] the contributions of the
weak magnetism and proton recoil of order O(E,/my) to
the neutron lifetime are much smaller than the contributions
of the radiative corrections. An enhancement of the
radiative corrections with respect to the corrections from
the weak magnetism and proton recoil is caused also by the
contributions of the electroweak-boson exchanges. The
necessity to take into account contributions of electro-
weak-boson exchanges [59] for the calculation of radiative
corrections of order O(a/z) has been pointed out by
Sirlin [18,20,21,23]. The analysis of electroweak-boson
exchanges and QCD corrections has been continued by
Marciano and Sirlin [24,33], Degrassi and Sirlin [25],
Czarnecki, Marciano and Sirlin [32], and Sirlin and
Ferroglia [35]. As has been shown by Czarnecki et al.
[32] the contributions of electroweak-boson exchanges
change crucially the value of the radiative corrections of
order O(a/x). Indeed, the radiative corrections to the
neutron lifetime, averaged over the electron-energy spec-
trum, are equal to ((a/7)g,(E,)) =0.015056 and
((a/7)g,(E,)) = 0.0390(8) without and with the contri-
butions of the electroweak-boson exchanges and QCD
corrections, respectively [32], where the function g,(E,)
describes the radiative corrections to the neutron lifetime in
notation [5,7]. In Fig. 1 the function g,(E,) is plotted
without (golden line) and with (blue line) the contributions
of the electroweak-boson and QCD corrections. It is
important to emphasize that the contribution of QCD
corrections, caused by the quark structure of the neutron
and proton and gluon exchanges, is by 2 orders of
magnitude smaller than the contribution of the electro-
weak-boson exchanges [32].

For the correct gauge invariant calculation of radiative
corrections of order O(a?/z*) and as well as O(aE,/my)
to the rate of the neutron radiative f~ decay n — p + ¢~ +
U, 4+ y within the standard V — A effective theory of weak
interactions, an appearance of nontrivial contributions of
strong low-energy interactions dependent on the energies of
decay particles has been pointed out in [57]. The problem
of gauge invariant and infrared stable nontrivial contribu-
tions of strong low-energy interactions to the radiative
corrections to neutron S~ decays is closely related to the
analysis of corrections of order 107, calculated in the SM
[7,57,60-62].
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FIG. 1. Radiative corrections (a/x)g,(E.) to the neutron life-
time in the electron energy region m, < E, < E;. Blue and
golden curves show the behavior of the function (a/x)g,(E,)
with and without contributions of electroweak-boson exchanges
and QCD corrections, respectively, where QCD corrections make
up of about 1.7% of the contributions of electroweak-boson
exchanges, which make up of about 60% of the total radiative
corrections to the neutron lifetime averaged over the electron-
energy spectrum [32].

A contemporary level of relative accuracy of about 107*
or even better of the experimental analysis of the neutron
p~ decay [63] for searches of contributions of interactions
beyond the SM and contributions of second class currents
[64-76] (see also [4,5,8,9]) demands the SM theoretical
background of order 107>, since “discovery” experiments
with the required 5o sensitivity will require experimental
uncertainties of a few parts in 107 [7-9]. The calculation
of the radiative corrections of order O(aE,/my) ~ 107> as
next-to-leading order corrections in the large nucleon mass
expansion to Sirlin’s corrections of order O(a/z) ~ 1073,
which we carry out in this paper, is the first step to the
calculation of the complete set of the SM corrections of
order 107 to the neutron lifetime and correlation coef-
ficients of the neutron i~ decays with different polarization
states of the neutron and massive decay fermions.

The paper is organized as follows. In Sec. II we discuss
briefly a low-energy hadronization of the Standard Model
(SM), where strong low-energy pion-nucleon interactions
are described at the hadronic level by the linear 6 model
(LoM) with linear realization of chiral SU(2) x SU(2)
symmetry. In Sec. III we outline the structure and properties
of the LoM with chiral SU(2) x SU(2) symmetry.
In Sec. IV we demonstrate an equivalence at the
Lagrangian level between the LoM, taken in the limit of
the infinite mass of the scalar isoscalar 6-meson m, — oo,
and chiral quantum field theories with nonlinear realization
of chiral SU(2) x SU(2) symmetry by Weinberg and by
Gasser and Leutwyler. In Sec. V we propose a quantum
field theoretic model of strong low-energy and electroweak
interactions with electroweak SU(2), x U(1), symmetry
as a hadronized version of the SM at low energies. Having

switched off the electroweak coupling constants this model
reduces to the LoM with chiral SU(2) x SU(2) symmetry.
In Sec. VI we calculate the matrix element of the hadronic
n — p transition in the neutron f~ decay in the tree
approximation for electroweak interactions and to one-
hadron-loop approximation for strong low-energy inter-
actions in the quantum field theoretic model proposed in
Sec. V and described by the Lagrangian Eq. (44). We show
that the quantum field theoretic model, described by the
Lagrangian Eq. (44), reproduces well the standard Lorentz
structure of the matrix element of the hadronic n — p
transition with the axial coupling constant g4 # 1, the
isovector anomalous nucleon magnetic moment x and the
one-pion-pole contribution. The latter is important for
gauge invariance of the matrix element of the hadronic
n — p transition in the chiral limit m, — 0, where m, is a
pion-meson mass. Such a gauge invariance or an inde-
pendence of a longitudinal part of the propagator of the
electroweak W~ boson is required by conservation of the
axial-vector hadronic current in the chiral limit m, — 0
[42]. Section VII is devoted to the analysis of the
calculation of the radiative corrections of order
O(aE,/my) to Sirlin’s radiative corrections of order
O(a/m) to the neutron lifetime. We point out that for
the calculation of the radiative corrections of order
O(aE,/my) as nextto-leading order corrections to
Sirlin’s corrections of order O(a/x) calculated to leading
order in the large nucleon mass expansion, it is enough to
analyze the contribution of the Feynman diagrams with
one-virtual-photon exchanges in Fig. 6. Such a set of the
Feynman diagrams is gauge invariant, i.e. independent of a
gauge parameter ¢ of a longitudinal part of the photon
propagator. Then, to leading order in the large mass of the
electroweak W~ boson exchanges the Feynman diagrams in
Fig. 6 reduce to the Feynman diagrams, used by Sirlin for
the calculation of the radiative corrections of order O(a/7)
to the neutron lifetime [14]. The calculation of the con-
tributions of hadronic structure of the nucleon to the
radiative corrections of order O(a/x) and O(aE,/my),
caused by one-virtual-photon exchanges and demanding
the analysis of two-loop Feynman diagrams, and the
contributions of the Feynman diagrams with electroweak
W and Z boson in the one-electroweak-loop approximation
goes beyond the scope of this paper. We are planning to
carry out these calculations in our forthcoming publica-
tions. In Sec. VIII we discuss the obtained results and
perspectives of application of the quantum field theoretic
model of strong low-energy and electroweak interactions,
described by the Lagrangian Eq. (44), to the analysis of
neutron lifetime and correlation coefficients of the neutron
S~ decays with different polarization states of the neutron
and massive decay fermions.

The Supplemental Material [77] including Appendices A,
B, C and D, where we give detailed calculations of the matrix
element of the hadronic n — p transition and radiative
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corrections of order O(a/x) and O(aE,/my) to the ampli-
tude of the neutron = decay, respectively, and discuss gauge
properties of the amplitude of the neutron radiative - decay.
In Appendix A we give the calculation of the matrix element
of the hadronic n — p transition to one-hadron-loop
approximation in the quantum field theoretic model
described by the Lagrangian Eq. (44). In Appendices B
and C we give the analysis of gauge properties of the
Feynman diagrams in Fig. 6 and the calculation of these
diagrams in details. We show that the Feynman diagrams in
Fig. 6 are gauge invariant, i.e. independent of a gauge
parameter & of the photon propagator, and renormalizable.
In Appendix D we discuss gauge properties of the amplitude
of the neutron radiative ~ decay taken to leading order in the
large mass of the electroweak W~-boson expansion.

II. LOW-ENERGY DYNAMICS OF THE
STANDARD MODEL

The Standard Model of particle physics is a quantum
field theory based on the SU(3) x SU(2), x U(1), gauge
symmetry group which describes strong, weak and electro-
magnetic (or electroweak) interactions among fundamental
particles, which are (i) eight gluons (g), mediating strong

|

Lsm = Ltiiggs(#) + Loauge(9: W, Z,7) +
q=u,d,s,c,b,t

- Z gqq(liqul//qRqﬁc + ¢L.Tl/_/quPqL) -

q=u,c,t

- Z 9e(PrLwerd + ¢ P er¥YeL),

f=eut

where Lyiqos(¢) is the Lagrangian of the Higgs field ¢,
Loauge (9. W, Z,y) is the Lagrangian of the kinetic terms of
gauge bosons, the third and fourth terms in Lg; are the
kinetic terms and interactions of quarks and leptons with
gauge bosons and the last three terms in Lgy; define Yukawa
interactions of quarks and leptons with the
Higgs field. In the phase of the spontaneously broken
SU(2);, x U(1), symmetry these interactions produce
masses of charged fermions. Then, ¥,;, V.., ¥,;, are quark
left-handed doublets with components (P, Pryy),
(Prw.,Pryy) and (Ppy,, Pry,,), respectively, and W,
are the lepton left-handed SU(2), x U(1), doublets with
components (P ., Pry,,) for £ = e, yand 7, respectively,
war = Pry, and y g = PRy, are the right-handed quark
and charged lepton SU(2), x U(1), singlets, where P; r =
(1 F y°)/2 are the projection operators P? = P, P% = Py
and P; P = PrP; = 0.Forg,, = g,y = 0 the Lagrangian
Lgy is invariant under chiral SU(N;) x SU(Ny) trans-
formations of the quark fields [78,79], where N is the
number of quark fields.

interactions between quarks with six flavors (¢ = u, d, s, c,
b, t) and three color degrees of freedom each, electroweak
bosons (W*,Z) and photon (y), mediating weak and
electromagnetic interactions between quarks and three
lepton families (¢, v,) for £ = e, p, 7 or electron, muon
and tauon and electron-, muon-, and tauon-neutrinos, and a
Higgs boson (H) with mass My = 125 GeV coupled to
quarks, leptons, electroweak bosons, photon and gluons
[3,78,79]. The part of the SM invariant under SU(3).
gauge symmetry or quantum chromodynamics (QCD)
[3,78,79], describing strong interactions, was mainly for-
mulated in [80-87]. In turn, the standard electroweak
model (SEM) or the part of the SM invariant under
SU(2);, x U(1), gauge symmetry has been formulated
in [88-94]. Renormalizability of the SM, including a
renormalizability of non-Abelian massless and massive
Yang-Mills theories, has been proved in [95-101]. The
number of colored quarks and lepton families is constrained
by a requirement of renormalizability of the SEM to all
orders of perturbation theory, violation of which can
occur because of Adler-Bell-Jackiw anomalies [102—
106]. Following Bijnens [78] the SM Lagrangian we write
as follows:

Z l/_/qi}/MD/ll//q + Z l/_/fiVﬂD/ﬂ//f + Z ll_lllfi}/ﬂDﬂl//l/[

f=eu,t Vp=Ve Vy:Vz

Z 9aq (l/_/qu//q’R¢ + ¢T1l_/q’Rl//qL)
(qq')=(ud),(cs),(tb)

(1)

|

Having integrated over gluon and quark degrees of
freedom we arrive at the effective Lagrangian for hadrons
coupled to electroweak bosons (W, Z), photons (y) and the
Higgs field (H), and leptons. The strong low-energy
interactions are described by the effective Lagrangian.
After the integration over the fields of baryons with masses
larger than mp > 1 GeV and of mesons with masses larger
than the z-meson mass my; > m, = 0.14 GeV we arrive at
the effective quantum field theory for pions and nucleons
pions, described by the chiral perturbation theory (ChPT)
with a nonlinear realization of chiral SU(2) x SU(2)
symmetry [107-121], based on the quantum field theory
of chiral dynamics developed by Weinberg [122—124] and
the general theory of phenomenological or effective chiral
Lagrangians [125-127], which reproduce fully (see Dashen
and Weinstein [128]) the results of the current algebra with
partially conserved axial-vector hadronic current (PCAC)
[129-131] (see also [43,44]) on all possible soft-pion
theorems related to multipion production [132]. As has
been shown by Weinberg [122] the effective chiral
Lagrangians with nonlinear realization of chiral SU(2) x
SU(2) symmetry can be derived from the linear ¢ model
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with linear realization of chiral SU(2) x SU(2) symmetry
[133] in the limit of the infinite mass of the scalar ¢ meson.
Then, by applying pion-field redefinition one may arrive at
any form of an effective chiral Lagrangian with nonlinear
realization of chiral SU(2) x SU(2) symmetry [123]. Such
an effective theory can be generalized by a series of higher
order terms of covariant derivatives of the pion-field
producing perturbative corrections to the current algebra
results, i.e. chiral perturbation theory [124]. A consistent
realization of this idea has been carried out by Gasser and
Leutwyler [107] (see also [108-121] and many other
papers). The LoM with a linear realization of chiral
SU(2) x SU(2) symmetry attracts strong attention
by the following properties: (i) spontaneously broken
chiral SU(2) x SU(2) symmetry, (ii) the partially con-
served axial-vector hadronic current (PCAC) and the
Goldberger-Treiman relation [134] at the quantum field
theoretic level and (iii) renormalizability [135-140].

