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Bell-network states are loop-quantum-gravity states that glue quantum polyhedra with entanglement. We
present an algorithm and a code that evaluates the reduced density matrix of a Bell-network state and
computes its entanglement entropy. In particular, we use our code for simple graphs to study properties of
Bell-network states and to show that they are nontypical in the Hilbert space. Moreover, we investigate
analytically Bell-network states on arbitrary finite graphs. We develop methods to compute the Rényi
entropy of order p for a restriction of the state to an arbitrary region. In the uniform large-spin regime, we
determine bounds on the entanglement entropy and show that it obeys an area law. Finally, we discuss the
implications of our results for correlations of geometric observables.
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I. INTRODUCTION

Elementary quanta of space—also known as quantum
polyhedra [1]—are a characterizing feature of loop quan-
tum gravity (LQG) [2–5]. These microscopic degrees of
freedom (d.o.f.) are ultralocal and associated with the N
nodes of a finite graph Γ. The collective state of the system
is an element of the kinematical Hilbert space of the theory
which, at fixed spin-network graph Γ and spins jl, has the
tensor-product structure

HΓjl ¼ ⊗
n∈Γ

Hn: ð1:1Þ

Here, Hn is the Hilbert space of the SUð2Þ intertwiner
associated to each node n, the quantization of a classical
polyhedron [1,6–9]. This decomposition is the basis of the
geometric picture of quantum space: a LQG state is a many-
body state of quantum polyhedra with the adjacency
relations given by the connectivity of the graph and areas
given by the spins [10]. A generic state in the spaceHΓjl is
a linear superposition of quantum polyhedra,

jsi ¼
X

i1;…;iN

ci1…iN ji1i � � � jiNi: ð1:2Þ

The factorized orthonormal basis associated to the tensor
product (1.1), denoted jΓ; jl; ini ¼ ji1i � � � jiNi, is called
the spin-network basis. This is a basis of simultaneous
eigenstates of a maximal commuting set of operators that

are ultralocal; i.e., each operator measures a geometric
property of a single quantum polyhedron such as its volume
or the dihedral angle between two faces [1,6–15]. As a
result, spin-network basis states are factorized over poly-
hedra; they are unentangled. On the other hand, a typical
state of this many-body system has the form (1.2) and
represents entangled polyhedra.
The connectivity of the graph Γ, together with the

factorized structure of the Hilbert space HΓjl , allows us
to define regions of the graph and their associated Hilbert
space. Specifically, we call A a region if the set of nodes
n ∈ A is path connected with respect to the graph structure.
The associated Hilbert space is HA ¼⊗n∈A Hn, and,
denoting Ā the complement of A, we have a bipartition
of the Hilbert space as the tensor product,

HΓjl ¼ HA ⊗ HĀ: ð1:3Þ

Given this structure, it is immediate to define the entangle-
ment entropy SA of a pure state jsi restricted to the sub-
system A. Let us assume that 1 ≪ dimHA ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimHΓjl

p
.

In this case, Page’s result [16] states that a typical state in
the Hilbert space HΓjl has entanglement entropy

SAðtypicalÞ ≈ logðdimHAÞ −
1

2
ðdimHAÞ2=dimHΓ;jl :

ð1:4Þ

This result indicates that the restriction ρA of a typical pure
state in HΓjl is close to being maximally mixed when the
subsystem A is small. It is instructive to consider the case of
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a graph Γ that is dual to an equal-area triangulation. In this
case, all spins are assumed to be equal to j0, and the
dimension of the Hilbert space of a node—an equal-area
quantum tetrahedron—is simply dimHn ¼ 2j0 þ 1. The
expectation value of the volume of a node is
vðj0Þ ¼ TrðV̂nρnÞ ¼ 1

2j0þ1

P
kvk, where vk are the eigen-

values of the volume operator V̂n and ρn is the maximally
mixed state. When expressed in terms of these parameters,
the entanglement entropy of a typical state in HΓj0 is

SAðtypicalÞ≈
logð2j0þ1Þ

vðj0Þ
VA

−
1

2
exp

�
−
logð2j0þ1Þ

vðj0Þ
ðVΓ−2VAÞ

�
: ð1:5Þ

This is a volume law for the entanglement entropy of a
typical state in the Hilbert spaceHΓj0 . On the other hand, it
is known that taking into account the dynamics—and in
particular constraints such as the selection of an eigenstate
of a Hamiltonian with local interactions [17–19]—selects
states that are nontypical in the Hilbert space and leads to a
behavior of the entanglement entropy that deviates quali-
tatively from Page’s law for typical states.
In this paper, we focus on Bell-network states and show

that—instead of a volume law—their entanglement entropy
obeys an area law,

SAðBell-networkÞ ≈
logð2j0 þ 1Þ

aðj0Þ
AreaA þ � � � ; ð1:6Þ

where aðj0Þ ¼ 8πγGℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j0ðj0 þ 1Þp

is the area eigenvalue
of a boundary link.
Bell-network states are defined using squeezed vacuum

techniques that enforce prescribed correlations. In particu-
lar, Bell-network states [20] have correlations that reduce
the general twisted geometry [21,22] at adjacent nodes to
vector geometries [23,24] by introducing Bell-like corre-
lation in the normals to faces of adjacent polyhedra. The
structure of correlations is well illustrated by the Bell state
for two spin-1=2 particles,

jBi ¼ j↑i1j↓i2 − j↓i1j↑i2ffiffiffi
2

p ¼
ffiffiffi
2

p Z
dn⃗
4π

jn⃗i1j − n⃗i2; ð1:7Þ

which is given by a uniform superposition of back-to-back
spins. For a given graph Γ and assignment jl of spins, there
is a unique Bell-network state in HΓjl , denoted jΓ; jl;Bi
here. Its expansion coefficients in the basis (1.2) are given
by the SUð2Þ symbol of the graph.
Calculating the entanglement entropy SA of a region A of

