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We have developed a convolutional neural network that can make a pixel-level prediction of objects in
image data recorded by a liquid argon time projection chamber (LArTPC) for the first time. We describe the
network design, training techniques, and software tools developed to train this network. The goal of this
work is to develop a complete deep neural network based data reconstruction chain for the MicroBooNE
detector. We show the first demonstration of a network’s validity on real LArTPC data using MicroBooNE
collection plane images. The demonstration is performed for stopping muon and a νμ charged-current
neutral pion data samples.
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I. INTRODUCTION

Liquid argon time projection chambers (LArTPCs) are
capable of producing high-resolution images of particle
interactions. This is one of the main reasons LArTPCs are
the technology of choice for several current and future
neutrino research programs including the Short Baseline
Program (SBN) [1] and Deep Underground Neutrino
Experiment (DUNE) [2]. The MicroBooNE experiment
[3], as a part of the SBN program, studies the νe-like low-
energy (LE) event excess observed by the MiniBooNE
Collaboration [4] using a LArTPC detector and the on-axis
Booster Neutrino Beamline (BNB) [5] at Fermilab as the νμ
source.
A LArTPC consists of a homogeneous volume of

liquid argon bounded by a cathode plane and an anode
plane. When a charged particle traverses the sensitive
region, ionization electrons and scintillation light are
produced along its trajectory. The scintillation light is
detected within several nanoseconds by an array of
photomultiplier tubes, providing a timing measurement.
Ionization electrons take a few milliseconds to drift
toward the anode under the applied electric field and
are detected by the anode plane, which is equipped with a
set of wire planes and charge-sensitive readout circuits.
The spatial separation within the wires on the anode plane
determines the spatial resolution of the recorded two-
dimensional (2D) projection images. The speed of drift
electrons along with their longitudinal diffusion, as well
as the electronics response and the sampling frequency

of the signal waveform determine the spatial resolution
along the drift direction.
While the detector is able to capture many of the fine

details that will be useful for physics analysis, parsing these
details using automated reconstruction tools is still a
technical challenge. One particular challenge is the dis-
crimination between electromagnetic (EM) particles,
namely e−, eþ, and photons, and other particle types.
EM particles above the critical energy (≈33 MeV in argon)
initiate an electromagnetic cascade of particles and develop
a unique topology that consists of a collection of branching
features. Identifying this topology is a simple form of
particle identification, and is key information that can be
used to discriminate between νe and νμ interactions, as
shown in Fig. 1. For EM particles below the critical energy,
other unique features are available. One example is low-
energy electrons (δ rays) knocked off from argon atoms by
a muon traversing the detector. These add multiple short
branches to a muon trajectory. Separating them from a
muon helps to identify the trunk of a muon trajectory.
Another example is a Michel electron trajectory with low-
energy deposition per unit length (dE=dx) from the decay
of a stopping muon. That trajectory typically exhibits a

(a) (b)

FIG. 1. Two examples of νe (a) and νμ (b) events simulated in
the MicroBooNE detector. The pixel color represents the amount
of energy deposited per pixel in the 2D projection image. The
pattern of ionization differs significantly between νe and νμ.
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pattern of increasing dE=dx due to an increase in ionization
energy loss as it comes to rest. Identifying and cleanly
separating energy depositions from Michel electrons in the
muon decay allows one to reconstruct the Michel spectrum
with high accuracy. This sample proves to be a valuable
energy calibration source.
In this paper, we demonstrate that EM particles can be

discriminated from other particles at the pixel level in
an image using a class of machine learning algorithms
known as convolutional neural networks (CNNs). We
refer to EM particles as shower and the others as track
particles in the rest of the paper. Our method uses noise-
filtered, signal shape deconvolved waveforms [6] from
the charge-collection plane organized in 2D image format
prior to a pixel clustering analysis. Having a prediction of
each pixel as track or shower type prior to a pixel clustering
reconstruction stage simplifies the downstream pattern-
recognition algorithms and reduces the need for iterative
reconstruction processes. We use a class of CNNs called
semantic segmentation networks (SSNets) to classify each
pixel of an image into a predefined set of semantics
including a track, a shower, and a background pixel.
This work was performed as a step towards the develop-

ment of a complete LArTPC event reconstruction and
analysis chain using deep neural networks. It is an extension

of an earlier study in which we demonstrated the use of
image classification and object detection techniques with
CNNs for LArTPC data analysis [7]. Examples of the
application of CNNs to neutrino data analysis in other
detectors can be found in Refs. [8–12]. The new contribu-
tions in this work include

(i) First demonstration of a pixel-level object prediction
for LArTPC event reconstruction using a deep
neural network.

(ii) First demonstration of a deep neural network on real
LArTPC detector data.

(iii) Software tools and algorithms capable of generating
a pixel-level label (i.e., semantics) from LArSoft
[13] data for supervised training and analysis of real
detector data.

The software is open source and accessible at Ref. [14].
The deep neural network described here is currently

employed in the data reconstruction chain for the deep-
learning based analysis of the MiniBooNE low-energy
excess by MicroBooNE. The analysis goal is to locate a
neutrino interaction vertex and identify the interaction type
as being νe or νμ for low-energy neutrinos (≈200 to
600 MeV). Having track/shower separation information
is crucial for vertex reconstruction and particle clustering
algorithms.

