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We present a first principles derivation of the anomaly polynomials of 4dN ¼ 2 class S theories of type
AN−1 with arbitrary regular punctures, using anomaly inflow in the corresponding M-theory setup with N
M5-branes wrapping a punctured Riemann surface. The labeling of punctures in our approach follows
entirely from the analysis of the 11d geometry and G4 flux. We highlight the applications of the inflow
method to the AdS=CFT correspondence.
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I. INTRODUCTION

’t Hooft anomalies are measures of degrees of freedom of
quantum systems that are preserved under renormalization
group flow. Thus, anomalies provide powerful tools for
exploring phases and nonperturbative regimes of quantum
theories.
In the last ten years, a new approach to studying quantum

field theories (QFTs) has emerged with the discovery of
N ¼ 2 class S superconformal field theories (SCFTs)
[1,2], where a large class of 4d N ¼ 2 SCFTs are
geometrically defined from reductions of 6d (2,0) SCFTs
on punctured Riemann surfaces. A choice of 6d SCFT and
boundary data at the punctures completely specifies a 4d
SCFT and its various protected sectors. A typical theory in
this class is non-Lagrangian and strongly coupled, and yet
it can be analyzed from the geometric construction. The
approach of the class S program has been generalized and
adopted for studying SCFTs in different dimensions with
varying amount of supersymmetry. The geometrization
program has become a standard tool in the study of QFTs.
A key feature of the class S program is the richness of the

variety of punctures on the Riemann surface. The anoma-
lies of N ¼ 2 class S SCFTs in the presence of regular
punctures have been indirectly obtained from field theoretic
arguments [3–5]. However, a direct derivation of the
anomalies from the geometric definition of class S
SCFTs is lacking. In this paper we use anomaly inflow

in M-theory to provide a first principles derivation, building
on [6]. Our procedure can be generalized to obtain the
anomalies of other classes of SCFTs with geometric
descriptions. Further, our prescription suggests a method
for extracting the exact anomalies of a holographic SCFT
from its gravity dual.
The ’t Hooft anomalies of a d-dimensional QFT are

neatly encoded in the (dþ 2)-form anomaly polynomial.
In this paper we derive the anomaly polynomials of 4d
N ¼ 2 class S SCFTs with regular punctures engineered
from the 6d (2,0) AN−1 SCFTs. First, we describe the
relevant geometric setup from a stack of N M5-branes in
M-theory, and the inflow procedure. Then we provide a
novel description of the boundary data at punctures in terms
of the four-form flux of M-theory. Finally, we compute the
anomaly polynomial and discuss its implications for
holography. A companion paper [7] to this letter contains
more complete derivations and a broader study of the
results and their implications.

II. SETUP AND INFLOW

A 4dN ¼ 2 class S theory of type AN−1 is engineered in
M-theory by taking the low-energy limit of a configuration
withN coincidentM5-braneswrapping a puncturedRiemann
surface. LetW6 denote the 6d world volume of theM5-brane
stack inside the ambient 11d spaceM11. The normal bundle to
W6, denoted NW6, encodes the five transverse directions to
the stack andgenerically has structuregroupSOð5Þ.We study
the case W6 ¼ M4 × Σg;n, where M4 is external spacetime
and Σg;n is a Riemann surface of genus g with n punctures.
We are interested in setups that preserve 4d N ¼ 2

supersymmetry (for M4 ¼ R1;3). In this case, the structure
group of NW6 reduces from SOð5Þ to SOð2Þ × SOð3Þ, and
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correspondingly NW6 decomposes as NW6 ¼ NSOð3Þ ⊕
NSOð2Þ. The (universal cover) of SOð2Þ × SOð3Þ is iden-
tified with the Uð1Þr × SUð2ÞR R-symmetry of the 4d field
theory. In summary, the tangent bundle to 11d spacetime
restricted on W6 decomposes as