a Bell-network state is nontrivial. In this paper, we present
analytical and numerical methods to compute it. We will
work only with finite graphs having a finite number of
nodes. The problem is structured in the same way as the

standard entanglement entropy computation in many-body
quantum systems, where one considers a state (e.g., the
ground state of a specific Hamiltonian) and then computes
the entanglement entropy for various subsystems [16–19].
In this work, we present a numerical code [25] that, for a
given graph, first evaluates the expansion of the Bell-
network state on a factorized basis and then computes the
entanglement entropy of various subsystems. We present
explicit versions of the code adapted to different graphs and
subregions. We consider the dipole graph, the pentagram
graph with subregions containing one or two nodes, and the
hexagram graph with subregions containing one or two
nodes (either connected or disconnected).
To identify qualitative features of the behavior of the

entanglement entropy for any Bell-network state and arbi-
trary subsystem, we employ analytical methods which
provide good approximations under the assumption of
uniformly large spins. Under a homogeneous rescaling of
the spins of the state jl → λjl, we derive a bound for the
leading order in λ ≫ 1 of the entanglement entropy of a
region A,

ðj∂Aj − cAÞ log λ ≤ SA ≤ ðj∂Aj − 3Þ log λ; ð1:8Þ

where cA is a half-integer and j∂Aj is the number of links that
cross the boundary ofA. In this regime, the bound implies an
area-law behavior for SA. We determine also the behavior of
the Rényi entropy of order p of any Bell-network state and
arbitrary region. When compared to our numerical data, we
find good agreement within our approximation.
The expectation that entanglement in the d.o.f. of the

gravitational field is a necessary condition for the emer-
gence of a classical spacetime is shared by various
approaches to nonperturbative quantum gravity [26–34].
The result that Bell-network states satisfy an area law
supports the conjecture that entanglement can be used as a
probe of semiclassicality in quantum gravity [28].
The paper is structured as follows. In Sec. II, we give an

elementary introduction to entropic inequalities for the
entanglement entropy and the Rényi entropy, together with
their application to LQG. In Sec. III, we review the
definition of Bell-network states and their relation to vector
geometries. In Sec. IV, we present the large-spin asymptotic
analysis of the Rényi entropy and the entanglement entropy
for a Bell-network state on a generic graph. In Sec. V, we
present our code and compare the numerical results to our
analytical asymptotic formulas for some specific graphs.
We conclude with a discussion of our results.

II. ENTANGLEMENT ENTROPY
AND RÉNYI ENTROPY IN LQG

A quantum system composed of two subsystems A and Ā
has a Hilbert space given by the tensor product:

H ¼ HA ⊗ HĀ: ð2:1Þ
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Given a state jψi in H, the reduced density matrix of the
subsystem A is defined by the partial trace over its
complement Ā,

ρA ¼ TrĀjψihψ j: ð2:2Þ

The entanglement entropy of the subsystem A is defined as
the von Neumann entropy of the reduced density matrix

SA ¼ −TrðρA log ρAÞ: ð2:3Þ

It is also useful to define the Rényi entropy of order p,
defined as

RðpÞ
A ¼ −

1

p − 1
log TrρpA; ð2:4Þ

with p ≥ 0. The limit p → 1 reproduces the entanglement
entropy, as can be easily shown:

lim
p→1

RðpÞ
A ¼ −lim

ϵ→0

1

ϵ
log TrðρAð1þ ϵ log ρAÞÞ

¼ −lim
ϵ→0

1

ϵ
log ð1þ ϵTrρA log ρAÞ

¼ −TrðρA log ρAÞ ¼ SA: ð2:5Þ

On the other hand, the limit p → 0 of the Rényi entropy
reproduces the maximum entropy Smax

A ¼ logðdimHAÞ,

lim
p→0

RðpÞ
A ¼ log Trlim

p→0
ρpA ¼ logðdimHAÞ ¼ Smax

A : ð2:6Þ

The Rényi entropies satisfy the useful inequality

RðpÞ
A ≤ Rðp0Þ

A for p > p0 ð2:7Þ

with the equality corresponding to the maximally mixed

state ρA ¼ 1=dimHA for which RðpÞ
A ¼ logðdimHAÞ.

Considering the limits p → 0; 1, these inequalities provide
an upper and a lower bound on the entanglement entropy,

RðpÞ
A ≤ SA ≤ logðdimHAÞ with p > 1: ð2:8Þ

This relation is instrumental in our analysis.
The structures discussed above apply immediately to

states in the LQG Hilbert space HΓjl ¼ H1 ⊗ � � � ⊗ HN
with fixed graph Γ, N nodes, and fixed spins jl. In this
case, a state of this many-body system is a quantum
geometry consisting of N entangled polyhedra.
A similar decomposition of the Hilbert space has been

used for the investigation of entanglement in the intertwiner
d.o.f. in Ref. [35] and in Ref. [36], where a class of area-law
states with spin 1=2 is studied. The decomposition dis-
cussed in these works differs from the edge-mode decom-
position of Refs. [37–43], where an enlargement of the

Hilbert space is considered. In that case, there is a local
boundary contribution due to edge modes and a nonlocal
contribution due to intertwiner entanglement (quantum
polyhedra). As an example of the distinction between
the two definitions of entanglement entropy (intert-
winer entanglement vs edge-mode entanglement), we
can consider a spin-network basis state jΓ; jl; ini and a
region A. The edge-mode entanglement entropy scales asP

l logð2jl þ 1Þ, while the intertwiner entanglement
entropy is simply zero. We refer to Ref. [44] for a detailed
discussion of the relation between different definitions of
the entanglement entropy in lattice gauge theory and the
related choice of subalgebra of observables.
While in this paper we focus on the Hilbert space at fixed

spins,HΓjl , the notion of entanglement entropy that we use
generalizes immediately to a sum over spins. In fact, the
LQG Hilbert space at fixed graph Γ does not have a tensor-
product structure. It is instead given by the direct sum
HΓ ¼ ⨁jlHΓjl over spaces at fixed spins. Remarkably, in
this case, the entanglement entropy can be computed
following Ref. [44]. Given a state jΓ; vi ∈ HΓ,

jΓ; vi ¼
X
jl

qjl jΓ; jl; vi; ð2:9Þ

with jΓ; jl; vi ∈ HΓjl , the entanglement entropy of a
region A can be computed as

SA ¼ −
X
jl

pjl logpjl þ
X
jl

pjlSAðjlÞ; ð2:10Þ

where pjl ¼ jqjl j2=
P

jl jqjl j2 is the probability of finding
the state jΓ; vi with definite spins jl, and the entropy is the
sum of the classical Shannon entropy of the probability
distribution pjl and the average entropy at fixed spin.