FIG. 2. The MicroBooNE detector schematics showing three wire planes and example 2D projections of V and Y plane waveforms.
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High rate environments, as in LArTPCs like the Short
Baseline Near Detector and the DUNE near detector, both
to be built in the not-too-distant future at Fermilab, will
benefit from sophisticated computer vision techniques.
Such techniques, including pixel labeling as provided by
the semantic segmentation approach described here, will
be very useful to untangle neutrino-induced tracks and
showers.

II. MICROBOONE DETECTOR AND
PARTICLE IMAGES

The MicroBooNE LArTPC contains 85 metric tons of
liquid argon in the active region, which is defined by a
rectangular shape with the dimensions 10.36 m in length,
2.32 m in height, and 2.56 m in width along the drift
direction [3], as shown in Fig. 2. The anode consists of
three planes of parallel wires. The first and second planes
contain 2,400 wires with orientations of þ60 and −60
degrees from the vertical, respectively. Ionization electrons
produce bipolar signals on the two induction planes as they
pass through them. The third is called the collection plane
and consists of 3,456 vertical wires. Wires on the third
plane are held at a positive potential and collect ionization
electrons. Wires are separated by 3 mm pitch in all planes,
and signal waveforms are digitized at a 2 MHz sampling
rate and recorded for a duration of 4.8 ms in each event.
Combined wire waveforms, aligned by the digitization

time, form 2D projected images of a three-dimensional
(3D) particle trajectory from a different projection angle.
The digitization time runs along the vertical axis and the
wires run along the horizontal axis in event displays shown
in this paper (e.g., Fig. 1).
In this paper we focus on the analysis of image data

recorded by the collection plane, which has a size of 3,456
by 9,600 pixels. The spatial resolution of an image along
the wire axis is 3 mm per pixel. For the analysis, evebry 6
samples of a digitized waveform are summed together,
corresponding to an approximate spatial resolution along
the time axis of 3.3 mm. The resulting image dimension is
3,456 by 1,600 pixels.

III. U-RESNET: TRACK/SHOWER PIXEL-LEVEL
SEPARATION NETWORK

In this study we use U-ResNet, a hybrid of the U-Net
[15] and residual network [16] (ResNet) design pattern.
This is a natural approach for semantic segmentation and
has been independently explored in other research domains
[17,18]. U-ResNet takes a single-channel 512 by 512 pixel
image as input and outputs an image of the same spatial
dimension with 3 channels per pixel encoding a probability
from multinomial logistic regression, or softmax, for a pixel
being a background, track, or shower type. We use U-Net as
the base SSNet architecture design because of its excellent
performance in biomedical images [15] which resemble

FIG. 3. U-ResNet architecture diagram. Black arrows describe the direction of tensor data flow. Red arrows indicate concatenation
operations to combine the output of convolution layers from the encoding path to the decoding path. The final output has the same
spatial dimension as the input with a depth of three, representing the background, track and shower probability of each pixel.
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those from LArTPCs where information density is sparse.
We replace the convolution layers in the original U-Net
with ResNet modules. ResNet is a generic CNN design
pattern that was invented at the same time as U-Net and
enables the training of deep CNNs. In our implementation,
each ResNet module consists of two convolution layers
of 3-by-3 kernel size, where each convolution layer is
followed by a batch normalization operation [19] and
a rectified-linear unit activation function. The schematic
U-ResNet design is shown in Fig. 3.
The U-ResNet architecture can be interpreted in two

separate sections. The first half of the network takes an
input image, a data tensor with a dimension of (512,512,1),
and repeatedly applies convolution and down-sampling
operations. At the end of the first section, the data tensor
has a dimension of (16,16,1024). The goal of this section
of the network is to learn a nonlinear, hierarchical repre-
sentation of image features at different scales. Since feature
information is encoded in a low spatial resolution tensor at
the end of this section of the network, it is referred to as an
encoding path.
The second half of the U-ResNet takes the output of an

encoding path, a tensor with a dimension of (16,16,1024),
and repeatedly applies an up-sampling and convolution
operation. An up sampling is performed by an operation
called convolution transposewhich is an interpolation filter
that expands the spatial dimension of a tensor by a factor
of 2. By using neurons to incorporate the interpolation
operations, the U-ResNet architecture introduces a learn-
able interpolation filter optimized for assigning object
classification to the pixels. This section of the network
does essentially the opposite of the encoding path, hence it
is called a decoding path.
An important and unique design pattern of U-Net is an

additional path to allow the flow of information between
the encoding path and the decoding path. This mitigates the
loss of spatial resolution information in the encoding path
where down sampling is performed. The idea and method
employed in U-Net is simple and effective; in the decoding
path where high spatial resolution needs to be recovered,
we concatenate the data tensors from the encoding path
where the spatial dimension matches. In the encoding path,
data tensors hold the best possible spatial resolution at each
spatial resolution prior to the down-sampling operations.
Thus a simple concatenation allows information about
spatial resolutions to flow into the decoding path, allowing
U-Net to perform a high-precision image segmentation.

IV. TRAINING U-RESNET

We train U-ResNet via a supervised learning method that
uses simulated particle interaction images. All simulation
processes in this study are done using software stacks
that can be found in Refs. [13,20]. In this section we
describe techniques employed for the training and opti-
mization methods.

A. Transfer learning

We exploit a transfer learning technique by first training
the first-half of U-ResNet for an image classification task
using the identical data set from our previous publication
[7]. This data set contains single particle images which
could be e−, photon, muon, π− or proton. The network’s
weights trained to discriminate between different particle
images provide a natural initial state to perform a pixel-
level track/shower separation. When we subsequently train
the whole U-ResNet with pretrained weights, we let all
network parameters be trained and fine-tuned.

