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Discrete formulations of (quantum) gravity in four spacetime dimensions build space out of tetrahedra.We
investigate a statistical mechanical system of tetrahedra from a many-body point of view based on nonlocal,
combinatorial gluing constraints that aremodeled asmultiparticle interactions.We focus onGibbs equilibrium
states, constructed using Jaynes’s principle of constrained maximization of entropy, which has been shown
recently to play an important role in characterizing equilibrium in background-independent systems.We apply
this principle first to classical systems ofmany tetrahedra using different examples of geometricallymotivated
constraints. Then for a systemof quantum tetrahedra,we show that the quantum statistical partition functionof
aGibbs statewith respect to some constraint operator can be reinterpreted as a partition function for a quantum
field theory of tetrahedra, taking the form of a group field theory.
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I. INTRODUCTION

General relativity (GR) has taught us that gravity is
spacetime geometry, and its observational successes are
testimony of the fruitfulness of this lesson, beyond its
purely aesthetic appeal. Modern theoretical physics, how-
ever, has also provided hints that this continuum descrip-
tion of spacetime and gravity could be emergent, and that
some kind of discrete substratum may replace it at the
fundamental level [1]. Taking these lessons seriously in the
search for quantum gravity has led to nonperturbative,
discrete frameworks that aim at constructing quantum
theories of geometry and at showing the emergence of
continuum spacetime and GR from discrete foundations. A
crucial ingredient in these are geometric objects like
polyhedra that can be understood as quantum excitations
of geometry. Canonical quantization of general relativity
using Ashtekar variables has led to spin network states [2–
4], which admit an interpretation in terms of geometric
polyhedra [5,6]. Cellular complexes of the same type are
also the underpinning of covariant spin foam models [7,8],
which have polyhedra dual to spin networks forming their
boundary states. In fact, simplicial discretizations have
been considered often, originally by Regge [9] with the aim
of providing a coordinate-free description of classical
spacetime, and are the fundamental mathematical structures
of simplicial quantum gravity approaches, like quantum

Regge calculus [10] and (causal) dynamical triangulations
[11]. Finally, the group field theory framework [12–14]
treats polyhedra quite literally as the quanta of spacetime by
defining for them a quantum field theory whose inter-
actions represent their gluing and evolution processes; in
doing so, it provides a reformulation of both loop quantum
gravity and spin foam models and of simplicial quantum
gravity approaches.
A fully background-independent (quantum) statistical

mechanical framework [15–20] could be the best way to
provide a foundation and subsequently to analyze such
discrete quantum gravity approaches, concerning in particu-
lar the emergence of spacetime structures in a continuum
approximation [1], treating spacetime itself as a (peculiar)
quantum many-body system made of tetrahedra [21]. The
definition of such framework poses, however, many chal-
lenges, starting from the identification of a good notion of
equilibrium states. Let us say a few words on some of these
challenges and on previous work tackling them.
Presently we are interested in defining Gibbs equilibrium

states for a system of an arbitrary but finite number of
tetrahedra, with respect to certain gluing constraints moti-
vated from considerations in discrete quantum gravity. As is
immediately evident, in such a system there does not exist
any notion of a time variable, which begs the following
question: what notions of equilibrium can a system of
many polyhedra admit? In a recent work [22], a statistical
mechanics for simplicial degrees of freedom (d.o.f.) is
defined, using the tools provided by a group field theory
many-body representation of the same. Therein, general
construction schemes are discussed for defining Gibbs states
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in background-independent settings, relevant for both
classical and quantum sectors, and independent of any
specific underlying framework in which the system is
defined. It is suggested that, in addition to the Kubo-
Martin-Schwinger (KMS) condition [23], the principle of
constrained maximization of entropy as proposed by Jaynes
[24,25] could be the crucial one in such settings [20,22],
allowing for greater generality. The explicit examples pro-
vided there, however, make extensive use of the technical
advantages offered by the group field theory formalism.
For instance, as an elementary illustration of the utility of
Jaynes’s principle, an example of a group field theory Gibbs
state with respect to a geometric volume operator was
presented and found to naturally support Bose-Einstein
condensation to a low-spin phase [22]. In this paper, we
tackle the issue of constructing equilibrium states for a
systemofmany tetrahedra on the basis of this principle and in
much greater generality, at both classical and quantum levels,
for general constraints (but giving concrete examples based
on a number of geometrically motivated ones), and without
relying on specific discrete gravity approaches (but we will
see that the group field theory framework emerges naturally
in the quantum setting).
The paper is organized as follows. We begin with a

discussion of the principle of maximum entropy à la Jaynes
while emphasizing its role in background-independent
systems in Sec. II. Focusing first on a system of classical
tetrahedra, Sec. III presents its mechanics and statistical
mechanics. Disconnected tetrahedra are modeled as “par-
ticles” and its mechanical model is defined via generically
nonlocal, combinatorial “interactions.” These are gluing
constraints in general, as encountered in discrete gravity
literature. As a first illustrative example of using the
maximum entropy principle in the context of a constrained
system related to tetrahedra, we study the case of closure
constraint for a single open tetrahedron and construct a
Gibbs state with respect to it in Sec. III A. We find that such
a state encodes the constraint information partially in a
statistical way. Moreover, it is found to be a generalization
of Souriau’s Gibbs states to the case of a first class
constraint. We define the corresponding statistical system
of many closed tetrahedra in Secs. III B and III C and
consider gluing constraints for the same, which can be
interpreted as a definition of their dynamics or interactions.
The result of imposing this set of constraints exactly is a
labeled triangulation. We use the twisted geometry inter-
pretation of the same constraints to illustrate further the
way discrete geometry is (or could be) encoded in the
system and to suggest further developments. Section IV
discusses the analogous system of many quantum tetrahe-
dra, first outlining its mechanics and statistical mechanics,
and subsequently showing that the quantum statistical
partition function of a Gibbs state of such a system can
be recast in the form of a quantum field theory of
tetrahedra, and we show its relation to the group field
theory framework.

II. GENERALIZED GIBBS STATE FROM
ENTROPY MAXIMIZATION

Equilibrium statistical states are known to play an
important role in macroscopic systems with a large
number of microconstituents. Particularly Gibbs thermal
states are ubiquitous in physics, being utilized across the
spectrum of fields, ranging from phenomenological
thermodynamics, condensed matter physics, optics, tensor
networks, and quantum information, to gravitational
horizon thermodynamics, AdS=CFT, and quantum grav-
ity. They are the completely passive states, stationary
under the dynamics of the system, and maximizing the
system’s entropy for a given energy. They are a special
case of the more general algebraic KMS states, which
encode a complete notion of equilibrium for arbitrarily
large systems. In fact, Gibbs states are the unique KMS
states for finite systems.
Even close-to-equilibrium systems can be modeled via

the notion of local equilibrium in which various subsystems
of the whole are taken to be locally at equilibrium, while the
global dynamics is not stationary. Collective variables, such
as number and temperature densities, then vary smoothly
across these different patches, while having constant
(equilibrium) values within a given subsystem. This basic
idea underlies several techniques for coarse graining in
general and as such displays again the usefulness of
statistical equilibrium descriptions.
Thus also in discrete quantum gravity, statistical equilib-

rium states will be of value in ongoing efforts to get an
emergent spacetime, based on techniques from finite-temper-
ature quantum and statistical field theory. Since equilibrium
statistical mechanics provides a theoretical footing for
thermodynamics, such a framework for (candidate) quantum
gravity d.o.f. will also facilitate identification of thermody-
namic variables with geometric interpretations, rooted in the
underlying fundamental theory, to then make contact with
studies in spacetime thermodynamics.