III. BELL-NETWORK STATES
AND VECTOR GEOMETRIES

The LQG Hilbert space at fixed graph Γ and spins jl
consist of a collection of quantum polyhedra, one for each
node. Geometrical quantities like angles, areas, volumes,
and shapes of these polyhedra are quantum operators in this
Hilbert space. To glue two polyhedra together, we need to
impose the matching of the shape of the face shared
between the two. At the quantum level, due to the
uncertainty relations of shape operators, we cannot require
two shape eigenstates to coincide, but we can impose
gluing as expectation values. Moreover, we can require
correlations between two adjacent quantum polyhedra so
that also the fluctuations of the shape of two adjacent faces
are correlated. Bell-network states [20,31,32] are a specific
proposal that uniformly maximizes correlations of all
neighboring polyhedra on a given graph. They are given
by the formula
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jΓ; jl;Bi ¼
1ffiffiffiffi
Z

p
X
in

AΓðjl; inÞ⊗
n
jini; ð3:1Þ

where Z is a normalization and the amplitude A is the
SUð2Þ symbol of the graph Γ, i.e.,

AΓðjl; inÞ ¼
X
fmg

Y
n

½in�m1���mFn : ð3:2Þ

Here, the intertwining tensors ½in�m1���mFn are contracted
according to the connectivity of the graph Γ, and Fn is the
number of faces of the quantum polyhedron in the node n.
These states have an appealing geometrical interpreta-

tion: for large spins, they describe a uniform superposition
of vector geometries, a collection of polyhedra glued
together by requiring that the normals of adjacent faces
are back to back, even though in general the faces do not
have the same shape. This class of geometries plays an
essential role in the study of the asymptotic behavior of
topological BF SUð2Þ spin foam vertex amplitudes [24,45–
49]. Bell-network states have built-in short-range correla-
tions and are expected to satisfy an area law for the
entanglement entropy. Proving that the area law arises at
the gauge-invariant level is not immediate as it requires us
to control correlations in the intertwiner d.o.f. Here, we
present the explicit computations necessary to determine
this behavior.
While in this paper we focus on Bell-network states at

fixed spins, their full definition includes also specific
weights for the sum over spins. We review briefly the
related construction.
Bell-network states are defined using the formalism of

squeezed spin networks, developed in Refs. [31,32]. The
objective is to build entangled states for neighboring
quantum polyhedra.
Given a graph Γ, the Hilbert space of a link l ∈ Γ can be

thought of as the Hilbert space of four harmonic oscillators,
two at the source and two at the target of the link [32].
Denoting the creation operators a†αs and a†αt , where α ¼ 1,
2 is a spinor index, we build a Bell state of the link l as

jB; λil ¼ ð1 − jλj2Þ exp ðλϵαβa†αs a†βt Þj0isj0it; ð3:3Þ
where the squeezing paramenter λ is a complex number that
encodes the average area Al and the average extrinsic angle
θl associated to the link. The Bell-network state of a full
graph Γ is then defined as the gauge-invariant projection of
the tensor product of link Bell states

jΓ; λl;Bi ¼ PΓ ⊗l∈Γ jB; λlil: ð3:4Þ
The gauge-invariant projection can be implemented using
the resolution of the identity in the spin-network basis
PΓ ¼ P

jl;in jΓ; jl; inihΓ; jl; inj. The result of this projec-
tion takes a simple form. We obtain an expression for the
graph Bell-network states in terms of a sum over spins,

jΓ; λl;Bi ¼
X
jl

�Y
l

ð1 − jλlj2Þλ2jll

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jl þ 1

p �
jΓ; jl;Bi;

ð3:5Þ

where jΓ; jl;Bi are the states (3.1) we focus on in
this paper.
Computing the entanglement entropy of jΓ; jl;Bi

is nontrivial. Once the result of the entanglement entropy
at fixed spins is obtained, the entanglement entropy
of the full state can be computed using (2.10) with qjl ¼Q

lð1 − jλlj2Þλ2jll

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jl þ 1

p
.

IV. LARGE-SPIN ASYMPTOTIC ANALYSIS
OF THE ENTANGLEMENT ENTROPY

Given a Bell-network state on a general graph Γ with
fixed spins jl (3.1), we consider a region A containing
a certain number of nodes NA. We denote j∂Aj the
number of links crossing the boundary of A; see Fig. 1.
The density matrix of A is defined by tracing away the
intertwiners in Ā, i.e.,

ρA ¼ TrĀjΓ; jl;BihΓ; jl;Bj ¼
1

Z

X
in;i0n

Mðin; i0nÞ⊗
n∈A

jinihi0nj:

ð4:1Þ

The normalization Z guarantees that Trρ ¼ 1. The matrix
Mðin; i0nÞ is defined as

Mðin; i0nÞ ¼
X
kn∈Ā

AΓðjl; in; knÞAΓðjl; i0n; knÞ; ð4:2Þ

where the sum is over the intertwiners kn associated to the
nodes contained in Ā, the complement of A. The normali-
zation factor is easily expressed in terms of the matrix
M as Z ¼ TrM. The trace of the density matrix raised to a