B. Class/pixel-wise loss weighting

Training of the U-ResNet is a process of minimizing
the loss, a measure of an error made by the network, over
many iterations. The loss is computed by summing over a
pixel-wise multinomial logistic loss in each image, and
then averaging over all images in a batch of images. This
definition of loss presents a challenge to training U-ResNet
for LArTPC images where the fraction of pixels that are
background is 99% or more, hence dominating the total
loss. In order to mitigate this challenge, the authors of the
original U-Net paper introduced a class-wise loss weighting
factor [15] which is a reciprocal for the number of pixels
that belong to each class in an image.
In this study, we introduce a pixel-wise loss (PL)

weighting factor that is multiplied by a pixel’s loss con-
tribution to the total loss of an image. PL weighting enables
the network’s training to focus on challenging parts of
an image by up weighting a pixel loss in the corresponding
regions. For the calculation of PL weighting factors, we
define four categories of pixels with the last category
separated into particle type instances. The first category
contains background (i.e., zero) pixels that surround non-
background (i.e., nonzero) pixels within 2 pixels. The second
category is the rest of background pixels in the image that
do not belong to the first category. The third category
represents nonzero pixels within 4 pixels of the generated
event vertex. Finally, the fourth category is defined for each
particle instance and includes nonzero pixels that belong to
a particle. Therefore the total number of categories may
vary from one event to another. A PL weighting factor is
computed per category. It is the reciprocal of the number
of pixels belonging to each category. A category with fewer
pixel counts represents a rare feature in an image data, and
is assigned a higher weighting factor. Figure 4 shows how
pixels are grouped into the four categories.

C. Optimization

We use the RMSProp [21] with an initial learning
rate of 0.0003 to optimize the U-ResNet. The weights
are updated after processing every batch of 60 images.
The training process is monitored using the Incorrectly
Classified Pixel Fraction (ICPF) metric. Unlike the loss
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function, this metric does not incorporate the PL weight-
ing factor described above, but instead treats all pixels
equally. Figure 5 shows the loss and the average values
of ICPF computed over validation samples as a function
of epoch during the training. Epoch is a measure of
time, and one epoch corresponds to the time it takes to
consume the same number of images as the whole
training sample. The learning rate is lowered by an order
of magnitude at epoch 14 as shown in Fig. 5. We
determine the best performing network parameters based
on the lowest ICPF value on the validation set which
is generated independently from the data set used for
training under the same simulation configuration. The
performance of the network is then quantified using the
test set, which is yet another independent sample gen-
erated with the same simulation configuration. Using the
trained network, we find an average ICPF value of 1.9%
using all events in the test set. A limited set of variations
to the network and training methods were also tested
(for example, omitting transfer learning or using a
different filter size or loss definition), but these all gave
worse or comparable performance.
The U-ResNet and this training scheme is implemented

using CAFFE [22], customized to employ the PL weighting
scheme [14]. We trained our network using NVIDIA
TitanX [23] GPUs with 12 GB memory.

V. DATA SAMPLES FOR TRAINING AND
VALIDATION

A. Training sample preparation

We prepare training samples using a custom event
generator called MultiPartVertex (MPV), available in the
MicroBooNE software repository, UBOONECODE [24].
MPV can be configured to randomly generate a single
3D point in a detector with the emission of multiple
charged particles. Any random process employed by
MPV is a uniform distribution within the specified range
in the configuration. The multiplicity and type of particles
to be generated are configurable parameters as outlined
below. Restrictions and ranges for the generation are
presented in the following two paragraphs.
For 80% of the sample, the MPV is configured to

generate events with a random total particle multiplicity
between one and four. One of the generated particles must
be a light lepton (e− or μ−) with kinetic energy ranging
from 50 to 1000 MeV. The direction of each particle is
chosen from an isotropic distribution. For the other
generated particles, the MPV is configured to randomly
assign their types to a photon, charged pion, proton, or
another lepton (e− or μ−). We also set the maximum
multiplicity for leptons and protons to be three and photons
and charged pions to be two. There is no strong motivation

FIG. 5. (a) The training loss value as a function of training time
using the validation sample. The red line shows the average at a
given Epoch computed using 200 the neighboring Epoch points.
(b) ICPF for the same sample. The sudden drop in both figures at
Epoch 14 is due to lowering of the learning rate by a factor of 10.

FIG. 4. Top: an example image from the training set in which
two protons, one electron, and one muon are produced. The gaps
along the trajectory of an electron and proton on the left are due to
unresponsive wires [6] in the detector. Bottom: the event from the
top image that shows PL weighting categories indicated in
different colors.
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for this configuration. In fact we demonstrate later in this
paper that the network works well on neutrino candidate
events with a shower particle from real detector data with
multiplicity five.
The remaining 20% of images are generated with a

different configuration. The total multiplicity is set ran-
domly between one and four particles but there is no
restriction to include at least one light lepton. Instead,
particle types are set randomly between showers (e− and
photon) and tracks (μ−, charged pion, and proton). For each
particle type, the maximum multiplicity is set to two. The
ranges for the randomly assigned momentum are specified
as 30 to 100 MeV=c for e− and photon, 85 to 175 MeV=c
for μ−, 95 to 195 MeV=c for charged pion, and 300 to
450 MeV=c for proton. The distribution of particle direc-
tions is isotropic. This 20% fraction is chosen to have a
particular focus on the low-energy region where classifi-
cation of particle types becomes difficult. The motivation
for this is to enhance the networks performance in this
energy region. We generate 140 000 images, randomly
selecting 100 000 for training, 20 000 for validation, and
20 000 images for testing the network’s performance, with
no image in more than one set.
After the particle generation stage, the training sample is