A. Generalized Gibbs equilibrium

As proposed by Jaynes in two seminal papers [24,25],
given our limited knowledge of a system with many
underlying d.o.f. in terms of a set of observable averages
fhOai ¼ Uag, the least biased statistical distribution (in
the sense of not assuming more information about the
system than what we actually have) over the microscopic
state space of the system is obtained by maximizing
the information entropy of said system. By doing this,
we are using only the amount of information we have
access to, not less or more. The resulting distribution
is of the Gibbs form and faithfully encodes our knowl-
edge (and lack thereof) of the microscopics of the
system; thus it is the best one can do in order to infer
other observable equilibrium properties of the same
system.
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Consider a finite set fOaga¼1;2;::: of smooth functions
Oa∶Γex → R on a finite-dimensional extended1 symplectic
phase space Γex, with Liouville measure dλ. A statistical
(density) state on a phase space is a real-valued, positive,
and normalized function on it with respect to the measure.
Let ρ be a statistical state on Γex, such that the statistical
averages of Oa in ρ are fixed,

hOaiρ ≡
Z
Γex

dλOaρ ¼ Ua; ð2:1Þ

assuming that the integrals are convergent so that Ua are
well defined. The state ρ is normalized by definition, so that

h1iρ ¼ 1; ð2:2Þ

and, its Shannon entropy is

S½ρ� ¼ −hln ρiρ: ð2:3Þ

Consider maximization of S½ρ� under the given set of
constraints (2.1) and (2.2) [24]. Using the Lagrange multi-
pliers technique, this amounts to finding a stationary
solution for the following auxiliary functional:

L½ρ; βa; κ� ¼ S½ρ� −
X
a

βaðhOaiρ −UaÞ − κðh1iρ − 1Þ;

ð2:4Þ

where βa, κ ∈ R are Lagrange multipliers. Then, requiring
stationarity2 of L with respect to variations in ρ gives a
generalized Gibbs state

ρfβag ¼
1

Zfβag
e−
P

a
βaOa ð2:5Þ

with partition function

Zfβag ≡
Z
Γex

dλe−
P

a
βaOa ¼ e1þκ; ð2:6Þ

where as is usual, normalization multiplier κ is a function of
the rest. The parameters fβag are such that the partition
function integral converges.

Analogous arguments hold for finite quantum systems
and the above scheme can be implemented directly [25], as
long as the operators under consideration are such that the
relevant traces are well defined on a kinematic (uncon-
strained) Hilbert space. Statistical states are density oper-
ators, i.e., self-adjoint, positive, and trace-class operators,
on the Hilbert space. Statistical averages for self-adjoint
observables Ôa are now

hÔaiρ ≡ Trðρ̂ÔaÞ ¼ Ua: ð2:7Þ

Following the constrained optimization problem presented
above gives a resultant Gibbs density operator

ρ̂fβag ¼
1

Zfβag
e−
P

a
βaÔa ; ð2:8Þ

where the state is well defined as long as the trace for the
partition function converges. The consequence of non-
commuting observables on the operational understanding
of Jaynes’s prescription, as starting from a known thermo-
dynamic state given by set of observable averages, requires
further investigation, particularly in covariant systems. See
[25] for some discussions.
The significance of the maximum entropy principle is its

applicability to a wide variety of situations. As long as the
mathematical description of a given system (in terms of a
state space and an observable algebra) is well defined, and
we have access to certain observables fOag with which we
can define a macrostate fUag of the system, the maximum
entropy principle can be applied to characterize a notion of
statistical equilibrium. Already, the notion of equilibrium is
implicit in the existence of the constraints (2.1), which
basically say that the system has certain properties that act
as good observables to label the state of the system with,
because their expectation values remain constant. This
feature of remaining constant, which is taken as a starting
point of this procedure, could have pointed us already to the
fact that there can exist a certain equilibrium description of
the system in terms of these variables. As emphasized
above, what Jaynes’s procedure does is to allow us to find
this description in a way that is least biased.

B. Vector-valued temperature

The generalized Gibbs state in (2.5) defines a unique
equilibrium distribution labeled by a set of temperatures
fβag. In fact, we can encode fβag in a multicomponent,
real vector-valued inverse temperature β≡ fβag and
rewrite this state as

ρβ ¼
1

Zβ
e−β·O; ð2:9Þ

with the vector-valued function O ¼ fOag accordingly
defined.

1By extended we mean that 1) it is the unconstrained phase
space with respect to any constraints under consideration; 2) the
system is not equipped with any external time or clock variable,
and even if such a variable exists then at this fully parametrized
level it is one of the dynamical variables included in the definition
of this phase space.

2Notice that requiring stationarity of L with variations in
Lagrange multipliers implies fulfilment of the constraints (2.1)
and (2.2). These two “equations of motion” of L along with the
one determining ρ (coming from stationarity of L with respect to
ρ) provide a complete description of the system at hand.
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In general, whenever β ·O is convex, fβag3 can be
understood as generalized (inverse) temperatures, deter-
mined by the constraints (2.1), via the equations

−
∂ lnZβ

∂βa ¼ Ua ð2:10Þ

for each a. Other standard equilibrium thermodynamic
relations follow, at least formally. In particular, the partition
function Zfβag, or equivalently the thermodynamic free
energy potential

Φβ ≔ − lnZβ; ð2:11Þ

encodes complete thermodynamic information about the
system. Quantities Ua ¼ hOai play the role of generalized
energies, and

S ¼
X
a

βaUa −Φβ ð2:12Þ

is the entropy of state (2.9) such that

dS ¼
X
a

βaðdUa − hdOaiÞ

¼
X
a

βaðdUa þ dWaÞ ¼
X
a

βadQa; ð2:13Þ

where dWa ¼ −hdOai ¼ 1
βa

R
Γex

dλ δ
δOa

ðlnZβÞdOa corre-
sponds to work associated with the generalized energy
changes, while the dQa define the generalized heat [24,25]
variation of the system.

C. Modular flow, stationarity, and global equilibrium

Given a generalized Gibbs state as a result of the
maximum entropy principle, one can (if one wants) extract
a one-parameter modular flow, generated by − ln ρ, in the
sense that ρωðXβÞ ¼ dρ, where Xβ is the modular vector
field induced by the function β ·O (for the particular case
above), which plays the role of a generalized modular
Hamiltonian, while ω is the symplectic form on Γex. By
construction, the Gibbs state will be stationary with respect
to this flow. In this sense, any such ρ always satisfies
stationarity, which is the more traditional characterization
of equilibrium, with respect to its own modular flow.4 For
cases when the Gibbs state is defined by generators of
certain transformations, then the modular flow parameter is

a rescaling of the parameter of the said transformations by a
factor of 1=β. In more general cases when O is not a
generator of some transformation a priori, then the inter-
pretation of its modular flow parameter would depend on
the specific case at hand.
Notice that, in the special case when the set of constraints

defining (2.5) is completely independent, so that the set of
the associated flows satisfy ½Xa; Xa0 � ¼ 0 ∀ a; a0, the full
equilibrium state in addition to being stationary with
respect to its modular flow is also at equilibrium with
respect to each Xa separately.
A global notion of equilibrium characterized by a single

temperature can be prescribed by coupling the individual
flows [19]. This is a natural consequence of defining a
Gibbs state according to Jaynes’s procedure under the
constraint hhi ¼ 0, where the generalized modular
Hamiltonian h ¼ P

aβaOa is in general a linear combina-
tion of the individual generators considered previously.
Then, the resultant state ρβ ¼ 1

Zβ
e−βh is associated with a

single R-valued temperature β which is related to the
individual flows by

βXh ¼
X
a

βaXa: ð2:14Þ

This essentially fixes the modular parameter τ (associated
with XhÞ in the space of the flow parameters ta of the
different Oa as τ ¼ P

a
β
βa
ta. Thus, to the state ρβ we can

associate a one-parameter flow in Γex given by a linear
combination of the individual flows of Oa. Extraction of a
single physical temperature would require additional inputs
in terms of the physical interpretations of Oa and whether
any one of them admits an understanding of energy. This
will be investigated elsewhere.