FIG. 1. Example of a general spin network on a graph Γ. We
shaded in green a region A which contains NA ¼ 4 nodes and
j∂Aj ¼ 7 boundary links (marked with a cross). The region A
determines a subsystem HA ¼⊗n∈A Hn.
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power p can also be expressed in terms of M as TrρpA ¼
TrMp=ðTrMÞp. This formula allows us to compute the
Rényi entropies in terms of the matrix M:

RðpÞ
A ¼−

1

p−1
logTrρpA ¼−

1

p−1
ðlogTrMp−p logTrMÞ:

ð4:3Þ

The ingredients needed in the formula are the traces TrMp.
For instance, TrM can be written in terms of SUð2Þ
symbols as

TrM ¼
X
in;kn

AΓðjl; in; knÞAΓðjl; in; knÞ ¼ Z: ð4:4Þ

Clearly, these quantities can be computed using SUð2Þ
recoupling theory. However, no closed expression is
available, and one has to resort to numerical or symbolic
codes, as the ones discussed in the next section. Here, we
are interested in the behavior of the Rényi entropies under
uniform rescaling of the spins. To this end, we introduce a
reformulation in terms of auxiliary variables familiar in
spin foam calculations. This reformulation allows us to
estimate the value of the Rényi entropies analytically in the
large-spin regime using a saddle-point approximation.
To write the Rényi entropies in spin foam–like variables,

we express each of the p · N sums over intertwiners
appearing in TrMp as an integral over SUð2Þ Wigner
matrices,

X
i

īm1���mF
in1���nF ¼

Z
SUð2Þ

dgDðj1Þn1
m1

ðgÞ���DðjFÞnF
mF ðgÞ: ð4:5Þ

The indices are contracted according to the connectivity of
the graph (3.2) and result into SUð2Þ characters. In
particular, there is one SUð2Þ character for each link
crossing the boundary of A and p characters for each link
completely inside or outside the region A. In total, there are
pL − ðp − 1Þj∂Aj characters. By introducing a resolution
of the identity in terms of SUð2Þ coherent states jjn⃗i [50],
each SUð2Þ character χðjÞ ¼ TrDðjÞ can be expressed as an
integral over a unit vector n⃗ ∈ S2,

χðjÞðgÞ ¼ ð2jþ 1Þ
Z
S2
dn⃗hjn⃗jgjjn⃗i

¼ ð2jþ 1Þ
Z
S2
dn⃗exp

�
2j log

�
1

2
n⃗jgj1

2
n⃗

��
: ð4:6Þ

The trace TrMp can then be written as an integral over
SUð2Þ group elements ge and over unit vectors n⃗f as

TrMp ¼
Z

dn⃗fdgeefpðjl;n⃗f ;geÞ: ð4:7Þ

The function fpðj; n⃗f; geÞ is linear in jl and can be
determined using diagrammatic techniques as illustrated
for a specific example in the Appendix.
In the large-spin limit, the integral (4.7) can be evaluated

using a saddle-point approximation. Under a uniform
rescaling of all the spins jl → λjl, the function scales as
fpðjl; n⃗f; geÞ → λfpðjl; n⃗f; geÞ, and the leading order in λ
of the logarithm of the trace TrMp is given by

log ðTrMpÞ ¼
�
#S2integrals −

1

2
#HessianðfpÞ

�
log λ

þOð1Þ: ð4:8Þ

The first term, the number of integrals over coherent states
is due to the dimensional factor 2jþ 1 in (4.6). The second
term, #Hessian, is the rank of the Hessian of fp, and it can
be expressed in terms of the number of SUð2Þ integrals, the
number of S2 integrals, the number of symmetries of fp,
and the dimension of the space of solutions of the system of
saddle-point equations (denoted #space of solutions). If
multiple saddle-points exist, the dominant saddle point is
characterized by the largest space of solutions. Therefore,

#HessianðfpÞ ¼ þ3 × #SUð2Þintegrals ð4:9Þ

þ2 × #S2integrals ð4:10Þ

−#symmetries ð4:11Þ

−#space of solutionsðfpÞ: ð4:12Þ

The symmetries of fp are related to right and left SUð2Þ
multiplication of the integration group elements ge. It can
be shown that the function fp always has 2p SU(2)
symmetries, resulting in #symmetries ¼ 3 × 2p. As
already discussed, the number of SUð2Þ integrals is p
times the total number N of nodes of the graph Γ.
Therefore,

logðTrMpÞ ¼ −
1

2
ð3pN − 6p− #spaceof solutionsðfpÞÞ

× logλþOð1Þ: ð4:13Þ

The number #space of solutions is given by the
total number of independent variables (two per unit vector),
minus the number of independent critical-point equations
and a global rotation. In the case p ¼ 1, the number of
independent critical-point equations coming from f1 is
3ðN − 1Þ (i.e., N − 1 vectorial equations), resulting in
#spaceof solutionsðf1Þ ¼ 2L− 3− 3ðN − 1Þ ¼ 2L− 3N.
This number appears in Ref. [24] where it is derived in the
context of the asymptotic analysis of spin foamamplitudes of
topological theories.
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In the general case, denoting

CðpÞ
A ¼ #redundant critical-point equations of fp;

ð4:14Þ
we find that the number of independent critical-point
equations of fp is 3pN − CðpÞ

A − 3, corresponding to pN
total vectorial equations minus the number of redundant

equations (CðpÞ
A ) and a global rotation.