run through the detector simulation and waveform process-
ing scheme of the experiment. The procedure is similar to
that of our previous study [7] but with an updated version of
LArSoft [13] and UBOONECODE [24]. The latter software
contains important updates including a data-driven detector
noise model [6], noise filtering algorithms, and data-driven
TPC charge signal deconvolution kernels [25,26]. These
improvements aim to reduce the potential discrepancies
between data and simulation samples. Hence, these
improvements are important for the U-ResNet trained
purely on simulation to work effectively on real detector
data. Further suppression of the discrepancy between data
and simulation for noise with low amplitude is accom-
plished by setting the pixel value to zero for pixels with
amplitude below 10. Finally, we crop the 512 by 512 pixel
image from the whole collection plane image which has the
original size of 3,456 by 1,600 pixels. These images span
an approximate projected area of 1.5 m× 1.5 m and are
therefore large compared to the scale (such as the liquid
argon radiation length) of features relevant for track/shower
pixel labelling. The cropping algorithm (CRA) defines an
axis-aligned 3D rectangular volume within the detector of
a configurable size that contains a set of 3D points, called
constraint points. The location of the 3D box is set by the
algorithm under two conditions. First, the defined box
must contain all given 3D constraint points. Second, while
satisfying the first condition, a range is defined that
maximizes the number of nonzero 2D pixels included in
the projection of the rectangular box in the collection plane.
By satisfying these two conditions, the box location is
allowed to float freely. We use the 3D interaction vertex as

the constraint point in this study. The resulting 512 by
512 pixel images contain the interaction point location for
each event and the maximum number of nonzero pixels in
the projection.

B. Benchmark simulation samples

Separately from the testing set, we generate five addi-
tional simulation samples to benchmark the performance of
U-ResNet. These simulation samples include two types
of neutrino interactions simulated using the GENIE [27]
neutrino event generator within LArSoft [13] and the MPV
generator events generated under three different generator
configurations. The image preparation steps are identical to
those of the training samples except for the event gen-
eration step which is unique to the generator type and
configuration. This brings us to a total of six simulated
samples, consisting of 120 000 events, that we can analyze
with the trained network.
The neutrino samples consist of 20 000 νμ and 20 000 νe

events, generated with beam flux information from the
BNB [5] beam flux information. Each MPV samples
includes 20 000 images of events. One MPV sample is
configured to generate one proton and one electron only
(1e1p). Particles are simulated with a uniform energy
distribution and isotropic momentum direction distribution.
The kinetic energy range is set to be 50 to 500 MeV for e−

and 50 to 300 MeV for protons. In addition, there are two
more MPV samples generated: low-energy 1e1p (1e1p-LE)
and low-energy 1μ1p (1μ1p-LE) where the latter is similar
to 1e1p except a μ− is generated in place of an e−. These
samples are generated in the LE range. For 1e1p-LE, the e−

has momentum distributed from 30 to 100 MeV=c. For
1μ1p-LE, the momentum of μ− is distributed from 85 to
175 MeV=c. For both samples, the momentum of the
proton is distributed from 300 to 450 MeV=c.

C. Benchmark data samples

In order to validate the network’s performance on real
data, we prepared two data samples for which we have a
good understanding from the traditional reconstruction
approaches available in LArSoft [28].
The first is a sample of Michel electron events [29],

also used in our first physics result publication. This sample
primarily consists of one track (stopping muon) and
one shower (decay electron) and is identified using a
reconstruction algorithm developed by the collaboration.
The Michel electron images are simple and therefore useful
to study how the network response depends on a limited
amount of image features.
The second data set is a sample of charged-current (CC)

νμ candidate interactions with one or more photons
produced, primarily via π0 decay at the interaction vertex.
The CCπ0 sample gives a different perspective than Michel
electrons because it primarily consists of higher energy
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showers and tracks that make the image more feature rich
and complicated. Validation of the network performance on
both data sets is crucial.
For the Michel electron sample we use a random subset

of events identified as Michel electron events in Ref. [29].
We processed 100 data and 100 simulation events through
the same waveform processing procedures applied to
generate our training sample. Then we use the recon-
structed decay position of the Michel electron as a con-
straint to crop with the CRA, which produce 512 by
512 pixel images containing both a stopping muon and
a decay electron. Next we use the LARCV [14] toolkit to
produce a pixel-level categorization of track and shower
pixels through hand scanning of images by physicists. In
this process, we ignored pixels that are related neither to a
stopping muon nor a Michel electron. The ignored pixels
are typically due to other cosmic ray muons or secondaries
produced by them. This allows us to reduce the number of
pixels to be labeled. The disagreement rate between the
physicist labels and the U-ResNet’s classification is then
compared between the real data and simulated data to
quantify how the network performance differs between data
and simulation.
For the CCπ0 events, samples of 100 data images are

identified primarily by an automated reconstruction [28].
Event selection algorithms look for a νμ CC interaction
candidate vertex, namely a muon track with EM-showers
from π0 decay near to that vertex. Such a muon track must
be either contained or associated with a proton track to
reject cosmogenic backgrounds. Selected events must pass
through a subsequent hand-scanning process by physicists
to ensure a high purity. The reconstruction algorithm in the
reconstruction chain provides an estimate of the interaction
vertex position. This reconstructed vertex is used as a
constraint for CRA to produce 512 by 512 pixel images.
For the comparison study, we simulate events with BNB νμ
interactions and cosmic rays. A total of 100 CCπ0 events
are selected based on simulation information. The neutrino
interaction vertex location from simulation information is
used as a constraint for CRA to produce the same size
images for simulated events. Data and simulation events are
processed by an identical waveform process chain used to
prepare the training sample. Finally, the pixel-level physi-
cist labels are generated for the CCπ0 sample. The same
condition is applied and the physicists labeled only pixels
that are considered to be related to a neutrino interaction,
ignoring pixels with cosmic ray induced energy depositions.