D. Remarks

It was emphasized by Jaynes that this information-
theoretic manner of defining equilibrium statistical
mechanics (and, from it, thermodynamics) is to elevate
the status of entropy as being more fundamental than even
energy. This perspective can be crucially appropriate in
settings where energy (and time) are ill defined or not
defined at all. Moreover, this procedure is valid for both
classical and quantum settings and does not technically
require any symmetries of the system to be defined a priori,
unlike in the more traditional characterization using the
KMS condition. The maximum entropy principle could
thus be particularly useful in background-independent
settings, including both covariant systems on spacetime
and more radical nonspatiotemporal systems like those in
discrete quantum gravity (regardless of the specific frame-
work) [20,22].
Observables O that characterize a given equilibrium

state, in principle, only need to be mathematically well

3Each individual “temperature” βa defines the periodicity in
the flow of Oa.4In fact, any faithful algebraic state over a von Neumann
algebra defines a one-parameter Tomita flow with respect to
which the state satisfies the KMS condition. The deep signifi-
cance of this fact for background-independent systems was
realized in [15,16].
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defined in the given description of the system. Valid
choices include a Hamiltonian for time translations in
nonrelativistic systems [26], a clock Hamiltonian for
evolution in a reference matter variable in deparametrized
systems [22], geometric observables such as 3-volume
[22,24], and gauge-invariant quantities in presymplectic
systems [18]. Even generators of kinematic symmetries
such as rotations or, more generally, of one-parameter
subgroups of Lie group actions [27,28] can be used. The
key point is that (i) these observables need not necessarily
encode a physical model of the system and can corre-
spond purely to structural properties such as a kinematic
symmetry or a geometric aspect (i.e., they can be physical
or structural), and (ii) they need not necessarily be
generators of symmetries or physical evolution (including
time translation) and can correspond to those properties
that are not naturally associated with any transformations
of the system (i.e., they can be dynamical or thermody-
namical) [22]. Another feature that can be asked of
observables O is that they be gauge invariant, when
gauge symmetries are present. This then ensures that the
Gibbs state is defined on the reduced, gauge-invariant
state space and in this sense is a physical statistical state
of the system. Having clarified these general points, in
this work we are mostly interested in gluing constraints in
a system of many tetrahedra producing connected con-
figurations and interpreted as a time-independent notion
of “dynamics,” adapted to a discrete quantum gravity
setting.

III. MANY CLASSICAL TETRAHEDRA

A. Statistical fluctuations in closure

The Jaynes characterization of equilibrium allows for a
natural group-theoretic generalization of thermodynamics,
whenever the constraint is associated with some (dynami-
cal) symmetry of the system. In this case, the momentum
map associated with the Hamiltonian action of the sym-
metry group on the covariant phase space of the system
plays the role of a generalized energy function, comprising
the full set of conserved quantities. Moreover, its convexity
properties allow for a generalization of the standard
equilibrium thermodynamics [27].
This approach is useful also in our simplicial geometric

context. We want to use generalized Gibbs states to define
along these lines a statistical characterization of the
tetrahedral geometry in terms of its closure, starting from
the extended phase space of a single open tetrahedron. The
closure constraint is what allows us to interpret geomet-
rically a set of 3D vectors as the normal vectors to the faces
of a polyhedron and thus to fully capture its intrinsic
geometry in terms of them. We will base on this our
subsequent treatment of a system of many closed tetrahedra
(or polyhedra in general).

Consider the symplectic space

ΓfAIg ¼ fðXIÞ ∈ suð2Þ�4 ≅ R3×4jkXIk ¼ AIg
≅ S2A1

×… × S2A4
; ð3:1Þ

where each S2AI
is a 2-spherewith radiusAI , and I¼1, 2, 3, 4.

If the four vectors XI are constrained to sum to zero, the
surfaces associatedwith them (as orthogonal to each of them)
close, giving a 4-polyhedron in R3 with faces of areas fAIg
(see Fig. 1).5 In this example, we consider ΓfAIg as the
extended phase space of interest and denote Γex ≡ ΓfAIg.
Consider then the diagonal action of the SUð2Þ Lie group

(rotations) on Γex. To this action we can associate a
momentum map J∶Γex → suð2Þ� defined by

J ¼
X4
I¼1

XI; ð3:2Þ

where kXIk ¼ AI. The symplectic reduction of Γex with
respect to the zero level set J ¼ 0 imposes closure of the
four faces, resulting in the Kapovich-Millson phase space
[29] S4 ¼ Γex==SUð2Þ ¼ J−1ð0Þ=SUð2Þ of a closed tetra-
hedron with given face areas. Space Σ≡ J−1ð0Þ is the
constrained submanifold.
We are interested in defining an equilibrium state on Γex

by imposing the closure constraint (only) on average, along
the lines described in Sec. II. From a statistical perspective,
we can interpret the exact, or “strong,” fulfilment of closure
as defining a microcanonical statistical state on Γex with
respect to this constraint and therefore a generalized Gibbs
state as encoding a “weak” fulfilment of the same con-
straint. These two states on the extended state space are
formally related by a Laplace transform.
A Gibbs state with respect to closure for an open

tetrahedron is defined by maximizing the entropy func-
tional (2.3) under normalization (2.2) and the following
three constraints:

hJiiρ ≡
Z
Γex

dλρJi ¼ 0 ði ¼ 1; 2; 3Þ; ð3:3Þ

where ρ is a statistical state defined on Γex, and Ji are
components of J in a basis of suð2Þ�. Notice that Ji are
smooth, real-valued6 scalar functions on Γex. These are the
functions of interest that take on the role of quantities Oa
used in (2.1). We stress again that Eq. (3.3), for each i, is a
weaker condition than imposing closure exactly by Ji ¼ 0.
Optimizing L of Eq. (2.4) then gives a Gibbs state on Γex of
the form

5Analogous arguments hold for the case of an open d-
polyhedron and its associated closure condition.

6Real valued because the algebra suð2Þ under consideration is
a vector space over the reals.
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ρβ ¼
1

ZðβÞ e
−β·J; ð3:4Þ

where now the Lagrange multiplier β is a vector in the
algebra suð2Þ, with components βi, and β · J ¼ P

iβiJi
denotes its inner product with J ∈ suð2Þ�. The equilibrium
partition function is given by

ZðβÞ ¼
Z
Γex

dλe−β·J; ð3:5Þ

where β is such that the integral converges.
Now, recall J being the momentum map corresponding

to the diagonal action of SUð2Þ on Γex. The corresponding
comomentum map β · J ≡ JðβÞ then plays the role of the
modular Hamiltonian of the system on Γex. Therefore state
ρβ, constructed using the maximum entropy principle, is in
fact an example of a generalization of the Gibbs states
defined by Souriau [27,28] to the case of Lie group actions
associated with gauge symmetries generated by first class
constraints. In this case, the vanishing of the associated
momentum map is directly related to fulfilling the closure
constraint. A detailed analysis of the single tetrahedron
thermodynamics is given in [30].
The state ρβ encodes equilibrium with respect to trans-

lations along the integral curves of the vector field ξβ on
Γex, defined by the equation ωðξβÞ ¼ −dJðβÞ, where ω is
the symplectic 2-form on Γex. It is the fundamental vector
field corresponding to vector β ∈ suð2Þ. In other words, ρβ
encodes equilibrium with respect to the one-parameter flow
characterized by β, which is a generalized vector-valued
temperature. This is analogous to the well-known case of
accelerated trajectories on Minkowski spacetime, where
thermal equilibrium can be established along Rindler orbits
defined by the boost isometry, where β defines the Unruh
(inverse) temperature. Another example, in quantum grav-
ity, is that of momentum Gibbs states constructed in group
field theory [22].

B. Classical mechanics and statistical mechanics

As we have seen, we can encode the classical intrinsic
geometry of a polyhedron by symplectically reducing, with
respect to the closure condition, the space Γex, to get its
Kapovich-Millson space [29],

Sd ¼ fðXIÞ ∈ suð2Þ�dj
X
I

XI ¼ 0; jjXIjj ¼ AIg:

In general, the space Sd is a (2d − 6)-dimensional sym-
plectic manifold (Fig. 1). One could lift the restriction of
fixed face areas, thereby adding d d.o.f., to get the (3d − 6)-
dimensional space of closed polyhedra modulo rotations.
For d ¼ 4, this is the 6-dim space of a tetrahedron [31,32],
considered often in discrete quantum gravity contexts. This
space corresponds to the possible values of the six edge

lengths of a tetrahedron or to the six areas of its four faces
and two independent areas of parallelograms identified by
midpoints of pairs of opposite edges. This space is not
symplectic in general, and to get a symplectic manifold
from it, one can either remove the d area d.o.f. to get Sd or
add d number of Uð1Þ d.o.f. (angle conjugates to the areas)
to get the spinor description of the so-called framed
polyhedra [33]. Along the lines showed in Sec. III A, we
can easily extend the statistical description to the case of the
framed polyhedron system. However, we are presently
more interested in extending the statistical description to a
collection of many closed polyhedra.
Let us then consider the space of closed polyhedra with a

fixed orientation and extend the phase space description so
to encompass the extrinsic geometric d.o.f., which we
expect to play a role in the description of the coupling
leading to a collective model.
The face normal vectors can be seen as elements of the

dual algebra suð2Þ� ≅ R3, which is a Poisson manifold
with its Kirillov-Kostant Poisson structure [32]. We
add conjugate variables to these suð2Þ� d.o.f. (thereby
doubling the dimension) and consider the phase space
T�ðSUð2Þd=SUð2ÞÞ, where the quotient by SUð2Þ encodes
the imposition of the closure.7

We further restrict to the case of tetrahedra (d ¼ 4). Then
the single particle classical phase space under consideration
is

Γ ¼ T�ðSUð2Þ4=SUð2ÞÞ: ð3:6Þ

The extended phase space of anN-particle classical system is
given by the direct product space

ΓN ¼ Γ×N: ð3:7Þ

(a) (b)

FIG. 1. (a) A convex polygon with side vectors XI . The space of
possible polygons in R3 up to rotations is a (2d − 6)-dimensional
phase space. For noncoplanar normals, the same data define also
a unique polyhedron by Minkowski’s theorem. (b) For d ¼ 4 we
get a geometric tetrahedron.