The number CðpÞ
A can be computed case by case for a

given graph Γ, region A, and power p. However, a general

closed formula is not available. We note that CðpÞ
A has two

important properties:CðpÞ
A is an integer and is bounded from

below by

CðpÞ
A ≥ 6ðp − 1Þ; ð4:15Þ

which is the number of equations that are redundant
because of symmetries.1 The resulting expression is
#space of solutionsðfpÞ ¼ 2ðpL − ðp − 1Þj∂AjÞ − 3−
3pN þ CðpÞ

A þ 3.
In summary, at the leading order in λ, the Rényi entropy

of a Bell-network state is

RðpÞ
A ¼ −

1

2ðp − 1Þ ð2ðpL − ðp − 1Þj∂AjÞ − 3pN þ CðpÞ
A

− pð2L − 3NÞÞ log λþOð1Þ

¼
�
j∂Aj − CðpÞ

A

2ðp − 1Þ
�
log λþOð1Þ: ð4:16Þ

Using the properties of Rényi entropy, we can characterize

the dependence of CðpÞ
A on the order p. From the set of

inequalities (2.8), we find

CðpÞ
A

2ðp−1Þ≤
Cðpþ1Þ
A

2p
⇒CðpÞ

A <
p

p−1
CðpÞ
A ≤Cðpþ1Þ

A : ð4:17Þ

The parameter CðpÞ
A is monotonically increasing in p and,

since RðpÞ
A is positive, for each p > 1 is bounded from

above by 2ðp − 1Þðj∂Aj − 3Þ.
As discussed in Sec. II, the entanglement entropy can be

obtained from the limit of p → 1 of the Rényi entropy of
order p. At the leading order in λ ≫ 1,

SA ¼ lim
p→1

RðpÞ
A ≈ lim

p→1

�
j∂Aj − CðpÞ

A

2ðp − 1Þ
�
log λ

¼ ðj∂Aj − cAÞ log λ; ð4:18Þ

where we denoted as cA the limit limp→1
CðpÞ
A

2ðp−1Þ. This limit

exists and is finite since the entanglement entropy of a
system with a finite number of d.o.f. is a well-defined

quantity. From the properties of CðpÞ
A , we also find that

RðpÞ
A ≈

�
j∂Aj− CðpÞ

A

2ðp− 1Þ
�
logλ ≤ ðj∂Aj− 3Þ logλ: ð4:19Þ

Note that the inequalities here are understood as asymptotic
statements holding at the leading order in λ ≫ 1. Com-
bining the limit of this inequality (that is guaranteed to exist

by the monotonicity of CðpÞ
A ) with the most strict of the

inequality in (2.8), we can determine that at the leading
order in λ the entanglement entropy of a region A of a Bell-
network state is bounded from below and above by

�
j∂Aj − Cð2Þ

A

2

�
log λ ≤ SA ≤ ðj∂Aj − 3Þ log λ: ð4:20Þ

The explicit computation of CðpÞ
A requires the analysis

of critical-point equations for a given graph Γ and sub-
system A. However, in the special case of a subsystem A
containing one single node, we can prove that

CðpÞ
A ¼ 6ðp − 1Þ, which is independent of the number of

boundary links. In this case, at the leading order, the Rényi
entropy of order p is independent of p and (4.18), implies
that SA ¼ ðj∂Aj − 3Þ log λ. This is an area law.
In general, while we do not have a closed formula for cA,

in order to show that an area law arises, we only need that
cA does not grow with j∂Aj. If this is the case, then—for a
region with a large number of boundary links—we obtain
an area law.

V. LARGE-SPIN NUMERICAL ANALYSIS
OF THE ENTANGLEMENT ENTROPY

We provide a numerical code to compute the entangle-
ment entropy and the Rényi entropy of any order of the
density matrix of a Bell-network state restricted to a region
A. In this section, we provide three explicit examples with
Bell-network states defined on different graphs: the dipole
graph, the pentagram graph, and the hexagram graph. We
consider subsystems defined by regions Ai containing one
or two nodes. The codes for the pentagram and the
hexagram graph are available in Ref. [25].
The algorithm implemented in our C code is illustrated in

the panel below (see Algorithm 1). The key ingredient of
the calculation is the precomputation of all the f6jg and
f9jg symbols needed for the evaluation of the symbol of
the graph. To efficiently perform this task, we employ the
WIGXJPF library and its extension FASTWIGXJ developed in
Ref. [51] and previously employed in LQG computations
[24,52].

1We note that there are 2p symmetries fpðjl; n⃗f; g̃eÞ ¼
fpðjl; n⃗f; geÞ with g̃e ¼ hge or g̃e ¼ geh for some e, with
h ∈ SUð2Þ. For h close to the identity, these symmetries result
in a linear constraint δhfpðjl; n⃗f; g̃eÞ ¼ 0 on the critical-point
equations.
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Algorithm 1 Numerical algorithm for the evaluation of the Bell-network state entropy.

1: Precompute the f6jg symbols with WIGXJPF if needed.
2: Precompute the f9jg symbols with WIGXJPF if needed.
3: Load the symbol tables in the memory.
4: for each jl do
5: for each in do
6: Assemble the matrix ðAΓÞik ¼ AΓðjl; in; knÞ with the intertwiners in, kn in A, Ā.
7: Compute the matrix Mii0 ¼ ðAT

Γ ·AΓÞii0 .
8: Normalize it to obtain the density matrix ðρAÞii0 ¼ Mii0=TrðMÞ.
9: Find its eigenvalues ρA → νi.
10: Compute the entanglement entropy SA ¼ −

P
iνi log νi.

11: Compute the Rényi entropy RðpÞ
A ¼ − log

P
iν

p
i .

The range of applicability of our numerical code is
limited to spins up to Oð20Þ because of two factors. First,
we need a considerable amount of RAM to keep accessible
all f6jg and f9jg symbols required in the computation. For
example, the computation of any symbol with spins up to
25 (both integers and half-integers) requires approximately
15 GB of available RAM, while its extension to spin 30
requires approximately 40 GB of available RAM, not
commonly available on ordinary laptop computers. This
obstacle can be possibly circumvented by performing a
selection of the symbols prepared and loaded by
FASTWIGXJ. At the present stage, we are not selecting

symbols, and therefore we need to load all of them in the
memory. Second, we use an array of double-precision
floating-point numbers to store the symbols. Compilers
generally limit the size of this array to the amount of
available RAM. For example, the array of symbols for the
hexagram graph occupies ð2jþ 1Þ6 · 8 bytes. We executed
our code on a machine with 16 GB of RAM; therefore, our
maximum spin was limited by a hard cutoff at
about jmax ≈ 1

2
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið16 GBÞ=ð8 ByteÞ6
p

− 1Þ ≈ 17.
In the following, we report the numerical computation of

the entanglement entropy and the Rényi entropy of order 2
for a set of specific cases.