The analysis of the contributions of hadronic structure of
the nucleon or strong low-energy interactions to the neutron
p~ decay within the LoM has been carried out in [60—62] in
the standard V — A effective theory of weak interactions
[41-43]. As has been shown in [60] (see also [141]) the
contributions of the LoM, calculated to one-hadron-loop
approximation, reproduce well the Lorentz structure of the

matrix element (p(%p,ap)|J,(,+)(O)|n(lzn,6n) of the had-

ronic n — p transition, where Jff)(O) = fo)(O) - A,(,H(O)
is the charged weak hadronic current [41—43]. According to
the analysis of contributions of hadronic structure of the
nucleon to the radiative corrections of the neutron lifetime,
described by QED and the LoM in the standard V — A
effective theory of weak interactions, the radiative correc-
tions to order O(a/x) are gauge invariant with contribu-
tions of strong low-energy interactions described by the
axial coupling constant g, to leading order in the large
nucleon mass m expansion only. This agrees well with the
analysis of radiative corrections carried out by Sirlin
[14,21]. In other words in such an approximation the
neutron and proton can be treated as pointlike particles.
Nontrivial contributions of hadronic structure of the
nucleon to the radiative corrections can appear only to
order O(aE,/my) [60]. However, these contributions are
gauge noninvariant and dependent on the ultraviolet cutoff,
which cannot be removed by renormalization. As has been
pointed out in [60-62] the problem of an appearance of
gauge noninvariant contributions and contributions, violat-
ing renormalizability of the amplitude of the neutron
p~ decays, to order O(aE,/my) and even smaller, can
be explained as follows. Indeed, the effective V — A vertex
of weak interactions is not the vertex of the combined
quantum field theory including the LoM and QED. This
implies that correct gauge invariant contributions to the
amplitude of the neutron = decays can be obtained in any

loop approximation and without violation of renormaliz-
ability only in the hadronized version of the SEM with
renormalizable quantum field theory of strong low-energy
interactions. In such a combined quantum field theory the
vertex of the effective V — A weak interactions is defined
by the electroweak W~-boson exchange. This should result
in a gauge invariant set of Feynman diagrams including
electroweak bosons and photons coupled to Ileptons,
nucleon and hadrons from hadronic structure of the
nucleon, described by a renormalizable quantum field
theory of strong low-energy interactions. Since the effective
chiral Lagrangians with nonlinear realization of chiral
SU(2) x SU(2) symmetry can be derived from the LoM
in the limit of the infinite mass of the scalar isoscalar ¢
meson [122] (see also [127]) and by redefinition of
hadronic quantum fields [123], for the description of strong
low-energy interactions of the nucleon and pions we choose
the LoM in the infinite limit of the scalar isoscalar 6-meson
mass. Because of the equivalence theorem [142—145] such
redefinitions of hadronic quantum fields do not affect
observable quantities, defined by matrix elements of the
S-matrix on mass shell of interacting particles.

III. LINEAR ¢ MODEL (LeM) WITH CHIRAL
SU(2) x SU(2) SYMMETRY [62]

A. Chirally symmetric phase of the L.eM

The LoM with linear realization of chiral SU(2) x
SU(2) symmetry describes strong low-energy nucleon-
nucleon, pion-nucleon and pion-pion interactions with a
mediation of the scalar isoscalar ¢ meson [133]. In the
chirally symmetric phase the Lagrangian of the LoM is
given by [44]

Liom = Wn(iy"0, — gan (00 + 0T - ) Jpry

1 T | -
+3 (0,00'c + 0,7 - OT) + E,uz(oz + 7%)

1 -
_Z},(GZ _l_n.2)2’ (2)

where yy is the isospin doublet of the nucleon field
operator with components (y,.y,), where y, and v,
are the proton and neutron field operators, respectively, ¢
and 7 = (", z° n7) are the scalar isospin-scalar (isosca-
lar) o- and pseudoscalar isospin-vector (isovector) pion-
meson field operators, 2, y and g,y are input parameters of
the LoM, 7= (7,75,73) are the isospin 2 x 2 Pauli
matrices and 7, is the isospin 2 X 2 unit matrix.

Under isospin-vector and isospin-axial-vector (or chiral)
infinitesimal transformations with parameters ay and ad,,
respectively, the nucleon and meson fields transform as
follows:
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oo (4 A
YN YN +120’V T |WN,

_ay _ N
Yy — YN =VYnN 1—ZEGV'T,

dy

y .
T— 7T =T —ay X7,

c— 0 =o,

o 1 R R
YNyl = <1 + i§y5aA 'T>WN’

A _ _ D U
l//N—A>l//’N—1//N<1+157/5aA-T),

aa - - X o o
6—0 =oc+ay-7, i—a =n-a40. (3)

The Lagrangian Eq. (2) is invariant under global trans-
formations Eq. (3). Under local transformations Eq. (3) the
Lagrangian Eq. (2) acquires the following corrections:

R _ 1. . .
0L =—0"ay - (l//Nyﬂ ETWN + 7 X 8,,7:)

R _ I - -
—0'ay - (WN?’MJ/SETV/N+ (0'3#7/7—”8;40)) (4)

which allow one to define the vector and axial-vector
hadronic currents [129]

= OLiom > - -

V,=- 50 G, = l//N]/METl//N +7 x 0,7,

- Lo 1. - o

A, =- 50, = z//Nyﬂys ETI//N + (60,7 — 70,0). (5)

Using the equations of motion for the nucleon, scalar and
pseudoscalar fields one may show that in the chirally
symmetric phase the divergences of the vector and axial-

vector hadronic currents vanish 8”‘7,, = 8”1% = 0. This
means that in the chirally symmetric phase the vector and
axial-vector hadronic currents are locally conserved.

B. Phase of spontaneously broken chiral symmetry

We would like to notice that the nucleon, scalar and
pseudoscalar fields in Eq. (2) are unphysical. Indeed, the
nucleon is massless and the mass term of the scalar and
pseudoscalar fields enters with incorrect sign. Hence,
physical hadronic states can appear in the LeM only in
the phase of spontaneously broken chiral symmetry [133].
In the LoM the phase of spontaneously broken chiral
SU(2) x SU(2) symmetry can be described by the
Lagrangian [44]

Liom = Wn(iy"0, — gan (100 + ir’7-7))yy

1 1
+ 5 (8ﬂ66ﬂ6 + 8/47_1') . 6“7:) + 5#2(62 + 7_752)
1
— 470 +7) +ao, (6)

where the last term ao is noninvariant under chiral trans-
formations Eq. (3).

The phase of spontaneously broken chiral symmetry
characterizes by a nonvanishing vacuum expectation value
of the o-field () = b # 0. The transition to the fields of
physical hadronic states goes through the change of the o-
field 6 — o + b, where in the right-hand side the o field
possesses a vanishing vacuum expectation value. After
such a change of the o field the dynamics of physical
hadronic states is described by the Lagrangian

Liov = wn(ir*0, —my — gun (100 + ir°7 - 7) Jwy
1 1 R N .
+ 3 (0,00t0 — m26?) + 3 (0,7 - "7 — mar?)

1 .
—rbo(e® +7) = y(0® + 7)%, (7)

where the masses of physical hadrons and coupling con-
stants are determined by

mg = 3}/192 — ,uz,
a=m2b, (8)

my = gﬂNb7

mg = yb® — %,

where b = f, with f, is the z-meson leptonic coupling
constant [44], and y = (m2 —m2)/2f%. In the phase of
spontaneously broken chiral symmetry the vector and axial-
vector hadronic currents are equal to

- B 1. . .
v/,t = l//N}/ﬂ ETV/N + 7 X aﬂ”’

_ | - S -
u = UNYY SN+ (60,7 — 70,0) + b0, 7. (9)

2>

Using the equations of motion for the nucleon, scalar and
pseudoscalar fields one may show that the divergences of
the vector and axial vector hadronic currents are given by
8“‘7” =0 and 8/‘;1'” = —m2f,7. This result agrees well
with that by Adler and Dashen [129] (see Eq. (1.49) of
Ref. [129]). Thus, the LoM reproduces well the hypothesis
of partial conservation of the axial-vector hadronic current
(the PCAC hypothesis) at the quantum field theoretic level
[133]. Unlike the axial-vector hadronic current the vector
hadronic current is locally conserved even in the phase of
spontaneously broken chiral symmetry. Conservation of the
vector hadronic current in the LoM can be violated only by
isospin symmetry breaking.
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The mass of the scalar isoscalar o-meson m, = For massless pions m, =0 ora = 0 the vacuum expect-
\/2f%y + m? is practically arbitrary because of an arbitrari-  ation value of the ¢ field is equal to (¢) = \/u*/y = f,.In

ness of the coupling constant y. Following Weinberg [89] one this case the mass of the & meson is m‘7 =./3 f,r.
may take the limit m, — oo corresponding to the limit y —

oo at \/u?/y = fixed. As has been pointed out by Weinberg C. Renormalization of the LeM
[89] (see also [127]), in the limit m, — oo (or y — o) the

LoM reproduces the results of the current algebra [129], and
it is equivalent to chiral quantum field theories of strong low-
energy pion-nucleon interactions with nonlinear realizations
of chiral SU(2) x SU(2) symmetry.

For the discussion of the renormalization procedure in
the LoM we rewrite the Lagrangian Eq. (7) as follows
[136-138]:

- o 1
Lion =0 (179 = my) = gy (x00® + i’ 2 - 7Oy + 2 (9,006 — 602

1 1
+ 5 (8,,71((» . (:)”7?(0) — mSIO)Z ) fﬂ ( + ﬂ—( )2 ) — ZJ/(0)(0(0)2 4 7—1.'(0)2)2’ (10)

where 1//1(3), 6 and 7©) are bare hadronic fields, ml(\(,)), méo) , mﬁ,) and y f,, are bare hadronic masses and coupling

constants, respectively. After the calculation of hadron-loop contributions the dynamics of physical fields is described by
the Lagrangian

L =00 iy, = m) — g (xo0™) + iy57 - 7))y + (a oo — m{(61)2)

1

5 (0,78 07— m@0)2) 4y e (6) 4 (@0)) = 2y () + @+ Lig. (1)

where the Lagrangian ['1(5;3 is given by

L9 = (Zy = V) (ir#0, = m ) = Znom$ g wly) = (Zay = Vgl (76 + i’ - 70y

1 r r 1 = = r b
+ (Zu = 159,000 = mi(6)2) = Zysmi (612 + (Zy = 1) 5 (9,77 - 7 — mi P (70))?)
1

~ Zyydmy (702 4 (Zyyy = Dy f 60 ((60)2 + (70)2) = (Zapg = 1) 570 ((0)? + (70)2)2. (12)

.[;

Here Zy, Z, and 5m1(\f), 5m¢(,r)2, 5m,(,r)2 are renormalization constants of wave functions and masses of the
nucleon, scalar and pseudoscalar fields, respectively. Then, Z,y, Zsy and Z,, are renormalization constants
of the corresponding vertices of meson-nucleon and meson-meson field interactions. The abbreviation “CT”
means ‘“‘counterterms.” If the fields, masses, coupling constants and renormalization constants satisfy the
relations

vy =z 60 =\Zyo 70 =\/Z7"

mg\?) = m](\f) + émg\;), m®? = m{”? + omi?, m®? = m{? 4 sm{”?,
0 17— r 2 (r
gz(rl\)7 = ZMNZNIZM1/297(7137’ f( )= Z3MZ4MZ}14/2fﬂ J y©® = Z4MZM27/( ),
Zyy = Zsums (13)

the Lagrangian Eq. (11) reduces to the Lagrangian Eq. (10). The relation Zj3, = Z4) implies that the
pion decay constant f,(,r) is renormalized only by renormalization of the wave function of the 7 meson, i.e.
f£;0> _ Z,lf f;;r>.
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IV. EQUIVALENCE OF THE LoM TO QUANTUM
FIELD THEORIES OF STRONG LOW-ENERGY
PION-NUCLEON INTERACTIONS WITH
NONLINEAR REALIZATION OF CHIRAL
SU(2) x SU(2) SYMMETRY

In this section we discuss an equivalence of the LoM
with a linear realization of chiral SU(2) x SU(2) symmetry
to quantum field theories with nonlinear realizations of
chiral SU(2) x SU(2) symmetry or chiral perturbation
theory. For this aim we follow Ecker [112]. We introduce
the fields

1 - - . 1 - =
U=—(tg0 +i7-7), U'=—(tgo—it-7) (14)

Y T

and rewrite the Lagrangian £; ; in Eq. (6) as follows:

Lion =Wy (i7" 0, — gun (100 + 17T 7))y y

W3 L0, Ufaﬂu>+1m,[f,r<(u+ uh))
—UU)) - f4

4&Mﬁm, AQ-U0P) (15)

where (...) is a trace over isospin matrices [112]. Taking
the limit y — oo corresponding to the infinite limit of the

scalar isoscalar 6-meson mass m, — oo, we get UTU = 1.
This allows us to transcribe Eq. (15) into the form

Lener = Wn(ir*0, — gun(t00 + 17T - 7)) )yy

+fz’2f<a,,UTaﬂU> +%m,%f%<(U+ u). (16)

From the condition U'U =1 we obtain ¢ + 7° = f2
[123]. Following again Ecker [112] we rewrite Eq. (16)
as follows:

Lenpr = WiV O wne + Warir" 0w ng
— my Wy Uwyg +WnrUTwr)
2
1 .
o) o). ()

where wy; = Pryy and wnr = Pryy are the left- and
right-handed nucleon fields, respectively, g,y = my/f, is
the Goldberger-Treiman (GT) relation with the axial
coupling constant g4 = 1 [134]. Then, we make unitary
transformations [112]

YNR = MT‘/’?\/Rv

WNR = WyglU- (18)

o
YNL = WY

- _ 7/ T
YNL = YN U

Plugging Eq. (18) into Eq. (16) we arrive at the Lagrangian

Lenpr = Wiy iy (0, + u' 0,u)yry,
+ 1/7§VRi7M(a/4 + ”aﬂuf)lllﬁvR
= my @y u U ylyg + WiyguU uyly, )
2
1
Lo, utow) + i vn). (19)

Setting u'Uu" = uUTu =1 that gives U = u> we tran-
scribe Eq. (19) into the form

1
Lener = Wiy (W d, + l}’” ', 0 ]

o
=ity 5wt Ou} - mN> v’

WL 1
7 (0U70"0)) + mzf (U +UT)), (20)

where we have used the relation ud,u’ = —0,uu’ [117]
and denoted [u, 0,u] = u'd,u — d,uu’ and {u',d,u} =
u'du+ 0,uu’ = u'0,Uu’. The Lagrangian Eq. (20)
can be written also in the following form
[108,109,111,112,117]:

i} . s ]
Lcner = Wiyt (W"Dﬂ — iy'y? 3 {u’, 0,u} - mN) Wy

v guou) i), @)

where D, = 0, + 1T, is the covariant derivative and I', =
(1/2)[u’,0,u] has a meaning of an affine connection
[112,117].

A. Quantum field theory of strong low-energy
pion-nucleon interactions with nonlinear
chiral SU(2) x SU(2) symmetry
in Weinberg’s parametrization
i7-8)/\/1+&,
where E =7a'/2f, [89], the effective chiral Lagrangian
Eq. (21) takes the form

In Weinberg’s parametrization u = (1 +

-

1 7 (7' x0,7")
AR T
ol TOR Y
A TAR: *'2/4f,r>
10,7 - o'’ — min'?

2 1+7%/Af2

Lener = Wyr (17” 0y —my —y*

(22)

and describes the quantum field theory of strong low-energy
pion-nucleon interactions with nonlinear realization of chiral
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SU(2) x SU(2) symmetry in Weinberg’s chiral perturbation
theory [89,123,124]. A deviation of the axial coupling
constant from unity g4, > 1 can be obtained in the hadron-
loop approximation.

B. Quantum field theory of strong low-energy

pion-nucleon interactions with nonlinear chiral

SU(2) x SU(2) symmetry in Gasser-Leutwyler’s
parametrization

In the exponential or Gasser-Leutwyler’s parametrization
u = e, where & = 7 /2f,, the effective chiral Lagrangian
Eq. (21) retains its form with U = u? = ¢/#%//= [107-121]

Lewer = Wiy, <17’ D, —my — ir'y’ El/ﬂ a,,Um)l,/;v
/2 P
+ 5 0U0)) + omifL{(U+ U)), (23)

and describes the quantum field theory of strong low-energy
pion-nucleon interactions with nonlinear realization of chiral
SU(2) x SU(2) symmetry in Gasser-Leutwyler’s chiral
perturbation theory [107-121]. The deviation of the axial
coupling constant from unity g4 > 1 can be obtained in the
hadron-loop approximation [108—121].

C. Quantum field theoretic model of strong low-energy
pion-nucleon interactions for the description
of hadronic structure of the nucleon
in neutron - decays

Since in the limit of infinite mass of the scalar isoscalar
o-meson m, — oo (or in the limit y — o0) the LoM with
linear realization of chiral SU(2) x SU(2) symmetry is
equivalent to chiral perturbation theory with nonlinear
realization of chiral SU(2) x SU(2) symmetry in
Weinberg’s and Gasser-Leutwyler’s parametrizations, we
shall use the LoM for the description of contributions of
hadronic structure of the nucleon to the neutron = decays.
We shall calculate the corresponding Feynman diagrams
for contributions of strong low-energy interactions to the
amplitude of the neutron f~ decays. We take the contri-
butions of these Feynman diagrams in the limit of the
infinite scalar isoscalar o-meson mass m, — oo (or in the
limit y — o0). After renormalization the obtained expres-
sions of the matrix elements of the S-matrix for the
amplitudes of the neutron = decays should be in agree-
ment with such properties of the S-matrix as analyticity,
unitarity, cluster decomposition and symmetry. This should
imply that because of equivalence of the LoM in the infinite
limit of the scalar isoscalar o-meson mass to quantum field
theories of strong low-energy pion-nucleon interactions
with nonlinear realization of chiral SU(2) x SU(2)

symmetry, the contributions of these Feynman diagrams
should be the same as the contributions of quantum field
theories with nonlinear realization of chiral SU(2) x SU(2)
symmetry and, correspondingly, current algebra. Such an
assertion is based on Weinberg’s “theorem” [124].

According to Weinberg [124], “The ‘theorem’ says that
although individual quantum field theories have of course a
good deal of content, quantum field theory itself has no
content beyond analyticity, unitarity, cluster decomposi-
tion, and symmetry. This can be put more precisely in the
context of perturbation theory: if one writes down the most
general possible Lagrangian, including all terms consistent
with assumed symmetry principles, and then calculates
matrix elements with this Lagrangian to any given order of
perturbation theory, the result will simply be the most
general possible S-matrix consistent with analyticity, per-
turbative unitarity, cluster decomposition and the assumed
symmetry principles. As I said, this has not been proved,
but any counterexamples would be of great interest, and I
do not know of any. With this ‘theorem,” one can obtain and
justify the results of current algebra simply by writing
down the most general Lagrangian consistent with the
assumed symmetry principles, and then deriving low
energy theorems by a direct study of the Feynman graphs,
without operator algebra. However, in order for this
to be a derivation and not merely a mnemonic, it is
necessary to include all possible terms in the Lagrangian,
and take account of graphs of all orders in perturbation
theory.”

According to this theorem, one may expect that the
contributions of strong low-energy interactions described
by the LoM to the neutron f~ decays are at Sirlin’s
confidence level of the description of contributions of
strong low-energy interactions to radiative corrections
for the neutron lifetime.

V. QUANTUM FIELD THEORETIC MODEL OF
STRONG LOW-ENERGY PION-NUCLEON AND
ELECTROWEAK INTERACTIONS FOR THE
DESCRIPTION OF NEUTRON g~ DECAYS

A. General properties of the Lagrangian for quantum
field theoretic model of strong low-energy and weak
interactions of pion-nucleon system coupled
to electron and neutrino

For the analysis of neutron #~ decays within the quantum
field theoretic model of strong low-energy and electroweak
interactions of the pion-nucleon system coupled to
electron and neutrino (antineutrino), we propose to rewrite
the Lagrangian of the LoM in the SU(2) x SU(2) sym-
metric phase, given by Eq. (2), in terms of the field
operators
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178
\PNL:PLWN:PL<Wp)v Wor=PrY,. W.r=Pry,,
n
. 1 ( oc+in’ ) 1 (o—+i7r°>
_\/E i(z'+in?) _ﬁ iv2n )’
1 /[i(z'—in? 1 [iv2r*t
CI)C——irzL(I)*——( ( )> __(l b1 )’
2 c—in’ V2 \o—in’
(24)
where 7,; is the Pauli 2 x 2 matrix of the “weak isospin.”

The field operators Eq. (24) have the following properties
under the SU(2), x U(1), transformations:

1. 2 1
TNLMTNL = (1 + iETL'aL + lEYaY>lPNL7

ap,ay 1
WpR_)l//pR_ 1+l§Yay WpR’

ar,ay , 1
Yar—>Wyp = 1+15Yay YR,

ag.ay ., .1_, N 1

(I)—)Q = 1+l§TL‘(ZL+l§YaY (I),

Ly - B 1 .
O = 1+1§TL-aL+zEYaY e, (25)

where I; = %7'1_ and Y are operators of the “weak isospin”
and “weak hypercharge,” respectively, @; and ay are

infinitesimal parameters of the SU(2), and U(1), gauge
group transformations, respectively. The operators of the

third component /5; of the weak isospin fL and the weak
hypercharge Y are related by Q = I5; + Y /2 [59,89] (see
also [3]), where Q is the operator of electric charge,
measured in e, which is the proton electric charge. The
eigenvalues of the third component of the weak isospin
and weak hypercharge are ((I3.),.,Y,.) = (+1/2,+1),

((I3)nrs Yur) = (=1/2,4+1),  ((I31) pr> Ypr) = (0, +2),
((I3L)nR7 nR) (O O) ((I3L)a+i7r°’ YCD) = (+1/2’ _1)’
((I30)Yo)=(=1/2,-1), ((I31)z:Yoc) = (+1/2,+1)

and ((I37),_i0, Yoo ) = (—=1/2,+1, respectively. In terms
of the field operators Eq. (24) the Lagrangian Eq. (2) takes
the form

Loy = Pyrir* 0, YNL + W RV O ok + WiV O, W ik
_ \J 7 ¥
.
V2g N (PN @Y g + g @ Py, )
- \/EgnN(liJNLq)CV/nR + 7Py

1
+ 0,97 D + P OTD — Ey(qﬂq))? (26)

The Lagrangian Eq. (26) is invariant under global
SU(2), xU(1), transformations Eq. (25). Invariance
under local SU(2), x U(1), transformations can be
reached by the inclusion of the interactions with gauge

boson fields VT/” and B, [59,89]. This gives

- ) R 1 . . _
'CLO'M = ‘PNL (l}/ﬂaﬂ + lgETL : Wﬂ + lg/EBﬂ> lPNL + l//pR(l}/Ma/A + lg/Bﬂ)l//pR + l//anyﬂa/AWnR

= Gan (PN @Y i + W g @ WPy1)

= gan (PN @Y g + Wp® Ty )

I 1 D 1
+ (8,,¢>T - ng(I)*TL W, + lg’?DTBﬂ) <8”(I> + 9570 w,® - ’9/§Bu®>

1
+ oD — EY(q)T‘I’)Z,

(27)

where g and ¢ are the electroweak coupling constants [59,89]. The gauge boson fields Wﬂ and B, have the following
transformation properties under the SU(2), x U(1), local transformations:

. 3 . RN
Ww ;_Wﬂ—’_ ﬂxaL——ﬁﬂaL,
ap ,Qy 1
BB, = B~ 0,ay. (28)

Having added to the Lagrangian Eq. (27) the kinetic terms of the electroweak gauge boson fields, the interactions of the
electroweak gauge boson fields with the electron and neutrino fields (W, ,y.g) and the Higgs field ¢ [89] we arrive at the

Lagrangian
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- . D 1 . ) _
Ly omrsem = Par <W”3ﬂ + 1957L W, + 19/sz> Wy +wpr(iy*0, +ig B, )W ok + Wariy" 0 Wk

- \/Eger(lilNL(DWpR + W pr®Wyy) — V20,n Py @,k + Fe @y,

I . 1 N 1
+ (8,}13* - lgECDTTL W, + le(DTB”> (G”CD + 957 W, - szBﬂd>>

1

1
20D — — y (DT D)2
+u 27( ) 1

N . 1 -
W - W — ZBWB"” + W, iy" (aﬂ + ig

1, - !
ET' Wﬂ - ldEBﬂ)leL

_ . . = — . 1 - =g . 1 -
+ Worir* (0, — igB)Wer — V29 (PrrWert + ¢ e ¥rr) + (3,4«1“ - lgir/ﬂf W, - tg’§¢'B,,>

< (04041037 W0+ i L 50) + PO 9= K00

of the quantum field theoretic model of strong low-energy
and electroweak interactions, which we apply to the
analysis of hadronic structure of the nucleon in the neutron

p~ decays, where Wﬂy and B, are the operators of the field
strength tensors of the gauge boson Wﬂ and B, fields

W =0,W,—9,W, —gW, x W,
BW

=09,B,-9,B, (30)

and the operators of the lepton and Higgs fields are
defined by

i
Yoy =Pp (Ww>a Wer =Prye.  ¢= (450)’ (31)
We ¢

having the following properties under the SU(2), x U(1)y
transformations:

ay .o
B,,—>B,, =B,,.
G . 1. _
LPeLMKPEVL = <1 + ZET ar, —+ l_Yay> lPeL,
ag,ay 1
Wer——Weg = | 1 + lEYaY WeRs
G . 1 -
PS5 (1 Ty d 1—Yay)q’) (32)
The eigenvalues of the third component of the