7In the context of gravity, other choices for the Lie group are
Spinð4Þ and SLð2;CÞ, which could be dealt with in our
framework in an entirely analogous manner.
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On this space mechanical models for a system of many
tetrahedra can be defined via constraints among such
tetrahedra. Typical examples would be nonlocal, combina-
torial gluing constraints, possibly scaled by an amplitude
weight. From the point of view of many-body physics, we
expect these gluing constraints to be in fact modeled as
generic multiparticle interactions, defined in terms of tetra-
hedron intrinsic and extrinsic geometric d.o.f. Different
choices of these interactions identify different models of
the system.
Thus, the minimal interaction or, better, the key ingre-

dient of such interactions of any many-tetrahedra model are
the constraints that glue two faces of any two different
tetrahedra. By gluing we mean here the requirement that the
areas of these faces match and that their face normals align
(with opposite orientation). We will detail below how these
conditions are implemented. More stringent conditions,
imposing stronger matching of geometric data, as well as
more relaxed ones, can also be considered, as will be
discussed below. What constitutes as gluing is thus a
model-building choice and so is the choice of which
combinatorial pattern of gluings among a given number
of tetrahedra is enforced. So, once the system knows how to
glue two faces, then the remaining content of a model
dictates how the tetrahedra interact nonlocally, facewise, to
make simplicial complexes. Again, we will show some
such choices below, when illustrating examples of our
general framework.
An outline of the ensuing statistical system is as follows.

A mechanical model of a system of many classical
tetrahedra thus consists of a state space (3.7), an algebra
of smooth functions over it, and a set of gluing constraints
defining the constrained dynamics. Further, a statistical
mechanical model is defined by a statistical state (a real-
valued, positive, and normalized function) on this same
system. And equilibrium configurations comprised of
collections of geometric tetrahedra can be constructed, at
least formally, by using Jaynes’s principle in terms of a
suitable set of gluing constraints for such mechanical
models.
To consider then a system of an arbitrary, variable

number of tetrahedra in a statistical setting amounts to
including grand-canonical-type probability weights eμN .
Let ZN be the partition function, which encodes (by
definition) all statistical and thermodynamical information
about the state ρN on ΓN , ZN ¼ R

ΓN
dλρN . Then a system

with a variable (and arbitrary, possibly infinite) particle
number is described by Z ¼ P

N≥0e
μNZN.

C. System of tetrahedra at equilibrium

We now detail the construction of classical Gibbs states
for systems of many classical tetrahedra with some concrete
examples. The key ingredient is a set of conditions, the
gluing conditions, which are understood as the constraints
that lead from a set of disconnected tetrahedra to an

extended simplicial complex. The same gluing process
can be encoded in terms of dual graphs, understood as the
1-skeleton of the cellular complex dual to the simplicial
complex of interest. The geometry of the initial set of
tetrahedra as well as of the resulting simplicial complex can
be captured by the T�SUð2Þ data introduced above. We will
perform our construction in terms of these data first. A
more detailed, thus transparent, characterization of the
same (loose notion of) geometry can be obtained in terms
of so-called twisted geometry decomposition, which we
will connect with at a second stage, to suggest further
research directions based on our construction.
Let γ denote an oriented, 4-valent closed graph with L

number of oriented links and N number of nodes. Each link
l is dressed with T�SUð2Þ ≅ SUð2Þ × suð2Þ� ∋ ðgl; XlÞ
data, with variables satisfying invariance under diagonal
SUð2Þ action at each node n. γ is dual to a simplicial
complex γ�, with triangular faces l and tetrahedra n.
Geometric closure of each tetrahedron corresponds to
SUð2Þ invariance at the dual node. The source and target
nodes (tetrahedra) sharing a directed link (face) l are
denoted by sðlÞ and tðlÞ, respectively. A state ðgl; XlÞ on
γ is then an element of Γγ ¼ T�SUð2ÞL==SUð2ÞN . Such
configurations admit a loose notion of discrete geometry in
terms of area vectors, normal to the surfaces dual to the
links, and identifying a simplicial complex, as we have
discussed above. The geometry so defined is potentially
pathological, in the sense that the resulting simplicial
complex may not be fully specified in terms of metric
data, i.e., its associated edge lengths, as a Regge geometry
would be. For our purposes, though, this characterization
suffices to show how a statistical state can be constructed
based on encoding gluing and possibly other constraints on
the initially disconnected tetrahedra. We will discuss
further the purely geometric aspects in the following.
To understand better the gluing process, and the resulting

constraints, let us begin with a single closed, classical
tetrahedron n with state space Γ of Eq. (3.6). As mentioned
earlier, Γ is the state space where 3D rotations have not
been factorized out, which essentially means that each such
tetrahedron is equipped with an arbitrary (orthonormal)
reference frame determining its overall orientation in its R3

embedding. In the holonomy-flux representation, the four
triangular faces ljn, of tetrahedron n, are labeled by the
four pairs ðgl; XlÞ, with variables satisfying closure. In the
dual picture, we have a single open graph node n with four
half-links ljn incident on it. Each half-link is bounded by
two nodes, one of which is the central node n, common to
all four l. Each l is oriented outward (by choice of
convention) from the common node n, which then is the
source node for all four half-links. Then in the holonomy-
flux parametrization, each half-link l is labeled by ðgl; XlÞ.
Let us denote the Ith half-link belonging to an open node

n by ðnIÞ, where I ¼ 1, 2, 3, 4. Equivalently, ðnIÞ also
denotes the Ith face of tetrahedron n. Two tetrahedra n and
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m are said to be neighbors (see Fig. 2) if at least one pair of
faces, ðnIÞ and ðmJÞ, are adjacent, that is the variables
assigned to the two faces satisfy the following constraints:

gðnIÞgðmJÞ ¼ e; XðnIÞ þ XðmJÞ ¼ 0: ð3:8Þ
A given classical state associated with the connected

graph γ can then be understood as a result of imposing the
constraints (3.8) on pairs of faces in a system of N open
nodes, or disconnected tetrahedra. That is, γ is a result of
imposing L number each of SUð2Þ- and suð2Þ�-valued
constraints, which we denote by C and D, respectively.
This in turn is a total 6L number of R-valued (component)
constraint functions fCl;a; Dl;ag, for l ¼ 1; 2;…; L and
a ¼ 1, 2, 3. For instance, creation of a full link l ¼
ðnI;mJÞ involves matching the fluxes, componentwise, by
imposing the three constraints Dl;a ¼ Xa

ðnIÞ þ Xa
ðmJÞ ¼ 0,

as well as restricting the conjugate parallel transports to
satisfy Cl;a ¼ ðgðnIÞgðmJÞÞa − ea ¼ 0. Naturally the final
combinatorics of γ is determined by which half-links are
glued pairwise, which is encoded in which specific pairs of
such constraints are imposed on the initial data.