(a) (b) (c)

(d) (e) (f)

FIG. 2. Graphs and regions considered in our numerical analysis.
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We set all spins equal to jl ¼ 1
2
and rescale them with a

parameter λ so that jl → λ=2. We will compare the
numerical results to the analytical bounds derived in
(4.20). We note that in all cases considered, the number
of nodes in the region A is small. As a result, the bound

Rð0Þ
A ¼ log dimHA on the entanglement entropy SA is

tighter than the bound ðj∂Aj − 3Þ log λ.

A. Dipole graph

The dipole Bell-network state takes a simple form,
computed explicitly in Ref. [20]. In this case, analytical
computations of the entropy are possible and useful for
checking some of the properties derived before. We
consider a dipole graph with four links [Γ2, see Fig. 2(a)],

jΓ2; jl;Bi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimH1

p
X
i∈H1

jii1jii2; ð5:1Þ

where H1 is the intertwiner space of a node. The two
intertwiners are maximally entangled. Choosing a region A
that contains a single node, the reduced density matrix is

ρA ¼ Tr2ðjΓ2; jl;BihΓ2; jl;BjÞ ¼
1

dimH1

: ð5:2Þ

The resulting state is maximally mixed, and all the
entropies are maximal and equal to

SA ¼ RðpÞ
A ¼ log dimH1: ð5:3Þ

We can verify the asymptotic formula (4.16) from the exact
computation in the limit of large spins. In the 4-valent
case j∂Aj ¼ 4, the asymptotic estimate reduces to SA ¼
RðpÞ
A ¼ log λ, which can also be obtained from the uniform

rescaling of (5.3). A similar conclusion can be reached for a
dipole graph with an arbitrary number of links greater than
or equal to 3.

B. Pentagram graph

The pentagram Bell-network state [see the graph Γ5 in
Figs. 2(b) and 2(c)] is a superposition of the intertwiner states
weighted by the symbol of the graph, the f15jg symbol,

jΓ5; jl;Bi ¼
1ffiffiffiffi
Z

p
X
in

f15jgðjl; inÞ ji1iji2iji3iji4iji5i:

ð5:4Þ
One node subsystem of Γ5. Choosing a region A con-

taining a single node, our asymptotic formula reduces to

SA ≈ RðpÞ
A ≈ log λ ð5:5Þ

at the leading order. Note that SA and RðpÞ
A can differ by

Oð1Þ terms. We used our code to compute the entanglement
entropy and Rényi entropy of order 2 for all equal spins
jl ¼ λ=2 and the scale parameter up to λ ≤ 50. We report

the numerical results in Fig. 3. The plot shows clearly that

SA, Rð2Þ
A and the maximal entropy Rð0Þ

A ¼ log ðλþ 1Þ ≈
log λþOðλ−1Þ differ only by a constant contribution. We
interpret this Oð1Þ difference as an indication that the
restriction of the Bell-network state is not maximally mixed
and the state is not typical in the Hilbert space.
Two nodes subsystem of Γ5. If we choose a subsystem AB

containing two nodes, our asymptotic estimates reduce to

Rð2Þ
AB ¼ 3

2
log λþOð1Þ ð5:6Þ

and to an asymptotic band for the entanglement entropy
given by

3

2
log λ ≤ SAB ≤ 3 log λ: ð5:7Þ

For this specific configuration, the bound from above given
by the maximal entropy SAB ≤ 2 log λ is tighter. The results
of the computation of the entanglement entropy and Rényi
entropy of order 2 for the case of all equal spins jl ¼ λ

2
and

the scale parameter up to λ ≤ 44 are reported in Fig. 4.

C. Hexagram graph

The hexagram Bell-network state [Γ6, see Figs. 2(d)–
2(f)] is a superposition of the intertwiner states weighted by
the symbol of the graph, the f18jg symbol,

jΓ6; jl;Bi ¼
1ffiffiffiffi
Z

p
X
in

f18jgðjl; inÞ ji1iji2iji3iji4iji5iji6i:

ð5:8Þ

FIG. 3. [Graph Γ5, entropy of a single node]. The figure shows
our numerical results on the Bell-network state with pentagram
graph Γ5 and equal spins jl ¼ λ=2. The entanglement entropy SA
is denoted by blue dots, and the Rényi entropy Rð2Þ

A is denoted by
red diamonds. The lower bound asymptotic estimate is shown as
a solid orange line [the Oð1Þ is fitted using the numerical data].
The upper bound estimate given by the maximal entropy is shown
as a dashed orange line. We show also the bounds (4.20) as a
yellow band. The inset shows the 20 data points with the largest
spins.
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One node subsystem of Γ6. Choosing a region A con-
taining a single node, our asymptotic formula reduces to

SA ¼ RðpÞ
A ¼ log λþOð1Þ: ð5:9Þ

Note that SA and RðpÞ
A can differ by Oð1Þ terms. As already

done for the graph Γ5, we compute the entanglement
entropy and Rényi entropy of order 2 for the hexagram
Γ6 with all equal spins jl ¼ λ

2
and scale parameter up to

λ ≤ 34. We report the results in Fig. 5. The plot shows that

the Oð1Þ contributions differ for SA, Rð2Þ
A and the maximal

entropy Rð0Þ
A ¼ log ðλþ 1Þ ≈ log λþOðλ−1Þ. We interpret

this difference as an indication that the subsystem is not
maximally mixed and the Bell-network state is not typical
in the Hilbert space.
Two connected nodes subsystem of Γ6. Choosing the

subsystem AB consisting of two connected nodes, our
asymptotic formula reduces to