VI. NETWORK PERFORMANCE ON
SIMULATION SAMPLES

We benchmark the performance on test simulation
samples using four metrics.

(i) ICPF mean: the average value of incorrectly classi-
fied pixel fraction per image computed over all

events in a sample. The ICPF metric is a measure
that takes into account false positives and the fraction
of labels for the track and shower categories.

(ii) ICPF 90% quantile: the ICPF value below which
90% of events in a sample are present.

(iii) Shower error rate: the average value of the shower
pixel error rate, defined as the fraction of incorrectly
labeled shower pixels as track pixels in each image,
averaged over all images in a sample.

(iv) Track error rate: the average value of the track pixel
error rate, defined as the fraction of incorrectly
labeled track pixels as shower pixels in each image,
averaged over all images in a sample.

For all samples, the ICPF distributions are very similar. We
show one example for the test sample in Fig. 6. In general,
most images have very low ICPF values, well below 10%
for all test samples.
The results can be found in Table I. The network is

generalized to perform comparably to our test sample on

TABLE I. Values of the network performance metrics including
the average of ICPF mean value, 90% quantile, the average of
incorrectly classified pixel fraction for shower pixels, and the
same for track pixels. The test samples described in Sec. V B.
Values are shown in percentages.

ICPF ICPF

Sample Mean 90% Shower Track

Test 1.9 4.6 4.1 2.6
νe 6.0 13.8 7.6 13.8
νμ 3.9 4.5 14.2 4.3
1e1p 2.2 5.7 2.8 4.0
1μ1p-LE 2.3 2.2 6.2 2.4
1e1p-LE 3.9 11.5 3.8 8.0

FIG. 6. The binned ICPF distribution over all images in the
test set.
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certain classes of simulated neutrino events (such as 1e1p
and 1μ1p-LE) to a level that allows us to apply the
technique as a part of the reconstruction chain. We do
not train the network on our signal prediction—neutrino
events simulated by GENIE—because this may cause the
network to perform better on specific neutrino interaction
models relative to others, thereby introducing a potential
bias in the analysis of neutrino data. The benchmark results
also demonstrate that the U-ResNet can classify pixels from
the low-energy two particle topologies of 1e1p and 1μ1p

into track/shower at the ICPF mean value of 3.9% and
2.3%, respectively. These are the two simplest topologies of
neutrino interactions, and it is important for U-ResNet to
perform well so that it can be used to distinguish the two
neutrino flavors. In the 1μ1p-LE sample, despite the fact
that no showers are produced in the primary neutrino
interaction, challenges for the network arise from similar-
ities between muons and electrons at very low energies and
from secondary interactions like Michel electrons from
muon decays.
Figure 7 shows the binned ICPF for the 1e1p and 1e1p-LE

samples as a function of kinematic variables. Figure 7(a)
shows the correlation with the opening angle between the
two particles in 1e1p sample. We expect the ICPF value
to increase when the two particles are colinear and the
2D projections overlap, making it hard to distinguish the
two tracks. When they are back-to-back, the difficulty to
distinguish them arises from the fact that two trajectories
may appear as the trajectory of one particle. Although it
is outside of the scope of this paper, some of these
difficulties could be mitigated if multiple 2D projection
information is incorporated.
Figures 7(b) and 7(c) show the dependence of the

performance on the kinetic energy of a particle from
1e1p-LE sample. We observe that the network performs
worse at lower energies. The ICPF value reaches near 15%
at 50 MeV proton kinetic energy. A proton at this energy
can only travel a few centimeters in LAr, which translates
into 10 pixels or fewer in the collection plane image. Such
a small amount of information makes the networks task
difficult. A similar trend of decreasing performance can be
also seen for electron kinetic energy, although the magni-
tude is much smaller. The critical energy above which
electrons primarily produce bremsstrahlung in LAr is about
33 MeV. In the low-energy region near or below the critical
energy, electrons may not show a geometrical feature of
showers characterized by a cascade of radiation. Thus, the
network may struggle identifying them as showers.
Overall, these kinematic distributions show the trend we

expect, and set milestones to be achieved by future work
on deep neural network development for LArTPC data
reconstruction. A few randomly chosen example outputs of
the networks are shown in the Appendix from the νe and νμ
benchmark set.

VII. NETWORK PERFORMANCE WITH
DETECTOR DATA AND COMPARISON

TO SIMULATION

In this section we report the validation of U-ResNet on
real detector data, in particular Michel electron and CCπ0

neutrino candidate events. Both data and simulation sam-
ples are processed by a physicist and contain pixel-level
prediction labels. We report the comparison of the networks
disagreement with a label applied by a physicist, which is
considered one of the most accurate techniques for pixel

FIG. 7. The ICPF error rates for U-ResNet labeling track
(proton) and shower (electron) pixels for the benchmark test
set are plotted against initial kinematic variables from simulation
information. (a) The opening angle between two particles from
the 1e1p sample. (b) The electron kinetic energy from the 1e1p-
LE sample. (c) The proton kinetic energy from the 1e1p-LE
sample.
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classification for LArTPC data. The details of data prepa-
ration steps are described in the previous sections.