“weak isospin” and “weak hypercharge” are
((IBL)eL’YeL):(_l/zﬂ_l)’ ((13L)U€L’Y%L):(4'1/27_1),
((I3) pr> Y pr) = (0, +2), ((I31) g+ Yer) = (0,-2),
((I31) g Yg)=(+1/2.41) and ((I3)0.Yy)=(=1/2.+1),

(29)

respectively. For the derivation of the Lagrangians Egs. (27)
and (29) we have used the following standard definitions of
the covariant derivatives of the left-handed fermions and
the Higgs field D;, and the right-handed fermions Dpg,
defined by [89]

U S 1
DL,,:aﬂ—f—lgETL‘Wﬂ—l—zg EYB’“

!
DRM = (9,4 + lg/EYBl“

(33)
where Y is the operator of the weak hypercharge [89].
In the physical phase or in the phase of spontaneously
broken  SU(2), x U(1), symmetry reduced to
SU2), xU(1)y = U(1l),,, where U(1l),, is a gauge
group of electromagnetic interactions, the components of
the Higgs field ¢ are equal to ¢t =¢~ =0 and
¢° = ¢% = (v + H)//2, respectively, where v is the
vacuum expectation value (¢°) = (¢**) = v and H is
the observable scalar Higgs field with mass My =
125 GeV [3]. In turn in the physical phase the hadronic
fields @ and ®° are defined by

q):L(o-—i—iﬂO)_)L(fﬂ%—a—i—iﬂO)
\/§ i\/in'_ \/i l'\/iﬂ'_ '
o),

V2 \o—in° V2 \f,+0—ir° 7

where the transition to the fields of physical hadronic states
goes through the change of the ¢ field 6 — f, + ¢ with a
vanishing vacuum expectation value (¢) = 0 of the o field
on the right-hand side. In terms of the fields of the physical
states the Lagrangian Eq. (29) takes the form

(34)
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LL6M+SEM = l/_/p(iyﬂay — My

— V2N i W™ = N 2guniry ,n

- yf”g(gz

+1MZZZﬂ !
2T 4" 28

+2nta + (7:0)2)

T = gzzN(l/_/pi}/Sl//p

1
- Z}/(oz +27tn + (2%

1 1
Wy +w,(iy"0, — my)w, + 0,x" ™ + Ea#n‘)aﬂno + 3 (0,00"c — mZc?)

- l/_/niysl//n)ﬂo - gﬂN(l/_/pr + l/_/nl//n)o-

1 1
)2>2 - 5 W;uW_MU + M%VW/:FW_M - ZZMDZW

1 1
T Fu " — — (8 AM)? + 5 0.HO"H - EM%;Hz + W (ir' 0, —m )y, +WoLir'ow.L

- 2_\9/5 W (1 =7 )y, + iﬁ(noa,,n— - 9,n'n™) - \/5(0'0#7:_ —-0,0m7) = \/Efﬂaﬂﬂ_)W;{

- 2—\9/5 (’/_/nyﬂ(l - 75)V/p + iﬁ(”+aﬂ”0 - 8ﬂ”+ﬂ0) - \/E(Gaﬂﬂ+ - 6ﬂ0'ﬂ+) - \/Efﬂaﬂ”+)w
1 1
~TcosOy, ( w,rt (1 —4sin®0y — 77 )y, Ey'/ny"(l -7 )y, +i(1 = 2sin*0y)(z*0,n~ — 0,7t 7")
- (Gaﬂﬂo - aﬂGH ) f;r > - e(l//pyul//p + l( aﬂﬂ+ - 8;4” z ))A - W’W@yﬂ( )WL/LW;

g _
-~ 2—ﬁwyuf"(1 AP

4 cos Oy

+ ey Yy A, + >

1
P (2f 0% 4 (2°)? + 27t nT )W W +

. g
x (1 - 281029W)2M> <6Aﬂ * 2cos Oy

x W, (WHHzY

+
N = | =

1 1
5 1eF (WHW = WHW™) 4 2 igcos 0y Z,, (WHW = WHW™) 4 (W W

X (WHWH — WHW—) +

1 M? 1M2
_&V_/el//eH HH3 HH4
v 2w 8 12

where Oy is the Weinberg angle defined by tan 8y = ¢'/g
[3,89], the field operators W* = (W'  iW?)/+/2 of the
W= boson, Z, = W; cos Oy — B, sinfy, of the Z boson
and A, = B, cosOy + Wﬁ sinfy, of the electromagnetic
fields, respectively, e = gsinfy is the proton electric
charge. Then, we have denoted X,, = 0,X, —d,X, for
X=W* Zand F w = 0,A, —0,A, is the electromagnetic
field strength tensor. The term (1/2£)(9,A*)?* fixes a gauge
of the electromagnetic field, where £ is a gauge parameter
[146]. The massive fields of the W*- and Z-electroweak
bosons are defined in the physical gauge with masses
equal to

Wt (1 —4sin’0y — y° )y, Z, —

2

8 cos?

1 1
— ZIWH) i WL (AW = WHAY) i g eos By W, (2"

M; 1 M3, 1
—W WiW™H + 7 — LYWW HH? + 5

g 5
g 1— Z
Zoos oy, e =), Z,

1
= (egA, + ¢* cos Oytan?Oy Z, ) (i(fr + o) (a "W+ — = W) = 20 (" W+ + 2= W)

- g
(2fn52 + (ﬂo)z)ZﬂZ“ +rtx <6Aﬂ + m

1 1
(1- 2sin29W)Z”) + ii eW, (WHAY — AFWH) + iigcos Ow

WrYW—H Zu)

1
F(WiA, = AW (AW = WHAY) + 2 PeosOy (Wi Z, = Z,W, ) (2 W™ = W2Z)

1
+egcosOy (WA, —AW))(Z'W™ = WHZY) + 5egcos Ow(WiZ,—Z,W))(AW™ — WHAY)

-Wiwy,)
M M2
~LLZH L2,
(35)
1 M3,
M2 — —2(2 2 , M2 — w 36
V=R M= (36)

with the hadronic contribution defined by the term propor-
tional to £2. The vacuum expectation values » and f, of the

Higgs and o-meson fields are equal to v = \/ji%/A and

fr=\/4*/7, respectively. The masses of the hadrons,
electron and Higgs boson are given by

mg =27y,
M3, = 2070 (37)

— 2
my = g!erﬂ’ my = 07

m, =g.v,
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The Lagrangian Eq. (35) as well as the Lagrangian Eq. (29)
is invariant under gauge SU(2), x U(1), transformations
Egs. (25), (28) and (32). Such an invariance is being
retained as long as pions 7 = (7%, z%) are massless.

The term violating chiral SU(2) x SU(2) invariance and
providing a nonvanishing pion mass is equal to

8Ly = m2f 0. This leads to the hadronic masses

mg = 2f7y +mg
(38)

_ 2 _ 2 2
mN_gﬂNfﬂ’ my = Jz¥y — 4=

and f, = \/(u> +m2)/y > \/u*/y. Since the o field is
a component of the SU(2), x U(1), doublet o=
(Dyy)p + d)‘_'l/z)/\/i, where @/, and @¢, , are the up
and down components of the SU(2), x U(1), doublets ®
and @¢, respectively, the term 6L = 0L sMisEM =
mifno=maf (P + db‘_'l/z)/\/i violates also invari-
ance under SU(2); x U(1)y transformations. Restoration
of invariance under SU(2); x U(1), transformations can

be reached following Weinberg [59] and introducing the
interaction

OL1 sM4SEM = (@ + ¢ D). (39)

fe
v

S

This allows us to deal with the term 6£; ;\y = m2f,0 in the
form invariant under SU(2), x U(1), transformations. In
the phase of spontaneously broken SU(2), x U(1), sym-
metry the interaction Eq. (39) acquires a form

H
8L oM SEM = Maf 70 (1 + ?> . (40)

In the chirally broken phase, when ¢ — f,+ o, the
contribution of the interaction Eq. (40) to the Lagrangian
£LOM+SEM in Eq (35) is given by

PP PP mazfx
SLLoM SEM = —MZT ' T —zmn(”) +T¢’H- (41)

The terms linear in ¢ and H, which appear in the SU(2), x
U(1), symmetry broken phase, lead to a redefinition of the
vacuum expectation value » of the Higgs field only. A
relative correction 8v/vy = f2m2/v3M?% to the standard

value vy = \/fi*/1 =246 GeV [3] is of about 107'3,
calculated for the Higgs-boson mass My = 125 GeV,
[z =924 MeV and m, = 140 MeV [3]. We would like
to accentuate that the interaction Eq. (41) amends only
invariance under global SU(2), x U(1), transformations
but not gauge ones. Indeed, a nonvanishing pion mass leads
to nonconservation (or partial conservation) of the axial-
vector hadronic current, violating invariance under
SU(2); x U(1)y gauge transformations. Below we show
this by example of the neutron = decays.

Together with the contribution of the interaction
Eq. (39), taken in the physical phase given by Eq. (41),
the quantum field theoretic model of strong low-energy
pion-nucleon and electroweak hadron-hadron, hadron-
lepton and lepton-lepton interactions, where leptons are an
electron e~ and neutrino v,, is described by the Lagrangian

2

Liomisem = Wp(ir*0, — my)y, + W, (iy"0, — my )y, + (O,7nt O a~ —mz)nta~

1 1
+ 5 (aﬂﬂoaﬂﬂo - m%(n.O)Z) + 5 (aﬂaaﬂo - mrzfoz) - \/EgﬂNl/_/piysl//nﬂJr - \/EgﬂNl/_/niysl//p”_

= 9o Tpir’w, = 0, w,) 10 = gy (W W, + 0,0 — vfr0(c? + 2nn™ + (2°)?)

1 1

1 1 1
-2 y(o® + 27 + (2°)?)% - S Wi W+ MWW — 2 Zw?" EM%ZMZ” — g FuwF"

1
2

__9
2V/2
__9
2V/2

g 1_ p . 5 5 1
- — 1 — 4sin20,, — -
3 cosy <2wp7( sin*fy — )y,

1 1
(aﬂAM)z + EaﬂHaﬂH - EMIZ*-IHZ + l/_/e(iyﬂay - me)l/’e + l/_/yLi}/Mayl//uL
(1 =7 )y, + i\/E(n’O@”ﬂ‘ - 0,77 — \/5(0'3”71_ —0,0m7) — \/Ef”(?”n")W;’
W (1 =7 )y, + i\/E(zﬁaﬂno - O,ntn’) — \/E(oﬁﬂzﬁ —-d,0m") = \/Ef,ﬁ”ﬂ*)W;

l/_/nyﬂ(l - ys)l/’n + l<1 - 25in20W)(ﬂ+aﬂﬂ_ - aﬂ”+ﬂ_)

9

— (60,7 — 9,07°) — fﬂaﬂﬂ0> Z,— ey, 'y, +i(x 0" —0,m"))A, — 2\/51/'/@)/"(1 -7 )WaW,
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g
4 cos

g
- 7%#(1 A

242 Ow

1
+ ey, 'y A, + 3 (egA, + ¢* cos Oytan’Oy Z,)(

— P 2f0+ 0>+ (2°)? + 27 77)

_9
2 cos Oy

x (1- 2sin29W)Zﬂ> <eA” +
X Wi, (WHizv —

1

ZPWHY) 4+ ZEeW L (APWY —

+

— N

1
+ EieFW(W‘”WJ“” - WHW™) + Eigcos Ow
_ _ M%)V . 1
X (WHWT — WHHWY) —|——W;FW ”H-l-Z

1 M?

1 M?
HH4+
8 12

Ve eH_E UHH3

me_

We would like to emphasize that the W= bosons couple to
the V — A hadronic currents, providing in the tree approxi-
mation a standard V — A effective low-energy interaction
for the description of the neutron S~ decays [41,42]. The
vector and axial-vector hadronic currents have baryonic
and mesonic parts in agreement with Eq. (9), which are
necessary for conservation of vector and partial conserva-
tion of axial-vector hadronic currents [41,42,60,141]. A
partial conservation of the axial-vector hadronic current
assumes a proportionality of the divergence of the axial-
vector hadronic current to the squared pion mass [129]. In
the chiral limit, i.e. in the limit of zero pion mass m, — 0,
the axial-vector hadronic current is conserved [42].
|

(0)

Wy (1 —4sin®0y — )y, Z, —

1
W+W M+_7
8 cos

1
W_ﬂAU) + l.i_gCOS wa;U(Z”W_U -

1
+ 5€gcos Ow(WiA, —A W) (Z'W™ = WHZY) + 5€gcos Ow(WiZ,—Z,W,} ) (AW —
ZW(W_”W'H’
M3, _ 1
— Wiw "H? 5

2
mﬂ'fﬂ oH
—1] .

l/_/uLyM(l - }/S)l//DLZM

_9
4 cos Oy

i(fz +

2

o)(atWH — = WH) — 20zt W + = WHH))

g
2 cos Oy

(2fz0+ 0%+ (2°))Z, 2" +ntn~ (eAﬂ +

1 1
(1- 2sin2¢9W)Z"> i W, (WHAY — AW*) + i gcos Oy

W zv)

1
E(WiA, — AW ) (AW — WHAY) + 3 Geos? Oy (WiZ, — ZW,/)(Z'W™ — WHZY)

WHAY)
1

- WHW™) 4+ Zgz(W;W,T -Wiwy)

M?, 1 M2,

—£2Z,7'H + S 2 Z,7'H*

(42)

[

An influence of partial conservation of the axial-vector
hadronic current on gauge invariance of radiative correc-
tions, caused by hadronic structure of the nucleon, we shall
investigate below by example of radiative corrections of
order O(aE,/my) to the neutron lifetime.