TM11jW6
¼ TM4 ⊕ TΣg;n ⊕ NSOð2Þ ⊕ NSOð3Þ: ð1Þ

The total space of the NSOð2Þ fibration over Σg;n is the
cotangent bundle T�Σg;n, and is hyper-Kähler. The twisting
ofNSOð2Þ over Σg;n implements a partial topological twist of
the 6d (2,0) AN−1 theory living on the stack. If n̂ denotes the
Chern root of NSOð2Þ, then

n̂ ¼ −t̂þ 2cr1;
Z
Σg;n

t̂ ¼ χðΣg;nÞ; ð2Þ

where cr1 is the first Chern class ofUð1Þr, t̂ is the Chern root
of TΣg;n, and χðΣg;nÞ ¼ 2ð1 − gÞ − n is the Euler character-
istic of the punctured Riemann surface. In order to specify
the 4d theory, we must supplement each puncture with
appropriate data, encoding the boundary conditions for the
6d theory. The puncture data is determined by the branch-
ing pattern of the M5-branes which governs the flavor
symmetry of the 4d theory.
From the point of view of M-theory, the combined

system of the M5-brane stack and the 11d bulk enjoys a
nonanomalous diffeomorphism invariance. The total sys-
tem is free from local anomalies in 11d due to a cancella-
tion between the anomaly generated by the chiral massless
degrees of freedom localized on W6, and anomaly inflow
from the bulk.
The anomaly inflow from the bulk amounts to a classical

anomalous variation of the M-theory effective action under
11d diffeomorphisms, due to the presence of the M5-
brane stack. The latter acts as a magnetic source for the
M-theory four-form G4 with delta-function support on W6,
dG4 ¼ 2πNδW6

. In order to analyze anomaly inflow in the
supergravity approximation we must smooth out the delta-
function singularity [8,9]. This is achieved by cutting out a
small tubular neighborhood of the M5-brane stack. As a
result, we are now considering M-theory on a manifold
with a boundary M10 ¼ ∂M11, which is diffeomorphic to
an S4 bundle over W6. The information about the original
delta-function source is translated into a smoothed-out G̃4

flux,

G̃4

2π
¼ dC3

2π
− df ∧ Eð0Þ

3 − fE4;
Z
S4
E4 ¼ N: ð3Þ

The quantity f is a bump function that depends only on the
radial distance away from the M5-brane stack, smoothly
interpolating between −1 at the boundary M10 and 0 away
from it. The four-form E4 is globally-defined, closed,

invariant under the action of the structure group of

NW6, and can be written locally as E4 ¼ dEð0Þ
3 . The

integral of E4 over the S4 surrounding the stack measures
the total magnetic charge N of the M5-branes.
The anomalous variation of the M-theory effective action

is expressed as an integral over M10 and is conveniently

formulated in the framework of descent, δS ¼ 2π
R
M10

I ð1Þ
10 ,

dI ð1Þ
10 ¼ δI ð0Þ

11 , dI
ð0Þ
11 ¼ I12. The formal quantity I12 is a

twelve-form characteristic class constructed from E4 and
given by

I12 ¼ −
1

6
ðE4Þ3 − E4I8: ð4Þ

On the right-hand side we suppressed wedge products for
brevity, and we introduced the eight-form class I8, which is
defined in terms of the Pontryagin classes of TM11 as

I8 ¼
1

192
½p1ðTM11Þ2 − 4p2ðTM11Þ�: ð5Þ

The inflow contribution to the anomaly polynomial of the
4d CFT is extracted by integrating I12 over the total space
of the S4 bundle over Σg;n, denoted M6,

I inf
6 ¼

Z
M6

I12; S4 ↪ M6 → Σg;n: ð6Þ

Anomaly cancellation requires I inf
6 to cancel against the

CFT anomaly, up to decoupling modes, I inf
6 þ ICFT

6 þ
Idecoup
6 ¼ 0.
To compute the integral in (6), we excise small disks

around each puncture on Σg;n, together with the S4 fibers on
top of them. We thus obtain a space M̃6, which is an S4

fibration over a smooth Riemann surface with n bounda-
ries. We replace the excised portions of M6 with suitable
local geometries Xα

6 , with α ¼ 1;…; n, glued smoothly to
M̃6. This decomposition of M6 translates to