A. Data/simulation comparison using
the Michel electron sample

Table II summarizes the analysis results for the Michel
electron sample. The disagreement rate between a physicist
analyzer and the network prediction is below the 3% level
on average for both data and simulation. Figure 8(a) shows
the distribution of the pixel fractions where U-ResNet and
physicists disagreed on track/shower categorization over
100 events. The calculated physicist/network labeling for
data and simulation agrees within statistical uncertainty.
Assuming a negligible difference in the physicists perfor-
mance on data and simulation, this then implies a compa-
rable network performance on data and simulation.
Figure 8 also shows binned distributions of pixel scores
for data and simulation. The track or shower label for
each pixel is assigned by a physicist analyzer, and is not
expected to be perfect. The score distributions show a
similar trend between data and simulation. The error bars
are not drawn in the score distributions since it is not trivial
to derive an error for a pixel-wise score where we expect
strong interpixel correlations. Finally, Table II shows that
the network has a smaller ICPF when using labels gen-
erated from simulation information. The Appendix shows
four randomly selected examples of Michel electron events
from real data.
Further, we inspected the robustness of the network

against scaling pixel values. Since there is no calibration
applied at the stage of processed waveforms, we expect
a difference in the signal strength between data and
simulation. We run a simple differentiation algorithm to
compare the signal strength between Michel data and
simulation images. The algorithm inspects every pixel in
an image. The algorithm finds peak pixels by comparing a
given pixel with the one before and after it along the time
axis to determine the one with a higher pixel value than its

neighbors. This is the simplest form of a signal peak
amplitude finder algorithm. The distributions for data and
simulation are shown in Fig. 9, which shows a shift
between the data and simulation peak positions by about
20% to 30%. For this study we scale the pixel values of data
images by a constant factor and compare the performance
of the network with different scaling factors. Figure 10
shows the results of this study. Although we observe that
the ICPF becomes worse when we apply the scaling factor,
the change is within 1% absolute when we scale pixel

TABLE II. Values of the network performance metrics for the
Michel electron sample. The top row indicates the type of sample
used (simulation or data), the second shows the source of a label
used for analysis, and the third shows the source of a pixel
prediction. The forth and the fifth rows indicate the ICPF mean
value over all samples and 90% quantile, respectively. The
bottom two rows show the mean of ICPF for track and shower
pixels, separately. Values are given as percentages.

Sample Data Simulation Simulation Simulation

Label Physicist Physicist Simulation Simulation
Prediction U-Resnet U-ResNet U-ResNet Physicist
ICPF mean 1.8 2.6 2.5 2.3
ICPF 90% 3.3 4.4 4.5 3.1
Shower 6.2 5.7 4.0 3.9
Track 1.1 1.9 1.6 1.3

FIG. 8. (a) Binned distribution of ICPF for track and shower
pixels where the pixel-level labels are produced by a physicist.
The data and simulation distributions are area normalized and
represent 100 Michel electron events. There is no event outside
the shown range on the horizontal axis. (b) The normalized,
binned softmax probability distributions for shower pixels on
data and simulation. (c) The same as (b) for track pixels.
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values by 25%, which is at the level of current disagreement
rate between simulation and uncalibrated detector response.

B. Qualitative analysis of interpixel correlations using
the Michel electron sample

We take a qualitative look at the correlation of pixel
scores using the Michel electron image from one of the real
data examples shown in Fig. 11. In the following sections,
we focus on three regions shown in the figure. These
correspond to (1) a minimum-ionizing muon track, (2) a
portion of the track with high dE=dx near the muon
stopping point, and (3) the low-energy Michel electron
shower, respectively.

1. Minimum ionizing muon track

One possible property used to distinguish a minimum
ionizing muon from a low-energy electron is the topology

of its trajectory. This is often a long straight line, as
compared to a more “jagged” electron trajectory due to
higher multiple coulomb scattering. We choose subsets of
region 1 shown in Fig. 11 to test this hypothesis by masking
all remaining pixels in the image to zero. Figure 12 shows
the masked images and the corresponding track vs shower
score distribution of non-zero (i.e., unmasked) pixels by
running the U-ResNet on each image. In Figs. 12(a)–12(d),
we show a series of images with increasing number of
unmasked pixels to determine how the score distribution
changes. When we provide only a 5-pixel long minimum
ionizing track, separation is weak. The separation improves
as we include more neighboring pixels, which makes the
straight-track shape longer and longer. We conclude that
this confirms our hypothesis that the network is focusing
on the length of a straight minimum ionizing particle’s
trajectory.

2. Bragg peak

A stopping muon increases its energy deposition
density, dE=dx, as it loses momentum and near the
stopping point has the highest dE=dx called the Bragg
peak. This increasing dE=dx is a useful signature to
identify a stopping muon [29] and therefore make a
decision that a trajectory is tracklike. In Fig. 12, we show
that the network struggles with a straight, minimum ioni-
zing tracklike trajectory of relatively few pixels. Figure 13
shows region 2 of Fig. 11, near the stopping muon’s Bragg
peak point, where we masked the rest of muon trajectory
and the entire electron charge depositions. Track and
shower score distributions are well separated at all track
lengths. This is a distinct feature from Fig. 12. We therefore
conclude that the network is keying on an increasing

FIG. 9. Peak pixel value distribution for Michel electron images
for data and simulation using the 3-pixel differentiation algorithm
described in the text. The vertical axis shows the pixel counts
while the horizontal axis shows the peak pixel values.