As an example, consider a dipole graph (Fig. 3). This can
be understood as imposing constraints on pairs of half-links
of two open 4-valent nodes. Here L ¼ 4, thus we have at
hand four constraints Dl on flux variables,

Xð11Þ þ Xð21Þ ¼ 0; Xð12Þ þ Xð22Þ ¼ 0;

Xð13Þ þ Xð23Þ ¼ 0; Xð14Þ þ Xð24Þ ¼ 0: ð3:9Þ

This corresponds to a set of 3 × 4 component constraint
equations Dl;a ¼ 0, similarly for holonomy variables.
As another example, consider a 4-simplex graph made of

five 4-valent nodes (Fig. 4). The combinatorics is encoded
in the choice of pairs of half-links that are glued. Here
L ¼ 10, corresponding to ten constraints Dl on the flux
variables,

Xð12Þ þXð21Þ ¼ 0; Xð13Þ þXð31Þ ¼ 0;

Xð14Þ þXð41Þ ¼ 0; Xð15Þ þXð51Þ ¼ 0;

Xð23Þ þXð32Þ ¼ 0; Xð24Þ þXð42Þ ¼ 0;

Xð25Þ þXð52Þ ¼ 0; Xð34Þ þXð43Þ ¼ 0;

Xð35Þ þXð53Þ ¼ 0; Xð45Þ þXð54Þ ¼ 0:

ð3:10Þ

As before, this corresponds to 30 component equations for
the flux variables and another 30 for holonomies.
When these constraints are satisfied exactly, that is

fCl;a ¼ 0; Dl;a ¼ 0g (for all l; a), then this system of N
tetrahedra admits a geometric interpretation based on the
resultant simplicial complex.But as discussed in the previous
section, there is a way of imposing these constraints only on
average, that is fhCl;aiρ ¼ 0; hDl;aiρ ¼ 0g.
This statistical manner of weakly imposing the con-

straints results in a generalized Gibbs state, parametrized by
6L number of generalized temperatures,

FIG. 2. Gluing via constraint XðnJÞ þ XðmIÞ ¼ 0.

(a)

(b)

FIG. 3. (a) Dipole gluing in a system of two tetrahedra. (b)
Combinatorics of the dipole gluing.

FIG. 4. Resultant 4-simplex from combinatorial gluing between
faces of five tetrahedra.
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ρfγ;α;βg ∝ e−
P

L
l¼1

P
3

a¼1
ðαl;aCl;aþβl;aDl;aÞ ≡ e−Gγðα;βÞ; ð3:11Þ

where α; β ∈ R3L are vector-valued temperatures. Notice
that the constraints fCl;a; Dl;ag are smooth functions onΓN ,
and ρfγ;α;βg is thus a state defined for the N particle system
(assuming well-defined normalization). In other words, the
creation of a full link l is associated with two R3-valued
temperatures, αl ≡ fαl;aga¼1;2;3 and βl ≡ fβl;aga¼1;2;3.
For instance, for the 4-valent dipole graph of Fig. 3 with
flux constraints (3.9) and the corresponding holonomy ones,
we have

Gdipðα; βÞ ¼
X4
l¼1

X3
a¼1

αl;aCl;aðgð1lÞ; gð2lÞÞ

þ βl;aDl;aðXð1lÞ; Xð2lÞÞ: ð3:12Þ

We could further choose to assign a single temperature
for all three components a. In such a case, one pair of R-
valued parameters, αl and βl, controls each link l, instead
of three pairs. We would then have

ρfγ;α;βg ∝ e−
P

L
l¼1

αlClþβlDl ; ð3:13Þ

where α; β ∈ RL, and Cl ¼ P
aCl;a. Making such differ-

ent choices have nontrivial consequences. Notice that
fCl;a ¼ 0; Dl;a ¼ 0gγ ⇒ fCl ¼ 0; Dl ¼ 0gγ but the
opposite is not true. The latter is thus a weaker condition
than the former. States (3.11) and (3.13) correspond to
these two sets of conditions, respectively, associated
with constraints fhCl;ai ¼ 0; hDl;ai ¼ 0g and fhCli ¼
0; hDli ¼ 0g in the entropy maximization prescription.
If we were further to extract a single global temperature, say
βγ (so that the state is of the form ρβγ ∝ e−βγGγ ), then this
would mean imposing the single condition hGγi ¼ 0,
which in turn is weaker than the previous two sets (this
being a sum of constraints). In these second and third
weaker cases, the corresponding microcanonical state
cannot be understood as making the graph γ. In other
words, to make γ is to impose fCl;a ¼ 0; Dl;a ¼ 0gγ and
not either of the two weaker conditions.
A state such as (3.11) is a statistical mixture of configu-

rations where the ones that are glued with the combinatorics
of γ (and thus admit a loose geometric interpretation) are
weighted exponentially more than those that are not. In this
sense it illustrates a statistical way to encode an approxi-
mate notion of discrete geometry. While states like (3.13)
and ρβγ would encode a weaker notion of such statistical
fluctuations, even if that, because in general even those
configurations satisfying fCl ¼ 0; Dl ¼ 0g or Gγ ¼ 0

exactly may not necessarily correspond to the graph γ.
The above can be generalized to include different

interaction terms, each corresponding to a given pattern
of gluings associated with a different graph γ. We first take

into account all possible graphs fγgN with a fixed number
of nodes N. To each γ in this set corresponds a gluing
Gγðα; βÞ as a function of several temperatures, which
encode the fluctuations in the internal structure of the
given graph. We can then think of a statistical mixture
consisting of the different graphs represented by their
respective combinatorics Gγ , each being weighted differ-
ently by coupling parameters λγ . Such a Gibbs distribution
can be formally written as

ρN ¼ 1

ZNðλγ; α; βÞ
e
−
P

fγgN
1

AutðγÞλγGγðα;βÞ; ð3:14Þ

where Aut(γ) factors out repetitions due to graph auto-
morphisms. The choice of the set fγgN is a model-building
choice, analogous to choosing the different types of
interaction potentials in standard many-body theory.
Finally, if we allow for the number of tetrahedra N to

vary, we can write a general expression for the partition
function of a system of many classical tetrahedra at
equilibrium in a grand-canonical state,

Zðμ; λγ; α; βÞ ¼
X
N

eμNZNðλγ; α; βÞ; ð3:15Þ

where μ is the Lagrange parameter for N and ZN is the
canonical partition function for a finite number of tetrahe-
dra, but including different graph contributions.
Now that we have presented the construction of a

statistical state for many classical tetrahedra, that involves
some set of gluing constraints, imposing a geometric
interpretation, we can discuss briefly some model-building
strategies that can be followed to construct more examples
of interesting simplicial gravity models. Any such model-
building strategy should be based on a clear understanding
of how simplicial geometry is encoded in the data we
have used.
A more precise parametrization of the holonomy-flux

geometries can also be given in the language of twisted
geometries [34,35]. This relies on the fact that the link
space T�SUð2Þ can be decomposed as S2 × S2 × T�S1 ∋
ðNsðlÞ;NtðlÞ; Al; ξlÞ, modulo null orbits of the latter, and up
to aZ2 symmetry. The variables are related by the following
canonical transformations:

g ¼ nseξτ3n−1
t ; X ¼ Ansτ3n−1

t ; ð3:16Þ

where ns;t ∈ SUð2Þ are those elements which in the adjoint
representation R rotate the vector z≡ ð0; 0; 1Þ to give R3

vectorsNs;t respectively. That isNs;t ¼ Rðns;tÞ:z, or equiv-
alently ns;tτ3n−1

s;t ¼
P

3
a¼1 N

a
s;tτa respectively for s and t.