B. Renormalization of the quantum field theory of
strong low-energy and electroweak interactions
described by the Lagrangian Eq. (42)

For the discussion of the renormalization procedure in
the quantum field theoretic model LcM + SEM we rewrite
the Lagrangian Eq. (42) as follows:

Lyovisem = l//p (17”3 0))111270) + 1/7510)(1'7”8# - mz(\?))‘llgfo) + (9,7 a0~ — m;0)2)ﬂ(0)+”(0)—

1 1
+ 10,7090 ~ m02(20072) 1L 0,600 — P2 (02) = VI Viyyl? 50
V240 iy, 7O = g 5 il — 5 i) a0 — gy )6

1 1
060 (602 + 220 207 4 (x0°)2) = 27O ((0(0))? + 21020 4 (2O0)2)2 — Z W WO
1 1 1

4 M$)2WI(40)+W(O) ZZI(W) ( v + 2M( )2 Z( )Z(O)p _ ZFI(S/)F(O)ﬂu _ 25(0) (8MA(0> ) 4 a H aﬂH

1 (0)
— M HOP + 510, - m Wl + 5 i o) L ) (1 = k) + V2200

2 g 2V/2

(0)

_ ‘9;4”(0)0”(0)_) —V2(c® 8”71(0)— _ 6#6(0) 0)-) - \@ff,o) aﬂﬂ(o)—)Wl(PH 29\/_ (wgl )7,,,(1 —y )l//(0>
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+ i\/i(n(o)+8ﬂn<0>° _ 8ﬂﬂ(0)+ﬂ(0)0) _ \/§< 50 8”7:(0)* -9, 50 ﬂ(o>+) _ \/Efgto) 8,,ﬂ(°)+)W,§O)-

g9 /1 .2 sy, 0 1 _(0) IO ) 015 —(0)-
T 2costy \277 (L= dsinby =y )wp” = 5w (L= 7 )yn +i(1 = 28in°0y ) (a2 O,

-9, ”<o)+ﬂ(0)—) —( () 6‘,,7r<0)0 -9, () ”(0)0) _ f,(ro) 3, ﬂ(o)()) Z,(,O) _ 6(0)(117;()) 7/,,W;O) + i(;r(o)‘ 9 7O+

(0) (0)
— 9. 7070+ A(O) 9 -530) B(] — o5 (O)W(O)— _9 ), 1 -5 gO)W(OH
) u —2\/—24// 4 ( 4 )WyL 2 2\/‘2‘WDL7/ ( v u

(0)
_ (0 . 0) (0 97 _© 0) (0 _(0) e (0) (0
X 7} )7”(1 — 4sin20y — PO )yt )Z,(, = Teosdo z//,(,L)y”(l - y5)1//£L)Z,(, ) 4 o0 0y )A,(,)
w

1
+3 (e gAY 4 g2 cos Oy tan20y, ZL) (i (Y + 6(0) (2 O+ WO — 7= (O)+x)

1 402 (0)

8 cos? @y,

X (e(o)A(o)/‘ —+

<2f5[0>6(0)+(6(0))2+(”(0)0)2)Z£0)Z(0)ﬂ+”(o>+”(o>— (e(O)A’(lO)+ 9

1 - 2sin20y,) 2
ZCOSQW( Sin“0w) 2

o

2 cos Oy

1 . 1

(1- 2sin29W)z<0>ﬂ> +ig W™ (WOHrAOY — AOupy O+ 4 i3 g% cos Oy,
. 1 1

X Wi/ "(WOZO8 — ZOWw ) i 2 eOW) " (AR O — WOHAOR) i g cos 0y Wi

% (Z(O)yw(O)—u _ W(O)—yz(O)D) 4 % e(O)Z(WLO)+A£0) _ A/(IO) W£0)+>(A(0)ﬂw(0)—y _ W(O)—ﬂA(O)I/) + %g(O)Z

1
x cos20y (W2 — 2O WOy (zOmw O — wO-uz0w) 4 5¢0g cos Oy (WOTAL — AL WOy

x (Z(O);t wO)-v _ W(O)—uz(O)u) + % e(O)g(O) cos 0W(W£¢O)+Z1(,O) _ Z/(;O) W£0)+)(A(O)yw(0)—u _ W(O)—MA(O)IJ)

n % ie© FO) (WO O _ Oty 00y | % ig®) cos Oy 2 (WO )+ _ WOy (0)-v)
1 (002 117(0)— 1/ (0)+ (0)+yy,(0)— (0)—p 117 (0)+v (0)+u 117 (0)—v M (v(v))2 (0)+y17(0)—u £7(0)
4 g P WT W W W) (WO O - w0 O o Wi WO
(0)2 (0)2 (0)2 (0)
LMy 0= oz - LMz 0 0w 2« YMz 0) 0y g0)y2 _ Me —(0) (0) (0
+Zl N0z W, w0k (g ) _|_§ §0) z, 7On g0 +§ N0z 7, ZOr(H©O)2 w0 e we HO
(0)2 (02 (002 £(0)
L My o 1My ona . Mx fx 040
- (HO) 8W(H( 4 0 O HO), (43)

where the subscript (0) denotes bare fields and their bare masses and coupling constants, respectively. After the calculation
of loop-contributions the dynamics of strong low-energy and electroweak interactions of physical fields is described in the
quantum field theoretic model LoM + SEM by the Lagrangian
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where the Lagrangian L(L?,B +sgm contains the contributions of the counterterms. We define it following [60-62,147-157]
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1 r 1 r r r
= 1)5ig" cos Oy 2y (WOITWIt — WOsw =) 4 (22 25" = 1) g 2w w0 - wy

(r)2
e M ]
x WD) (WO — Wy 4 (zM /7 71— 1) U(Vf) W WO E 0 4z [ 70 71

1mMy? 16My)”
W W WO HOP 4+ 28 7 7 =
v

w0+ (07 - 1)
v
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(r2 ()
r)+ )= r Z H)_ r r r Z H)_ r r

(2 (2
1My, 16M o
(2020272 =)~ 2 2O+ 202 7 5 72w — (2978 28~ 1)
v
mgr) = (r), (7) 17(r) (H)\3/27-1 1M(F;)2 ("3 (H)\3/2 115M() 27-2
x —= g T HO) — (2802250 = 1) S = (B0 — (2722 S = (H ) = (2572272 - 1)
G 2 50 2 U()
(r)2 (r)2
1M 1M, §
x ——H_ (g4 — (Z{My2z72 2 (HOY* + (Zy zg’”z;l—l) i dHD + 2\ 28 771
PGE 8 42 o)
5m(’)2f(
omz"_Jx_ (g
X o ° H'"), (45)

where Zyn, Zn, Zy, ZE“) and Z;,a) are renormalization constants of the field operators and vertices of strong and
electroweak interactions. Then, Z, is a renormalization constant of the vacuum expectation value v( "), and 6m§\;), 5m(r)2

’

smy?, My, (2 and so on are the counterterms of mass renormalization. Rescaling the field operators and the coupling
constants

T N B W R Y = zMzg o
=\ zuZde, A =\ZPA0,  wir =\ ZMwD 20 =207, =/ 2" HD
e)5(¢ r 0 (¢ r
_EE. =\,
9N = ZunZiZy g Y =2 ) = Zay Ziy ),
e(O) _ ZEP)ZgP)_IZg}’)_I/ze(r) — Z(]”)z(”)_lzg’)_l/ze(r) — de)zge)_lz(;’)_l/ze(r) — Z;y)_1/2€<r)

2 s
g(o) _ Z([N)zéN)—lZgW)—l/Zg(,) _ ZEM)ZgM)—IZgW)—l/Zg(,) _ Z(]f)zéf)—lzgw)—l/Zg(r)
_ Z(IW)ZgW)—3/29(r), 0 — Zvv(’), é:(O) _ Zgé(r)’ (46)

where we have set Z,); = Z3), [see Eq. (13)], and using the relations

my =my) +omy.  m?=m? emlP m? = ml? o+ om .
MY =My y oMy, MY =My smy? MY = MY 4 M),
mio) = mgr) + 5m£’) (47)

we transcribe the Lagrangian in Eq. (44) into the Lagrangian in Eq. (43).

VI. MATRIX ELEMENT OF THE HADRONIC r — p TRANSITION
IN THE NEUTRON -~ DECAY n > p+e™ +7,

The amplitude of the neutron = decay is defined by [60,141]

-

S -
M(n - pep,) = <out, U, <k,,, +§>,e_(ke,a€), p(k[,,ap)

n(En,an),in>, (48)

where (out, ;((l_c'l, o,)| and |in, n(l_c'n 6,)) are the wave functions of the free antineutrino, electron and proton (y = 7., e~ p)
in the final state (i.e. out-state at t — +o00) and the free neutron in the initial state (i.e. in-state at t — —oo) [146]. Using the

relation (out, Hﬂ((];x"’x” = (in, H){){(l_{;{,
follows:

is the S-matrix, we rewrite the matrix element Eq. (48) as
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M(n— per,)

| . . .
= <in,z'/e (kp,—l-E) ,e‘(ke,ae),p(kp,ap)|§|n(kn,an),in>.

(49)
The corresponding S-matrix is determined by [60,141,146]

S — Teifd4XLLoM+SEM(x)’ (50)

where T is a time-ordering operator and £y ;i sgm 1S given
by Eq. (44). Plugging Eq. (50) into Eq. (49) we get [60,141]

I . .
M= pes) = (in5(Bg ) e Fero) plEyeoy)

% Teifd4X»CLgM+SEM(x) ‘I’l(/gn, Gn) , in>_ (5 1)

The wave functions of fermions we determine in terms of
the operators of creation (annihilation)
- L
‘n(kn’ Gn)’ ln> - an,in (kn’ O-n)|0>7

-

- 1 -
<i1’1, De (kl_ﬂ +§) ’ e_(kw Ge)’ p(kp’ GP)
- 1 - -
= <O|bie.in (kw + §> ae.in(kev O-e)ap.in(kp’ 0,,). (52)

The operators of creation (annihilation) obey standard
anticommutation relations [141,146].

A. Neutron beta decay in the tree approximation for
strong low-energy and electroweak interactions
described by the Lagrangian Eq. (44)

In the tree approximation for the electroweak W~ -boson
exchange and strong low-energy interactions, the amplitude
of neutron = decay n — p + e~ + 1, is defined by the
Feynman diagrams in Fig. 2

M(n - pe—’:e) = GV<p(kp’6p)|J:tr(0)|n(kn’O-n)>Fig.2
M2 .
My, —q” =10 My,

x [ae(/?e,aemu -, (12%)]
(53)

where Gy = g*/8M3,, J,(0) = V5 (0)—A;f (0) is the V — A
charged hadronic current [41,42], appearing naturally in
our model caused by the electroweak W~-boson exchanges
[see Egs. (43) and (44)], where the vector and axial-vector
current possess both baryonic and mesonic parts [see
Eq. (9)]. Then, u#, and v, are Dirac wave functions of
the free electron and electron antineutrino, respectively,

y=
\\U
e
E
©

(a) (b)

FIG. 2. The Feynman diagrams, defining the amplitude of the
neutron i~ decay n — p + e~ + 1, in the tree approximation in
the quantum field theoretic model of strong low-energy and
electroweak interactions described by the Lagrangian Eq. (44).

a momentum transferred of the decay is equal to
q=k,—k,=—k,—k, Then, since strong low-
energy interactions give the contributions to the matrix
element of the charged hadronic current only, we have
denoted (inp(k,.c,)|T(e" <54 14(0)) (K, .0, ) in)=
<p(lgp,ap)|J;(0)|n(k_;l,on)>. This matrix element describes

the hadronic n — p transition in the neutron S~ decay
[60,141,158]. The matrix element of the hadronic V — A

current <p(lzp,ap)|lj(0)|n(%n, 6,)), calculated in the tree
approximation (see Fig. 2), is equal to (see also [60,141])

(p(kp.0,)15 (0)|n(Ky. 0,) g 2

- /7 2gerer 7
= ”p(kpvop) (7;4(1 - 75) - m — q2 nyj)”n(knao'n)v

(54)

where i, and u, are the Dirac wave functions of the free
proton and neutron. The matrix element of the divergence
of the charged hadronic current 0*J, is equal to

2

(p(k,.0,)[0"T}(0)|n(Ky.0,))pig. 2
m

= lul’ (klhal)) <(_2mN +297L’Nfﬂ')y5 _Zgﬂan'r_ﬂqzyS)

b

X ity (K, 0,).