I inf
6 ¼

Z
M̃6

I12 þ
Xn
α¼1

Z
Xα
6

I12

≡ I inf
6 ðΣg;nÞ þ

Xn
α¼1

I inf
6 ðPαÞ; ð7Þ

where Pα denotes the αth puncture on Σg;n. We refer to
I inf
6 ðΣg;nÞ as the bulk contribution to I inf

6 .
Each geometry Xα

6 is locally S2Ω × Xα
4, where the S2Ω

encodes the angular directions of NSOð3Þ, while Xα
4 com-

prises the directions of the excised disk, together with the
fibers of NSOð2Þ on top of it. More precisely, Xα

4 is the local
space that models T�Σg;n in the vicinity of the puncture Pα.
Thus, the possible choices of Xα

4 in M-theory encode the
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puncture data. The space Xα
4 admits aUð1Þ isometry, which

is identified with the Uð1Þ action on NSOð2Þ in the bulk
of T�Σg;n.

III. BULK CONTRIBUTION TO INFLOW

Towrite E4, we realize S4 as an S1ϕ × S2Ω fibration over an
interval with coordinate μ ∈ ½0; 1�, with S1ϕ, S

2
Ω associated

to NSOð2Þ, NSOð3Þ, respectively, see (1). At μ ¼ 0, S2Ω
shrinks, while at μ ¼ 1, S1ϕ shrinks. The NSOð2Þ bundle
is captured byDϕ ¼ dϕ −A, whereA is a connection with
field strength dA ¼ 2πn̂, see (2). Using this notation, the
general E4 reads

E4 ¼ N

�
dγ ∧ Dϕ

2π
− γn̂

�
∧ eΩ2 : ð8Þ

The function γ depends on μ only, satisfies γð0Þ ¼ 0,
γð1Þ ¼ 1, and has no zeros within the interval (0,1), but
is otherwise arbitrary. The two-form eΩ2 is the closed,
SOð3Þ-invariant completion of the volume form on S2Ω,
normalized to integrate to 1. The overall normalization in
(8) is fixed by (3).
The class I8 on M̃6 is obtained via the decomposition of

p1ðTM11Þ,p2ðTM11Þ under (1), using standard formulas for
Pontryagin classes of direct sums of vector bundles. Notice
that p1ðTΣg;nÞ ¼ t̂2, p1ðNSOð2ÞÞ ¼ n̂2, while p1ðNSOð3ÞÞ ¼
−4cR2 , where cR2 is the second Chern class of SUð2ÞR. The
only terms in I8 that can contribute to the integral over M̃6

are those linear in t̂,

I8 ¼
1

48
t̂cr1½4ðcr1Þ2 þ 4cR2 − p1ðTM4Þ� þ � � � ð9Þ

We are now in a position to compute the integral of I12

over M̃6. To this end, it is useful to recall the Bott-Cattaneo
formula [10]

R
S2Ω
ðeΩ2 Þ3 ¼ −cR2 . The result reads

I inf
6 ðΣg;nÞ ¼

1

2
NχðΣg;nÞ

�ðcr1Þ3
3

−
cr1p1ðTM4Þ

12

�

−
1

6
ð4N3 − NÞχðΣg;nÞcr1cR2 : ð10Þ

The quantity I inf
6 ðΣg;nÞ coincides with the dimensional

reduction along Σg;n of the inflow eight-form anomaly
polynomial for a stack of M5-branes [6].

IV. PUNCTURE GEOMETRY AND FLUX

To introduce the αth puncture, we excise a portion ofM6

of the form Dα × S4, where Dα is a small disk centered at
Pα with polar angle β. We replaceDα × S4 with a space Xα

6 ,
which admits an SOð3Þ ×Uð1Þ2 isometry inherited from
S2Ω × S1ϕ ⊂ S4 and S1β ⊂ Dα.