FIG. 10. The average ICPF in percent for the Michel electron
data versus pixel scaling factor is shown in blue. The pixel-
fraction disagreement between physicist and network categori-
zations is shown in percent in red for track and shower pixels
separately.

FIG. 11. Three regions for an analysis of the interpixel
correlation for a Michel in data. Region 1 contains the minimum
ionizing muon trajectory. Region 2 focuses on the end of the
muon trajectory where dE=dx increases. Region 3 contains a
decay Michel electron.
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dE=dx, or a high dE=dx, to classify a straight-line-like
topology into tracklike with high confidence even if the
length of such a trajectory is down to several pixels.

3. Low-energy electron shower

One key feature of an electromagnetic shower is its
nonstraight line trajectory. To test this hypothesis, we take a
closer look at the Michel electron charge deposition in
region 3 of Fig. 11. In this event a Michel electron traveled

straight for several pixels. Then it started to scatter off of
other electrons before the end of the trajectory. Because
of its mass, the Michel electron is minimum ionizing for
most of its trajectory. We investigate how the network’s
confidence varies if we separate the initial straight, mini-
mum ionizing trajectory of a Michel electron from the
remaining image.
Figure 14 shows that, where the Michel electron

picture is complete, all pixels are identified strongly as
a shower. We then mask the first several pixels that look

FIG. 12. Minimum ionizing muon track in region 1 of Fig. 11 where all pixels in the image are masked except for a small portion of a
muon track shown in the images above. The lower row shows normalized track vs shower score distributions for all non-zero pixels in
the image.

(b)(a) (c) (d)

FIG. 13. Stopping muon track in region 2 of Fig. 11 where all pixels in the image are masked except for the small portion of the muon
track next to its stopping point shown in the images above. The lower row shows normalized track and shower score distributions for all
nonzero pixels in the image.
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like a track of a minimum ionizing muon [Fig. 14(b)].
The network’s confidence remains very strong in this
region. We also show the network’s response to the
first several pixels of a Michel electron [Fig. 14(c)].

The network is entirely uncertain whether this is a track or
a shower in this case.
Finally, we investigate the intersection of regions 2 and 3

by adding the final pixels of the Bragg peak of the stopping
muon to the first several pixels of the Michel electron,
as shown in Fig. 15 We add a heat map which shows the
score for nonzero pixels for the classified category. In the
heat map we observe the dark-red region, corresponding
to the score value 1, and the other region in yellow/orange
color which corresponds to weaker classification scores.
We also show the track and shower score distribution of all
nonzero pixels. The network’s confidence level remains
high on classifying the Bragg peak as tracklike. Secondly,
by comparing the score distribution of Fig. 15 and the score
distribution in Fig. 14(c), we conclude that the beginning
portion of the Michel electron now has a higher likelihood
to be classified as showerlike. This suggests that the network
is using the presence of the Bragg peak in the image to
improve the classification of the minimum ionizing straight
trajectory that starts from the end of the Bragg peak, which is
otherwise ambiguous as tracklike or showerlike.

(b)(a) (c)

FIG. 14. Michel electron in region 3 of Fig. 11 where all pixels in the image are masked except for a portion of an electron trajectory
shown in the images above. The lower row shows normalized track and shower score distributions for all nonzero pixels in the
image. (a) The entire Michel electron image is unmasked. (b) The initial portion of the Michel electron trajectory is masked.
(c) Everything except the initial portion of the Michel electron trajectory is masked

FIG. 15. The intersection of regions 2 and 3 of Fig. 11 where all pixels in the image are masked except for a small portion of a Michel
electron and the Bragg peak from a stopping muon. The middle histogram shows a normalized track and shower score distribution for all
nonzero pixels in the image. The right figure shows the normalized score value of the classified pixel category.

TABLE III. Values of the network performance metrics for the
CCπ0 sample. The top row indicates the type of a sample used
(simulation or data), the second shows the source of a label used
for analysis, and the third shows the source of a pixel prediction.
The forth and the fifth rows indicate the ICPF mean value over all
samples and 90% quantile, respectively. The bottom two rows
show the mean of ICPF for track and shower pixels, separately.
Values are given as percentages.

Sample Data Simulation Simulation Simulation

Label Physicist Physicist Simulation Simulation
Prediction U-ResNet U-ResNet U-ResNet Physicist
ICPF mean 3.4 2.5 1.8 2.0
ICPF 90% 9.0 5.7 4.6 4.8
Shower 4.8 3.4 3.0 2.6
Track 2.7 2.4 2.2 2.9
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C. Data/simulation comparison using
The CCπ0 sample

The results of running U-ResNet on the CCπ0 image
samples are summarized in Table III. We find a similar
trend as observed in the Michel electron sample, but with
slightly higher disagreement rates. This is expected given
that CCπ0 samples are complex images because of the
higher number of particles and interactions involved.
The top plot in Fig. 16 shows the ICPF distribution.