(55)

Because of the Goldberger-Treiman (GT) relation g,y =
my/ f. [134] (see also [42,133,135,139]), which appears
naturally in the LoM [see Eq. (8)] at b = f, with the axial
coupling constant g4 equal to g4 = 1, we get

(p(ky.0,)|0M,(0)|n(k,. 0,))Fig. 2
m2 - -
= _ZQsznz—”zﬁp(kp’Gp)i}’sun(kmGn)- (56)
mz—q
Because of conservation of the charged hadronic vector
current 8”V; =0 [41,60,141,158] leading to

(p(kp: )0V (0) (K. 0,))pig. >

= ig"(p(ky.6,) |V (0)|n(ky 0,))pig, = 0. (57)
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the right-hand side of Eq. (56) is fully defined by the
divergence of the charged hadronic axial-vector current

(p(Kp.0,)|0“A (0) (k. 0) i >
2

mz _ . -
= ZgﬂNfﬂn/lz—_qzup(kpaGp)l}/sun(kmdn)' (58)

T

Such a matrix element is caused by the partial conservation
of the axial-vector hadronic current (PCAC) O'A) =
—2mif,xt [129,133]. Plugging the GT relation
gy = my/f, into Eq. (37) we arrive at the matrix
element of the charged V — A hadronic current, calculated
in the tree approximation in the LoM + SEM (see
also [141])

-

(p(kps0,) |5 (0) (ks 0,) g

- 2m -
= up(kp’o-p) <7/4(1 _75) _mz—_lquql475>un(kn’6n)'

(59)

The matrix element of the charged hadronic current
Eq. (59) has the standard Lorentz structure with the vector,
axial-vector and pseudoscalar form factors equal to unity
[42,43,158] (see also [141]). The amplitude of the neutron
p~ decay in the tree approximation is equal to

/3

; Mj 7'q"
u”(k"’0”>M%V—7qu;—iO ("7””"’ e )

[a@eoon-rin (E43)].
(60

_ _ - 2m
M(n—pep,)= Gvup(k,,,ap) <}’ﬂ(1 -7) —mz—_quqﬂ}’5>

As a consequence of the PCAC the longitudinal part
of the electroweak W~-boson propagator, proportional to
g"q* /M3, does not vanish. This violates gauge invariance,
as we have pointed out above. The contribution of such a
violation of gauge invariance to the amplitude of the neutron
p~ decay is of order O(2mym,/M3%,) ~ 1.5 x 1077, This is 2
orders of magnitude smaller than the corrections of order
O(aE,/my) ~ 1075, which we are searching for. In the
chiral limit m, — 0, that is in the limit of a vanishing pion
mass, the right-hand-side of Eq. (58) and, correspondingly,
Eq. (56) vanish that leads to local conservation of the
charged axial-vector hadronic current 9*A; = 0, providing
gauge invariance of the amplitude of the neutron - decay,
i.e. independence of the longitudinal part of the electroweak
W~-boson propagator.

B. Neutron beta decay in the tree approximation for
electroweak interactions and to one-hadron-loop
approximation for strong low-energy interactions

described by the Lagrangian Eq. (44)

The amplitude of the neutron S~ decay in the tree
approximation for the electroweak W~-boson exchange
and to one-hadron-loop approximation can be taken in the
following form [60]:

M(n — pep,)

= GV<p(kp’ 0p>|J;<O)|n<kn’ O-n)>Fig.2+.‘.+Fig.5
M2 qﬂql/

e )
w—q —10 My,

x {ue@,@)yy(l -, (1?5,%)} (61)

For the calculation of the one-hadron-loop corrections we
shall use the normal ordered form of the Lagrangians
Egs. (44) and (45), respectively [159]. This allows us to
avoid the tadpole contributions. Using the normal ordered
form of the Lagrangians Egs. (44) and (45) the Feynman
diagrams, defining the one-hadron-loop contributions to
the amplitude of the neutron B~ decay, are shown in
Figs. 3-5, respectively. The Feynman diagrams in
Figs. 3 and 4 define the contributions of the self-energy

n
- + >l
N W \v\ 5 o .
() (b) v ;
a,Tt
n posTy P
+ >
oy N e

@) (d) w

<l

FIG. 3. Feynman diagrams, describing the contributions to the
amplitude of the neutron = decay of the self-energy corrections to
the neutron and proton states in the one-hadron-loop approximation
in the LoM and SEM described by the Lagrangian Eq. (44).

n P n p
e + —
ym v
o V ?An* n O p
’ e T e
ym ym
w w
(a) Y (b) ve

FIG. 4. Feynman diagrams, describing self-energy corrections
to the z~-meson state in the one-hadron-loop approximation in
the LoM and SEM described by the Lagrangian Eq. (44).
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(i) 2 (k)

v, () g

FIG. 5. Feynman diagrams, describing the contributions of the hadronic structure of the neutron and proton, and the z~ meson

to the amplitude of the neutron - decay in the one-hadron-loop approximation in the LeM and SEM described by the
Lagrangian Eq. (44).

corrections, caused by strong low-energy interactions to the  the hadronic n — p transition is caused by the contribu-
neutron and proton and ™~ states, respectively. It is obvious  tions of the Feynman diagrams in Fig. 5 [60].

that after normalization the contributions of these diagrams The matrix element of the hadronic n — p transition,
to matrix element of the hadronic n — p transition vanish  calculated in the one-hadron-loop approximation, is equal
[57,60]. The nontrivial structure of the matrix element of  to (see Appendix A of Supplemental Material [77])

|

- - - - 7 A1, m
(0,0 O g s = 1y Ry |14 2 = 1)+ 2= 1)+ 25 (n e =y en ),
N N

2

5(N) Gev (5, M2 A?

502y i16,,4" 2myq ~(N iy
1671'1\2/ 2;1N _mZ_QZZiOyS 1+(ZMN—1)+(Z(2 )_1>+<Z§ )_1>
2 2 2
[7p my A -
+(ZM—l)+8—]:£<fn—2+fnm—2>]}un(kn,an). (62)
N N

Using Eq. (A6) in Supplemental Material [77], we arrive at the matrix element of the hadronic n — p transition, calculated
to the one-hadron-loop approximation. We get
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|
N

(P(Kps 05 () 1Koy 6))pig 2. 4 Fig. 5 = u,,<kp,a,,>{[1 + 2N -1 =2 =Dy, - [1 + (2N -2 -1

2y (3 m? A? 5¢%y 16,,G"
4 Jan <—fnm—2— 2fnm—2)]y,,y5 + 25 O

872 \2 N N 167> 2my
-2l (- - @0 -2 e @ -
_g@gw - 1) —% <3an—;—§fnZ—§>Hun(1?man). (63)
Because of gauge invariance and Ward identities Z(ZN) =7 (IN) and ZgM) =7 §M> we transcribe the right-hand side of Eq. (63)

into the form

> N > e Py (3, m? A2 5
<p<kp’ Gp)l‘]ﬂ (0)|n(knv O-n)>Fig.2+.‘.+Fig.5 = up(kp’gp) 7/4 - |1+ Stn 2 2¢n 2 yﬂy
7o \2 my my

L =) Tan A5 mg z
-=(Zy' -1) - 3¢n——=-Cn—- k,,0,). 64
2( 2 ) 871'2 m]zv 4 nmlzv un(no') ( )
Since the counterterm Z MNZ,T,lZ;;/ * renormalizes the pion-nucleon coupling constant g,y, we set
Zy—1
(Zun—1) = (Zy 1) = M2 =ga— 1 (65)

where g4 # 1 is the axial coupling constant, defining a finite nontrivial renormalization of the pion-nucleon coupling
constant g,y [44]. Setting then the relation

» 2 A2 5 2
ZM = —% <3fn—2—zfnm—g) (66)
pis my, my
we arrive at the following matrix element of the hadronic n — p transition
2 2 2
- > e oy (3, m; A
<p(kpvGp)|‘]/j<0)|n(km6n)>Fig.2+...+Fig,5 = up(kp’ap) yﬂ -1 +—A2] —fn—z—an—2 7/475
8= \2 my my,

59 10wq”  2MmyGgad,
167> 2my  m2 —q*> —i0

yS}u,,@n,an). (67)

In the chiral limit m, — O the matrix element Eq. (67) should obey the requirement of conservation of the axial-vector
hadronic current [42], i.e.

q# lim <p(kpvUp)|J/j(0)|n(kn76n)>Fig4 2+...+Fig.5 =0. (68)

m,—0

This allows us to impose the following relation:

2 2 2
gy (3, m; A
=14+ =Cn——-2n—). 69
9a =1 H g <2 ! m " m%,) (69)
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The axial coupling constant g, defines a finite renormal-
ization of the axial-vector hadronic current [44]. This
means that the right-hand side of Eq. (69) should be finite
even in the limit A — oo and m, — oo. This can be reached
if m2 = (A?/m%)*3M?, where M is a finite scale param-
eter. The fact that the mass of the 6 meson tends to infinity
faster than the ultraviolet cutoff does not contradict our
analysis of the equivalence of the LoM to the chiral
quantum field theories with nonlinear realizations of chiral
SU(2) x SU(2) symmetry (see Sec. IV). As a result, the
matrix element of the hadronic n — p transition takes the
standard form [158]

<P(zp’ o) |4 (0)[n(kys 64))Fig 2+ +Fig. 5

_ K .,
= Mp(kpvgp){Yy(l _gAys) +Mlo;wq
2mNgAq/4 5 7
- NIARk k,.0,), 70
Tt () (70)

where k = 5¢2,,/16x? is the isovector anomalous 7 mag-
netic moment of the nucleon defining the intensity of the so-
called weak magnetism [43]. The experimental value of the
isovector anomalous magnetic moment of the nucleon is
equal to k = k,, — k,, = 3.70589 with «, = 1.7928473 and
K, = —1.9130427, where k, and k,, are anomalous magnetic
moments of the proton and neutron, respectively [3]. Setting
k = 3.70589 one may estimate the value of the pion-nucleon

coupling constant g,y = \/k162%/5 = 10.82. This defines
the leptonic decay (or the PCAC) constant of pion f, =
86.8 MeV at my = (m, +m,)/2 = 939 MeV [3], which
agrees well with the definition of a bare leptonic decay
constant of a pion [117]. In our approach a bare leptonic
decay constant of pion f, = 86.8 MeV deviates from the
observable value of the pion-leptonic constant is equal to

£ — 92 4 MeV [3] by about 6%.
Thus, we have shown that the matrix element of the
hadronic n — p transition, calculated to one-hadron-loop

p

\

approximation in the quantum field theoretic model of
strong low-energy and electroweak interactions described
by the Lagrangian Eq. (44), possesses a standard Lorentz
structure, where contributions of strong low-energy inter-
actions are defined by the axial coupling constant g, # 1,
the isovector anomalous magnetic moment of the nucleon x
and the one-pion-pole exchange. In the chiral limit the
matrix element of the hadronic n — p transition provides
independence of the amplitude of the neutron ~ decay of
the longitudinal part of the electroweak W~-boson propa-
gator. This agrees well with a requirement of conservation
of the axial-vector hadronic current in the chiral limit [42].

Using the experimental value of the axial coupling
constant gﬁf"p ) =1.27641 (45) 41a (33) 4ysi» measured recently
by the spectrometer PERKEO III [56], we estimate the
value of the scale parameter M ~ 1 GeV, agreeing well
with a scale A, ~ 1 GeV of spontaneous breakdown of
chiral symmetry [117].

VIL. RADIATIVE ONE-LOOP
ELECTROMAGNETIC CORRECTIONS
TO THE NEUTRON S~ DECAY 1 —> p+e~ +7,

In this section we proceed to the calculation of the
radiative corrections of order O(a/z) and its next-to-
leading order corrections of order O(aE,/my) to the
neutron 3~ decay, caused by one-virtual-photon exchanges.
For this aim we start with the analysis of the radiative
electromagnetic corrections to the amplitude of the neutron
p~ decay taken in the tree approximation for strong
low-energy interactions at g4 = 1 and described by the
Feynman diagrams in Fig. 6. We show that the set of
Feynman diagrams in Fig. 6 is gauge invariant, i.e.
independent of a gauge parameter & of the photon propa-
gator. Then, we show that gauge properties of the Feynman
diagrams in Fig. 6 are not changed even for g4 # 1 and
calculate these diagrams setting g, # 1. This allows us to
take contributions of strong low-energy interactions at
Sirlin’s confidence level [14,21].