The space Xα
6 is given as a fibration of S

2
Ω over a 4d space

Xα
4 , which is modeled by an S1β fibration over R3. We use

cylindrical coordinates ðρ; η; χÞ on R3, with η the axial
coordinate, ρ the radial coordinate, and χ the azimuthal
angle, related to ϕ; β by χ ¼ ϕþ β. The circle S1χ shrinks
along the η axis in the base space R3, while S2Ω shrinks
at η ¼ 0.
The S1β fibration admits monopole sources located

along the η axis at η ¼ ηa, a ¼ 1;…; p, at which S1β
shrinks. The space Xα

4 corresponds to a small region that
surrounds the interval ½0; ηp� on the η axis. The S1β fibration
is captured by

Dβ ¼ dβ − Ldχ; S1β ↪ Xα
4 → R3: ð11Þ

L is a function of ρ, η that approaches a piecewise constant
function of η for ρ → 0. Denote the piecewise constant
values of L by

L ¼ la for ηa−1 < η < ηa; lpþ1 ¼ 0: ð12Þ

The charge ka of each monopole is measured byZ
S2a

dDβ

2π
≡ ka ¼ la − laþ1 ∈ Z; ð13Þ

for S2a the 2-sphere surrounding the monopole in R3.
Since the space Xα

4 is a local model for T�Σg;n in the
neighborhood of the puncture Pα, its geometry is con-
strained. In particular, ka > 0 for all a, so that the la are a
sequence of decreasing integers. Furthermore, the local
geometry near each monopole is an ALF hyper-Kähler
space, modeled by a single-center Taub-NUT space with
charge ka, denoted TNka . This space has an R4=Zka
orbifold singularity which can be resolved to yield a
smooth hyper-Kähler space fTNka .
Now we discussE4 in the geometryXα

6. The most general
form of E4 compatible with the symmetries is

E4¼dðYDχ−WfDβÞ∧eΩ2 þEfl
4 ; Dχ≡dχ−A; ð14Þ

where the gauging of χ with the connection A is inherited
from ϕ, fDβ denotesDβ as in (11) with dχ → Dχ, and Efl

4 is
a flavor contribution discussed below. The field strength
dA in the puncture region only receives contributions from
the term 2cr1 in (2). The quantities Y,W are functions of ρ, η
and are constrained by flux quantization of E4. They vanish
at η ¼ 0, where S2Ω shrinks.
We start by defining the relevant cycles. There is a four-

cycle Ba for a ¼ 1;…; p, consisting of the interval
½ηa−1; ηa� at ρ ¼ 0, S1β, and S2Ω. For a ≥ 2, S1β shrinks at
the endpoints of ½ηa−1; ηa� and thus we also have a two-
cycle Sa, depicted in Fig. 1.
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Next, consider the arcCa connecting a point on the ρ axis
to a point within the ðηa; ηaþ1Þ interval, with
a ¼ 1;…; p − 1, as depicted in Fig. 1. The arc Ca, together
with S2Ω and the combination of S1χ and S1β that shrinks along
ðηa; ηaþ1Þ, gives the four-cycle Ca. The arc Cp in Fig. 1,
combined with S1ϕ and S2Ω, gives a four-cycle Cp that is
equivalent to the bulk S4.
Supersymmetry requires the flux of E4 through the Ca

and Ba cycles to respectively carry the same sign. We
choose the orientations such that

R
Ba
E4 and

R
Ca
E4 are

positive, and we findZ
Ba

E4 ¼ Wð0; ηaÞ −Wð0; ηa−1Þ≡ wa − wa−1; ð15Þ

such that w0 ¼ 0 and fwagpa¼1 is an increasing sequence of
positive integers.
The flux

R
Ca
E4 equals Y evaluated at the endpoint of the

Ca arc on the η axis. Since the endpoint can be freely
moved within ðηa; ηaþ1Þ, Y is piecewise constant along the
η axis, and takes non-negative integer values,

Yð0; ηÞ ¼ ya ∈ Z≥0 for ηa < η < ηaþ1: ð16Þ

Although Y is discontinuous along the η axis, E4 must be
continuous. This condition gives ya − ya−1 ¼ waka,

ya ¼
Xa
b¼1

wbkb; N ¼
Xp
a¼1

waka; ð17Þ

where y0 ¼ 0 and we used Cp ≅ S4. Continuity of E4 thus
implies the partition of N labeling a regular puncture.
For each nontrivial two-cycle in Xα