Rð2Þ
AB ¼ 3

2
log λþOð1Þ: ð5:10Þ

The asymptotic band with upper and lower bounds on the
entanglement entropy is given by

3

2
log λ ≤ SAB ≤ 3 log λ: ð5:11Þ

For this specific configuration, the maximal entropy SAB ≤
2 log λ provides a tighter upper bound. The results of the
numerical computation of the entanglement entropy and
Rényi entropy of order 2 for the case of all equal spins

FIG. 4. [Graph Γ5, entropy of two connected nodes]. The figure
shows our numerical results on the Bell-network state with
pentagram graph Γ5 and equal spins jl ¼ λ=2. The entanglement

entropy SAB is denoted by blue dots, and the Rényi entropy Rð2Þ
AB is

denoted by red diamonds. The lower bound asymptotic estimate
is shown as a solid orange line [the Oð1Þ is fitted using the
numerical data]. The upper bound estimate given by the maximal
entropy is shown as a dashed orange line. We show also the
bounds (4.20) as a yellow band. Using the ten largest-spin data
points, the entanglement entropy SAB is fitted by a logðλÞ þ bþ
cλ−1 on the last ten data points obtaining a ≈ 1.94, b ≈ −0.30,
and c ≈ 3.19.

FIG. 5. [Graph Γ6, entropy of a single node]. The figure shows
our numerical results on the Bell-network state with hexagram
graphΓ6 and equal spins jl ¼ λ=2. The entanglement entropySA is

denoted by blue dots, and the Rényi entropyRð2Þ
A is denoted by red

diamonds. The lower bound asymptotic estimate is shown as a solid
orange line [the Oð1Þ term is fitted using the numerical data]. The
upper bound estimate given by the maximal entropy is shown as a
dashed orange line. We show also the bounds (4.20) as a yellow
band. The inset shows the 20 data points with the largest spins.

FIG. 6. [Graph Γ6, entropy of two connected nodes]. The figure
shows our numerical results on the Bell-network state with
hexagram graph Γ6 and equal spins jl ¼ λ=2, for a region
consisting of two connected nodes. The entanglement entropy

SAB is denoted by blue dots, and the Rényi entropy Rð2Þ
AB is

denoted by red diamonds. The lower bound asymptotic estimate
is shown as a solid orange line [the Oð1Þ is fitted using the
numerical data]. The upper bound estimate given by the maximal
entropy is shown as a dashed orange line. We show also the
bounds (4.20) as a yellow band. Using the ten largest-spin data
points, the entanglement entropy SAB is fitted by a logðλÞ þ bþ
cλ−1 on the last ten data points obtaining a ≈ 1.85, b ≈ −0.08,
and c ≈ 2.23.
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jl ¼ λ
2
and the scale parameter up to λ ≤ 34 are reported

in Fig. 6.
Two disconnected nodes subsystem of Γ6. Choosing a

subsystem AD consisting of two disconnected nodes, our
asymptotic formula reduces again to

Rð2Þ
AD ¼ 3

2
log λþOð1Þ: ð5:12Þ

The asymptotic band providing upper and lower bounds for
the entanglement entropy is now

3

2
log λ ≤ SAD ≤ 5 log λ: ð5:13Þ

Again, as the subsystem still consists of a small number of
nodes, the maximal entropy SAD ≤ 2 log λ provides a
tighter upper bound. The results of our numerical compu-
tations of the entanglement entropy and Rényi entropy of
order 2 for the case of all equal spins jl ¼ λ

2
and the scale

parameter up to λ ≤ 34 are reported in Fig. 7.

VI. DISCUSSION

We studied the entanglement entropy of Bell-network
states, numerically and analytically. Bell-network states were
introduced in Ref. [20] as states that glue quantum polyhedra
with entanglement. For given graph Γ and spin assignment

jl, there is a unique Bell-network state jΓ; jl;Bi defined by
the SUð2Þ symbol of the graph. Computing their entangle-
ment entropy allows us to put information-theoretic bounds
on correlations of shapes of adjacent polyhedra.
On the numerical side, we presented a code for evalu-

ating the reduced density matrix of a Bell-network state and
its entropy. We use the code to evaluate the entropy for
small graphs containing up to six nodes. We consider
various subsystems as described in Fig. 2. At a fixed graph,
we studied spins ranging from 1=2 to approximately 20.
The numerical results show that Bell-network states are
nontypical in the Hilbert space: We find that, at large spins,
their entropy remains below by a term Oð1Þ with respect to
the one of the maximally mixed state.
While the specific code used here is adapted to small

graphs and large spins, a similar procedure can be adopted
for general graphs.
On the analytical side, we developed methods for com-

puting the Rényi entropy of order p for an arbitrary graph
and generic region. For spins that are uniformly large, these
methods provide reliable bounds on the entanglement
entropy. The Rényi entropy is computed using techniques
borrowed from spin foam asymptotics [23,24]; we write the
trace of powers of the reduced density matrix as an integral
over unit vectors and SUð2Þ group elements,

TrðρpAÞ ¼
R
dn⃗dgefpðj;n⃗;gÞ

ðR dn⃗dgef1ðj;n⃗;gÞÞp ; ð6:1Þ

where fpðj; n⃗; gÞ is a linear function of all spins jl. The
integral is then evaluated with saddle-point techniques
under a uniform rescaling of the spins jl → λjl with
λ ≫ 1. At the leading order in λ, we find that the Rényi
entropy of order p is

RðpÞ
A ¼

�
j∂Aj − CðpÞ

A

2ðp − 1Þ
�
log λþOð1Þ; ð6:2Þ

where j∂Aj is the number of links that cross the boundary of

the region A. The constant CðpÞ
A is an integer that counts the

number of redundant critical-point equations for the “action”
fp. While there is no general closed formula, the number