As in the case of the Michel electron sample, data and
simulation are in agreement within statistical fluctuations.
Again assuming a negligible difference in the physicists
performance on data and simulation, this implies a com-
parable network performance on data and simulation. In
Figs. 16(b) and 16(c), we show the score distributions
for the track and shower pixels labeled by a physicist.
A similar trend is observed between data and simulation in
both pixel categories. Four example images are shown in
the Appendix with the U-ResNet output. The displayed
events are visually selected by a physicist because of their
particularly busy vertex activities.
Following the analysis of the Michel sample, we inves-

tigate how the scaling of pixel values in the data image
affects the network performance. The result is shown in
Fig. 17. We find that the ICPF values have small variation
among the scaling factors applied in the study. This
suggests that, although the effect is small, at the 1% level
for a 25% pixel value scaling factor, mismatched signal
strength in data does affect the network’s response.

D. Disagreement between U-ResNet and physicist
labeling for the CCπ0 sample

The CCπ0 events present far richer topologies than the
Michel events, and we do not attempt to perform the pixel
masking and the deduction exercise to learn how the
network works in this sample. Instead, we study the
CCπ0 data events where the disagreement between physi-
cist and network labeling is largest. Four such events are
identified and shown in Fig. 18. The four events shown are
ordered by level of disagreement rates of 0.166, 0.166,
0.162, and 0.125, respectively. In the example shown on
the top of the figure, the disagreement is mainly in a long
tracklike trajectory originating from the interaction vertex.
While a physicist analyzer decided this is a track, it could

FIG. 16. (a) The binned distribution of ICPF where the pixel-
level labels are produced by a physicist. The data (black) and
simulation (red) distributions are area normalized, produced from
100 CCπ0 events. There is no event outside the shown range on
the horizontal axis. (b) The normalized, binned softmax prob-
ability distributions for shower pixels by the network on data and
simulation. (c) The same as (b) for track pixels.

FIG. 17. The ICPF mean in percent for CCπ0 data (blue) for
varying pixel scaling factor shown on the horizontal axis. A
category-wise physicist-network disagreement pixel fraction in
percent is shown in red for track and shower pixels separately.
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also be a minimum ionizing electron that should be
classified as a shower. The second display from the top
shows the network’s attempt to separate a tracklike tra-
jectory that is present inside a high energy shower. In the
third image, a large portion of particle trajectory is invisible
due to unresponsive region of the detector running verti-
cally toward the right of this image. This makes it difficult

to analyze the remaining particle trajectories where the
U-ResNet mixes track and shower pixel decisions for the
same trajectory. Finally, in the bottom image, the network
predicts two tracklike trajectories coming from the inter-
action vertex while the physicist analyzer merged two
tracks into one near the vertex. The region around the
interaction vertex is complicated by energy deposition from

FIG. 18. Four example CCπ0 events with highest ICPF values using physicist generated pixel labels. Left: input images to the network.
Middle: track (yellow) and shower (cyan) using physicist generated labels. Right: track (yellow) and shower (cyan) labels predicted by
the network.
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a shower, which makes it difficult to determine which
decision is correct. The performance of the network for
these maximal disagreement events supplements our under-
standing from the qualitative Michel data analysis and
documents some of the ways that the network fails in
categorizing pixels.

VIII. CONCLUSION

In this paper we have presented the first application of
a deep semantic segmentation network, U-ResNet, to
perform track/shower separation at the pixel level for
LArTPC images. We explore training techniques includ-
ing transfer learning and pixel-wise error weighting
methods. Our software tools and algorithms to store
and apply the pixel-level labeling are made available in
Refs. [14,24].
U-ResNet achieved an average ICPF of 6.0% and 3.9%

benchmarked with 20,000 images of νe and νμ interactions,
respectively, simulated with realistic neutrino beam infor-
mation. The same network achieved an average ICPF of
3.9% for 1e1p-LE events in which electrons have a uniform
momentum distribution from 30 to 100 MeV=c, and
protons from 300 to 450 MeV=c. The average ICPF is
found to be 2.3% for 1μ1p-LE events which include
protons with the same uniform momentum distribution
and momentum range, and muons in a momentum range of
85 to 175 MeV=c.
We quantified and validated U-ResNet, trained purely

on simulated image samples, on LArTPC images from
real detector data. We calculated the fraction of incor-
rect pixel labeling between U-ResNet and a physicist
analyzer and found an average disagreement fraction of
1.8% and 3.4% for Michel electron data and CCπ0 data,
respectively. The same analysis was performed using
simulation samples, and we found that the level of
disagreement is consistent for data and simulation
samples. This is the first time such validations have

been shown on real LArTPC data. From a qualitative
analysis on the Michel electron data we conclude that
the network is focusing on intuitively reasonable
physics features in the image. The successful applica-
tion of a semantic segmentation network on LArTPC
data is an important milestone toward developing a full
LArTPC data reconstruction chain using a deep neural
network.
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APPENDIX

In this Appendix we show example event displays of
simulation and data. Figure 19 shows simulated νe and νμ
interactions. Figure 20 shows a stopping muon with a decay
Michel electron. Figure 21 shows “busy” CCπ0 candidate
events visually selected including those with a particle
multiplicity greater than 4. In all of these event displays,
gaps in tracks and showers are due to unresponsive wires.
Overall, we observe good agreement between the simu-
lation information and output from the network track-
shower pixel labeling in diverse event types.
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FIG. 19. Event displays of νe (upper two rows) and νμ interactions (lower two rows). The left column images are inputs to the network.
The middle column shows labeled images based on simulation information. Track pixels are masked in yellow and shower pixels are in
cyan. The right column shows the output of the network.
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FIG. 20. Michel electron event displays from real detector data. Left: input images to the U-ResNet. Middle: track (yellow) and shower
(cyan) physicist labels. Right: track (yellow) and shower (cyan) labels predicted by the network.
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