Generators of suð2Þ are τa ¼ − i
2
σa, where σa are Pauli

matrices. VectorsNsðlÞ andNtðlÞ are unit normals to the face
l as seen from two arbitrary, different orthonormal reference
frames attached to sðlÞ and tðlÞ, respectively. Al is the area
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of l, and ξl is an angle which encodes (partial8) extrinsic
curvature information. So, a closed twisted geometry con-
figuration supported on γ is an element of ⨯lT�S1⨯nS4,
where S4 is the Kapovich-Millson phase space of a tetra-
hedron given a set of face areas; each link is labeled with
ðAl; ξlÞ and each node with four area normals (in a given
reference frame) that satisfy closure.
A twisted geometry is in general discontinuous across

the faces, and so is the one described in terms of holonomy-
flux variables, because both contain the same information.
Face area Al of a shared triangle is the same as seen from
tetrahedron sðlÞ or tðlÞ on either side, but the edge lengths
when approaching from either side may be different in
general. That is, the shape of the triangle l, as seen from the
two tetrahedra sharing it, is not constrained to match. If
additional shape-matching conditions [36] were satisfied,
then we would instead have a proper Regge (metric)
geometry on γ�, which is a subclass of twisted geometries.
These shape-matching conditions can be related to the so-
called simplicity constraints, which are central in all model-
building strategies in the context of spin foam models, and
whose effect is exactly to enforce geometricity (in the sense
of metric and tetrad geometry) on discrete data of the
holonomy-flux type, characterizing (continuum and dis-
crete) topological BF theories in any dimension.
The gluing constraints in Eq. (3.8), in twisted geometry

variables, take the form of the following constraints:

AðnIÞ − AðmJÞ ¼ 0; ξðnIÞ þ ξðmJÞ ¼ 0;

NsðnIÞ −NtðmJÞ ¼ 0; NtðnIÞ −NsðmJÞ ¼ 0: ð3:17Þ

The result is the same, of course, as in the holonomy-flux
case: half-links ðnIÞ and ðmJÞ which satisfy the above set
of six component constraint functions (in either of the
parametrizations) are thus glued9 to form a single link
l≡ ðnI;mJÞ. Equivalently, the two faces of the initially
disconnected tetrahedra are now adjacent.
The more refined geometric data used in the twisted

geometry language allow for a model-building strategy
leading, e.g., to statistical states in which only some of the
gluing conditions are imposed strongly, while others are
imposed only on average. In the same spirit of achieving
greater geometrical significance of the statistical state that
one ends up with, our construction scheme can be applied
with additional constraints, beyond the gluing ones we
illustrated above. For instance, starting with the space of

twisted geometries on a given simplicial complex (dual to)
γ, one could consider imposing (on average) also shape-
matching constraints, or simplicity constraints, to encode
an approximate notion of a Regge geometry using a Gibbs
statistical state. This would be the statistical counterpart
of the construction of spin foam models, i.e., discrete
gravity path integrals in representation theoretic variables
[8,37,38], based on the formulation of gravity as a con-
strained BF theory. This is left to future work.

IV. MANY QUANTUM TETRAHEDRA

A. Quantum mechanics and statistical mechanics

There are several ways of translating the classical
construction presented in the previous sections at the
quantum level, starting from a quantization of the geometry
of a single tetrahedron [31,32].
In a quantum setting in general, each closed polyhedron

face I is assigned an SUð2Þ representation label jI
with its associated representation space HjI and the
polyhedron itself with an intertwiner. Quantization of
T�ðSUð2ÞÞd=SUð2ÞÞ is the full space of d-valent inter-
twiners,⨁jI Inv ⊗d

I¼1 HjI . Here Inv ⊗d
I¼1 HjI is the space

of d-valent intertwiners with given fixed spins fjIg, i.e.,
given fixed face areas, corresponding to a quantization of
Sd. A collection of neighboring quantum polyhedra has
been associated with a spin network of arbitrary valence
[5], with the labeled nodes and links of the latter being dual
to labeled polyhedra and their shared faces, respectively.
Then for a quantum tetrahedron, the 1-particle Hilbert
space is taken to be

H ¼ ⨁
jI

Inv ⊗4
I¼1 HjI ; ð4:1Þ

with quantum states of an N-particle system belonging to

HN ¼ H⊗N: ð4:2Þ
We can equivalently work with the holonomy representa-
tion of the same quantum system in terms SUð2Þ group
data, which is also the state space of a single gauge-
invariant quantum of a group field theory defined on an
SUð2Þ4 base manifold [12,39],

H ¼ L2ðSUð2Þ4=SUð2ÞÞ: ð4:3Þ
A further, equivalent representation could be given in terms
of noncommutative Lie algebra (flux) variables [6,40].
As discussed in Sec. III, mechanical models of N

quantum tetrahedra can be defined by a set of gluing
operators defined on HN . The general discussion therein is
applicable here also. The basic ingredient of gluing is again
to define face sharing conditions. For instance, the classical
constraints of Eq. (3.8) can be implemented by group
averaging of wave functions [39],

8The remaining two d.o.f. of extrinsic curvature are encoded in
the normals NsðlÞ and NtðlÞ [34]. For instance, in the subclass of
Regge geometries, ξl is proportional to the modulus of the
extrinsic curvature [35].

9Gluing the two half-links is essentially superposing one over
the other in terms of aligning their respective reference frames.
This is evident from the constraints for the normal vectors N
which superposes the target node of one half-link on the source
node of the other and vice versa.
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ΨγðfgðnIÞg−1ðmJÞgÞ ¼
Y

ðnI;mJÞjγ

Z
SUð2Þ

dhðnI;mJÞψðfgðnIÞhðnI;mJÞ; gðmJÞhðnI;mJÞgÞ; ð4:4Þ

where we have used the notation introduced in Sec. III C
above, and ψ ∈ HN is a wave function for a system of
generically disconnected N tetrahedra. So, a wave function
defined over full links ðnI;mJÞ of a graph γ is a result of
averaging over half-links ðnIÞ and ðmJÞ by SUð2Þ elements
hðnI;mJÞ. The same can also be implemented in terms of
fluxes X, using a noncommutative Fourier transform
between the holonomy and flux variables [39].
Thus a quantum mechanical model of a system of N

tetrahedra consists of the unconstrained Hilbert space HN ,
an operator algebra defined over it, and a set of gluing
operators specifying the model.
Now for a quantum multiparticle system, a Fock space is

a suitable home for configurations with varying particle
numbers. For bosonic10 quanta, eachN-particle sector is the
symmetric projection of the fullN-particle Hilbert space, so
that the Fock space takes the following form:

HF ¼ ⨁
N≥0

symHN: ð4:5Þ

The Fock vacuum j0i is the one corresponding to a state
with no tetrahedron d.o.f.
Then, a system of an arbitrarily large number of quantum

tetrahedra is described by the state spaceHF, an algebra of
operators over it with a special subset of them identified as
gluing constraints. Quantum statistical states of tetrahedra
are density operators (self-adjoint, positive, and trace-class
operators) on HF [22].
Let us a consider a system of quantum tetrahedra with a

model defined by a (self-adjoint) constraint operator Ĉγ

defined on HF, and a generalized Gibbs state of the form

ρ̂fγ;βg ∝ e−βĈγ ; ð4:6Þ

where β is the Lagrange multiplier for hĈγi ¼ 0.
We can further consider contributions from different

graphs with a fixed number of vertices, weighted differently
with coupling parameters λ. Such a state takes the form

ρ̂N ¼ 1

ZNðλγÞ
e
−
P

fγgN
1

AutðγÞλγĈγ : ð4:7Þ

Particularly, a density operator with a contribution from a
grand-canonical weight of the form eμN̂ corresponds to a

statistical state with a varying particle number, where N̂ is
the number operator associated with the Fock vacuum. The
corresponding partition function

Zðμ; λγÞ ¼ TrHF
½e−

P
fγgN

1
AutðγÞλγĈγþμN̂ � ð4:8Þ

provides the quantum counterpart of the expression (3.15)
in Sec. III C. As the first term in the exponent is dependent
on N, we would expect the multiplier μ to depend on the
remaining temperatures, as is also the case in a traditional
grand-canonical state. Here since this dependence is non-
trivial in general, we leave it separately as above for now.
Overall, if an operator Ĉ is the dynamical constraint of the
system, which in general could include number- and graph-
changing interactions, then one obtains a grand-canonical
state of the type above with respect to Ĉ.

B. Field theory of quantum tetrahedra

The Hilbert space HF
11 is generated by a set of ladder

operators acting on the cyclic vacuum j0i and satisfying the
algebra

½φ̂ðg⃗Þ; φ̂�ðg⃗0Þ� ¼ δðg⃗; g⃗0Þ; ð4:9Þ

where δ is an identity distribution on the space of
smooth, complex-valued L2 functions on SUð2Þ4, and
g⃗≡ ðg1;…; g4Þ.
This formulation already hints at a second quantized

language in terms of quantum fields of tetrahedra. This
language can indeed be applied to the whole statistical
mechanics framework we have developed, in particular to
the partition function obtained in the previous section.
The way to obtain this field-theoretic reformulation is

pretty standard. For a state e−βĈ, the traces in the partition
function and other observable averages12 can be evaluated
using an overcomplete basis of coherent states,

jψi ¼ e−
kψk2
2 e

R
dg⃗ψðg⃗Þφ̂�ðg⃗Þj0i: ð4:10Þ

These states are labeled by ψ ∈ H and jj:jj is the L2 norm in
H. This gives

10As for a standard multiparticle system, bosonic statistics
corresponds to a symmetry under particle exchange. For the case
when a system of quantum tetrahedra is glued appropriately to
form a spin network, then this symmetry is interpreted as
implementing the graph automorphism of node relabelings.