+

(a) (b)

Y

v Y e
<
W \v\
p -
e
n M _ / +
3

w W W

(d) (e)

B
o
<
\\m.
+
y S
\U
<
)
®

V)

FIG. 6. Feynman diagrams, describing the one-photon-loop radiative corrections to the part of the amplitude of the neutron = decay,

described by the Feynman diagram in Fig. 2(a).
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A. Amplitude of the neutron - decay in the tree
approximation for strong low-energy interactions and
to one-loop approximation for electromagnetic
interactions described by the Lagrangian Eq. (44)

The amplitude of the neutron - decay, calculated in the
tree approximation for strong low-energy and electroweak
interactions is described by the Feynman diagrams in Fig. 2.
The radiative corrections to this part of the amplitude of the
neutron S~ decay, caused by one-virtual-photon exchanges
and described by the Lagrangian Eq. (44), are defined by the
Feynman diagrams in Fig. 6. We do not analyze the radiative
corrections to the one-pion-pole exchange, since as has been
shown in [62] the radiative corrections to the one-pion-pole
exchange are of order 10™° and can be neglected in
comparison with the radiative corrections of order 107,
which we are searching for in this paper. The details of the
calculation of the Feynman diagrams in Fig. 6 one may find

|

in Appendices B and C of the Supplemental Material [77],
where we show that the Feynman diagrams in Fig. 6 are
gauge invariant and do not depend on a gauge parameter & of
the photon propagator. We show also that gauge invariance
of the Feynman diagrams in Fig. 6 retains even for the axial
coupling constant g4 # 1. As has been shown in Sec. VI [see
Eq. (70)], the axial coupling constant g4 # in the amplitude
of the neutron f~ decay appears as a contribution of one-
hadron-loop diagrams, caused by strong low-energy inter-
actions described by the Lagrangian Eq. (44). Gauge
invariance of the Feynman diagrams in Fig. 6 for g, # 1
allows us to take into account partly the contributions of
strong low-energy interactions to the one-hadron-loop
approximation. As we have shown in Appendices B and
C of the Supplemental Material [77] the amplitude of the
neutron §~ decay with radiative corrections of order O(a/x)
and O(aE,/my) after renormalization takes the form

(= pes) = =2myGod [ 13 (5 B + 22 10 ) [Ihonllnd1 = v

E
+9a {1 +% (fﬁ;(Eevﬂ) +m—;fA(Ee) +

VP,

5m,2\,f M3,
St
2My,  my

)| b w71 -

o [[cp%rpn][ﬁe(l — 1)l (_ =

o(TE8) + B2 20 ) + lobeon] 1071 = v

1=

N

/1= B2 Kk, koG
X (— 1=/ fn(l +ﬂ> +—n€e fT(Ee)> + ({(PT ke 66%] &QS(Ee) + [40; L G(Pn] Ee hS(Ee)>
N my my

2p 1-8

_ k, -G
<l =l + o
. (k,-3)3 _ E,
+{¢p B " -[uey(l—rs)va]mN

where the functions - (E,.p), fy(Ee)s fa(Ee)s f5(E.)
and so on are calculated in Appendixes B and C of the

Supplemental Material [77] and are given in Eq. (C4). The
function f;-(E,,u), where u is an infinitesimal photon
mass, realizing relativistic covariant infrared regularization
of the radiative corrections caused by one-photon loop
exchanges [14], has been calculated by Sirlin [14] (the
details of the calculation one may find in [5]). This function
together with the terms [see Eq. (C5) in Supplemental
Material [77] ] which survive to leading order in the large
nucleon mass expansion, define the famous Sirlin’s func-
tion g(E,) [14], describing radiative corrections to the
neutron lifetime. The functions fy(E,), fa(E.), fs(E.),
J1(E.), gs(E.), hs(E,), gv(E,) and hy(E,) [see Eq. (C4)
in Supplemental Material [77]] are related to the

E

(pn] [,y (1 —7°)v;] mfegv(Ee)

i)} (1)

radiative corrections of order O(aE,/my). The term
(a/7)(5m3/2M3,)¢n(M3,/m3,) ~ 107>, calculated ~ at
my = 0.939 GeV and My, = 80.379 GeV [3], is the rest
of the contributions of the virtual electroweak W~-boson
exchanges (see Feynman diagrams in Fig. 6) after renorm-
alization (see Appendixes B and C).

B. Rate of the neutron f~ decay n > p+e~ +7,
described by the amplitude Eq. (71). Corrections of
order O(aE,/my) to Sirlin’s function

First, following [5] we calculate the electron energy and
angular distribution of the neutron = decayn — p + e~ +
U, with unpolarized massive fermions, described in the
amplitude Eq. (71). We get
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A2y (E o KoKy ) IGy2 (. «a 1= (1+8 1- ¢ a k,-k,
T — (14393 L= fp-(Epup) — £ A 1+=f4-(E,, e
dE.d0,d0, U7 9A>32ﬂ5{ +n<fﬂf< M) =3 ”(1—ﬁ))+1+3g§< e e”)) E,E,

a 1 E, Ey-E,
+— L—Hﬁg < V(E) + /1= fs(E) +Bha(E.) + 94 gy (Ee) + 92— l_ﬂth(Ee))
35 E, 33 S5m3 M3
St (FalED 1= (ED )+ T e
1—|—SgAmN 14+3g:2My,  my
L (B (B o 1= Pas(E) +ona (B~ B g )
1+39A v A\Ee) T A gs\Le) T gagvLe 1—|—3g My A
5 M3k, -k
oy Milke o [ g R (2= 1), (72)
1+3g52M5, my | EE;
where dQ, and dQ; are infinitesimal solid angles in the directions of the electron and antineutrino 3-momenta,

F(E,,Z = 1) is the well-known relativistic Fermi function,

describing the electron-proton Coulomb final-state interaction

(see, for example, [40]). The rate As-(u) of the neutron f~ decay n — p + e~ + I, is defined by the integral

Gy [E(. o« 1-f (145 1
/1_132|"/1—E,— 4
p- (1) = (1 +3g3) 27 o +ﬂ fp-(Eeopt) 25 n ] + 1+39Am1v fv(E,)
E,-E, 3q%
U= I5(E) + Fha(ED) + 9P g0 () + g4 22 —ﬂ%(&)) v 20 Ee )
e 1—|_3gAWlN
35 5 m3 M3
1-pfr(E A= N =W A\ E2 —m2E,F(E,,Z = 1)dE, 73
ﬂfT( e))+1+39/242M%a/ m%\, m (e ) ( )
|
where Ey = (mj —m3 4+ m2)/2m, = 1.2927 MeV is the  take into account the rate A, (x) of the neutron radiative -

end-point energy of the electron-energy spectrum [5]. In the
integrand the first term of order O(a/x) reproduces fully
Sirlin’s result [14], calculated to leading order in the large
nucleon mass expansion.

For the cancellation of the infrared divergence in the rate
Ag-(u) of the neuron = decay n — p + e~ + 7, and to
calculate the total rate of the neutron =~ decays we have to

decay n — p + e~ 4+ v, + y, where y is a real photon [10—
15]. The Feynman diagrams, describing the amplitude of
the neutron radiative = decay in the tree approximation for
electroweak, electromagnetic and strong low-energy inter-
actions, are shown in Fig. 7. The Feynman diagrams are
drawn to leading order in the large mass My of the
electroweak W~-boson expansion at the neglect of the

FIG.7. Feynman diagrams, defining in the tree approximation for the electroweak, electromagnetic and strong low-energy interactions
the amplitude of the neutron radiative #~ decay calculated with the Lagrangian Eq. (44). The Feynman diagrams are drawn to leading
order in the large mass My, of the electroweak W~-boson expansion at the neglect of the Feynman diagram with the vertex W~W~y, the
contribution of which is suppressed by the factor g - k/M?3,, where k is a 4-momentum of a real photon.

093006-26



RADIATIVE CORRECTIONS OF ORDER ...

PHYS. REV. D 99, 093006 (2019)

Feynman diagram with the vertex W~ W™y, the contribution
of which is suppressed by the factor g - k/M?%,, where k is a
4-momentum of a real photon. The Feynman diagrams in
Figs. 7(c)-7(f) are caused by the mesonic part of the
charged hadronic axial-vector current. The calculation of
the Feynman diagrams in Fig. 7 has been carried out in [60]
(see also Appendix D of the Supplemental Material [77]).
For the calculation of the neutron lifetime 7, related to the
rate 7, = 1/4,, where 4, = As-(u) + A4, (1), we may use
Ag-y(), calculated to leading order in the large nucleon
mass expansion. Using the results, obtained in Appendix B
of Ref. [5] (see also Appendix D in the Supplemental
Material [77]), we get the rate A4-,(u) of the neutron
radiative = decay

a2 {255

U
2E,—E, 1E,—E\][1 1+
3L (”g E, )Hﬁ”(ﬁ)‘@

L(B-E) 1, (145
g 207 Bl D gy (T
e "o

1 (1+p\ 1 . ([ 2p
- (i55) 5 (5)
x\/E:=m2E,F(E,,Z=1)dE, (74)

and the total rate 4, = Ag-(u) + Ag-,(u) of the neutron 3~
decay

—3+

Gy|* [E a aE, -
’1'11:(1+393\)| V| /0<1+;gn(Ee)+__hn(Ee)>

27 Tmy
x| E2 = m2E,F(E,,Z = 1)dE,, (75)

where the function g, (E,) is Sirlin’s function equal to [14]
(see also Appendix D of Ref. [5])

2
wer-3o() 3 ()
2(Ey—E,)\ 3 1Ey-E,
X{’f”"(ime )‘5*5 E, ]
2. [ 2p 1 144
‘ﬂL‘Z(Hﬂ)*zﬁf”(l—ﬁ)

x {(1+ﬁ2)+112(E0;£Ee)2—fn(14_—£>], (76)

and the function &, (E, ), defining gauge invariant radiative
corrections of order O(aE,/my) to Sirlin’s function
3.(E,), is given by

- 1

n(E) = 5 (F(ED + 1 = PFlED + (£

EO - Ee
E,

+ 9P gv(E,) + 9a I- ﬂzhs(Ee))
304
1434

33 Smymk , M3,

1+322E, M3, " w3

+ (fa(Eo) +/1 =B fr(E.))

(77)

where the functions fy(E,), fv(E.), fs(E.), fr(E.),
9s(E.), gv(E.), hs(E,) and hu(E,) are adduced in
Eq. (C4) of Appendix C in the Supplemental Material
[77]. Thus, we have reproduced fully Sirlin’s radiative
corrections of order O(a/x) ~ 1073 to the neutron lifetime,
calculated to leading order in the large nucleon mass
expansion, and obtained radiative corrections of order
O(aE,/my) ~ 107 or corrections to Sirlin’s function
J,(E,) in the gauge invariant and renormalizable quantum
field theoretic model of strong low-energy and electroweak
interactions, described by the Lagrangians Eqgs. (44) and
(45). In Fig. 8 we plot the function (a/z)(E,/my)h,(E,),
where (i) the black curve is defined by the contributions of
all three terms in Eq. (77), (ii) the red curve is given by the
contribution of only the first term, (iii) the blue curve is
defined by the contributions of the last three terms and
(iv) the green line determines the contribution of the last
term, caused by the contribution of the electroweak W~-
boson exchanges. The function (a/z)(E,/my)h,(E,)
depends strongly on the axial coupling constant g4. The
curves in Fig. 8 are calculated at g4, = 1.2764 [56],

0.000030¢

0.000025}

0.000020}
g
< 0.000015f
£

| c

uf|€ ,

SIS 0.000010
5.x10°8f
0.000000
-5.x1075} ) \\

0.6 0.8 1.0 1.2
E.[MeV]
FIG. 8. Radiative corrections of order O(aE,/my), which are

described by the function %, (E,) defining next-to-leading order
corrections in the large nucleon mass expansion to Sirlin’s
function g, (E, ), calculated to leading order in the large nucleon
mass expansion [see Eq. (77)], where (i) black, (ii) red, (iii) blue
and (iv) green curves are defined by the contributions of (i) all
three terms, (ii) of the first term, (iii) of the last two terms and
(iv) of the last term of Eq. (77), respectively. The radiative
corrections O(aE,/my) are calculated in the electron-energy
region m, < E, < E.
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m, = 0.511 MeV, my = (m, +m,)/2 = 939 MeV and
My, = 80379 MeV, respectively [3], in the electron-energy
region m, < E, < E.