6 , we can turn on an
additional contribution to E4 of the form ω ∧ F, for ω the
Poincaré dual of the two-cycle and F the field strength of a
backgroundUð1Þ connection onM4. One such two-cycle is
Sa depicted in Fig. 1, with Poincaré dual denoted ωa.
Additional two-cycles are introduced upon resolving the

orbifold singularities at the monopoles. The resolved spacefTNka admits ka − 1 two-cycles, with Poincaré duals

fω̂a;Igka−1I¼1 . Their intersection pairings give the Cartan
matrix CsuðkaÞ of suðkaÞ,Z

eTNka

ω̂a;I ∧ ω̂a;J ¼ −CsuðkaÞ
IJ : ð18Þ

The flavor terms in E4 are thus

Efl
4 ¼

Xp
a¼2

ωa ∧ Fa

2π
þ
Xp
a¼1

Xka−1
I¼1

ω̂a;I ∧ F̂a;I

2π
; ð19Þ

where Fa and F̂a;I are 4d field strengths. Equation (19) only
captures the Cartan subgroup of the full 4d flavor
group GF ¼ S½Qp

a¼1 UðkaÞ�.
The class I8 in the puncture geometry is computed using

the decomposition TM11 ¼ TM4 ⊕ NSOð3Þ ⊕ TXα
4 . The

Pontryagin classes of TXα
4 are given in terms of the

Chern roots λ1, λ2 as p1ðTXα
4Þ ¼ λ21 þ λ22, p2ðTXα

4Þ ¼
λ21λ

2
2. To account for the gauging of the angle χ in (14),

the Chern roots are shifted by cr1,

λ1 → λ1 þ cr1; λ2 → λ2 þ cr1: ð20Þ

The relevant terms of I8 are

I8 ¼
1

96
½4ðcr1Þ2 þ 4cR2 − p1ðTM4Þ�p1ðTXα

4Þ þ � � � ð21Þ

where p1ðTXα
4Þ is understood before the shift (20). The

total p1ðTXα
4Þ decomposes into a sum of p1ðfTNkaÞ terms,

which satisfy
R eTNka

p1ðfTNkaÞ ¼ 2ka [11].

V. CFT COMPARISON

We now have the necessary components to compute
I inf
6 ðPαÞ ¼

R
Xα
6
I12 in (7). We use the standard parametri-

zation of I6 for 4d N ¼ 2 SCFTs

I6 ¼ ðnv − nhÞ
�ðcr1Þ3

3
−
cr1p1ðTM4Þ

12

�
− nvcr1c

R
2 þ

X
G

kGcr1c2ðGÞ; ð22Þ

where nv and nh are the effective numbers of vector
multiplets and hypermultiplets respectively, and kG is the
flavor central charge of a factor G of the 4d flavor group.
A direct computation of the integrals yields

ðnv − nhÞinfðPαÞ ¼
1

2

Xp
a¼1

Naka; ð23Þ

FIG. 1. A generic profile of monopoles. The Ca arcs form part
of the four-cycle Ca. The bubble denotes the two-cycle Sa, which
is part of the four-cycle Ba.
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ninfv ðPαÞ ¼
Xp
a¼1

�
2

3
l2
aðw3

a − w3
a−1Þ −

1

6
Naka

þ laðNa − walaÞðw2
a − w2

a−1Þ
�
; ð24Þ

kinfSUðkaÞ ¼ −2Na; Na ≡
Xa
b¼1

ðwb − wb−1Þlb: ð25Þ

Note that there is an enhancement of the ka − 1 Cartan
components to the second Chern class of the full non-
Abelian SUðkaÞ factor in GF.
The partition of N in (17) defines a Young diagram with