11We remark that HF is the GNS representation space of the
Fock algebraic state associated with a group field theory Weyl
algebra [22,41].

12We thank Alexander Kegeles for pointing out the relevance
of considering the full observable algebra in the present context
and helpful discussions.
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Trðe−βĈÔÞ ¼
Z

½Dμðψ ; ψ̄Þ�hψ je−βĈÔjψi;

with Z ¼ Trðe−βĈIÞ; ð4:11Þ

where the resolution of identity is I ¼ R ½Dμðψ ; ψ̄Þ�jψihψ j,
and the coherent state functional measure [42] is

Dμðψ ; ψ̄Þ ¼ lim
K→∞

YK
k¼1

dReψkdImψk

π
: ð4:12Þ

The set of all such observable averages formally defines the
complete statistical system. In particular, the quantum
statistical partition function can be reinterpreted as the
partition function for a field theory (restricted to complex-
valued L2 fields) of the underlying quanta, which here are
quantum tetrahedra [39]. This can be seen as follows.
For generic operators Ĉðφ̂; φ̂�Þ and Ôðφ̂; φ̂�Þ as poly-

nomial functions of the generators, and a given (but
generic) choice of the operator ordering defining the
exponential operator, the integrand of the statistical aver-
ages can be treated as follows:

hψ je−βĈÔjψi¼hψ j
X∞
k¼0

ð−βÞk
k!

ĈkÔjψi

¼hψ j∶e−βĈÔ∶jψiþhψ j∶poC;Oðφ̂;φ̂�;βÞ∶jψi;
ð4:13Þ

where to get the second equality, we have used the
commutation relations (4.9) on each ĈkÔ to collect all
normal ordered terms ∶ĈkÔ∶, to get the normal ordered
∶e−βĈÔ∶, and the second term is a collection of the
remaining terms arising as a result of swapping φ̂’s and
φ̂�’s, which will then in general be a normal ordered series
in powers of φ̂ and φ̂�, with coefficient functions of β. The
precise form of this series will depend on both Ĉ and Ô.
Recalling that coherent states are eigenstates of the anni-
hilation operator, φ̂ðg⃗Þjψi ¼ ψðg⃗Þjψi, we have

hψ j∶e−βĈÔ∶jψi ¼ e−βC½ψ̄ ;ψ �O½ψ̄ ;ψ �; ð4:14Þ

where C½ψ̄ ;ψ � ¼ hψ jĈjψi and O½ψ̄ ;ψ � ¼ hψ jÔjψi.
Denoting by operator ÂC;O ≡ poC;Oðφ̂; φ̂�; βÞ, we have

hψ j∶ÂC;Oðφ̂; φ̂�; βÞ∶jψi ¼ AC;O½ψ̄ ;ψ ; β�; ð4:15Þ

which encodes all higher order quantum corrections.13

Thus, averages (4.11) can be written as

Trðe−βĈÔÞ¼
Z

½Dμðψ ;ψ̄Þ�ðe−βC½ψ̄ ;ψ �O½ψ̄ ;ψ �

þAC;O½ψ̄ ;ψ ;β�Þ: ð4:16Þ

In particular, the quantum statistical partition function for a
dynamical system of complex-valued L2 fields ψ defined
on the base manifold SUð2Þ4 is

Z ¼
Z

½Dμðψ ; ψ̄Þ�ðe−βC½ψ̄ ;ψ � þAC;I½ψ̄ ;ψ ;β�Þ≡Z0 þZOðℏÞ;

ð4:17Þ
where by notationOðℏÞwemean only that this sector of the
full theory encodes all higher orders in quantum corrections
relative to Z0.

14 This full set of observable averages (or
correlation functions) (4.16), including the above partition
function, defines thus a statistical field theory of quantum
tetrahedra (or in general, polyhedra with a fixed number of
boundary faces), characterized by a combinatorially non-
local statistical weight, i.e., a group field theory. This
derivation and interpretation of the foundation of group
field theories was suggested in [39], and the present work
puts it on more solid ground. If we are able to either
reformulate exactly, or under suitable approximations, AC;O

in the following way,

AC;O ¼ AC;I½ψ̄ ;ψ ; β�O½ψ̄ ;ψ �; ð4:18Þ
then the partition function (4.17) defines a statistical field
theory for the algebra of observables O½ψ̄ ;ψ �. Moreover, if
we are further able to rewrite Z in terms of a simple
exponential measure under some approximations,

Zeff ¼
Z

½Dμðψ ; ψ̄Þ�e−Ceff ½ψ̄ ;ψ ;β;C;A�; ð4:19Þ

then the correspondence with a standard field theory would
be even more manifest.
The comparison with existing group field theory models,

for topological BF theories, thus in absence of additional
geometricity conditions and simply using gluing conditions
of holonomy-flux data, shows that these are obtained from
our statistical construction, but by starting from a refor-
mulation of the initial gluing constraints. Recall that the
constraint equation

ĈjΨi ¼ 0 ð4:20Þ
can be equivalently recast in the form

P̂jΨi ¼ jΨi; ð4:21Þ

where P̂ ∼ δðĈÞ is the operator projecting on the kernel of
Ĉ. Physical states are those left invariant by the projector

13Notice that A is not necessarily of an exponential form.

14Further investigation into the interpretation, significance, and
consequences of this rewriting of Z in discrete quantum gravity is
left for future work.
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operator [namely jΨi ∈ RanðP̂Þ]. In particular, we can
recast Eq. (4.21) in the form of another constraint relation,
by considering the complementary operator Q̂≡ I − P̂,
hence writing

Q̂jΨi ¼ 0; ð4:22Þ

with physical states now being in the kernel of Q̂.15

To give an example, consider the mechanical model of
quantum tetrahedra having the combinatorial structure of
the boundary of a dipole as encoded by the classical
constraints (3.9). Then, first quantizing this system results
in four operators fĈlg, each one associated with a different
full link of the graph. For instance, for a given full linklwith
classical flux constraint Cl ¼ XðnIÞ þ XðmJÞ, we can define

an operator Ĉl≔ X̂ðnIÞ⊗ 1̂ðmJÞþ 1̂ðnIÞ⊗ X̂ðmJÞ, where oper-

ators 1̂ and X̂ are defined on single link space L2ðSUð2ÞÞ.
Operator Ĉl thus acts on two half-link states as follows:

ĈljXðnIÞ; XðmJÞi ¼ CljXðnIÞ; XðmJÞi: ð4:23Þ

The state of two disconnected tetrahedra (or a dipole that is
yet to be made) can be written as

jψ2i ¼ ⨂
4

l¼1

jXðnIÞ; XðmJÞi ¼ jX⃗1; X⃗2i; ð4:24Þ

where X⃗n ≡ ðXðn1Þ;…; Xðn4ÞÞ, and the second equality is
due to bosonic statistics that allows permutations of argu-
ments freely. The first quantized operator for the whole
graph is

Ĉ ≔ ⨂
4

l¼1

Ĉl; Ĉjψ2i ¼ Cjψ2i; ð4:25Þ

where C≡ ðC1;…; C4Þ ∈ suð2Þ�4. Clearly, Ĉ is a con-
straint operator that annihilates relevant (here, dipole) states
when the classical constraints are satisfied, that is, when
C ¼ 0. The corresponding second quantized operator on the
Fock space can be defined as

Ĉ¼
Z

dX⃗1dX⃗2φ̂
�ðX⃗1Þφ̂�ðX⃗2ÞhX⃗1;X⃗2jĈjX⃗1;X⃗2iφ̂ðX⃗1Þφ̂ðX⃗2Þ

¼
Z

dX⃗1dX⃗2φ̂
�ðX⃗1Þφ̂�ðX⃗2ÞCðX⃗1;X⃗2Þφ̂ðX⃗1Þφ̂ðX⃗2Þ:

ð4:26Þ

From this, we can define a projector P̂ ∼ δðĈÞ as16

P̂ ≔
Z

dX⃗1dX⃗2φ̂
�ðX⃗1Þφ̂�ðX⃗2Þ

Y4
l¼1

δðClÞφ̂ðX⃗1Þφ̂ðX⃗2Þ

≡
Z

dX⃗1dX⃗2φ̂
�ðX⃗1Þφ̂�ðX⃗2ÞVdipðX⃗1; X⃗2Þφ̂ðX⃗1Þφ̂ðX⃗2Þ:

ð4:27Þ

Thus the specific choice of classical constraints onewants to
impose enter the result in terms of the matrix elements of the
corresponding quantum operators in the Fock space. These
matrix elements become the convolution kernelsV for fields
in the projector reformulation. One can then proceed to
define a constraint Q̂ ¼ I − P̂.
Now the example projector (4.27) presented above is

number conserving, evident from the equal number of
creation and annihilation operators in its expression. It
simply picks out those 2-tetrahedra states whose data
satisfy the combinatorics of a dipole. Moreover, it is a
projector operator on the subsector H2 of HF, in the
sense of satisfying P̂2jψi ¼ P̂jψi for all ψ ∈ H2. General
dynamics should include both graph- and number-changing
interactions, and the associated projector operator should
be a projector on the full HF. Such an operator would thus
in general have contributions from all possible N-particle
subsectors (corresponding to N nodes in the boundary
graph) encoding interactions between m “incoming” par-
ticles and n “outgoing” particles (with N ¼ mþ n) [39],

P̂ ¼
X
n;m

λn;mP̂n;m; ð4:28Þ

where operators P̂n;m (not necessarily projectors onHN) are
of the form

P̂n;m¼
Z

dg⃗1…dg⃗ndh⃗1…dh⃗mφ̂�ðg⃗1Þ…φ̂�ðg⃗nÞ

�Vn;mðg⃗1;…; g⃗n;h⃗1;…; h⃗mÞφ̂ðh⃗1Þ…φ̂ðh⃗mÞ: ð4:29Þ

Notice that our earlier example of the dipole projector
is a special case of the above, specifically P̂2;2 ¼ P̂ [of

Eq. (4.27)], with V2;2ðg⃗1; g⃗2; h⃗1; h⃗2Þ ¼ δðg⃗1; h⃗1Þδðg⃗2; h⃗2Þ×
Vdipðg⃗1; g⃗2Þ.
Other commonly encountered terms are of the form

P̂0;5 þ P̂5;0 ¼
Z

dg⃗1…dg⃗5V4simðg⃗1;…; g⃗5Þ

× φ̂ðg⃗1Þ…φ̂ðg⃗5Þ þ P̂�
0;5; ð4:30Þ

where, V4simðg⃗1;…; g⃗5Þ ¼
Q

10
l¼1 δðClÞ, with Cl being the

classical constraints corresponding to 4-simplex combina-
torics. In this case then, the approximated statistical field

15For projectors we have that RanðP̂Þ ¼ KerðI − P̂Þ and
KerðP̂Þ ¼ RanðI − P̂Þ.

16The projector operator can equivalently be written in
holonomy basis with identical gluing content.
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theory as derived from the full quantum statistical system
(when the latter is taken to be in a generalized Gibbs
state) is

Z0 ¼
Z

½Dμðψ ; ψ̄Þ�e−βð1−P0;5−P̄0;5Þ; ð4:31Þ

with the statistical weight dictated by

ðP0;5þ P̄0;5Þ½ψ̄ ;ψ � ¼
Z
SUð2Þ4×5

ψðg⃗1Þψðg⃗2Þψðg⃗3Þψðg⃗4Þψðg⃗5Þ

×V4simðg⃗1;…; g⃗5Þþ c:c: ð4:32Þ

Hence for this choice of gluings and aforementioned
approximations to the coherent state averages (4.16), the
partition function defines a 4D simplicial group field theory
model of complex-valued, SUð2Þ-gauge-invariant, L2

fields ψ , defined on the base manifold SUð2Þ4.
For a general projector P̂ as discussed above with its

constraint Q̂, if we now repeat the derivation of the
canonical partition function by considering

Zμ;β ¼ TrHF
½e−βQ̂þμN̂ � ¼ TrHF

½e−βðI−P̂ÞþμN̂ �; ð4:33Þ

wewill end up dealing with a statistical weight expressed in
terms of matrix elements of the projector operator

P½ψ̄ ;ψ � ¼
X
n;m

λn;m

Z
SUð2Þ4ðnþmÞ

ψ̄ðg⃗1Þ…ψ̄ðg⃗nÞ

×Vn;mðg⃗1;…; g⃗n; h⃗1;…; h⃗mÞψðh⃗1Þ…ψðh⃗mÞ:
ð4:34Þ

This directly gives the group field theory interaction kernels
for BF models, which are expressed in terms of products of
delta functions whose arguments are the classical gluing
constraints.
To summarize, in this statistical formulation we are able

to give a more solid foundation to the picture in which a
group field theory is a quantum field theory of tetrahedra
(or polyhedra, in general), and the kernels of a group field
theory action17 originate from nonlocal many-body inter-
actions (gluing constraints) between the underlying quanta.

V. CONCLUSION

We have investigated the statistical mechanics of
classical and quantum tetrahedra, which are candidates

for quanta of spacetime geometry in discrete quantum
gravity approaches. Particularly, we have focused on the
definition of Gibbs equilibrium states, in such a back-
ground-independent context. They can be defined using
Jaynes’s principle, which does not rely on the identifi-
cation of any (time) symmetry or automorphism for
characterizing the state, but only on the requirement of
maximal entropy subject to macroscopic constraints
(which are then approximately satisfied in terms of
expectation values). Starting with a system of many
classical tetrahedra, we have presented its mechanics
and statistical mechanics. As a first illustrative example,
we have defined a Gibbs state for the case of the closure
constraint for a single classical tetrahedron. Already this
example shows that, in a constrained system, a Gibbs or a
microcanonical state can be used, respectively, to partially
(on average, hCi ¼ 0) or exactly (C ¼ 0) impose the
constraints. In other words, the imposition of constraints
can be viewed in a novel way in terms of identifying
suitable statistical states on the full unconstrained state
space. Further, the particular example of a Gibbs state
with respect to the closure condition of a tetrahedron is a
generalization of Souriau’s Gibbs states to the case of first
class constraints. We then consider generalized Gibbs
states in a system of (arbitrary) many tetrahedra, with
respect to gluing constraints which produce a (approx-
imately, twisted) geometric configuration for connected
simplicial complexes, formed by the same tetrahedra.
Finally, we have described how our construction trans-
lates naturally at the quantum level, in terms of a Hilbert
(Fock) space of many quantum tetrahedra and constraint
operators acting on them (with the same geometric
interpretation). After presenting the quantum statistical
mechanics of many tetrahedra, we discuss how the same
is recast in the form of a quantum statistical field theory
partition function for tetrahedra using a second quantized
reformulation and field coherent states (as customary);
this corresponds, in fact, to the partition function of a
group field theory description of the same system of many
quantum tetrahedra.
The statistical framework presented in this work could

be used to explore in detail specific examples of sim-
plicial gravity (or group field theory) models with direct
or stronger geometric interpretation and thus of greater
interest for quantum gravity. For instance, one could
consider the state space of geometric (in the sense of
metric) tetrahedra and utilize a generalized Gibbs state to
define the partition function with a dynamics encoded by
the Regge action. Another interesting direction would be
to define a Gibbs density implementing not only gluing
constraints but also shape-matching constraints on the
twisted geometry space, or simplicity constraints, thus
reducing again to a proper Regge geometry from flux-
holonomy data. More generally, our framework can be
used, starting from any given concrete model, to extract

17What we understand better now as (matrix elements of)
gluing constraints and call Q is customarily called action and
treated also like a Euclidean action (even though it is not
associated with any notion of Wick rotating from a Lorentzian
action due to the absence of any spatiotemporal structures of the
present system) in group field theory literature.
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and analyze the thermodynamics and hydrodynamics
of the underlying system of (quantum) tetrahedra.
It is at this coarse-grained level of description, in fact,
that we expect a continuum spacetime and geometry,
with an approximately gravitational dynamics, to
emerge [1,43].
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