VIII. DISCUSSION

We have calculated radiative corrections of order
O(aE,/my) ~ 1075 as next-to-leading order corrections
in the large nucleon mass expansion to Sirlin’s radiative
corrections of order O(a/x), calculated to leading order in
the large nucleon mass expansion to the neutron lifetime
[14]. For the extension of Sirlin’s result on the contributions
of order O(aE,/my) we have followed the assertion
pointed out in [60-62] that for the analysis of corrections
of order O(aE,/my) as next-to-leading order corrections in
the large nucleon mass expansion to Sirlin’s radiative
corrections of order O(a/z) one has to deal with a
combined quantum field theoretic model at the hadronic
level for strong low-energy pion-nucleon interactions and
electroweak interactions of the standard electroweak model
with SU(2); x U(1), symmetry. Thus, for the calculation
of radiative corrections of order O(aE,/my)~ 107> as
next-to-leading order corrections in the large nucleon mass
expansion to Sirlin’s radiative corrections of order O(a/x)
we have proposed a gauge invariant quantum field theoretic
model of strong low-energy pion-nucleon interactions and
electroweak pion-nucleon-lepton interactions with electro-
weak SU(2), x U(1), gauge symmetry, described by the
Lagrangian Eq. (44). In the limit of vanishing electroweak
coupling constants such a quantum field theoretic model
reduces to the linear 6 model of strong low-energy pion-
nucleon interactions with chiral SU(2) x SU(2) symmetry,
which is treated as a hadronized version of low-energy
QCD. The latter is justified by an equivalence of the LcM
with a linear realization of chiral SU(2) x SU(2) symmetry
to Gasser-Leutwyler’s chiral perturbation theory with non-
linear realization of chiral SU(2) x SU(2) symmetry in the
limit of the infinite mass m, — oo of the scalar isoscalar o
meson (see Sec. IV and [112]). We have shown that the
quantum field theoretic model of strong low-energy and
electroweak interactions, described by the Lagrangian
Eq. (44), reproduces well in the tree approximation for
electroweak W~-boson exchanges and to one-hadron-loop
approximation, calculated in the limit of the infinitely
heavy scalar isoscalar 6 meson, a correct Lorentz structure
of the matrix element of the hadronic n — p transition in
the amplitude of the neutron ™~ decay. The contributions of
strong low-energy interactions are presented in the matrix
element of the hadronic n — p transition in terms of the
axial coupling constant g4 # 1, the anomalous isovector
magnetic moment of the nucleon x and the one-pion-pole
exchange. In the chiral limit m, — 0O such a matrix element
does not depend on a longitudinal part of the electroweak
W~ -boson propagator. This agrees well with the analysis of
weak decays within effective standard V — A theory of

weak interactions, carried out by Feynman and Gell-Mann
[41] and Nambu [42] (see also [43,141,158]).

In the quantum field theoretic model, described by the
Lagrangian Eq. (44), the radiative corrections of order
O(a/n) are defined by the one-photon-loop Feynman
diagrams in the tree approximation for strong low-energy
hadronic interactions and by two-loop Feynman diagrams
with one-virtual-photon and -hadron exchanges. After
renormalization these Feynman diagrams define the radi-
ative corrections of order O(a/x) to the neutron 5~ decay
with the traces of strong low-energy hadronic interactions
in terms of the axial coupling constant g4 # 1 and the
contributions of hadronic structure of the nucleon, which
do not reduce to the axial coupling constant.

As a first step towards a calculation of radiative
corrections of order O(a/x) valid to any order in the large
nucleon mass expansion and an understanding of gauge
properties of these corrections in dependence of one-
virtual-photon exchanges with hadronic structure of the
neutron and proton, we have investigated the contributions
of one-photon-loop Feynman diagrams in the tree approxi-
mation for strong low-energy hadronic interactions, which
are shown in Fig. 6. To leading order in the large
electroweak W~-boson exchanges these diagrams reduce
to the set of one-photon-loop Feynman diagrams, defined
by Figs. 6(a), 6(e) and 6(f), with pointlike neutron and
proton, defined within the standard V — A effective theory
of weak interactions and quantum electrodynamics (QED).
Such a reduced set of Feynman diagrams has been
investigated by Sirlin [14] to leading order in the large
nucleon mass expansion for the calculation of the radiative
corrections to the neutron lifetime, defined by the function
(a/m)g,(E,). As has been pointed out by Sirlin [14], these
Feynman diagrams with one-virtual photon coupled to
pointlike proton and electron is not gauge invariant, and for
a gauge invariant set of Feynman diagrams defining
observable radiative corrections of order O(a/x) one has
to take into account Feynman diagrams of one-virtual-
photon exchanges with hadronic structure of the neutron
and proton. Keeping only the leading order contributions in
the large nucleon mass expansion Sirlin obtained that the
observable radiative corrections of order O(a/z) to the
neutron lifetime do not depend on the axial coupling
constant g4 # 1 and the contributions of hadronic structure
of the nucleon coupled to one-virtual photon, responsible
for gauge invariance of radiative corrections of order
O(a/x), do not depend on the electron energy E,
[14,21]. Thus, the analysis of the Feynman diagrams in
Fig. 6, taken in the tree approximation for strong low-
energy interactions, only for the first step in the calculation
of radiative corrections of order O(a/z) should shed
light on the influence of the hadronic structure of the
nucleon on gauge invariance of radiative corrections of
order O(a/x) valid to any order in the large nucleon mass
expansion.
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The analytical expressions for these Feynman diagrams,
adduced in Appendix B of the Supplemental Material [77],
can be obtained by using the Lagrangian Eq. (44) with the
axial coupling constant g4 equal to g4 = 1. As we have
shown in Appendix B of the Supplemental Material [77]
these Feynman diagrams are gauge invariant and do not
depend on a gauge parameter ¢ of the longitudinal part of
the photon propagator. Having noticed that such an
independence of a gauge parameter & retains also for
gs # 1, we have calculated the contributions of the
Feynman diagrams in Fig. 6 at g4 # 1. This has allowed
us to take into account partly the contributions of strong
low-energy interactions in terms of the axial coupling
constant and to deal with gauge invariant radiative con-
tributions of order O(a/x) valid to any order in the large
nucleon mass expansion at Sirlin’s confidence level [14].
The latter is very important for the calculation of next-to-
leading corrections in the large nucleon mass expansion to
Sirlin’s radiative corrections, calculated to leading order in
the large nucleon mass expansion. After renormalization of
the one-photon-loop contributions we have obtained the
radiative corrections to the amplitude of the neutron S~
decay of order O(a/x) ~ 1073, agreeing fully with Sirlin’s
result [14] (see also Appendices C and D of Ref. [5])
calculated to leading order in the large nucleon mass
expansion, and have taken into account next-to-leading
order corrections in the large nucleon mass expansion of
order O(aE,/my) ~ 107 [see Eq. (70)]. The amplitude of
the neutron - decay, given by Eq. (70) and supplemented
by next-to-leading order 1/my proton recoil corrections
and contributions of the weak magnetism, might be used for
the analysis of the neutron lifetime and correlation coef-
ficients of the neutron f~ decays with different polarization
states of the neutron and massive decay fermions to order
1073, We are planning to carry out such an analysis in our
forthcoming publications.

The O(aE,/my) corrections, defined by the function
h,(E,e) [see Eq. (77)], to Sirlin’s function g, (E,) is plotted
in Fig. 8 in the electron-energy region m, < E, < E;. The
order of the O(aE,/my) corrections is of about 107,
Unlike Sirlin’s  corrections (a/x)g,(E,) of order
O(a/r) ~ 1073, which do not depend on the axial coupling
constant g,, the corrections of order O(aE,/my) ~ 1073
depend strongly on the axial coupling constant or on strong
low-energy interactions. It is important to emphasize that
the term (a/7)(5/2)(m%/M3,)¢n(M%,/m3,) =5 x 107°
does not depend on the electron energy E,. Such a
contribution comes from the Feynman diagrams in
Figs. 6(b) and 6(c), which are important for gauge
invariance of the one-photon-loop exchanges, and agrees
well with Sirlin’s assertion that the contribution of
Feynman diagrams restoring gauge invariance of the
Feynman diagrams with one-virtual photon exchanges,
when a virtual photon emitted by the proton is hooked
by the electron and self-energy proton and electron

Feynman diagrams, do not depend on the electron energy.
So one may assert that the radiative corrections of order
O(aE,/my) ~ 107> calculated as next-to-leading order
corrections to Sirlin’s radiative corrections of order
O(a/x), are defined at Sirlin’s confidence level of radiative
corrections of order O(a/x). In addition the calculation of
the radiative corrections of order O(a/x) being valid to any
order in the large nucleon mass expansion and defined by a
gauge invariant set of Feynman diagrams in Fig. 6 testifies
that the contributions of one-virtual photon interactions
with hadronic structure of the nucleon should be described
by a set of Feynman diagrams, which are self-gauge
invariant. The shape of radiative corrections of order
O(a/r) as functions of the electron energy E,, caused
by one-virtual photon coupled to hadronic structure of the
nucleon, is to some extent model-dependent and can be
calculated within the quantum field theoretic model of
strong low-energy and electroweak interactions defined by
the Lagrangian Eq. (44). We would like also to notice that
the radiative corrections of order O(aE,/my) to the
amplitude of the neutron = decay Eq. (71) can be also
used for the calculation of radiative corrections of order
107> to the proton recoil distribution of the neutron S~
decay [26-31].

Thus, concluding our discussion of the radiative correc-
tions of order O(aE,/my) as next-to-leading order cor-
rections in the large nucleon mass expansion to Sirlin’s
radiative corrections of order O(a/x), calculated to leading
order in the large nucleon mass expansion, we may argue
that there are else three problems, the analysis of which
goes beyond the scope of this paper. They are (i) the
radiative corrections to two-loop approximation with one-
hadron- and one-photon-loop exchanges, the contributions
of which do not reduce to the axial coupling constant,
(i1) the contribution of the electroweak W- and Z-boson
exchanges to one-virtual electroweak boson approximation
and (iii) the radiative corrections to two-loop approxima-
tion with one-hadron- and one-electroweak-boson-loop
exchanges.

The contributions of the electroweak W- and Z-boson
exchanges are defined by more than 24 Feynman diagrams
with intermediate W- and Z-boson virtual exchanges.
Practically, they have been calculated by Sirlin with co-
workers (see, for example, [32]). We have to show that such
a result can be obtained in the quantum field theoretic
model of strong low-energy and electroweak interactions,
described by the Lagrangian Eq. (44). According to [32],
the contribution of the electroweak W- and Z-boson
exchanges do not depend on the electron energy E,. Our
analysis of the Feynman diagrams in Appendices B and C
of the Supplemental Material [77], where we have shown
that the contributions of Feynman diagrams with virtual
electroweak W~-boson exchanges do not depend on the
electron energy E,, agrees well with independence of the
electron energy the corrections caused by the electroweak
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W- and Z-boson exchanges. So that the contribution of the
Feynman diagrams with W- and Z-boson virtual exchanges
should not add any corrections of order O(aE,/my).
As next-to-leading order corrections to the result
obtained in [32] we may expect the corrections of order
(m%,/M%)¢n(M%/m%) ~ 107> for X =W or Z, respec-
tively. We are planning to take into account the contribu-
tions of the virtual electroweak W- and Z-boson exchanges
in our forthcoming publication.

Then, the contributions of the two-loop Feynman dia-
grams with virtual hadron and photon exchanges, which
cannot be reduced to the contribution of the axial coupling
constant, and electroweak W- and Z-boson exchanges are
defined by a huge number of Feynman diagrams which
could in principle give some nontrivial but finite indepen-
dent of the electron energy E, contributions to the radiative
corrections of order O(a/x) and, correspondingly, to next-
to-leading order corrections in the large nucleon mass
expansion. However, according to Sirlin’s analysis [14,21],
the corrections of hadronic structure of the nucleon to order
O(a/z) and taken to leading in the large nucleon mass
expansion do not depend on the electron energy E, and can
be removed by renormalization of the Fermi and axial
coupling constants. Nevertheless, we are planning to carry
out the investigation of the problem of contributions of
hadronic structure of the nucleon coupled to one-virtual
photon and virtual electroweak bosons, which cannot be
reduced to the axial coupling constant g4, in our forth-
coming publications.

Finally we would like to notice that in the quantum field
theoretic model of strong low-energy and electroweak
interactions strong low-energy interactions are described
by the LoM with a linear realization of chiral SU(2) x
SU(2) symmetry. We calculate the contributions of strong
low-energy interactions in the limit of the infinite mass of
the scalar isoscalar ¢ meson. In such a limit the LeM is
equivalent to the quantum field theory with a nonlinear
realization of chiral SU(2) x SU(2) symmetry. In the
exponential parametrization of the pion field the LoM
reduces to ChPT (see [112]), which is accepted as a low-
energy QCD [113,117]). Since the use of the LoM as a
quantum field theoretic model of strong low-energy pion-
nucleon interactions makes to some extent the results of our

analysis of contributions of strong low-energy interactions
to the neutron #~ decays model dependent, we are planning
to reformulate the quantum field theoretic model of strong
low-energy and electroweak interactions, presented by the
Lagrangian Eq. (29) and, correspondingly, Eq. (44) with
the sector of strong low-energy pion-nucleon interactions,
described by ChPT with a nonlinear realization of chiral
SU(2) x SU(2) symmetry. However, first of all we would
like to investigate the problems mentioned above for
subsequent investigations of an influence of strong low-
energy interactions on gauge properties and renormaliz-
ability of radiative corrections to the neutron - decays in
the quantum field theoretic model of strong low-energy and
electroweak interactions with the sector of strong low-
energy interactions described by the LeM. According to
Weinberg’s “theorem” [124] (see also subsection C in
Sec. III), because of an equivalence of the LcM to the ChPT
[112] (see also Sec. IV) the results obtained in the LoM and
in the ChPT as quantum field theoretic models of strong
low-energy interactions in the neutron - decays should be
in principle the same. A comparison of the results, obtained
within these to quantum field theoretic models of strong
low-energy hadronic interactions with chiral SU(2) x
SU(2) symmetry in the neutron - decays, should be to
some extent a good verification of Weinberg’s theorem,
which is required by Weinberg [124].
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