CðpÞ
A can be computed explicitly for a given graph and

region, as we have done in the cases that we have studied.
Moreover, using our results on the asymptotics of the Rényi
entropy, we have shown that the entanglement entropy, at
leading order in λ, scales logarithmically as

�
j∂Aj − Cð2Þ

A

2

�
log λ ≤ SA ≤ ðj∂Aj − 3Þ log λ: ð6:3Þ

This result shows that, asymptotically, the entanglement
entropy of Bell-network states scales linearly with the
number of links j∂Aj that cross the boundary of the region

FIG. 7. [Graph Γ6, entropy of two disconnected nodes]. The
figure shows our numerical results on the Bell-network state with
hexagram graph Γ6 and equal spins jl ¼ λ=2, for a region
consisting of two disconnected nodes. The entanglement entropy

SAD is denoted by blue dots, and the Rényi entropy Rð2Þ
AD is

denoted by red diamonds. The lower bound asymptotic estimate
is shown as a solid orange line [the Oð1Þ is fitted using the
numerical data]. The upper bound estimate given by the maximal
entropy is shown as a dashed orange line. We show also the
bounds (4.20) as a yellow band. Using the ten largest-spin data
points, the entanglement entropy SAD is fitted by a logðλÞ þ bþ
cλ−1 on the last ten data points obtaining a ≈ 1.86, b ≈ 0.09,
and c ≈ 1.97.
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A. This result can be understood as an area law for Bell-
network states. To clarify this point, let us consider a graph
dual to a tessellation of 3-space and a region A. The area of a
face dual to a link l is aðjlÞ ¼ 8πGℏγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jlðjl þ 1Þp

. Under
a rescaling jl → λjl with λ ≫ 1, the area of the boundary of
the region A can be written as

AreaA ¼
X
l∈∂A

aðλjlÞ ¼ haðλjlÞij∂Aj; ð6:4Þ

where j∂Aj is the number of boundary links and haðλjlÞi is
the average area of a face. Therefore, the entanglement
entropy of a Bell-network state takes the form

SAðjΓ; λjl;BiÞ ≈
log λ

haðλjlÞi
AreaA: ð6:5Þ

The origin of this area law is the entanglement between the
shapes of quantum polyhedra.
We discuss also an application of our numerical results.

For the case of a pentagram graph Γ5, we find that the
entanglement entropy of two adjacent nodes in jΓ5; λ=2;Bi
is smaller than the sum of the entropies of each node.
Calling the two nodes A and B, we have SA ≈ log λ, SB ≈
log λ and SAB ≈ 1.94 log λ (see Fig. 4). Therefore, the
mutual information IðA; BÞ scales as

IðA; BÞ ¼ SA þ SB − SAB ≈ 0.06 log λ

ðBell-network stateÞ: ð6:6Þ

This numerical result provides us with a tool to bound
correlations of shapes of two adjacent polyhedra in a Bell-
network state. Let us consider observables OA and OB
which measure the shape of the quantum polyhedra A
and B. In order to have correlated fluctuations of shapes
[53–57], the connected correlation function

GAB ¼ hOAOBi − hOAihOBi ð6:7Þ

has to be nonvanishing. Remarkably, knowing the mutual
information between A and B provides us with a bound on
correlations [58,59],

ðhOAOBi − hOAihOBiÞ2
2kOAk2kOBk2

≤ IðA;BÞ: ð6:8Þ

This relation is especially useful for a bounded operator
with a known norm, as is the case for instance for the
operator that measures the dihedral angle between two
faces of a quantum polyhedron [13,60,61].
In the case of two quantum tetrahedra in the Bell-

network state jΓ5; λ=2;Bi, our numerical result (6.6) tells
us that the correlations between shapes are allowed to be

nonvanishing at large spins. This result is to be contrasted
to the case of the typical state in the Hilbert spaceHΓ5λ=2 for
which, using Page’s result (1.4), we find

IðA;BÞ ¼ SA þ SB − SAB ∼
1

2λ
ðtypical stateÞ: ð6:9Þ

Therefore, correlations in shapes of adjacent polyhedra are
suppressed as 1=λ in a typical state but unsuppressed in a
Bell-network state.
The developments presented in this paper are part of an

ongoing numerical revolution in the field [52,62–65] and
represent the first numerical results on the entanglement
entropy of space in loop quantum gravity.
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APPENDIX: DIAGRAMMATIC METHOD TO
COMPUTE f p: A DETAILED EXAMPLE

We report here the detailed construction of TrM2 for a
pentagram graph and a region A containing two nodes.
Using the same graphical notation used in spin foams, each
green box in Fig. 8 corresponds to a SUð2Þ integral, and
each closed line corresponds to a SUð2Þ character.
We call ga and g̃a the group elements; jab the spin of the

closed line involving the group elements ga; and gb, n⃗ab,
and m⃗ab the unit vectors used to exponentiate the characters
as in (4.6).
The function f2 defined by (4.7), TrM2 ¼R
dn⃗fdgeeλf2ðjl;n⃗f ;geÞ, is given in this case by the expression

FIG. 8. Diagrammatic representation of TrM2 for a pentagram
graph and a two nodes subsystem.
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f2ðjl; gn; n⃗fÞ ¼
X3
a¼1

ja4 loghn⃗a4jgag4g̃ag̃4jn⃗a4i þ
X3
a¼1

ja5 loghn⃗a5jgag5g̃ag̃5jn⃗a5i þ
X

1≤a<b≤3
jab loghn⃗abjgag−1b jn⃗abi

þ
X

1≤a<b≤3
jab loghm⃗abjg̃ag̃−1b jm⃗abi þ j45 loghn⃗45jg4g−15 jn⃗45i þ j45 loghm⃗45jg̃4g̃−15 jm⃗45i:
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