rows fl̃igwp

i¼1, where l̃i ¼ la for wa−1 þ 1 ≤ i ≤ wa. We
define k̃i ¼ l̃i − l̃iþ1 and Ñi ¼

P
i
j¼1 l̃j. It follows that

(23)–(24) are equivalently written as

ðnv − nhÞinfðPαÞ ¼
1

2

Xwp

i¼1

Ñik̃i; ð26Þ

ninfv ðPαÞ ¼
Xwp

i¼1

ðN2 − Ñ2
i Þ þ

1

2
N2: ð27Þ

We can also read off ninfv;hðΣg;nÞ from (10),

ðnv − nhÞinfðΣg;nÞ ¼
1

2
NχðΣg;nÞ; ð28Þ

ninfh ðΣg;nÞ ¼
1

6
ð4N3 − NÞχðΣg;nÞ: ð29Þ

According to (7), the total ninfv , ninfh are

ninfv;h ¼ ninfv;hðΣg;nÞ þ
Xn
α¼1

ninfv;hðPαÞ: ð30Þ

These quantities can now be compared to the known CFT
answers [4], as presented in [6]. We find

ninfv þ nCFTv ¼ 1

2
χðΣg;0Þ; ninfh þ nCFTh ¼ 0; ð31Þ

kinfSUðkaÞ þ kCFTSUðkaÞ ¼ 0: ð32Þ

The inflow and CFT contributions cancel, up to minus the
anomaly of a free 6d (2, 0) tensor multiplet reduced on a
genus-g Riemann surface Σg;0 with no punctures. We
identify this free tensor multiplet with the center-of-mass
mode of the M5-brane stack. Our results show that this
mode is insensitive to the presence of punctures.

VI. CONCLUSION AND APPLICATIONS
TO HOLOGRAPHY

In this paper we provided a first principles derivation of
the anomaly polynomials of 4d N ¼ 2 AN−1 class S
theories with arbitrary regular punctures, using anomaly

inflow in the corresponding M-theory setup with N M5-
branes wrapping a punctured Riemann surface.
In our approach, the puncture data are entirely specified

by the topological properties of the 11d geometry and G4

flux in the vicinity of the puncture. Remarkably, the
anomaly inflow cancels exactly the known anomalies of
the 4d SCFTs, up to the contribution of the center-of-mass
free tensor multiplet on the M5-brane stack.
Our method for analyzing N ¼ 2 regular punctures is

generalizable to irregular punctures and setups with less
supersymmetry. Many interesting QFTs can be realized via
branes probing geometries in string theory andM-theory. In
such cases, inflow can be a robust tool to compute
anomalies, and therefore provides a handle on nonpertur-
bative aspects of these QFTs.
We conclude with a discussion of applications to

holography. An important motivation for our analysis of
the local puncture geometry and E4 flux comes from the
holographic M-theory duals of N ¼ 2 and N ¼ 1 class S
theories with punctures [3,12]. In particular, the fibration
in (11) is related to and inspired by the Bäcklund transform
of [3]. The solutions are warped products of AdS5 with an
internal space Mhol

6 with four-form flux Ghol
4 .

We observe that the topological properties of Mhol
6 in [3]

are the same as those of M6 in (6). Furthermore,

Ghol
4

2π
¼ Ē4 in cohomology; ð33Þ

where Ē4 is E4 with all 4d connections turned off and Ghol
4

is the four-form flux of [3]. In the bulk of Σg;n Ē4 ¼ S4, but
Ē4 is nontrivial in the puncture geometry and encodes the
puncture labelling.
Kaluza-Klein reduction of 11d supergravity on Mhol

6

yields a 5d gauged supergravity model with an AdS5
vacuum. The full reduction ansatz requires a Ghol

4 that
captures the fluctuations of the AdS5 gauge fields beyond
the linearized level. E4 is a natural candidate for construct-
ing such an ansatz [9].
In the solutions of [3] the classical objects Mhol

6 , Ghol
4

provide the exact topological data of M6, Ē4 to all orders
in N. This data determines the E4 and I8 needed to carry
out the inflow procedure, which (subtracting the Oð1Þ
contribution of decoupling modes) yields the exact
anomaly coefficients of the dual SCFT. This route to the
exact a and c central charges bypasses a computation with
the AdS5 effective action, which would require a detailed
knowledge of higher-derivative corrections.
An interesting question is whether (33) extends to more

general AdS5 solutions in M-theory, with varying amount
of supersymmetry. If so, we may use inflow and classical
data of the supergravity solution to access exact anomaly
coefficients, providing a systematic way to compute quan-
tum corrections in AdS5.
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